Advanced Algebra I

FREE GROUPS AND PRESENTATION OF GROUPS

For any given non-empty set X, we would like to construct a free group F(X) associate to X which is universal w.r.t all functions from X to groups. That is:

Theorem 0.1. Let X be a non-empty set. There is a group F(X) and a map $i: X \to F(X)$ satisfying the following "unerversal property":

For any function $f: X \to G$ to a group G, there is a unique group homomorphism $\bar{f}: F \to G$ such that $\bar{f} \circ i = f$.

One way to prove it is to construct the free group out of X. The idea is to construct a group out of X without any constrain. To do this, we start with X, and then we need the inverse, and identity. And moreover, we need element of the form $x_1x_2...$ etc. After we successfully constructed the group, it's natural that the group F(X) have the universal property.

Proof. Let X be a non-empty set. Let

$$X_0 := (X \times \{1, -1\}) \cup \{1\}.$$

By abuse the notation, we identify X with $X \times \{1\}$ and X^{-1} with $X \times \{-1\}$. And we have the inverse maps $\mu : X \to X^{-1}$ and $\nu : X^{-1} \to X$. We denote the image of inverse maps at $a \in X_0 - \{1\}$ by a^{-1} .

A word on X is a sequence $(a_1, a_2, ...)$ such that $a_i \in X_0$ and there is n_0 such that $a_i = 1$ for all $i > n_0$. (We call it a word of length n_0 .)

Given two words $w_1 := (a_1, a_2, ..., a_n, 1, ...), w_2 := (b_1, b_2, ..., b_m, 1...)$ of length n, m respectively, one can compose them to obtain a word

$$w_1 \circ w_2 := (a_1, ..., a_n, b_1, ..., b_m, 1, ...).$$

A word w (of length n) is said to be reduced if

- (1) $a_i \neq 1$ for $i \leq n$.
- (2) $a_{i+1} \neq a_i^{-1}$ for all i < n.

Let W be the set of all words on X and let F(X) be the set of reduced words. It's tedious but elementary to show that there is a well-defined map from $W \to F(X)$. Moreover, the composition on W induces a well-defined composition on F(X).

One can check that F(X) together with composition of words is a group. Moreover, one has $i: X \to F(X)$ given by $x \mapsto (x, 1, ...)$.

For simplicity, given a reduced word $(a_1, ..., a_n, 1, ...)$, we denote it by $a_1a_2...a_n$.

Lastly, we prove the universal property. Let $f: X \to G$ be a function from X to a group G. One can produce a map $\bar{f}: F(X) \to G$ by $\bar{f}(a_1...a_n) := f(a_1)...f(a_n)$. One checks that this is a group homomorphism and also $\bar{f} \circ i = f$.

It remains to prove the uniqueness of the homomorphism \bar{f} . Suppose one has a group homomorphism $g: F(X) \to G$ such that $g \circ i = f$. Then $g(x) = \bar{f}(x)$ for all $x \in X$. One checks that $g(w) = \bar{f}(w)$ by induction on length of reduced word $w \in F(X)$.

Proposition 0.2. Let G be a group, then there is a free group F map onto G. In particular, any group G can be realized as F/N for some free group F and normal subgroup $N \triangleleft G$.

Proof. Given a group G. We can take F = F(G). The identity map $i_G : G \to G$ induces a group homomorphism $\bar{f} : F(G) \to G$ by the universal property. It's clear that this homomorphism is surjective. Let N be $ker(\bar{f})$. It follows by the first homomorphism theorem that $G \cong F/N$.

In general, given a non-empty set X and a set (possibly empty) of reduced words R, one can produced a free group F(X) and a normal subgroup generated by R, denoted N. This give rise to a group < X|R>:= F(X)/N. We call it the group generated by X with relations R.

Example 0.3. Let $X = \{x, y\}$ and $R = \{xyx^{-1}y^{-1}\}$, then $\langle X|R \rangle \cong \mathbb{Z}^2$.

Example 0.4. Let $X = \{x, y\}$ and $R = \{x^n, y^2, xyxy\}$, then $\langle X|R \rangle \cong D_n$.

Remark 0.5. If the generators and relations are given explicitly as in the previous examples, we usually write it as $\langle x, y | x^n = y^2 = 1, (xy)^2 = 1 \rangle$.

It's in general not easy to determine the structure of the groups of the type $\langle X|R \rangle$. We present here the *Todd-Coxeter algorithm* if $\langle X|R \rangle$ is finite. Please note that we don't have good criterion for finiteness of $\langle X|R \rangle$ yet.

The idea behind the Todd-Coxeter algorithm is the following: if G := < X|R> is finite, then one has an embedding $G \to S_{|G|}$ by Cayley's theorem. For elements in G and label it by 1,2,3... and so on. Make tables out of the relation which basically describe the multiplication table of G (or how they correspond to permutations). Once the tables are completed, then we are done.

Please notice that if G is infinite, then the procedure will never end. For more detail, please see [Ar] p.223- or [Ro] p. 351-.

[Ar] M. Artin, Algebra, Prentice-Hall International edition.

[Ro] J. Rotman, An Introduction to the Theory of Groups, GTM 148.