
Advanced Algebra I

Nilpotent and solvable groups, normal series,
Jordan-Hölder theorem

Let G be a group, the center Z(G) is a normal subgroup of G. And
we have the canonical projection G → G/Z(G). Let C2(G) be the
inverse image of Z(G/Z(G)) in G. By the correspondence theorem,
Z(G/Z(G)) is a normal subgroup of G/Z(G) hence C2(G) is a nor-
mal subgroup of G. And then let C3(G) to be the inverse image of
Z(G/C2(G)). By doing this inductively, one has an ascending chain of
normal subgroups

{e} < C1(G) := Z(G) < C2(G) < ...

Definition 0.1. G is nilpotent if Cn(G) = G for some n.

Proposition 0.2. A finite p-group is nilpotent.

Proof. We use the fact that a finite p-group has non-trivial center. Thus
one has Ci � Ci+1. The group G has finite order thus the ascending
chain must terminates, say at Cn. If Cn 6= G, then G/Cn has non-trivial
center. One has Cn � Cn+1 which is impossible. Hence Cn = G. ¤
Theorem 0.3. If H, K are nilpotent, so is H ×K.

Proof. The key observation is that Z(H ×K) = Z(H)× Z(K). Then
inductively, one proves that Ci(H ×K) = Ci(H)×Ci(K). If Cn(H) =
H, Cm(K) = K then Cl(H ×K) for l = max(m,n). ¤

Then we are ready to prove the following:

Theorem 0.4. A finite group is nilpotent if and only if it’s a direct
product of Sylow p-subgroups.

Proof. By the previous two results, it’s clear that a direct product of
Sylow p-subgroups is nilpotent.

Conversely, if G is nilpotent, then we can claim that every Sylow
p-subgroup is a normal subgroup of G. Then by checking the decom-
position criterion, one has the required decomposition.
Claim. If P is Sylow p-subgroup, then P C G.
To this end, it suffices to prove that NG(P ) = G. We prove the follow-
ing claim:
Claim. If H is a proper subgroup of a nilpotent group G, then H is a
proper subgroup of NG(H).
By applying this Claim to NG(H), then it says that NG(H) can’t be
a proper subgroup of G since NG(NG(H)) = NG(H). Thus it follows
that NG(H) = G. ¤

We have seen that we have a series of subgroup by taking centers.
Another similar construction is to take commutators.
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Definition 0.5. Let G be a group. The commutator of G, denoted G′

is the subgroup generated by the subset {aba−1b−1}.
Roughly speaking, the subgroup G′ measures measure the commu-

tativity of a group. The smaller G′, the more commutative it is.

Theorem 0.6. G′CG, and G/G′ is ableian. Moreover, if N CG, then
G/N is abelian if and only if G′ < N .

Proof. (1) for all g ∈ G, g(aba−1b−1g−1 ∈ G′, hence gG′g < G′. So
G′ C G.

(2)

aG′bG′ = abG′ = ab(b−1a−1ba)G′ = baG′ = bG′aG′.

(3) Consider π : G → G/N . If G/N is abelian, then π(aba−1b−1 =
e, hence G′ < N . Conversely, if G′ < N , we have a surjective
homomorphism G/G′ → G/N . G/G′ is abelian, hence so is it
homomorphic image G/N .

¤
Definition 0.7. We can define the the commutator inductively, i.e.
G(2) := (G′)′, etc. The G(i) is called the i-th derived subgroup of G.
It’s clear that G > G′ > G(2) > ....

A group is solvable is G(n) = {e} for some n.

Example 0.8. Take G = S4. The commutator is the smallest subgroup
that G/G′ is abelian. Since the only non-trivial normal subgroups of
S4 are V,A4. It’s clear that G′ = A4 (Or one can prove this by hand).
Similarly, one finds that G(2) = A′

4 = V , and G(3) = {e}. Hence S4 is
solvable.

Another useful description of solvable groups is the groups with solv-
able series.

Definition 0.9. A groups G has a subnormal series if there is a series
of subgroups of G

G = H0 > H1 > H2 > ... > Hn,

such that Hi C Hi−1 for all 1 ≤ i ≤ n.
A subnormal series is a solvable series if Hn = {e} and Hi−1/Hi is

abelian for all 1 ≤ i ≤ n.
A subnormal series is a normal series if all Hi are normal subgroups

of G.

Theorem 0.10. A group is solvable if and only it has a solvable series.

Proof. It’s clear that G > G′ > ...G(n) = {e} is a solvable series. It
suffices to prove that a group with a solvable series is solvable. Suppose
now that G has a sovable series {e} = Hn < ... < H0 = G. First
observe that G′ < H1 since G/H1 is abelian. We claim that G(i) < Hi
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for all i inductively. Which can be prove by the observation that the
intersection of the series {e} = Hn < ... < H0 = G with G(i) gives a
solvable series of G(i). ¤
Example 0.11. A finite p-group has a solvable series, hence is solvable.
Moreover, a nilpotent group is solvable.

Proposition 0.12. Let H be a subgroup of a solvable group G, then
H is solvable.

Let N be a normal subgroup of G. Then G is solvable if and only if
both N and G/N are solvable.

Example 0.13. A5 is not solvable, hence so is Sn for n ≥ 5.

0.1. simplicity of A5. An element in Sn is said to be have cycle struc-
ture (m1, .., mr) with m1 ≥ m2 ≥ ... ≥ mr , m1 + ... + mr = n if its
cycle decomposition is of length m1, ..., mr respectively. For example,
(1, 2)(3, 4) ∈ S4 has cycle structure (2, 2) and (1, 2) ∈ S4 has cycle
structure (2, 1, 1).

Remark 0.14. There is a one-to-one correspondence between cycle
structures of Sn and partition of the integer n.

A key observation is that any two elements are conjugate to each
other if and only if they have the same cycle structure. Let’s call
the set of all elements of cycle structure (m1, ..., mr) the cycle class of
(m1, ...mr). A consequence of this fact is that a subgroup N < Sn is
normal if and only if N is union of cycle classes.

Let’s put it another way, given a group G, we can always consider
the group action G × G → G by conjugation. The conjugate classes
are the orbits. A subgroup H < G is normal if and only if it is union
of orbits. If G = Sn, then orbits are cycle classes.

Example 0.15. In S4, V is the union of class (1, 1, 1, 1) and (2, 2).
A4 is the union of V and the class (3, 1).

The purpose of this subsection is to show that A5 is a simple non-
abelian group, hence a non-solvable group.

Theorem 0.16. A5 is a simple non-abelian group.

Proof. One note that in S5, possible cycle structures are (5), (4, 1),(3, 1
, 1),(3, 2), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1) with 24, 30, 20, 20, 15, 10, 1 el-
ements in each class. While A5 is the union of classes of (5), (3, 1, 1), (2,
2, 1), (1, 1, 1, 1, 1).

We consider the actions of conjugation α : S5 × A5 → A5 and its
restriction β : A5 × A5 → A5. For σ ∈ A5, let Oα,σ be the orbit of the
α and Oβ,σ be the orbit of the β. And let Gα,σ, Gβ,σ be the stabilizer.

It’s clear that Gα,σ = CS5(σ) and Gβ,σ = CA5(σ) = CS5(σ) ∩ A5.
Thus we have either |Gβ,σ| = 1

2
|Gα,σ| or |Gβ,σ| = |Gα,σ|. Hence |Oβ,σ| =

|Oα,σ| or |Oβ,σ| = 1
2
|Oα,σ|.
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case 1. If σ has cycle structure (5), then |Oα,σ| = 24, |Gα,σ| = 5. It
follows that |Gβ,σ| = 5 and hence |Oβ,σ| = 12.

case 2. If σ has cycle structure (3, 1, 1), then |Oα,σ| = 20, |Gα,σ| = 6.
However, one notice that there is an element τ ∈ CS5(σ)−CA5(σ) (e.g.
(45)(123) = (123)(45)). Hence |Gβ,σ| 6= |Gα,σ| and must be 1

2
|Gα,σ| = 3.

Therefore |Oβ,σ| = 20.
case 3. If σ has cycle structure (2, 2, 1),then |Oα,σ| = 15, |Gα,σ| = 8.

It follows that |Oβ,σ| = 15.
Combining all this, if H < A5 is a normal subgroup, then |H| =

1+ 12r1 +20r2 + 15r3, where ri are integers. Moreover |H| | |A5| = 60,
which is impossible unless |H| = 1 or 60.

¤
WE turning back to series a little bit more. A subnormal series is

called a composition series if every quotient is a simple group.

Definition 0.17. For a subnormal series, {e} = Hn < ... < H0 = G,
the factors of the series are the quotient groups Hi−1/Hi and the length
is the number of non-trivial factors. A refinement is a series obtained
by finite steps of one-step refinement which is {e} = Hn < . < K <
.. < H0 = G.

Definition 0.18. Two series are said to be equivalent if there is a
one-to-one correspondence between the non-trivial factors. And the
corresponding factors groups are isomorphism.

It’s clear that this defines an equivalent relation on subnormal series.
The main theorems are

Theorem 0.19 (Schreier). Any two subnormal (resp. normal) series
of a group G have a subnormal (resp. normal) refinement that are
equivalent.

An immediate corollary is the famous Jordan-Hölder theorem.

Theorem 0.20 (Jordan-Hölder). Any two composition series of a group
are equivalent.

The main technique is the Zassenhaus Lemma, or sometimes called
butterfly Lemma.

Lemma 0.21 (Zassenhaus). Let A∗ C A and B∗ C B be subgroups of
G. Then

(1) A∗(A ∩B∗) C A∗(A ∩B).
(2) B∗(A ∩B) C B∗(A ∩B).
(3) A∗(A ∩B)/A∗(A ∩B∗) ∼= B∗(A ∩B)/B∗(A∗ ∩B).

proof of the lemma. It’s clear that A∩B∗ = (A∩B)∩B∗CA∩B. And
similarly, A∗∩B CA∩B. Let D = (A∩B∗)(A∗∩B)CA∩B. One can
have a well-defined homomorphism f : A∗(A ∩ B) → A ∩ B/D with
kernel A∗(A ∩B∗). And similarly for the other homomorphism. ¤
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proof of Schreier’s theorem. Let {e} = Gn+1 < ... < G0 = G and
{e} = Hm+1 < ... < H0 = G be two subnormal series. Let G(i, j) =:=
Gi+1(Gi ∩ Hj) (resp. H(i, j) := Hj+1(Gi ∩ Hj)). Then one has a
refinement

G = G(0, 0) > G(0, 1) > ... > G(0,m) > G(1, 0) > ... > G(n,m),

G = H(0, 0) > H(1, 0) > ... > H(n, 0) > H(0, 1) > ... > H(n,m).

By applying Zaseenhaus Lemma to Gi+1, Gi, Hj+1, Hj, one has

G(i, j)/G(i, j + 1) ∼= H(i, j)/H(i + 1, j).
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