Advanced Algebra I

SYLOW THEOREMS

We are now ready to prove Sylow theorems. The first theorem regards the existence of p-subgroups in a given group. The second theorem deals with relation between p-subgroups. In particular, all Sylow p-subgroups are conjugate. The third theorem counts the number of Sylow p-subgroups.

Theorem 0.1 (First Sylow theorem). Let G be a finite group of order $p^n m$ (where (n, m) = 1). Then there are subgroups of order p^i for all $0 \le i \le n$.

Furthermore, for each subgroup H_i of order p^i , there is a subgroup H_{i+1} of order p^{i+1} such that $H_i \triangleleft H_{i+1}$ for $0 \le i \le n-1$.

In particular, there exist a subgroup of order p^n , which is maximal possible, called Sylow p-subgroup. We recall the useful lemma which will be used frequently.

Lemma 0.2. Let G be a finite p-group. Then

$$|S| \equiv |S_0| \pmod{p}.$$

proof of the theorem. We will find subgroup of order p^i inductively. By Cauchy's theorem, there is a subgroup of order p. Suppose that H is a subgroup of order p^i . Consider the group action that H acts on S = G/H by translation. One show that $xH \in S_0$ if and only if $x \in N_G(H)$. Thus $|S_0| = |N_G(H)/H|$. If i < n, then

$$|S_0| \cong |S| \cong 0 \pmod{p}$$
.

By Cauchy's theorem, the group $N_G(H)/H$ contains a subgroup of order p. The subgroup is of the form H_1/H , hence $|H_1| = p^{i+1}$. Moreover, $H \triangleleft H_1$.

Example 0.3. If G is a finite p-group of order p^n , then one has a series of subgroups $\{e\} = H_0 < H_1 < ... < H_n = G$ such that $|H_i| = p^i$ and $H_i \triangleleft H_{i+1}, H_{i+1}/H_i \cong \mathbb{Z}_p$. In particular, G is solvable.

Definition 0.4. A subgroup P of G is a Sylow p-subgroup if P is a maximal p-subgroup of G.

If G is finite of order $p^n m$ then a subgroup P is a Sylow p-subgroup if and only if $|P| = p^n$ by the proof of the first theorem.

Theorem 0.5 (Second Sylow theorem). Let G be a finite group of order p^nm . If H is a p-subgroup of a G, and P is any Sylow p-subgroup of G, then there exists $x \in G$ such that $xHx^{-1} < P$.

Proof. Let S = G/P and H acts on S by translation. Thus by the Lemma, one has $|S_0| \equiv |S| = m \pmod{p}$. Therefore, $S_0 \neq \emptyset$. One has

$$xP \in S_0 \Leftrightarrow hxP = xP \quad \forall h \in H \Leftrightarrow x^{-1}hx < P.$$

An immedaitely but important consequence is that two Sylow p-subgroups are conjugate.

Theorem 0.6 (Third Sylow theorem). Let G be a finite group of order p^nm . The number of Sylow p-subgroups divides |G| divides |G| and is of the form kp + 1.

Proof. Let S be the conjugate class of a Sylow p-subgroup P (this is the same as the set of all Sylow p-subgroups). We consider the action that G acts on S by conjugation, then the action is transitive. Hence $|S| \mid |G|$.

Furthermore, we consider the action $P \times S \to S$ by conjugation. Then

$$Q \in S_0 \Leftrightarrow xQx^{-1} = Q \quad \forall x \in P \Leftrightarrow P < N_G(Q).$$

Both P,Q are Sylow p-subgroup of $N_G(Q)$ and therefore conjugate in $N_G(Q)$. However, $Q \triangleleft N_G(Q)$, Q has no conjugate other than itself. Thus one concludes that P = Q. In particular, $S_0 = \{P\}$. By the Lemma, one has |S| = 1 + kp.

Example 0.7. Group of order 200 must have normal Sylow subgroups. Hence it's not simple. (let $r_p := number$ of Sylow p-subgroups. Then $r_5 = 1$).

Example 0.8 (Classification of groups of order 2p $(p \neq 2)$). Let G be a group of order 2p. If it's abelian, then it's cyclic by fundamental theorem of abelian groups plus Chinese remainder theorem. Let's suppose that it's non-abelian.

There are elements a, b of order p, 2 respectively. By Sylow theorem, $r_p = 1$, hence the subgroup $\langle a \rangle$ is normal. Then one notices that $G = \langle a \rangle \langle b \rangle$ for $\langle a \rangle \cap \langle b \rangle = \{e\}$. Moreover, $bab^{-1} = a^k$ for some k. One has

$$a = b^2 a b^{-2} = a^{k^2}.$$

It follows that k = 1, -1. If k = 1, then G is abelian. Thus we assume that k = -1. This gives the group $D_p := \langle a, b | a^p = b^2 = e, ab = ba^{-1} \rangle$.

Proposition 0.9. If $H, K \triangleleft G$ and $H \cap K = \{e\}, HK = G$, then $G \cong H \oplus K$.

Proposition 0.10. Let G be a group of order pq, with p > q distinct primes. If $q \nmid p-1$, then G is cyclic. If $q \mid p-1$ then either G is cyclic or there is a unique model of non-abelian group up to isomorphism.

 $(Which \ is \ a \ "semi-direct" \ of \ two \ cyclic \ groups, \ or \ called \ a \ metacyclic \ groups \ in \ this \ case)$