
Advanced Algebra I

Sylow Theorems

We are now ready to prove Sylow theorems. The first theorem re-
gards the existence of p-subgroups in a given group. The second theo-
rem deals with relation between p-subgroups. In particular, all Sylow
p-subgroups are conjugate. The third theorem counts the number of
Sylow p-subgroups.

Theorem 0.1 (First Sylow theorem). Let G be a finite group of order
pnm (where (n,m) = 1). Then there are subgroups of order pi for all
0 ≤ i ≤ n.

Furthermore, for each subgroup Hi of order pi, there is a subgroup
Hi+1 of order pi+1 such that Hi C Hi+1 for 0 ≤ i ≤ n− 1.

In particular, there exist a subgroup of order pn, which is maximal
possible, called Sylow p-subgroup. We recall the useful lemma which
will be used frequently.

Lemma 0.2. Let G be a finite p-group. Then

|S| ≡ |S0| (mod p).

proof of the theorem. We will find subgroup of order pi inductively. By
Cauchy’s theorem, there is a subgroup of order p. Suppose that H
is a subgroup of order pi. Consider the group action that H acts on
S = G/H by translation. One show that xH ∈ S0 if and only if
x ∈ NG(H). Thus |S0| = |NG(H)/H|. If i < n, then

|S0| ∼= |S| ∼= 0 (mod p).

By Cauchy’s theorem, the group NG(H)/H contains a subgroup of or-
der p. The subgroup is of the form H1/H, hence |H1| = pi+1. Moreover,
H C H1.

¤

Example 0.3. If G is a finite p-group of order pn, then one has a
series of subgroups {e} = H0 < H1 < ... < Hn = G such that |Hi| = pi

and Hi C Hi+1, Hi+1/Hi
∼= Zp. In particular, G is solvable.

Definition 0.4. A subgroup P of G is a Sylow p-subgroup if P is a
maximal p-subgroup of G.

If G is finite of order pnm then a subgroup P is a Sylow p-subgroup
if and only if |P | = pn by the proof of the first theorem.

Theorem 0.5 (Second Sylow theorem). Let G be a finite group of order
pnm. If H is a p-subgroup of a G, and P is any Sylow p-subgroup of
G, then there exists x ∈ G such that xHx−1 < P .
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Proof. Let S = G/P and H acts on S by translation. Thus by the
Lemma, one has |S0| ≡ |S| = m(mod p). Therefore, S0 6= ∅. One has

xP ∈ S0 ⇔ hxP = xP ∀h ∈ H ⇔ x−1hx < P.

¤
An immedaitely but important consequence is that two Sylow p-

subgroups are conjugate.

Theorem 0.6 (Third Sylow theorem). Let G be a finite group of order
pnm. The number of Sylow p-subgroups divides |G| divides |G| and is
of the form kp + 1.

Proof. Let S be the conjugate class of a Sylow p-subgroup P (this is
the same as the set of all Sylow p-subgroups). We consider the action
that G acts on S by conjugation, then the action is transitive. Hence
|S| | |G|.

Furthermore, we consider the action P × S → S by conjugation.
Then

Q ∈ S0 ⇔ xQx−1 = Q ∀x ∈ P ⇔ P < NG(Q).

Both P, Q are Sylow p-subgroup of NG(Q) and therefore conjugate in
NG(Q). However, Q C NG(Q), Q has no conjugate other than itself.
Thus one concludes that P = Q. In particular, S0 = {P}. By the
Lemma, one has |S| = 1 + kp. ¤
Example 0.7. Group of order 200 must have normal Sylow subgroups.
Hence it’s not simple. (let rp := number of Sylow p-subgroups. Then
r5 = 1).

Example 0.8 (Classification of groups of order 2p (p 6= 2)). Let G be
a group of order 2p. If it’s abelian, then it’s cyclic by fundamental the-
orem of abelian groups plus Chinese remainder theorem. Let’s suppose
that it’s non-abelian.

There are elements a, b of order p, 2 respectively. By Sylow theorem,
rp = 1, hence the subgroup < a > is normal. Then one notices that
G =< a >< b > for < a > ∩ < b >= {e}. Moreover, bab−1 = ak for
some k. One has

a = b2ab−2 = ak2

.

It follows that k = 1,−1. If k = 1, then G is abelian. Thus we assume
that k = −1. This gives the group Dp :=< a, b|ap = b2 = e, ab =
ba−1 >.

Proposition 0.9. If H,K C G and H ∩ K = {e}, HK = G ,then
G ∼= H ⊕K.

Proposition 0.10. Let G be a group of order pq, with p > q distinct
primes. If q - p− 1, then G is cyclic. If q | p− 1 then either G is cyclic
or there is a unique model of non-abelian group up to isomorphism.
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(Which is a ”semi-direct” of two cyclic groups, or called a metacyclic
groups in this case)


