Advanced Algebra I

SyLow THEOREMS

We are now ready to prove Sylow theorems. The first theorem re-
gards the existence of p-subgroups in a given group. The second theo-
rem deals with relation between p-subgroups. In particular, all Sylow
p-subgroups are conjugate. The third theorem counts the number of
Sylow p-subgroups.

Theorem 0.1 (First Sylow theorem). Let G be a finite group of order
p"m (where (n,m) = 1). Then there are subgroups of order p' for all
0<17<n.

Furthermore, for each subgroup H; of order p*, there is a subgroup
H;1 of order p"*t such that H; <t Hy 1y for 0 <i <n— 1.

In particular, there exist a subgroup of order p™, which is maximal
possible, called Sylow p-subgroup. We recall the useful lemma which
will be used frequently.

Lemma 0.2. Let G be a finite p-group. Then
|S| = 1So|  (mod p).

proof of the theorem. We will find subgroup of order p* inductively. By
Cauchy’s theorem, there is a subgroup of order p. Suppose that H
is a subgroup of order p’. Consider the group action that H acts on
S = G/H by translation. One show that zH € S, if and only if
x € Ng(H). Thus |Sp| = |Ne(H)/H]|. If i < n, then

[Sol = |S[ =0 (mod p).

By Cauchy’s theorem, the group Ng(H)/H contains a subgroup of or-
der p. The subgroup is of the form H;/H, hence |H,| = p'™'. Moreover,
H < H,.

Il

Example 0.3. If G is a finite p-group of order p"™, then one has a
series of subgroups {e} = Hy < Hy < ... < H, = G such that |H;| = p'
and H; < Hivq, Hiy /H; = 7,y In particular, G is solvable.

Definition 0.4. A subgroup P of G is a Sylow p-subgroup if P is a
mazimal p-subgroup of G.

If GG is finite of order p"m then a subgroup P is a Sylow p-subgroup
if and only if |P| = p™ by the proof of the first theorem.

Theorem 0.5 (Second Sylow theorem). Let G be a finite group of order
p"m. If H is a p-subgroup of a G, and P is any Sylow p-subgroup of
G, then there exists v € G such that xtHx™1 < P.
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Proof. Let S = G/P and H acts on S by translation. Thus by the
Lemma, one has |Sp| = |S| = m(mod p). Therefore, Sy # (). One has

P €Sy« hxtP=xP Yhe H< x the < P.
|

An immedaitely but important consequence is that two Sylow p-
subgroups are conjugate.

Theorem 0.6 (Third Sylow theorem). Let G be a finite group of order
p"m. The number of Sylow p-subgroups divides |G| divides |G| and is
of the form kp+ 1.

Proof. Let S be the conjugate class of a Sylow p-subgroup P (this is
the same as the set of all Sylow p-subgroups). We consider the action
that GG acts on S by conjugation, then the action is transitive. Hence
S| 1G]

Furthermore, we consider the action P x S — S by conjugation.
Then

QeSyerQr'=0Q Vre P& P<NgQ).
Both P, @ are Sylow p-subgroup of Ng(Q) and therefore conjugate in
Ng(Q). However, @ < Ng(Q), @ has no conjugate other than itself.
Thus one concludes that P = Q. In particular, Sy = {P}. By the
Lemma, one has |S| =1+ kp. O

Example 0.7. Group of order 200 must have normal Sylow subgroups.
Hence it’s not simple. (let 1, := number of Sylow p-subgroups. Then
s = 1)

Example 0.8 (Classification of groups of order 2p (p # 2)). Let G be
a group of order 2p. If it’s abelian, then it’s cyclic by fundamental the-
orem of abelian groups plus Chinese remainder theorem. Let’s suppose
that it’s non-abelian.

There are elements a,b of order p,2 respectively. By Sylow theorem,
rp = 1, hence the subgroup < a > is normal. Then one notices that
G =<a><b> for<a>nN<b>={e}. Moreover, bab=* = a* for
some k. One has

a=b2ab? = d".
It follows that k =1,—1. If k =1, then G s abelian. Thus we assume
that k = —1. This gives the group D, =< a,bla® = b* = e,ab =
ba=! >.

Proposition 0.9. If HHK <G and HNK = {e}, HK = G ,then
G=XHOK.

Proposition 0.10. Let G be a group of order pq, with p > q distinct
primes. If ¢t p—1, then G is cyclic. If ¢ | p—1 then either G is cyclic
or there is a unique model of non-abelian group up to isomorphism.
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(Which is a "semi-direct” of two cyclic groups, or called a metacyclic
groups in this case)



