Advanced Algebra I

CYCLIC EXTENSION

Definition 0.1. We say that an extension is cyclic (resp. abelian) if it's algebraic Galois and $\operatorname{Gal}_{F/K}$ is cyclic (resp. abelian). An cyclic extension of order n is an cyclic extension whose Galois group is isomorphic to \mathbb{Z}_n .

The following theorem characterize cyclic extension except some exceptional case.

Theorem 0.2. Suppose that char(K) = 0 or $char(K) = p \nmid n$. Suppose furthermore that there is a primitive n-th root of unity in K, say ζ . Then F/K is a cyclic of order n if and only if F = K(u) where u is a root of irreducible polynomial $x^n - a \in K[x]$.

Before we get into the proof. Let's consider the "difference" between u and $\sigma(u)$ for $\sigma \in \operatorname{Gal}_{F/K}$. Let F/K be a finite Galois extension. Then in this circumstance, norm and trace (which we will define more generally later) are nothing but $N_{F/K}(u) := \prod_{\sigma \in \operatorname{Gal}_{F/K}} \sigma(u)$ and $T_{F/K} := \sum_{\sigma \in \operatorname{Gal}_{F/K}} \sigma u$. It's easy to see that $T(u - \sigma(u)) = 0$ and $N(u/\sigma(u)) = 1$. The follows lemma says that the converse is also true for cyclic extension, which will play the central role in the study of cyclic extension.

Lemma 0.3. Let F/K be an cyclic extension with σ the generator of the Galois group.

- (1) If $T_{F/K}(u) = 0$, then there exists an $v \in F$ such that $u = v \sigma(v)$.
- (2) If $N_{F/K}(u) = 1$, then there exists an $v \in F$ such that $u = v/\sigma(v)$.

Proof of the Theorem. Let u be a root of $x^n - a$, then all the roots are $u\zeta^i$ for i = 0, ..., n - 1. Since $\zeta \in K$. It's clear that $F = K(\zeta)$ is a cyclic extension over K.

Conversely, suppose that F/K is a cyclic extension of order n. Since there is a primitive n-th root $\zeta \in K$, one has $N(\zeta) = \zeta^n = 1$. By the Lemma, there exist an v such that $\zeta = v/\sigma(v)$. Let $u = v^{-1}$, then $\sigma(u) = \zeta u$. Hence $\sigma(u^n) = u^n \in K$. Therefore u satisfies $x^n - a \in K[x]$ for some $a \in K$.

Moreover, for $u\zeta^i$ and $u\zeta^j$, there is an automorphism sending $u\zeta^i$ to $u\zeta^j$. So they have the same minimal polynomial p(x) dividing $x^n - a$. One the other hand, p(x) has n distinct roots $u\zeta^i$ for i = 0, ..., n - 1. It follows that $p(x) = x^n - a$ is irreducible. One has [K(u) : K] = n and thus F = K(u).

Theorem 0.4. Suppose that $char(K) = p \neq 0$. Then F/K is a cyclic extension of order n if and only if F = K(u), where u is a root of an irreducible polynomial $x^p - x - a \in K[x]$.

Proof. The proof is parallel to the previous one.

Let u be a root of $x^p - x - a$, then all the roots are u + i for i = 0, ..., p - 1. It's clear that $F = K(\zeta)$ is a cyclic extension over K with Galois group generated by σ such that $\sigma(u) = u + 1$.

Conversely, suppose that F/K is a cyclic extension of order n. One has T(1) = p = 0. By the Lemma, there exist an v such that $1 = v - \sigma(v)$. Let u = -v, then $\sigma(u) = u + 1$. Hence $\sigma(u^p) = u^p + 1$ and $\sigma(u^p - u) = u^p - u$. Therefore u satisfies $x^p - x - a \in K[x]$ for some $a \in K$.

Moreover, for u+i and u+j, there is an automorphism sending $u\zeta^i$ to $u\zeta^j$. So they have the same minimal polynomial p(x) dividing x^p-x-a . One the other hand, p(x) has p distinct roots u+i for i=0,...,p-1. It follows that $p(x)=x^p-x-a$ is irreducible. One has [K(u):K]=n and thus F=K(u).

It remains to define norm and trace, and prove the main lemma. We first recall something about separable degree.

Proposition 0.5. If F/K is a finite extension, then $[F:K]_s|[F:K]$. Moreover, $[F:K]/[F:K]_s = p^n$ for some n.

Proof. Let $S := \{u \in F | u \text{ is separable over } K\}$. One can prove that S is a field separable over K. We claim that F is "purely inseparable" over S, i.e. for all $u \in F$, $u^{p^n} \in S$ for some n, or equivalently, minimal poly of $u \in F$ is of the form $x^{p^n} - a$.

To see this, let p(x) be the minimal polynomial of $u \in F - S$ over S. Then p'(x) = 0 otherwise, u is separable over S, hence separable over K, u is indeed in S. We can write $p(x) = f(x^p)$. If $u^p \in S$, we are done. If $u^p \ni S$, then the minimal polynomial of u^p is f(x). One infers that f'(x) = 0. By repeating this process, we have proved the claim.

If follows that $[F:S] = p^n$ for some n since F is finitely generated over S.

It remains to check that for every K-embedding $\sigma: S \to \overline{K}$, there is a unique extension to an K-embedding $\overline{\sigma}: F \to \overline{K}$. By extension theorem, there are such extensions. To see the uniqueness, suppose that we have K-embeddings $\tau_1, \tau_2: F \to \overline{K}$ extending σ . For all $u \in F$, $u^{p^n} \in S$ for some n. One has that

$$\tau_1(u)^{p^n} = \tau_1(u^{p^n}) = \tau_2(u^{p^n}) = \tau_2(u)^{p^n}.$$

Since char(K) = p, one has then $\tau_1(u) = \tau_2(u)$. Thus $\tau_1 = \tau_2$. It follows that $[F:K]_s = [S:K]_s$

Combining all theses, we have

$$[F:K]_s = [S:K]_s = [S:K]|[F:K].$$

We define the inseparable degree as $[F:K]_i := [F:S]$. Then we have $[F:K]_i = p^n$ for some n.

Definition 0.6. Let [F:K] be a finite extension. Let Σ be the set of K-embeddings of F into \overline{K} . For any $u \in F$, we define the norm, denoted

$$N_{F/K}(u) := (\prod_{\sigma \in \Sigma} \sigma(u))^{[F:K]_i}.$$

Similarly, we define the trace as

$$T_{F/K}(u) := (\Sigma_{\sigma \in \Sigma} \sigma(u))[F : K]_i.$$

Example 0.7. If F/K is finite Galois extension, then the set of all K-embeddings of F is nothing but the Galois group of F (since F is normal). And $[F:K]_i = 1$ since F/K is separable. Therefore, $N_{F/K}(u) = \prod_{\sigma \in \operatorname{Gal}_{F/K}} \sigma(u)$ and $T_{F/K}(u) = \sum_{\sigma \in \operatorname{Gal}_{F/K}} \sigma(u)$

Here are some basic properties of norma and trace

- **Proposition 0.8.** (1) $N(u), T(u) \in K$. More precisely, let $p(x) = x^n + a_1 x^{n-1} + ... + a_n$ be the minimal polynomial of u over K. Then $N(u) = ((-1)^n a_n)^{[F:K(u)]}$ and $T(u) = ((-1)a_1)[F:K(u)]$.
 - (2) If $u \in K$, then $N(u) = u^{[F:K]}, T(u) = [F:K]u$.
 - (3) N(uv) = N(u)N(v) and T(u+v) = T(u) + T(v). Therefore, $N_{F/K}: F^* \to K^*$ is a multiplicative group homomorphism and $T_{F/K}: F \to K$ is an additive group homomorphism.
 - (4) If $K \subset E \subset F$, then $N_{F/K}(u) = N_{E/K}(N_{F/E}(u))$, and $T_{F/K}(u) = T_{E/K}(T_{F/E}(u))$.

Proof. (2), (3) follows directly from the definition. To see (4), let $I := \{\sigma: E \to \overline{K} | \sigma_{|K} = \mathbf{1}_K \}$ be a set of K-embeddings of E. For each σ , we fix an extension $\bar{\sigma}: F \to \overline{K}$. Let $J := \{\tau: F \to \overline{K} | \tau_{|E} = \mathbf{1}_E \}$ be the a of E-embeddings of F. If follows that $\{\bar{\sigma}_i \tau_j\}_{i \in I, j \in J}$ is the set of K-embeddings of F. Then

$$N_{F/K}(u) = (\prod_{I,I} \bar{\sigma}_i \tau_j(u))^{[F:K]_i} = (\prod_I \bar{\sigma}_i (N_{F/E}(u)))^{[E:K]_i} = N_{E/K} (N_{F/E}(u)).$$

And the proof for trace is similar.

To prove (1), we first assume that u is separable over K. Then $K(u) \subset S$ and every K-embedding of K(u) has [S:K(u)] extensions. Let $u = u_1, ..., u_r$ be the roots of its minimal polynomial. Then one has

$$\prod \sigma(u) = (\prod_{i=1}^{r} u_i)^{[S:K(u)]} = ((-1)^r a_0)^{[S:K(u)]}.$$

And the statement follows easily.

we consider E = K(u). Let $S_E := E \cap S$, then E is purely inseparable over S_E , in particular, $v := u^{p^n} \in S_E$ for some n. let f(x) be the

minimal polynomial of v over K, then we have

$$p(x) = f(x^{p^n}) = f(x)^{p^n}.$$

Since v is separable over K, the statement holds for v. Since norm is a homomorphism, the statement holds for u as well.

Proof of the main Lemma. We only prove that T(u) = 0 implies $u = v - \sigma(v)$. The other implication is easy.

Step 1. Find an element $z \in F$ with $T(z) \neq 0$. This is an immediate consequence of independency of automorphism.

Step 2. We normalize it to get $w \in F$ with T(w) = 1. In fact, we take $w := \frac{z}{T(z)}$.

Step 3. Let

$$v = uw + (u + \sigma(u))\sigma(w) + \dots + (u + \sigma(u) + \dots + \sigma^{n-2}(u))\sigma^{n-2}(w).$$

Then we are done.

For the norm, if N(u) = 1, then $u \neq 0$. Take

$$v = uy + u\sigma(u)\sigma(y) + \dots + u\sigma(u)\dots\sigma^{n-1}(u)\sigma^{n-1}(y).$$

By independency of automorphism, there exist a y such that v is non-zero. One checks that $u^{-1}v = \sigma(v)$. We are done.