Advanced Algebra I

CYCLIC EXTENSION

Definition 0.1. We say that an extension is cyclic (resp. abelian) if
it’s algebraic Galois and Galp/i is cyclic (resp. abelian). An cyclic
extension of order n is an cyclic extension whose Galois group is iso-
morphic to Z,.

The following theorem characterize cyclic extension except some ex-
ceptional case.

Theorem 0.2. Suppose that char(K) = 0 or char(K) = p {n. Sup-
pose furthermore that there is a primitive n-th root of unity in K, say
(. Then F/K is a cyclic of order n if and only if F' = K(u) where u
is a root of irreducible polynomial ™ — a € K|x].

Before we get into the proof. Let’s consider the "difference” be-
tween u and o(u) for o € Galp/k. Let F//K be a finite Galois exten-
sion. Then in this circumstance, norm and trace (which we will define
more generally later) are nothing but Np/k(u) := HJEGalF/K o(u) and
Trjx = ZaeGalF/K ou. It’s easy to see that T'(u — o(u)) = 0 and
N(u/o(u)) = 1. The follows lemma says that the converse is also true

for cyclic extension, which will play the central role in the study of
cyclic extension.

Lemma 0.3. Let F//K be an cyclic extension with o the generator of
the Galois group.

(1) If Tp/x(u) = 0, then there exists an v € F such that u =
v—o(v).
(2) If Npjk(u) = 1, then there exists an v € F such that u =

v/o(v).

Proof of the Theorem. Let u be a root of ™ — a, then all the roots are
uC® for i = 0,...,n — 1. Since ¢ € K. It’s clear that FF = K(() is a
cyclic extension over K.

Conversely, suppose that F//K is a cyclic extension of order n. Since
there is a primitive n-th root { € K, one has N(¢) = (" = 1. By the
Lemma, there exist an v such that ¢ = v/o(v). Let u = v™!, then
o(u) = Cu. Hence o(u"™) = u™ € K. Therefore u satisfies 2" —a € K|z]
for some a € K.

Moreover, for u¢* and u(’, there is an automorphism sending u(’ to
u¢?. So they have the same minimal polynomial p(z) dividing 2" — a.
One the other hand, p(x) has n distinct roots u¢’ for i = 0,...,n — 1.
It follows that p(z) = 2™ — a is irreducible. One has [K(u) : K] =n
and thus F = K (u). O
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Theorem 0.4. Suppose that char(K) =p # 0. Then F/K is a cyclic
extension of order n if and only if F' = K(u), where u is a root of an
irreducible polynomial 2* — v — a € K|x].

Proof. The proof is parallel to the previous one.

Let u be a root of 2P — x — a, then all the roots are u + i for i =
0,...,p— 1. It’s clear that F' = K(() is a cyclic extension over K with
Galois group generated by ¢ such that o(u) = u + 1.

Conversely, suppose that F'/K is a cyclic extension of order n. One
has T(1) = p = 0. By the Lemma, there exist an v such that 1 =
v —o(v). Let w = —v, then o(u) = v+ 1. Hence o(v”) = v + 1 and
o(uP — u) = u? — u. Therefore u satisfies ¥ — x — a € K|[x] for some
a€ K.

Moreover, for v + ¢ and u + j, there is an automorphism sending
uC’ to u¢’. So they have the same minimal polynomial p(z) dividing
2P — x — a. One the other hand, p(x) has p distinct roots u + ¢ for
i =0,..,p— 1. It follows that p(z) = 2P — x — a is irreducible. One
has [K(u) : K] =n and thus F' = K (u). O

It remains to define norm and trace, and prove the main lemma.
We first recall something about separable degree.

Proposition 0.5. If F/K is a finite extension, then [F : K],|[F : K].
Moreover, [F : K]/[F : K|s = p™ for some n.

Proof. Let S := {u € Flu is separable over K}. One can prove that S
is a field separable over K. We claim that F' is "purely inseparable”
over S, i.e. for all u € F, u?" € S for some n, or equivalently, minimal
poly of u € F is of the form 27" — a.

To see this, let p(x) be the minimal polynomial of v € F' — S over
S. Then p/(x) = 0 otherwise, u is separable over S, hence separable
over K, u is indeed in S. We can write p(x) = f(aP). If u? € S, we are
done. If w? 3 S, then the minimal polynomial of w? is f(x). One infers
that f'(x) = 0. By repeating this process, we have proved the claim.

If follows that [F': S] = p" for some n since F' is finitely generated
over S.

It remains to check that for every K-embedding o : S — K, there
is a unique extension to an K-embedding & : F' — K. By extension
theorem, there are such extensions. To see the uniqueness, suppose that
we have K-embeddings 7,7 : F — K extending o. For all u € F,
uP" € S for some n. One has that

()" =nW") = W) = mu)?".
Since char(K) = p, one has then 71(u) = m(u). Thus 7 = 7. It

follows that [F': K]|s =[S : K]
Combining all theses, we have

[F:K],=[S:K],=[S: K]|[F:K].
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We define the inseparable degree as [F' : K|; := [F : S]. Then we have
[F': K]; = p" for some n. O

Definition 0.6. Let [F' : K| be a finite extension. Let 3 be the set
of K-embeddings of F' into K. For any u € F, we define the norm,

denoted

UGZ
Similarly, we define the trace as

Tr/k(u) = (Xgexo(u))[F : KJ;.

Example 0.7. If F/K is finite Galois extension, then the set of all
K-embeddings of F is nothing but the Galois group of F (since F
is normal). And [F : K]; = 1 since F/K 1is separable. Therefore,

NF/K(U) = HUEGalp/K 0<U') and TF/K(U) = ZaeGalF/K J(U)

Here are some basic properties of norma and trace

Proposition 0.8. (1) N(u),T(u) € K. More precisely, let p(z) =

2" + a2 + ..+ a, be the minimal polynomial of u over K.
Then N (u) = ((—1)"a,)FE@ and T(u) = ((—1)a))[F : K (u)].

(2) Ifu € K, then N(u) = ulf*¥ T(u) = [F : K]u.

(3) N(uv) = N(u)N(v) and T(u + v) = T(u) + T'(v). Therefore,
Npk o F* — K* 1s a multiplicative group homomorphism and
Tr/k : F — K is an additive group homomorphism.

(4) If K C ECF, then Npjg(u) = Ng/k(Np/p(w)), and Tp/x(u) =
TE/K (TF/E (U)) .

Proof. (2),(3) follows directly from the definition. To see (4), let I :=
{0 : E — Klojx = 1g} be a set of K-embeddings of E . For each o

we fix an extension & : F' — K. Let J := {7 : F — K|rp = 15} be
the a of E-embeddings of F'. If follows that {7,7;}icr jes is the set of
K-embeddings of F. Then

Niyic(u Ham DI = ( Haz Niry ()51 = Nigy (N (),

And the proof for trace is similar.

To prove (1), we first assume that u is separable over K. Then
K(u) C S and every K-embedding of K (u) has [S : K(u)] extensions.
Let w = uq, ..., u, be the roots of its minimal polynomial. Then one has

[L o) = (L Tu™* 7 = ((=1)7aq) 5

And the statement follows easily.
we consider ' = K (u). Let Sg := ENS, then E is purely inseparable
over Sg, in particular, v := w?" € Sg for some n. let f(z) be the
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minimal polynomial of v over K, then we have

pla) = f(a™) = f(x)".
Since v is separable over K, the statement holds for v. Since norm is
a homomorphism, the statement holds for u as well. [l

Proof of the main Lemma. We only prove that T'(u) = 0 implies u =
v — o(v). The other implication is easy.

Step 1. Find an element z € F with T'(z) # 0. This is an immediate
consequence of independency of automorphism.

Step 2. We normalize it to get w € F' with T'(w) = 1. In fact, we
take w := ﬁ

Step 3. Let

v=uw+ (u+ow)o(w)+.+@w+ow) +..+0c"%(u))o" *(w).

Then we are done.
For the norm, if N(u) =1, then u # 0. Take

v =uy +uo(u)o(y) + ... + uo(u)...c” (u)a™ (y).

By independency of automorphism, there exist a y such that v is non-

zero. One checks that u™lv = o(v). We are done.
U



