
Advanced Algebra I

cyclic extension

Definition 0.1. We say that an extension is cyclic (resp. abelian) if
it’s algebraic Galois and GalF/K is cyclic (resp. abelian). An cyclic
extension of order n is an cyclic extension whose Galois group is iso-
morphic to Zn.

The following theorem characterize cyclic extension except some ex-
ceptional case.

Theorem 0.2. Suppose that char(K) = 0 or char(K) = p - n. Sup-
pose furthermore that there is a primitive n-th root of unity in K, say
ζ. Then F/K is a cyclic of order n if and only if F = K(u) where u
is a root of irreducible polynomial xn − a ∈ K[x].

Before we get into the proof. Let’s consider the ”difference” be-
tween u and σ(u) for σ ∈ GalF/K . Let F/K be a finite Galois exten-
sion. Then in this circumstance, norm and trace (which we will define
more generally later) are nothing but NF/K(u) :=

∏
σ∈GalF/K

σ(u) and

TF/K :=
∑

σ∈GalF/K
σu. It’s easy to see that T (u − σ(u)) = 0 and

N(u/σ(u)) = 1. The follows lemma says that the converse is also true
for cyclic extension, which will play the central role in the study of
cyclic extension.

Lemma 0.3. Let F/K be an cyclic extension with σ the generator of
the Galois group.

(1) If TF/K(u) = 0, then there exists an v ∈ F such that u =
v − σ(v).

(2) If NF/K(u) = 1, then there exists an v ∈ F such that u =
v/σ(v).

Proof of the Theorem. Let u be a root of xn− a, then all the roots are
uζ i for i = 0, ..., n − 1. Since ζ ∈ K. It’s clear that F = K(ζ) is a
cyclic extension over K.

Conversely, suppose that F/K is a cyclic extension of order n. Since
there is a primitive n-th root ζ ∈ K, one has N(ζ) = ζn = 1. By the
Lemma, there exist an v such that ζ = v/σ(v). Let u = v−1, then
σ(u) = ζu. Hence σ(un) = un ∈ K. Therefore u satisfies xn−a ∈ K[x]
for some a ∈ K.

Moreover, for uζ i and uζj, there is an automorphism sending uζ i to
uζj. So they have the same minimal polynomial p(x) dividing xn − a.
One the other hand, p(x) has n distinct roots uζ i for i = 0, ..., n − 1.
It follows that p(x) = xn − a is irreducible. One has [K(u) : K] = n
and thus F = K(u). ¤
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Theorem 0.4. Suppose that char(K) = p 6= 0. Then F/K is a cyclic
extension of order n if and only if F = K(u), where u is a root of an
irreducible polynomial xp − x− a ∈ K[x].

Proof. The proof is parallel to the previous one.
Let u be a root of xp − x − a, then all the roots are u + i for i =

0, ..., p− 1. It’s clear that F = K(ζ) is a cyclic extension over K with
Galois group generated by σ such that σ(u) = u + 1.

Conversely, suppose that F/K is a cyclic extension of order n. One
has T (1) = p = 0. By the Lemma, there exist an v such that 1 =
v − σ(v). Let u = −v, then σ(u) = u + 1. Hence σ(up) = up + 1 and
σ(up − u) = up − u. Therefore u satisfies xp − x − a ∈ K[x] for some
a ∈ K.

Moreover, for u + i and u + j, there is an automorphism sending
uζ i to uζj. So they have the same minimal polynomial p(x) dividing
xp − x − a. One the other hand, p(x) has p distinct roots u + i for
i = 0, ..., p − 1. It follows that p(x) = xp − x − a is irreducible. One
has [K(u) : K] = n and thus F = K(u). ¤

It remains to define norm and trace, and prove the main lemma.
We first recall something about separable degree.

Proposition 0.5. If F/K is a finite extension, then [F : K]s
∣∣[F : K].

Moreover, [F : K]/[F : K]s = pn for some n.

Proof. Let S := {u ∈ F |u is separable over K}. One can prove that S
is a field separable over K. We claim that F is ”purely inseparable”
over S, i.e. for all u ∈ F , upn ∈ S for some n, or equivalently, minimal
poly of u ∈ F is of the form xpn − a.

To see this, let p(x) be the minimal polynomial of u ∈ F − S over
S. Then p′(x) = 0 otherwise, u is separable over S, hence separable
over K, u is indeed in S. We can write p(x) = f(xp). If up ∈ S, we are
done. If up 3 S, then the minimal polynomial of up is f(x). One infers
that f ′(x) = 0. By repeating this process, we have proved the claim.

If follows that [F : S] = pn for some n since F is finitely generated
over S.

It remains to check that for every K-embedding σ : S → K, there
is a unique extension to an K-embedding σ̄ : F → K. By extension
theorem, there are such extensions. To see the uniqueness, suppose that
we have K-embeddings τ1, τ2 : F → K extending σ. For all u ∈ F ,
upn ∈ S for some n. One has that

τ1(u)pn

= τ1(u
pn

) = τ2(u
pn

) = τ2(u)pn

.

Since char(K) = p, one has then τ1(u) = τ2(u). Thus τ1 = τ2. It
follows that [F : K]s = [S : K]s

Combining all theses, we have

[F : K]s = [S : K]s = [S : K]
∣∣[F : K].



3

We define the inseparable degree as [F : K]i := [F : S]. Then we have
[F : K]i = pn for some n. ¤

Definition 0.6. Let [F : K] be a finite extension. Let Σ be the set
of K-embeddings of F into K. For any u ∈ F , we define the norm,
denoted

NF/K(u) := (
∏
σ∈Σ

σ(u))[F :K]i .

Similarly, we define the trace as

TF/K(u) := (Σσ∈Σσ(u))[F : K]i.

Example 0.7. If F/K is finite Galois extension, then the set of all
K-embeddings of F is nothing but the Galois group of F (since F
is normal). And [F : K]i = 1 since F/K is separable. Therefore,
NF/K(u) =

∏
σ∈GalF/K

σ(u) and TF/K(u) =
∑

σ∈GalF/K
σ(u)

Here are some basic properties of norma and trace

Proposition 0.8. (1) N(u), T (u) ∈ K. More precisely, let p(x) =
xn + a1x

n−1 + ... + an be the minimal polynomial of u over K.
Then N(u) = ((−1)nan)[F :K(u)] and T (u) = ((−1)a1)[F : K(u)].

(2) If u ∈ K, then N(u) = u[F :K], T (u) = [F : K]u.
(3) N(uv) = N(u)N(v) and T (u + v) = T (u) + T (v). Therefore,

NF/K : F ∗ → K∗ is a multiplicative group homomorphism and
TF/K : F → K is an additive group homomorphism.

(4) If K ⊂ E ⊂ F , then NF/K(u) = NE/K(NF/E(u)), and TF/K(u) =
TE/K(TF/E(u)).

Proof. (2), (3) follows directly from the definition. To see (4), let I :=
{σ : E → K|σ|K = 1K} be a set of K-embeddings of E . For each σ

, we fix an extension σ̄ : F → K. Let J := {τ : F → K|τ|E = 1E} be
the a of E-embeddings of F . If follows that {σ̄iτj}i∈I,j∈J is the set of
K-embeddings of F . Then

NF/K(u) = (
∏
I,J

σ̄iτj(u))[F :K]i = (
∏

I

σ̄i(NF/E(u)))[E:K]i = NE/K(NF/E(u)).

And the proof for trace is similar.
To prove (1), we first assume that u is separable over K. Then

K(u) ⊂ S and every K-embedding of K(u) has [S : K(u)] extensions.
Let u = u1, ..., ur be the roots of its minimal polynomial. Then one has

∏
σ(u) = (

r∏
i=1

ui)
[S:K(u)] = ((−1)ra0)

[S:K(u)].

And the statement follows easily.
we consider E = K(u). Let SE := E∩S, then E is purely inseparable

over SE, in particular, v := upn ∈ SE for some n. let f(x) be the
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minimal polynomial of v over K, then we have

p(x) = f(xpn

) = f(x)pn

.

Since v is separable over K, the statement holds for v. Since norm is
a homomorphism, the statement holds for u as well. ¤
Proof of the main Lemma. We only prove that T (u) = 0 implies u =
v − σ(v). The other implication is easy.

Step 1. Find an element z ∈ F with T (z) 6= 0. This is an immediate
consequence of independency of automorphism.

Step 2. We normalize it to get w ∈ F with T (w) = 1. In fact, we
take w := z

T (z)
.

Step 3. Let

v = uw + (u + σ(u))σ(w) + ... + (u + σ(u) + ... + σn−2(u))σn−2(w).

Then we are done.
For the norm, if N(u) = 1, then u 6= 0. Take

v = uy + uσ(u)σ(y) + ... + uσ(u)...σn−1(u)σn−1(y).

By independency of automorphism, there exist a y such that v is non-
zero. One checks that u−1v = σ(v). We are done.
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