Advanced Algebra I

GALOIS GROUPS OF POLYNOMIALS, CYCLOTOMIC EXTENSION

We first recall something about separable extension. The main pur-
pose is to prove the following proposition we used in the previous sec-
tion.

Proposition 0.1. Suppose that F' = K(S) such that each elements of
S is separable over K, then F/K is separable.

To start with, let f(z) be an irreducible polynomial in K [x] and f’(x)
be its derivative (formally). More precisely, if f(z) = sum!_ja;z", then
f'(x) :=>"" ia;z" 1. One has the following equivalence:

(1) f(z) is separable, i.e. no multiple roots in K.
(2) (f(x), f'(2x)) =1 € Kz].
(3) (f(x), f'(x)) =1 € Kz].
(4) f'(x) =0.

Therefore, the only possibility to have non-separable polynomial is
char(K) =p and f(z) = g(aP).

Given an element u algebraic over K, one can define the separable
degree to be the number of distinct roots of minimal polynomial. This
notion can be extended to a general setting:

Definition 0.2. Let F//K be an extension. Fiz an embedding o : K —
L = L. We define the separable degree of F'/K, denoted [F : K], to be
the cardinality of

Sy ={1:F — L|tg = 0}.

One can check that [F' : K] is independent of ¢ and L. Hence
the definition is well-defined. Moreover, if F' = K(u) for u algebraic
over K, then [F : K], = [K(u) : K] is the number of distinct roots
of the minimal polynomial p(x) of u. (By considering K-embedding
7: K(u) — K, 7(u) must be a root of p(x) and 7 is determined by

7(u))-

Proposition 0.3. If K C E C F, then [F : K|, = [F : E|s[E : K]s.
Moreover, if F/K is finite, then [F : K|y < [F : K].

Proof. Fix an embedding o : K — L, there are extensions {o;}ics :
E — L with |I| = [EF : K|s. And for a fix oy, there are extensions
{0i;}jes : F — L with |J| = [F : K],. Thus
[F: Kls=|I|-|J| =[F: EE : K]s.
If F/K is finite, then F' = K(uy,...,u;). It’s clear that for all i,
(K (ug, .oy u) « K(ug,oui1)]s < [K(ug,..ou;) 0 K(uq,...,u;—1)] since
the number of distinct root is less or equal than degree of minimal

polynomial. U
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Then we have the following useful criterion:

Proposition 0.4. If F/K is finite, then F/K is separable if and only
if [F: K]s=[F: K].

Proof. Write F' = K(uq,...,u;). If F/K is separable, then for all i,
(K (ug, ..., u;) is separable over K (uj, ..., u;_1)]. Then we have for all 4

[K(Ul, 7“7,) : K(ul, ...,Ui_l]s = [K(Ul, ,Ul) : K(Ul, ...,Ui_l].

It follows that [F': K], = [F: K].
On the other hand, for any u € F', we have

F: K], = [F: K@K () : K, < [F: K(u)][K(u) : K] = [F: K]

Hence all the above are in fact equality, therefore [K (u) : K], = [K(u) :
K] and wu is separable over K. U

Proof of the Proposition 1. For any u € K(S), we may assume that
u € K(uyq,...,u;) for some uy,...,u; € S separable over K. It’s obvious
that K (ug,...,u;) separable over K(uj,...,u;_1) for all i. Thus one has
that [K(ui,...,us) : K|s = [K(ug,...,us) : K] and thus K(uq, ..., u;) is
separable over K. Thus so is u. Il

We now study the Galois groups of polynomials. First of all, for a
given f(z) € K|x], we define the Galois group of f(z) over K, denoted
Gy, to be the Galois group of a splitting field F' over K.

Theorem 0.5. (1) If deg(f(x)) =n, then Gy — S,,.
(2) If f(x) is irreducible and separable of degree n, then Gy is tran-
sitive in S, and n||Gy|.

Proof. For every 0 € Gy, o induces a permutation on roots of f(x).
Hence the mapping by sending ¢ to the corresponding permutation
gives the required embedding.

Let u;, u; be two distinct roots of f(z), then we have an isomorphism
o K(u;) — K(u;) such that o(u;) = u;. Since the splitting field F' is
normal, thus o can be extended to an automorphism of F'. Therefore,
we have find a K-automorphism sending u; to u; for any 4,j. Hence
it’s transitive in S,,.

Moreover, one sees that [Gf : K(u;)] = [K(w) : K] = n. Thus

Example 0.6. The only transitive subgroups in Sz are Sz and As.
The only transitive subgroups of order divisible by 4 in Sy are Sy, Ay, =
Dy, V.= Zy.

For a given polynomial f(z) with roots uy, ..., u,. one can define

A= l_I(uZ — uj).

1<j
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Then A is preserved by even permutations, i.e. GyNA,. Then D := A?
is preserved by all Gy. One can see that D is in K. D is called
the discriminant of f(x). Assume that f is irreducible and separable,
then F' is Galois over K. One can see that (Gy N A4,) = K(A) if
char(K) # 2. Applying this to degree 3, we have:

Theorem 0.7. Let f(x) be an irreducible separable polynomial of de-
gree 3 over K with char(K) # 2 ,then Gy = As if and only if D is
a perfect square in K and Gy = S3 if and only if D is not a perfect
square.

We also remark that D is computable. For example, if f(z) = 2° +
pr + q, then D = —4p? — 27¢3.

The story for degree 4 are similar but more delicate. Let f(x) be an
irreducible separable polynomial of degree 4. Let uy, ..., us be the roots
of f(z). And let F = K(uy, ..., u4) be the splitting field, which is Galois
over K. Let o := ujug + uguy, 5 := ujus + ugty, y := uiuy + ugug. It’s
clear that they are all distinct since f(z) is separable. We can consider
an intermediate field F := K(«, 3,7). Let g(x) := (x—a)(x—F)(x—7).
One sees that g(x) € K[z] and E is s splitting field of g(x). One can
check directly that £’ = Gy N V. Thus we have:

Theorem 0.8. Keep the notation as above. Let m := [E : K|. Then
(1) m:6<:>Gf:S4.

(2) m:3<:>Gf:A4.

(3) m:1<:>Gf:V.

(4) m =2, f(x) is wrreducible in E[z] < G§ = Dy.

(5) m =2, f(x) is reducible in E[z] < G = Zy.

Proof. As we have seen that the only transitive subgroup with order di-
visible by 4 are Sy, Ay, V4, = Dy, = 7Z4. Hence the first three equivalence
are trivial.

If m =2 then Gy = Dy or Gy = Zy. If f(z) is irreducible in E[z],
then f(x) is the minimal polynomial of u;. Hence [F : E] = [F :
E(w)|[E(u) : E] = [F : E(uy)]4. In particular, 4|[F : E] = |Gy N V].
Therefore, Gy = Djy.

On the other hand, if f(x) is reducible, then f(z) can not have factor
of degree 3 since 3 |G,y N V. O

We now start the study of cyclotomic extension.

Definition 0.9. A cyclotomic extension of order n over K is a splitting
field of x™ — 1.

Remark 0.10. If char(K) = p andn = p"m, then 2" —1 = (z™—1)F".
Hence we may assume that either char(K) = 0 or char(K) { p in the
study of cyclotomic extension.

The main theorem is the following
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Theorem 0.11. Keep the notation as above. Then we have
(1) F = K((), where C is a primitive n-th root of unity.
(2) F/K is Galois whose Galois group Galp/k can be identified as
a subgroup of 7.
(3) If n is prime, then Galp/k is cyclic.

Proof. Let S := {u € F|u™ = 1}. And let n’ be the maximal order
of elements in S. It’s clear that S is an abelian multiplicative group.
Therefore, it’s easy to see that order of elements in S divides n'. It
follows that u™ =1 for all u € S.

Since we assume that (n, chat(K)) = 1, therefore 2" — 1 is separable,
|S| = n. One sees that n = n/, therefore, there are elements of order n
in S, denoted (. It follows that F' = K(S) = K(().

For any o € Galp/k, 0(() € S. Hence o¢ = (' for some i. Therefore,
we have a natural map ¢ : Galp/x — Z, by ¢(0) = i if o(¢) = ("
Since o are automorphism, one has image in Z;. It’s easy to see that
¢ : Galp/x — Z;, is an injective group homomorphism.

Lastly, if n is prime, then Zj is cyclic. Hence every subgroup is
cyclic. O



