
Advanced Algebra I

Galois groups of polynomials, cyclotomic extension

We first recall something about separable extension. The main pur-
pose is to prove the following proposition we used in the previous sec-
tion.

Proposition 0.1. Suppose that F = K(S) such that each elements of
S is separable over K, then F/K is separable.

To start with, let f(x) be an irreducible polynomial in K[x] and f ′(x)
be its derivative (formally). More precisely, if f(x) = sumn

i=0aix
i, then

f ′(x) :=
∑n

i=1 iaix
i−1. One has the following equivalence:

(1) f(x) is separable, i.e. no multiple roots in K.
(2) (f(x), f ′(x)) = 1 ∈ K[x].
(3) (f(x), f ′(x)) = 1 ∈ K[x].
(4) f ′(x) = 0.

Therefore, the only possibility to have non-separable polynomial is
char(K) = p and f(x) = g(xp).

Given an element u algebraic over K, one can define the separable
degree to be the number of distinct roots of minimal polynomial. This
notion can be extended to a general setting:

Definition 0.2. Let F/K be an extension. Fix an embedding σ : K →
L = L. We define the separable degree of F/K, denoted [F : K]s, to be
the cardinality of

Sσ := {τ : F → L|τ|K = σ}.
One can check that [F : K]s is independent of σ and L. Hence

the definition is well-defined. Moreover, if F = K(u) for u algebraic
over K, then [F : K]s = [K(u) : K]s is the number of distinct roots
of the minimal polynomial p(x) of u. (By considering K-embedding
τ : K(u) → K, τ(u) must be a root of p(x) and τ is determined by
τ(u)).

Proposition 0.3. If K ⊂ E ⊂ F , then [F : K]s = [F : E]s[E : K]s.
Moreover, if F/K is finite, then [F : K]s ≤ [F : K].

Proof. Fix an embedding σ : K → L, there are extensions {σi}i∈I :
E → L with |I| = [E : K]s. And for a fix σi, there are extensions
{σi,j}j∈J : F → L with |J | = [F : K]s. Thus

[F : K]s = |I| · |J | = [F : E]s[E : K]s.

If F/K is finite, then F = K(u1, ..., ut). It’s clear that for all i,
[K(u1, ..., ui) : K(u1, ..., ui−1)]s ≤ [K(u1, ..., ui) : K(u1, ..., ui−1)] since
the number of distinct root is less or equal than degree of minimal
polynomial. ¤
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Then we have the following useful criterion:

Proposition 0.4. If F/K is finite, then F/K is separable if and only
if [F : K]s = [F : K].

Proof. Write F = K(u1, ..., ut). If F/K is separable, then for all i,
[K(u1, ..., ui) is separable over K(u1, ..., ui−1)]. Then we have for all i

[K(u1, ..., ui) : K(u1, ..., ui−1]s = [K(u1, ..., ui) : K(u1, ..., ui−1].

It follows that [F : K]s = [F : K].
On the other hand, for any u ∈ F , we have

[F : K]s = [F : K(u)]s[K(u) : K]s ≤ [F : K(u)][K(u) : K] = [F : K].

Hence all the above are in fact equality, therefore [K(u) : K]s = [K(u) :
K] and u is separable over K. ¤

Proof of the Proposition 1. For any u ∈ K(S), we may assume that
u ∈ K(u1, ..., ut) for some u1, ..., ut ∈ S separable over K. It’s obvious
that K(u1, ..., ui) separable over K(u1, ..., ui−1) for all i. Thus one has
that [K(u1, ..., ut) : K]s = [K(u1, ..., ut) : K] and thus K(u1, ..., ut) is
separable over K. Thus so is u. ¤

We now study the Galois groups of polynomials. First of all, for a
given f(x) ∈ K[x], we define the Galois group of f(x) over K, denoted
Gf , to be the Galois group of a splitting field F over K.

Theorem 0.5. (1) If deg(f(x)) = n, then Gf ↪→ Sn.
(2) If f(x) is irreducible and separable of degree n, then Gf is tran-

sitive in Sn and n
∣∣|Gf |.

Proof. For every σ ∈ Gf , σ induces a permutation on roots of f(x).
Hence the mapping by sending σ to the corresponding permutation
gives the required embedding.

Let ui, uj be two distinct roots of f(x), then we have an isomorphism
σ : K(ui) → K(uj) such that σ(ui) = uj. Since the splitting field F is
normal, thus σ can be extended to an automorphism of F . Therefore,
we have find a K-automorphism sending ui to uj for any i, j. Hence
it’s transitive in Sn.

Moreover, one sees that [Gf : K(ui)
′] = [K(ui) : K] = n. Thus

n
∣∣|Gf |. ¤

Example 0.6. The only transitive subgroups in S3 are S3 and A3.
The only transitive subgroups of order divisible by 4 in S4 are S4, A4,∼=

D4, V,∼= Z4.

For a given polynomial f(x) with roots u1, ..., un. one can define

∆ :=
∏
i<j

(ui − uj).
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Then ∆ is preserved by even permutations, i.e. Gf∩An. Then D := ∆2

is preserved by all Gf . One can see that D is in K. D is called
the discriminant of f(x). Assume that f is irreducible and separable,
then F is Galois over K. One can see that (Gf ∩ An)′ = K(∆) if
char(K) 6= 2. Applying this to degree 3, we have:

Theorem 0.7. Let f(x) be an irreducible separable polynomial of de-
gree 3 over K with char(K) 6= 2 ,then Gf = A3 if and only if D is
a perfect square in K and Gf = S3 if and only if D is not a perfect
square.

We also remark that D is computable. For example, if f(x) = x3 +
px + q, then D = −4p2 − 27q3.

The story for degree 4 are similar but more delicate. Let f(x) be an
irreducible separable polynomial of degree 4. Let u1, ..., u4 be the roots
of f(x). And let F = K(u1, ..., u4) be the splitting field, which is Galois
over K. Let α := u1u2 + u3u4, β := u1u3 + u2u4, γ := u1u4 + u2u3. It’s
clear that they are all distinct since f(x) is separable. We can consider
an intermediate field E := K(α, β, γ). Let g(x) := (x−α)(x−β)(x−γ).
One sees that g(x) ∈ K[x] and E is s splitting field of g(x). One can
check directly that E ′ = Gf ∩ V . Thus we have:

Theorem 0.8. Keep the notation as above. Let m := [E : K]. Then

(1) m = 6 ⇔ Gf = S4.
(2) m = 3 ⇔ Gf = A4.
(3) m = 1 ⇔ Gf = V .
(4) m = 2, f(x) is irreducible in E[x] ⇔ Gf

∼= D4.
(5) m = 2, f(x) is reducible in E[x] ⇔ Gf

∼= Z4.

Proof. As we have seen that the only transitive subgroup with order di-
visible by 4 are S4, A4, V4,∼= D4,∼= Z4. Hence the first three equivalence
are trivial.

If m = 2 then Gf
∼= D4 or Gf

∼= Z4. If f(x) is irreducible in E[x],
then f(x) is the minimal polynomial of u1. Hence [F : E] = [F :
E(u1)][E(u1) : E] = [F : E(u1)]4. In particular, 4

∣∣[F : E] = |Gf ∩ V |.
Therefore, Gf

∼= D4.
On the other hand, if f(x) is reducible, then f(x) can not have factor

of degree 3 since 3 6
∣∣|Gf ∩ V |. ¤

We now start the study of cyclotomic extension.

Definition 0.9. A cyclotomic extension of order n over K is a splitting
field of xn − 1.

Remark 0.10. If char(K) = p and n = prm, then xn−1 = (xm−1)pr
.

Hence we may assume that either char(K) = 0 or char(K) - p in the
study of cyclotomic extension.

The main theorem is the following
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Theorem 0.11. Keep the notation as above. Then we have

(1) F = K(ζ), where ζ is a primitive n-th root of unity.
(2) F/K is Galois whose Galois group GalF/K can be identified as

a subgroup of Z∗n.
(3) If n is prime, then GalF/K is cyclic.

Proof. Let S := {u ∈ F |un = 1}. And let n′ be the maximal order
of elements in S. It’s clear that S is an abelian multiplicative group.
Therefore, it’s easy to see that order of elements in S divides n′. It
follows that un′ = 1 for all u ∈ S.

Since we assume that (n, chat(K)) = 1, therefore xn−1 is separable,
|S| = n. One sees that n = n′, therefore, there are elements of order n
in S, denoted ζ. It follows that F = K(S) = K(ζ).

For any σ ∈ GalF/K , σ(ζ) ∈ S. Hence σζ = ζ i for some i. Therefore,
we have a natural map φ : GalF/K → Zn by φ(σ) = i if σ(ζ) = ζ i.
Since σ are automorphism, one has image in Z∗n. It’s easy to see that
φ : GalF/K → Z∗n is an injective group homomorphism.

Lastly, if n is prime, then Z∗p is cyclic. Hence every subgroup is
cyclic. ¤


