Advanced Algebra I

GALOIS GROUPS OF POLYNOMIALS, CYCLOTOMIC EXTENSION

We first recall something about separable extension. The main purpose is to prove the following proposition we used in the previous section.

Proposition 0.1. Suppose that F = K(S) such that each elements of S is separable over K, then F/K is separable.

To start with, let f(x) be an irreducible polynomial in K[x] and f'(x) be its derivative (formally). More precisely, if $f(x) = sum_{i=0}^n a_i x^i$, then $f'(x) := \sum_{i=1}^n i a_i x^{i-1}$. One has the following equivalence:

- (1) f(x) is separable, i.e. no multiple roots in \overline{K} .
- $(2) (f(x), f'(x)) = 1 \in K[x].$
- (3) $(f(x), f'(x)) = 1 \in K[x].$
- (4) f'(x) = 0.

Therefore, the only possibility to have non-separable polynomial is char(K) = p and $f(x) = g(x^p)$.

Given an element u algebraic over K, one can define the separable degree to be the number of distinct roots of minimal polynomial. This notion can be extended to a general setting:

Definition 0.2. Let F/K be an extension. Fix an embedding $\sigma: K \to L = \overline{L}$. We define the separable degree of F/K, denoted $[F:K]_s$, to be the cardinality of

$$S_{\sigma} := \{ \tau : F \to L | \tau_{|K} = \sigma \}.$$

One can check that $[F:K]_s$ is independent of σ and L. Hence the definition is well-defined. Moreover, if F=K(u) for u algebraic over K, then $[F:K]_s=[K(u):K]_s$ is the number of distinct roots of the minimal polynomial p(x) of u. (By considering K-embedding $\tau:K(u)\to \overline{K}$, $\tau(u)$ must be a root of p(x) and τ is determined by $\tau(u)$).

Proposition 0.3. If $K \subset E \subset F$, then $[F : K]_s = [F : E]_s[E : K]_s$. Moreover, if F/K is finite, then $[F : K]_s \leq [F : K]$.

Proof. Fix an embedding $\sigma: K \to L$, there are extensions $\{\sigma_i\}_{i \in I}: E \to L$ with $|I| = [E:K]_s$. And for a fix σ_i , there are extensions $\{\sigma_{i,j}\}_{j \in J}: F \to L$ with $|J| = [F:K]_s$. Thus

$$[F:K]_s = |I| \cdot |J| = [F:E]_s [E:K]_s.$$

If F/K is finite, then $F = K(u_1, ..., u_t)$. It's clear that for all i, $[K(u_1, ..., u_i) : K(u_1, ..., u_{i-1})]_s \leq [K(u_1, ..., u_i) : K(u_1, ..., u_{i-1})]$ since the number of distinct root is less or equal than degree of minimal polynomial.

Then we have the following useful criterion:

Proposition 0.4. If F/K is finite, then F/K is separable if and only if $[F:K]_s = [F:K]$.

Proof. Write $F = K(u_1, ..., u_t)$. If F/K is separable, then for all i, $[K(u_1, ..., u_i)$ is separable over $K(u_1, ..., u_{i-1})]$. Then we have for all i

$$[K(u_1,...,u_i):K(u_1,...,u_{i-1}]_s=[K(u_1,...,u_i):K(u_1,...,u_{i-1}].$$

It follows that $[F:K]_s = [F:K]$.

On the other hand, for any $u \in F$, we have

$$[F:K]_s = [F:K(u)]_s[K(u):K]_s \le [F:K(u)][K(u):K] = [F:K].$$

Hence all the above are in fact equality, therefore $[K(u):K]_s = [K(u):K]$ and u is separable over K.

Proof of the Proposition 1. For any $u \in K(S)$, we may assume that $u \in K(u_1, ..., u_t)$ for some $u_1, ..., u_t \in S$ separable over K. It's obvious that $K(u_1, ..., u_i)$ separable over $K(u_1, ..., u_{i-1})$ for all i. Thus one has that $[K(u_1, ..., u_t) : K]_s = [K(u_1, ..., u_t) : K]$ and thus $K(u_1, ..., u_t)$ is separable over K. Thus so is u.

We now study the Galois groups of polynomials. First of all, for a given $f(x) \in K[x]$, we define the Galois group of f(x) over K, denoted G_f , to be the Galois group of a splitting field F over K.

Theorem 0.5. (1) If deg(f(x)) = n, then $G_f \hookrightarrow S_n$.

(2) If f(x) is irreducible and separable of degree n, then G_f is transitive in S_n and $n||G_f|$.

Proof. For every $\sigma \in G_f$, σ induces a permutation on roots of f(x). Hence the mapping by sending σ to the corresponding permutation gives the required embedding.

Let u_i, u_j be two distinct roots of f(x), then we have an isomorphism $\sigma: K(u_i) \to K(u_j)$ such that $\sigma(u_i) = u_j$. Since the splitting field F is normal, thus σ can be extended to an automorphism of F. Therefore, we have find a K-automorphism sending u_i to u_j for any i, j. Hence it's transitive in S_n .

Moreover, one sees that $[G_f:K(u_i)']=[K(u_i):K]=n$. Thus $n||G_f|$.

Example 0.6. The only transitive subgroups in S_3 are S_3 and A_3 . The only transitive subgroups of order divisible by 4 in S_4 are S_4 , A_4 , $\cong D_4$, V, $\cong \mathbb{Z}_4$.

For a given polynomial f(x) with roots $u_1, ..., u_n$ one can define

$$\Delta := \prod_{i < j} (u_i - u_j).$$

Then Δ is preserved by even permutations, i.e. $G_f \cap A_n$. Then $D := \Delta^2$ is preserved by all G_f . One can see that D is in K. D is called the discriminant of f(x). Assume that f is irreducible and separable, then F is Galois over K. One can see that $(G_f \cap A_n)' = K(\Delta)$ if $char(K) \neq 2$. Applying this to degree 3, we have:

Theorem 0.7. Let f(x) be an irreducible separable polynomial of degree 3 over K with $char(K) \neq 2$, then $G_f = A_3$ if and only if D is a perfect square in K and $G_f = S_3$ if and only if D is not a perfect square.

We also remark that D is computable. For example, if $f(x) = x^3 + px + q$, then $D = -4p^2 - 27q^3$.

The story for degree 4 are similar but more delicate. Let f(x) be an irreducible separable polynomial of degree 4. Let $u_1, ..., u_4$ be the roots of f(x). And let $F = K(u_1, ..., u_4)$ be the splitting field, which is Galois over K. Let $\alpha := u_1u_2 + u_3u_4$, $\beta := u_1u_3 + u_2u_4$, $\gamma := u_1u_4 + u_2u_3$. It's clear that they are all distinct since f(x) is separable. We can consider an intermediate field $E := K(\alpha, \beta, \gamma)$. Let $g(x) := (x - \alpha)(x - \beta)(x - \gamma)$. One sees that $g(x) \in K[x]$ and E is s splitting field of g(x). One can check directly that $E' = G_f \cap V$. Thus we have:

Theorem 0.8. Keep the notation as above. Let m := [E : K]. Then

- (1) $m = 6 \Leftrightarrow G_f = S_4$.
- (2) $m=3 \Leftrightarrow G_f=A_4$.
- (3) $m = 1 \Leftrightarrow G_f = V$.
- (4) m=2, f(x) is irreducible in $E[x] \Leftrightarrow G_f \cong D_4$.
- (5) m=2, f(x) is reducible in $E[x] \Leftrightarrow G_f \cong \mathbb{Z}_4$.

Proof. As we have seen that the only transitive subgroup with order divisible by 4 are S_4 , A_4 , V_4 , $\cong D_4$, $\cong \mathbb{Z}_4$. Hence the first three equivalence are trivial.

If m=2 then $G_f\cong D_4$ or $G_f\cong \mathbb{Z}_4$. If f(x) is irreducible in E[x], then f(x) is the minimal polynomial of u_1 . Hence $[F:E]=[F:E(u_1)][E(u_1):E]=[F:E(u_1)]4$. In particular, $4|[F:E]=|G_f\cap V|$. Therefore, $G_f\cong D_4$.

On the other hand, if f(x) is reducible, then f(x) can not have factor of degree 3 since $3 / |G_f \cap V|$.

We now start the study of cyclotomic extension.

Definition 0.9. A cyclotomic extension of order n over K is a splitting field of $x^n - 1$.

Remark 0.10. If char(K) = p and $n = p^r m$, then $x^n - 1 = (x^m - 1)^{p^r}$. Hence we may assume that either char(K) = 0 or $char(K) \nmid p$ in the study of cyclotomic extension.

The main theorem is the following

Theorem 0.11. Keep the notation as above. Then we have

- (1) $F = K(\zeta)$, where ζ is a primitive n-th root of unity.
- (2) F/K is Galois whose Galois group $Gal_{F/K}$ can be identified as a subgroup of \mathbb{Z}_n^* .
- (3) If n is prime, then $Gal_{F/K}$ is cyclic.

Proof. Let $S := \{u \in F | u^n = 1\}$. And let n' be the maximal order of elements in S. It's clear that S is an abelian multiplicative group. Therefore, it's easy to see that order of elements in S divides n'. It follows that $u^{n'} = 1$ for all $u \in S$.

Since we assume that (n, chat(K)) = 1, therefore $x^n - 1$ is separable, |S| = n. One sees that n = n', therefore, there are elements of order n in S, denoted ζ . It follows that $F = K(S) = K(\zeta)$.

For any $\sigma \in \operatorname{Gal}_{F/K}$, $\sigma(\zeta) \in S$. Hence $\sigma\zeta = \zeta^i$ for some i. Therefore, we have a natural map $\phi : \operatorname{Gal}_{F/K} \to \mathbb{Z}_n$ by $\phi(\sigma) = i$ if $\sigma(\zeta) = \zeta^i$. Since σ are automorphism, one has image in \mathbb{Z}_n^* . It's easy to see that $\phi : \operatorname{Gal}_{F/K} \to \mathbb{Z}_n^*$ is an injective group homomorphism.

Lastly, if n is prime, then \mathbb{Z}_p^* is cyclic. Hence every subgroup is cyclic.