Advanced Algebra I

FINITE DIMENSIONAL GALOIS EXTENSION

In this section, we are going to prove the fundamental theorem for finite dimensional Galois extension.

Let F/K be an field extension, we define the Galois group of F over K, denoted $Gal_{F/K}$ or $G_{F/K}$ or $Aut_K(F)$, as

$$\operatorname{Gal}_{F/K} := \{ \sigma | \sigma \in \operatorname{Aut} F, \sigma |_K = \mathbf{1}_K \}.$$

It's clear that for $\sigma \in \operatorname{Gal}_{F/K}$ and $u \in F$ algebraic over K with minimal polynomial p(x), then $\sigma(u)$ satisfies the same minimal polynomial.

On the other hand, if F/K is normal, let u, v be two elements having the same minimal polynomial p(x), then we claim that there is an $\sigma \in \operatorname{Gal}_{F/K}$ such that $\sigma(u) = v$. To see this, we fix an algebraic closure \overline{K} containing F. There is an K-isomorphism $\sigma_0 : K(u) \to K(v)$ which extends to an embedding $\sigma : F \to \overline{K}$. Since F is normal over K, one has $\sigma(F) \subset F$. And hence $\sigma \in \operatorname{Aut} F$.

Example 0.1. Consider the field $F := \mathbb{Q}(\sqrt[3]{2}, \omega)$ which is a splitting field of $x^3 - 2$ over \mathbb{Q} . Thus it's normal over \mathbb{Q} . One can check that the Galois group $\operatorname{Gal}_{F/\mathbb{Q}}$ is generated by σ, τ that $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}\omega, \sigma(\omega) = \omega$, and $\tau(\sqrt[3]{2}) = \sqrt[3]{2}, \tau(\omega) = \omega^2$. It's easy to check that $\operatorname{Gal}_{F/\mathbb{Q}} \cong S_3$.

Example 0.2. Consider the field $F := \mathbb{Q}(\sqrt[3]{2})$ over \mathbb{Q} . Then it's easy to check that $\operatorname{Gal}_{F/\mathbb{Q}} = \{\mathbf{1}_F\}$.

There is a natural correspondence between subgroups of Galois groups and intermediate fields. To be precise, fix an extension F/K. Let $H < G := \operatorname{Gal}_{F/K}$ be a subgroup. One can define

$$H' := \{ u \in F | \sigma(u) = u, \forall \sigma \in H \}.$$

It's clear that this is a field. On the other hand, given and intermediate field L such that $K \subset L \subset F$, then one can define

$$L' := \{ \sigma \in \operatorname{Gal}_{F/K} | \sigma(u) = u, \forall u \in L \} = \{ \sigma \in \operatorname{Gal}_{F/K} | \sigma_{|L} = \mathbf{1}_L \}.$$

It's easy to check the following properties:

Proposition 0.3. Let F/K be an extension with Galois group G. Let L be an intermediate field, i.e. $K \subset L \subset F$, and H < G is a subgroup.

- (1) $F' = \{\mathbf{1}_F\}, K' = G, \text{ and } \{\mathbf{1}_F\}' = F.$
- (2) For any L, one has $L \subset L''$, L' = L'''.
- (3) For any H, one has H < H'', H' = H'''.
- (4) For any intermediate fields $L \subset M$, one has M' < L'.
- (5) For any subgroups J < H, one has $H' \subset J'$.

Proof. Most of the proof follows directly from the definition. We only sketch the proof for L' = L'''.

By $L \subset L''$ and (4), one has

On the other hand, by (5), one has

$$L' < (L')''$$
.

We are done.

Proposition 0.4. There is a one-to-one correspondence between

$$\{L|K \subset L \subset F, L'' = L\} \leftrightarrow \{H|H < G, H'' = H\}.$$

Proof. The correspondence is given by $L \mapsto L'$ (or $H \mapsto H'$).

To show the injective, one sees that if $L'_1 = L'_2$, then $L_1 = L''_1 = L''_2 = L_2$.

For any H with H'' = H, we take L = H', then H = L'. It suffices to check that L'' = L. This follows from the fact that H''' = H'. \square

In the proposition, one might expect that G' = K. However, this is not always the case (see e.g. Example 2). For extension with this property, we call it Galois. It turns out that this naive definition is a very delicate one which leads to some nice properties.

Definition 0.5. An extension F/K is said to be Galois if $(Gal_{F/K})' = K$.

Theorem 0.6 (Fundamental theorem of finite dimensional Galois extension). Let F/K be a finite dimensional Galois extension with Galois group G, then

(1) There is an one-to-one correspondence between

$$\{L|K \subset L \subset F\} \leftrightarrow \{H|H < G\}.$$

- (2) The corresponding degree are equal. That is, if $K \subset L \subset M \subset F$, then [M:L] = [L':M']. And if J < H < G, then [H:J] = [J':H'].
- (3) An intermediate field E is Galois over K if and only if $E' \triangleleft G$. And in this case, $\operatorname{Gal}_{E/K} \cong G/E'$.

Proof. Step 1. $[M:L] \ge [L':M']$.

We prove the case that M = L(u) for some $u \in M$ and by induction on [M:L], we are done. Suppose now that M = L(u) and let p(x) be the minimal polynomial of u over L. Let S be the set of roots of p(x) in F. Then one has a map

$$\Phi: L' \to S$$
,

$$\sigma \mapsto \sigma(u)$$
.

One can check that Φ induces an injective map $L'/M' \to S$. Hence one has

$$[L':M'] = |L'/M'| \le |S| \le deg(p(x)) = [M:L].$$

Step 2. $[H:J] \geq [J':H']$.

Let n = [H : J]. Suppose on the contrary that there are n+1 elements $u_1, ..., u_{n+1} \in J'$ linearly independent over H'.

We consider the equation $\sum_{i=1}^{n+1} u_i x_i = 0$ in F Consider now a set of representative of H/J, denoted $\{e = \sigma_1, ..., \sigma_n\}$. By applying σ_i to the above equation. Then one has a system of linear equations in F.

$$(*) \begin{cases} \sigma_1(u_1)x_1 + \sigma_1(u_2)x_2 + \dots + \sigma_1(u_{n+1})x_{n+1} = 0 \\ \sigma_2(u_1)x_1 + \sigma_2(u_2)x_2 + \dots + \sigma_2(u_{n+1})x_{n+1} = 0 \\ \vdots \\ \sigma_n(u_1)x_1 + \sigma_n(u_2)x_2 + \dots + \sigma_n(u_{n+1})x_{n+1} = 0 \end{cases}$$

Pick a solution in F with smallest number of non-zero a_i 's, may assume it's $(a_1, ..., a_s, 0..., 0)$ and $a_1 = 1$.

If there is an $\tau \in H$ such that $\tau(a_2) \neq a_2$, then by applying τ to the system (*), one get the same system of equations with a solution $(\tau(a_1), \tau(a_2), ..., \tau(a_s), 0, ..., 0$. Hence

$$(a_1, ..., a_s, 0..., 0) - (\tau(a_1), \tau(a_2), ..., \tau(a_s), 0, ..., 0) = (0, a_2 - \tau(a_2), ..., 0)$$

is a non-zero solution of smaller length. This is the required contradiction.

To find τ . We look at $u_1a_1 + ... + u_sa_s = 0$. Since $\{u_1, ..., u_s\}$ is independent over H', not all a_1 is in H'. We may assume that $a_2 \notin H'$. Hence there is a $\tau \in H$ such that $\tau(a_2) \neq a_2$. We are done.

Step 3. We show that every intermediate field L, L'' = L. And every subgroup H < G, H'' = H.

By Step 1, one has

$$[L'':K] = [L'':K''] \le [K':L'] \le [L:K],$$

however, one has $L \subset L''$. Thus one has L = L''. Similarly, one can prove that H'' = H by considering $[H'' : \{\mathbf{1}_F\}]$.

Step 4. [M:L] = [L':M'] and [H:J] = [J':H'].

This follows from [M:L] = [M:K]/[L:K] = [K':M']/[K':L'] = [L':M']. And the other one is similar.

Step 5. F/K is normal and separable.

Given $u \in F$, with minimal polynomial p(x) over K. As in the proof of Step 1. One has $[K(u)':K'] \leq |S| \leq deg(p(x)) = [K(u):K]$. By Step 4, they are equalities. In particular, every root of p(x) is in F and there is no multiple roots. Thus F is normal and separable over K.

Step 6. If $N \triangleleft G$, then N' is stable. That is, for all $\sigma \in G$, $\sigma(N') \subset N'$ (indeed = N').

Since $N \triangleleft G$, for all $\sigma \in G$ and for all $\tau \in N$, one has $\sigma^{-1}\tau\sigma \in N$. Thus, $\sigma^{-1}\tau\sigma(N') = N'$. It follows that $\tau\sigma(N') = \sigma(N')$, for all $\tau \in N$. Hence $\sigma(N')$ is fixed by all N and thus $\sigma(N') \subset N'$.

Step 7. If E is a stable intermediate subfield. Then the restriction map $Gal_{F/K} \to Gal_{E/K}$ is well-defined and surjective.

Since E is stable, then $\sigma_{|E} \in \operatorname{Gal}_{E/K}$ for any $\sigma \in \operatorname{Gal}_{F/K}$. Moreover, let $\tau \in \operatorname{Gal}_{E/K}$, by the extension theorem, there is an extension $\overline{\tau} : F \to \overline{K}$. Since F is normal over $K, \overline{\tau}$ is in fact an automorphism of F.

Step 8. If an intermediate field E is stable, then E/K is Galois.

To see this, it suffices to show that for any $u \in E - K$, there is an $\sigma \in \operatorname{Gal}_{E/K}$ such that $\sigma(u) \neq u$. Fix any $F \ni v \neq u$ with the same minimal polynomial as u. There is an K-isomorphism $\sigma_0 : K(u) \to K(v)$ such that $\sigma(u) = v$. σ can be extended to an embedding $\overline{\sigma} : F \to \overline{K}$, which gives an automorphism of F. The restriction $\sigma = \overline{\sigma}_{|E|}$ gives an automorphism of E that $\sigma(u) \neq u$.

Step 9. If E/K is Galois, then E is stable.

One first notices that E/K is normal. For every $\sigma \in \operatorname{Gal}_{F/K}$, σ gives an embedding $\sigma_{|E}: E \to \overline{K}$. Since E/K is normal, $\sigma_{|E}$ is an automorphism of E. And hence E is stable under the Galois group $\operatorname{Gal}_{F/K}$ action.

Step 10. If E is stable, then E' is normal.

This can be checked directly. For all $\sigma \in G$ and $\tau \in E'$ and for all $u \in E$,

$$\sigma^{-1}\tau\sigma(u) = \sigma^{-1}\tau(\sigma(u)) = \sigma^{-1}\sigma(u) = u,$$
 since $\sigma(u) \in E$. Therefore, $\sigma^{-1}\tau\sigma \in E'$.

Remark 0.7. Some of the result we proved still true in a more general setting. We list some here:

- (1) If F/K is an extension, and an intermediate field E is stable, then $E' \triangleleft \operatorname{Gal}_{F/K}$.
- (2) Let F/K be an extension. If $N \triangleleft \operatorname{Gal}_{F/K}$, then H' is stable.
- (3) If F/K is Galois, and E is a stable intermediate field, then E is Galois over K. (finite-dimensional assumption is unnecessary here)
- (4) An intermediate field E is algebraic and Galois over K, then E is stable.

We conclude this section with the following theorem concerning the relation between Galois extension, normal extension and splitting fields.

Theorem 0.8. Let F/K be an extension, then the following are equivalent

- (1) F is algebraic and Galois over K.
- (2) F is separable over K and F is a splitting field over K of a set S of polynomials.
- (3) F is a splitting field of separable polynomials in K[X].

(4) F/K is normal and separable.

Proof. Fix $u \in F$ with minimal polynomail p(x) over K. Let $\{u = u_1, ..., u_r\}$ be distinct roots of p(x) in F. For any σ , then σ permutes $\{u = u_1, ..., u_r\}$. Thus $f(x) := \prod_{i=1}^r (x - u_i)$ is invariant under σ . Hence $f(x) \in K[x]$. It follows that f(x) = p(x). This proved that $(1) \Rightarrow (2), (3), (4)$.

One notices that $(2) \Leftrightarrow (4)$. Thus it remains to show that $(2) \Rightarrow (3)$, and $(3) \Rightarrow (1)$.

For $(2) \Rightarrow (3)$, let $f(x) \in S$ and let g(x) be an monic irreducible component of f(x). Since f(x) splits in F, it's clear that g(x) is an minimal polynomial of some element in F. Moreover, since F/K is separable, g(x) is separable. One sees that F is in fact a splitting field of such g(x)'s.

For $(3) \Rightarrow (1)$, we first note that F/K is algebraic since F is a splitting field. We shall prove that $(4) \Rightarrow (1)$. The implication $(3) \rightarrow (4)$ follows from a general fact about separable extension that an algebraic extension F/K is separable if F is generated by separable elements.

To this end, pick any $u \in F - K$, with minimal polynomial p(x) of degree ≥ 2 and separable. Hence there is a different root, say v, of p(x) in F. It's natural to consider the K-isomorphism $\sigma: K(u) \to K(v)$. Which can be extended to $\bar{\sigma}: F \to \overline{K}$. Since F is normal, $\bar{\sigma}$ is an automorphism of F, hence in $\operatorname{Gal}_{F/K}$ sending u to $v \neq u$. So F/K is Galois.