
Advanced Algebra I

finite dimensional Galois extension

In this section, we are going to prove the fundamental theorem for
finite dimensional Galois extension.

Let F/K be an field extension, we define the Galois group of F over
K, denoted GalF/K or GF/K or AutK(F ), as

GalF/K := {σ|σ ∈ AutF, σ|K = 1K}.
It’s clear that for σ ∈ GalF/K and u ∈ F algebraic over K with mini-

mal polynomial p(x), then σ(u) satisfies the same minimal polynomial.
On the other hand, if F/K is normal, let u, v be two elements having

the same minimal polynomial p(x), then we claim that there is an
σ ∈ GalF/K such that σ(u) = v. To see this, we fix an algebraic closure

K containing F . There is an K-isomorphism σ0 : K(u) → K(v) which
extends to an embedding σ : F → K . Since F is normal over K, one
has σ(F ) ⊂ F . And hence σ ∈ AutF .

Example 0.1. Consider the field F := Q( 3
√

2, ω) which is a splitting
field of x3−2 over Q. Thus it’s normal over Q. One can check that the
Galois group GalF/Q is generated by σ, τ that σ( 3

√
2) = 3

√
2ω, σ(ω) = ω,

and τ( 3
√

2) = 3
√

2, τ(ω) = ω2. It’s easy to check that GalF/Q ∼= S3.

Example 0.2. Consider the field F := Q( 3
√

2) over Q. Then it’s easy
to check that GalF/Q = {1F}.

There is a natural correspondence between subgroups of Galois groups
and intermediate fields. To be precise, fix an extension F/K. Let
H < G := GalF/K be a subgroup. One can define

H ′ := {u ∈ F |σ(u) = u, ∀σ ∈ H}.
It’s clear that this is a field. On the other hand, given and intermediate
field L such that K ⊂ L ⊂ F , then one can define

L′ := {σ ∈ GalF/K |σ(u) = u, ∀u ∈ L} = {σ ∈ GalF/K |σ|L = 1L}.
It’s easy to check the following properties:

Proposition 0.3. Let F/K be an extension with Galois group G. Let
L be an intermediate field, i.e. K ⊂ L ⊂ F , and H < G is a subgroup.

(1) F ′ = {1F}, K ′ = G, and {1F}′ = F .
(2) For any L, one has L ⊂ L′′, L′ = L′′′.
(3) For any H, one has H < H ′′, H ′ = H ′′′.
(4) For any intermediate fields L ⊂ M , one has M ′ < L′.
(5) For any subgroups J < H, one has H ′ ⊂ J ′.
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Proof. Most of the proof follows directly from the definition. We only
sketch the proof for L′ = L′′′.

By L ⊂ L′′ and (4), one has

(L′′)
′
< L′.

On the other hand, by (5), one has

L′ < (L′)
′′
.

We are done. ¤

Proposition 0.4. There is a one-to-one correspondence between

{L|K ⊂ L ⊂ F,L′′ = L} ↔ {H|H < G,H ′′ = H}.
Proof. The correspondence is given by L 7→ L′ (or H 7→ H ′).

To show the injective, one sees that if L′1 = L′2, then L1 = L′′1 =
L′′2 = L2.

For any H with H ′′ = H, we take L = H ′, then H = L′. It suffices
to check that L′′ = L. This follows from the fact that H ′′′ = H ′. ¤

In the proposition, one might expect that G′ = K. However, this
is not always the case (see e.g. Example 2). For extension with this
property, we call it Galois. It turns out that this naive definition is a
very delicate one which leads to some nice properties.

Definition 0.5. An extension F/K is said to be Galois if (GalF/K)′ =
K.

Theorem 0.6 (Fundamental theorem of finite dimensional Galois ex-
tension). Let F/K be a finite dimensional Galois extension with Galois
group G, then

(1) There is an one-to-one correspondence between

{L|K ⊂ L ⊂ F} ↔ {H|H < G}.
(2) The corresponding degree are equal. That is, if K ⊂ L ⊂ M ⊂

F , then [M : L] = [L′ : M ′]. And if J < H < G, then [H : J ] =
[J ′ : H ′].

(3) An intermediate field E is Galois over K if and only if E ′ CG.
And in this case, GalE/K

∼= G/E ′.

Proof. Step 1. [M : L] ≥ [L′ : M ′].
We prove the case that M = L(u) for some u ∈ M and by induction
on [M : L], we are done. Suppose now that M = L(u) and let p(x) be
the minimal polynomial of u over L. Let S be the set of roots of p(x)
in F . Then one has a map

Φ : L′ → S,

σ 7→ σ(u).
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One can check that Φ induces an injective map L′/M ′ → S. Hence one
has

[L′ : M ′] = |L′/M ′| ≤ |S| ≤ deg(p(x)) = [M : L].

Step 2. [H : J ] ≥ [J ′ : H ′].
Let n = [H : J ]. Suppose on the contrary that there are n+1 elements
u1, ..., un+1 ∈ J ′ linearly independent over H ′.

We consider the equation
∑n+1

i=1 uixi = 0 in F Consider now a set of
representative of H/J , denoted {e = σ1, ..., σn}. By applying σi to the
above equation. Then one has a system of linear equations in F .

(∗)





σ1(u1)x1 + σ1(u2)x2 + ... + σ1(un+1)xn+1 = 0
σ2(u1)x1 + σ2(u2)x2 + ... + σ2(un+1)xn+1 = 0
...
σn(u1)x1 + σn(u2)x2 + ... + σn(un+1)xn+1 = 0

Pick a solution in F with smallest number of non-zero ai’s, may
assume it’s (a1, ..., as, 0..., 0) and a1 = 1.

If there is an τ ∈ H such that τ(a2) 6= a2, then by applying τ to
the system (∗), one get the same system of equations with a solution
(τ(a1), τ(a2), ..., τ(as), 0, ..., 0 . Hence

(a1, ..., as, 0..., 0)− (τ(a1), τ(a2), ..., τ(as), 0, ..., 0) = (0, a2− τ(a2), ..., 0)

is a non-zero solution of smaller length. This is the required contradic-
tion.

To find τ . We look at u1a1 + ... + usas = 0. Since {u1, ..., us} is
independent over H ′, not all a1 is in H ′. We may assume that a2 6∈ H ′.
Hence there is a τ ∈ H such that τ(a2) 6= a2. We are done.

Step 3. We show that every intermediate field L, L′′ = L. And
every subgroup H < G, H ′′ = H.

By Step 1, one has

[L′′ : K] = [L′′ : K ′′] ≤ [K ′ : L′] ≤ [L : K],

however, one has L ⊂ L′′. Thus one has L = L′′. Similarly, one can
prove that H ′′ = H by considering [H ′′ : {1F}].

Step 4. [M : L] = [L′ : M ′] and [H : J ] = [J ′ : H ′].
This follows from [M : L] = [M : K]/[L : K] = [K ′ : M ′]/[K ′ : L′] =

[L′ : M ′]. And the other one is similar.
Step 5. F/K is normal and separable.
Given u ∈ F , with minimal polynomial p(x) over K. As in the proof

of Step 1. One has [K(u)′ : K ′] ≤ |S| ≤ deg(p(x)) = [K(u) : K]. By
Step 4, they are equalities. In particular, every root of p(x) is in F and
there is no multiple roots. Thus F is normal and separable over K.

Step 6. If N C G, then N ′ is stable. That is, for all σ ∈ G,
σ(N ′) ⊂ N ′ (indeed = N ′).
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Since N C G, for all σ ∈ G and for all τ ∈ N , one has σ−1τσ ∈ N .
Thus, σ−1τσ(N ′) = N ′. It follows that τσ(N ′) = σ(N ′), for all τ ∈ N .
Hence σ(N ′) is fixed by all N and thus σ(N ′) ⊂ N ′.

Step 7. If E is a stable intermediate subfield. Then the restriction
map GalF/K → GalE/K is well-defined and surjective.

Since E is stable, then σ|E ∈ GalE/K for any σ ∈ GalF/K . Moreover,
let τ ∈ GalE/K , by the extension theorem, there is an extension τ :

F → K. Since F is normal over K, τ is in fact an automorphism of F .
Step 8. If an intermediate field E is stable, then E/K is Galois.
To see this, it suffices to show that for any u ∈ E−K, there is an σ ∈

GalE/K such that σ(u) 6= u. Fix any F 3 v 6= u with the same minimal
polynomial as u. There is an K-isomorphism σ0 : K(u) → K(v) such
that σ(u) = v. σ can be extended to an embedding σ : F → K,
which gives an automorphism of F . The restriction σ = σ|E gives an
automorphism of E that σ(u) 6= u.

Step 9. If E/K is Galois, then E is stable.
One first notices that E/K is normal. For every σ ∈ GalF/K , σ

gives an embedding σ|E : E → K. Since E/K is normal, σ|E is an
automorphism of E. And hence E is stable under the Galois group
GalF/K action.

Step 10. If E is stable, then E ′ is normal.
This can be checked directly. For all σ ∈ G and τ ∈ E ′ and for all

u ∈ E,
σ−1τσ(u) = σ−1τ(σ(u)) = σ−1σ(u) = u,

since σ(u) ∈ E. Therefore, σ−1τσ ∈ E ′. ¤
Remark 0.7. Some of the result we proved still true in a more general
setting. We list some here:

(1) If F/K is an extension, and an intermediate field E is stable,
then E ′ C GalF/K.

(2) Let F/K be an extension. If N C GalF/K, then H ′ is stable.
(3) If F/K is Galois, and E is a stable intermediate field, then E is

Galois over K. (finite-dimensional assumption is unnecessary
here)

(4) An intermediate field E is algebraic and Galois over K, then E
is stable.

We conclude this section with the following theorem concerning the
relation between Galois extension, normal extension and splitting fields.

Theorem 0.8. Let F/K be an extension, then the following are equiv-
alent

(1) F is algebraic and Galois over K.
(2) F is separable over K and F is a splitting field over K of a set

S of polynomials.
(3) F is a splitting field of separable polynomials in K[X].
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(4) F/K is normal and separable.

Proof. Fix u ∈ F with minimal polynomail p(x) over K. Let {u =
u1, ..., ur} be distinct roots of p(x) in F . For any σ, then σ permutes
{u = u1, ..., ur}. Thus f(x) :=

∏r
i=1(x − ui) is invariant under σ.

Hence f(x) ∈ K[x]. It follows that f(x) = p(x). This proved that
(1) ⇒ (2), (3), (4).

One notices that (2) ⇔ (4). Thus it remains to show that (2) ⇒ (3),
and (3) ⇒ (1).

For (2) ⇒ (3), let f(x) ∈ S and let g(x) be an monic irreducible
component of f(x). Since f(x) splits in F , it’s clear that g(x) is an
minimal polynomial of some element in F . Moreover, since F/K is
separable, g(x) is separable. One sees that F is in fact a splitting field
of such g(x)’s.

For (3) ⇒ (1), we first note that F/K is algebraic since F is a split-
ting field. We shall prove that (4) ⇒ (1). The implication (3) → (4)
follows from a general fact about separable extension that an algebraic
extension F/K is separable if F is generated by separable elements.

To this end, pick any u ∈ F −K, with minimal polynomial p(x) of
degree ≥ 2 and separable. Hence there is a different root, say v, of p(x)
in F . It’s natural to consider the K-isomorphism σ : K(u) → K(v).
Which can be extended to σ̄ : F → K. Since F is normal, σ̄ is an
automorphism of F , hence in GalF/K sending u to v 6= u. So F/K is
Galois.
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