Advanced Algebra I

FINITE DIMENSIONAL (GALOIS EXTENSION

In this section, we are going to prove the fundamental theorem for
finite dimensional Galois extension.

Let F'/K be an field extension, we define the Galois group of F' over
K, denoted Galp/k or Gp/x or Autg(F), as

Galp i = {o|o € AutF,o|x = 1x}.

It’s clear that for o0 € Galp/k and u € F algebraic over K with mini-
mal polynomial p(x), then o(u) satisfies the same minimal polynomial.

On the other hand, if F'//K is normal, let u, v be two elements having
the same minimal polynomial p(x), then we claim that there is an
o € Galp/k such that o(u) = v. To see this, we fix an algebraic closure
K containing F. There is an K-isomorphism o : K (u) — K (v) which
extends to an embedding o : F — K . Since F is normal over K, one
has o(F') C F. And hence o € AutF.

Example 0.1. Consider the field F := Q(+/2,w) which is a splitting
field of 23 —2 over Q. Thus it’s normal over Q. One can check that the
Galois group Galp)q is generated by o, T that o(V2) = V2w, 0(w) = w,
and 7(V/2) = V/2,7(w) = w?. It’s easy to check that Galp/g = Ss.

Example 0.2. Consider the field F' := @(\?/5) over Q. Then it’s easy
to check that Galpg = {1r}.

There is a natural correspondence between subgroups of Galois groups
and intermediate fields. To be precise, fix an extension F/K. Let
H < G := Galp/k be a subgroup. One can define

H :={u € Flo(u) =u,Vo € H}.

It’s clear that this is a field. On the other hand, given and intermediate
field L such that K C L C F, then one can define

L' :={o € Galp/g|o(u) = u,Vu € L} = {0 € Galp/k|o, = 1.}
It’s easy to check the following properties:

Proposition 0.3. Let F/K be an extension with Galois group G. Let
L be an intermediate field, i.e. K C L C F, and H < G is a subgroup.

(1) F'={1r}, K' =G, and {1} = F.

(2) For any L, one has L C L", L' = L".

(3) For any H, one has H < H", H = H".

(4) For any intermediate fields L C M, one has M' < L'.

(5) For any subgroups J < H, one has H' C J'.
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Proof. Most of the proof follows directly from the definition. We only
sketch the proof for L' = L".
By L C L" and (4), one has

(L < L.
On the other hand, by (5), one has
L < (L.
We are done. g

Proposition 0.4. There is a one-to-one correspondence between
{LIKCLCFL'"=L}—{H|H<G,H =H}.

Proof. The correspondence is given by L — L' (or H — H').

To show the injective, one sees that if L] = L}, then L; = L} =
L = L.

For any H with H” = H, we take L = H’, then H = L’. It suffices
to check that L” = L. This follows from the fact that H"” = H'. O

In the proposition, one might expect that G’ = K. However, this
is not always the case (see e.g. Example 2). For extension with this
property, we call it Galois. It turns out that this naive definition is a
very delicate one which leads to some nice properties.

Definition 0.5. An extension F//K is said to be Galois if (Galp/x)' =
K.

Theorem 0.6 (Fundamental theorem of finite dimensional Galois ex-
tension). Let F//K be a finite dimensional Galois extension with Galois
group G, then

(1) There is an one-to-one correspondence between
{LIK C LC F} «~ {H|H < G}.

(2) The corresponding degree are equal. That is, if K C L C M C
F,then [M : Ll =L : M. And if J < H <G, then [H : J] =
[J' = H].
(3) An intermediate field E is Galois over K if and only if F' < G.
And in this case, Galg/x = G/E'.
Proof. Step 1. [M : L] > [L': M'].
We prove the case that M = L(u) for some v € M and by induction
on [M : L], we are done. Suppose now that M = L(u) and let p(z) be

the minimal polynomial of w over L. Let S be the set of roots of p(x)
in F'. Then one has a map

d:L — 85,

o o(u).
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One can check that ® induces an injective map L'/M’ — S. Hence one
has

(L' M'] = [L'/M"] < |S| < deg(p(x)) = [M : L].

Step 2. [H: J]| > [J': H].
Let n = [H : J]. Suppose on the contrary that there are n+ 1 elements
Ui, ..., Upy1 € J' linearly independent over H'.

We consider the equation Z?:’Lll w;x; = 0 in F' Consider now a set of
representative of H/.J, denoted {e = oy, ...,0,}. By applying o; to the
above equation. Then one has a system of linear equations in F'.

o1(ur)xy + oy (ug)xe + ... + 01 (tps1)pi1 =0
o2(ur)xy 4 o2(ug)@s + ... + 02 (Uny1)Tpg1 =0

(*)
on(ur)xy + op(ug)zs + .. + 0 (Ung1) T =0

Pick a solution in F' with smallest number of non-zero a;’s, may
assume it’s (ag, ..., as,0...,0) and a; = 1.

If there is an 7 € H such that 7(ay) # ao, then by applying 7 to
the system (x), one get the same system of equations with a solution
(1(a1),7(az),...,7(as),0,...,0 . Hence

(a1, ...,as,0...,0) = (7(ay),7(ag), ..., 7(as), 0, ...,0) = (0, ag — 7(az), ..., 0)

is a non-zero solution of smaller length. This is the required contradic-
tion.

To find 7. We look at wja; + ... + usas = 0. Since {uq, ..., us} is
independent over H', not all a; is in H’. We may assume that ay & H'.
Hence there is a 7 € H such that 7(ay) # as. We are done.

Step 3. We show that every intermediate field L, L” = L. And
every subgroup H < G, H" = H.

By Step 1, one has

[L":K]=[L":K'|<|K':L<I[L: K],

however, one has L € L”. Thus one has L = L”. Similarly, one can
prove that H” = H by considering [H"” : {1r}].

Step 4. [M : L] = [L' : M') and [H : J] = [J' : H'].

This follows from [M : L] = [M : K|/[L: K] =[K': M'|/|[K": L'| =
[L’ : M']. And the other one is similar.

Step 5. F//K is normal and separable.

Given u € F', with minimal polynomial p(z) over K. As in the proof
of Step 1. One has [K(u) : K'| <|S| < deg(p(z)) = [K(u) : K]. By
Step 4, they are equalities. In particular, every root of p(x) is in F' and
there is no multiple roots. Thus F' is normal and separable over K.

Step 6. If N < @, then N’ is stable. That is, for all o € G,
o(N') C N’ (indeed = N’).



Since N < G, for all 0 € G and for all 7 € N, one has 0770 € N.
Thus, 0~ '7o(N’) = N'. Tt follows that 7o(N’) = o(N’), for all T € N.
Hence o(N’) is fixed by all N and thus o(N’) C N'.

Step 7. If F is a stable intermediate subfield. Then the restriction
map Galp/x — Galg,k is well-defined and surjective.

Since E is stable, then o|p € Galg/k for any o € Galp/kx. Moreover,
let 7 € Galg/k, by the extension theorem, there is an extension 7 :
F — K. Since F is normal over K, 7 is in fact an automorphism of F.

Step 8. If an intermediate field £ is stable, then E/K is Galois.

To see this, it suffices to show that for any u € E— K, thereis an o €
Galg/k such that o(u) # u. Fix any F' 5 v # u with the same minimal
polynomial as u. There is an K-isomorphism o¢ : K(u) — K(v) such
that o(u) = v. o can be extended to an embedding 7 : F — K,
which gives an automorphism of F'. The restriction o = 7|g gives an
automorphism of E that o(u) # u.

Step 9. If F/K is Galois, then F is stable.

One first notices that E/K is normal. For every o € Galp/k, o
gives an embedding o : E — K. Since E/K is normal, oE is an
automorphism of E. And hence E is stable under the Galois group
Galp) i action.

Step 10. If F is stable, then E’ is normal.

This can be checked directly. For all 0 € G and 7 € E’ and for all
u € F,

o lro(u) = o r(o(u)) = o to(u) = u,
since o(u) € E. Therefore, 0770 € E'. O

Remark 0.7. Some of the result we proved still true in a more general
setting. We list some here:

(1) If F/K 1is an extension, and an intermediate field E is stable,
then E' <1 Galp/k.

(2) Let F/K be an extension. If N < Galp/k, then H' is stable.

(3) If F/K is Galois, and E is a stable intermediate field, then E is
Galois over K. (finite-dimensional assumption is unnecessary
here)

(4) An intermediate field E is algebraic and Galois over K, then E
15 stable.

We conclude this section with the following theorem concerning the
relation between Galois extension, normal extension and splitting fields.

Theorem 0.8. Let F//K be an extension, then the following are equiv-
alent

(1) F is algebraic and Galois over K.

(2) F is separable over K and F' is a splitting field over K of a set
S of polynomials.

(3) F is a splitting field of separable polynomials in K[X].



(4) F/K is normal and separable.

Proof. Fix u € F with minimal polynomail p(x) over K. Let {u =
uy, ..., u, } be distinct roots of p(z) in F. For any o, then o permutes
{u = uy,...,u.}. Thus f(z) = [[,_,(z — w) is invariant under o.
Hence f(x) € Klz|. It follows that f(z) = p(z). This proved that
(1) = (2),(3),(4).

One notices that (2) < (4). Thus it remains to show that (2) = (3),
and (3) = (1).

For (2) = (3), let f(x) € S and let g(x) be an monic irreducible
component of f(z). Since f(z) splits in F, it’s clear that g(z) is an
minimal polynomial of some element in F. Moreover, since F'/K is
separable, g(x) is separable. One sees that F' is in fact a splitting field
of such g(x)’s.

For (3) = (1), we first note that F'//K is algebraic since F'is a split-
ting field. We shall prove that (4) = (1). The implication (3) — (4)
follows from a general fact about separable extension that an algebraic
extension F/K is separable if F' is generated by separable elements.

To this end, pick any v € F — K, with minimal polynomial p(x) of
degree > 2 and separable. Hence there is a different root, say v, of p(x)
in . It’s natural to consider the K-isomorphism o : K(u) — K(v).
Which can be extended to & : ' — K. Since F is normal, & is an
automorphism of F', hence in Galp/x sending v to v # u. So F/K is
Galois.
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