Advanced Algebra I

FIELD EXTENSIONS AND ALGEBRAIC CLOSURE

In this section, we are going to prove the existence and uniqueness of
algebraic closure. As a consequence, we are able to show the existence
and uniqueness of splitting fields.

Proposition 0.1. Let F' be a field. The following are equivalent:

1) Every polynomial of F[z] of degree > 1 has a root in F.

) Every polynomial of F|x] of degree > 1 has all the roots in F'.

) Every irreducible polynomial in F[z] has degree < 1

) If E is an algebraic extension over F, then E = F.

) There is a subfield K C F such that F' is algebraic over K and
every polynomial in K[x] splits in F|x].
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Definition 0.2. A field F' satisfying above conditions is said to be
algebraically closed.

Sketch of the proof of the Proposition. (1) = (2) by induction on de-
gree. And hence (1) < (2) are equivalent. It’s easy to see that
(2) & (3). We now look at (3) and (4). If E is an algebraic ex-
tension. Pick u € FE algebraic over F' with minimal polynomial p(z).
By (3), p(z) has degree 1, hence [E : F] = deg(p(z)) = 1. In particular,
E = F. Conversely, if there is an irreducible polynomial p(z) of degree
> 1, then K[z]|/(p(x)) gives an algebraic extension of degree deg(p(x)).
This leads to a contradiction, hence (4) implies (3).

Lastly, it’s clear that (3) implies (5) by picking K = F. We now
prove that (5) = (4). Let E be an algebraic extension over F. For
any u € E, u is algebraic over K as well. Let pp(z),px(z) be the
minimal polynomial of u over F, K respectively. By viewing px(z) as
a polynomial in F', then one has pr(z)|pk(x) € F[z]. However, px(x)
splits in F[z]. Tt follows that pr(z) has degree 1. And hence u € F.
Thus £ = F. 4

We can also define the notion of algebraic closure.
Proposition 0.3. Let F/K be an extension. The following are equiv-

alent.

(1) F/K is algebraic, and F is algebraically closed.
(2) F/K is algebraic, and every polynomial in K|x] splits in F[z].
(3) F is a splitting field of all polynomials of K.

Definition 0.4. F' is said to be an algebraical closure of K if F/K
satisfies the above conditions.

Proof. The proof is an easy consequence of the Prop. 0.1, we leave it
to the readers. U

Theorem 0.5. Algebraic closure exists.
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The following is due to M. Artin as it appeared in [Lang, Algebra].

Proof. Let K be a field.

Step 1. There is an extension E; over K such that every polynomial
of degree > 1 has a root in Ej.

To this end, let S be the set of all polynomials of degree > 1. We
consider K[S] to be the polynomial ring with indeterminates =, for
f € S. Consider now an ideal I =< f(zy) >fes. We claim that
I # K|[S], hence I C m for some maximal ideal m. The field K[S]/m
gives an extension E; over K. Now, for every f(z) € K|z, one sees
that f(Z7) = f(zy) =0 € E. Hence f(z) has a root T in Ej.

It remains to show that I # K[S]. Suppose on the contrary that
I = K[S], in particular, 1 € I. We may write

1—29 fz xfz

One can construct an algebraic extension F'//K such that each f; has a
root u; in F'. Substitute x4, by w; in F', one has

1_Zg Vfi(u;) =0 € F,

which is the required contradiction.

Step 2. Inductively, one has K = Ey C E; C Es.... Let E = UE;,
then E is a field extension over K. And F is algebraically closed.

To see this, for any polynomial f(z) = > ;2" € E[z], a; € E},
for some 7;. One can pick J maximal among j; so that a; € E; for
all i. Hence f(z) € E;. By construction, f(z) has a root in Ejq,
and inductively, f(x) has all its root in E;,4, where d = deg(f(z)).
Therefore, f(x) has all its root in E.

Step 3. Let E, := {u € Elu is algebraic over K'}. Then E, is an
algebraic closure of K.

It’s an easy exercise to check that E, is a field extension over K.
We leave it to the readers. It’s also clear that FE, is algebraic over K.
Hence, it suffices to check that E, is algebraically closed.

To see this, one notices that every polynomial of K[z splits in E
and it follows that every root of K|z|is in E,. Therefore, one has that
every polynomial of Kz| splits in F, and we are done. O

Remark 0.6. Let X be a set of indeterminantes and K|[X]| be the

polynomial ring. Let m be a mazimal ideal in K[X]. Then K[X]/m is

a field. There is a natural embedding o : K — K[X]/m by o(k) = k.
Ones might say that K[X]/m is an "extension over K”, which is not

completely precise cause as a set K ¢ K[X]/m. One can make sense
of this by consider a field E = K[X]/m and K C E.
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The field E can be constructed as following: Let K. := K[X]/m —
o(K) and E = K U K°. Define on E the addition and multiplication
naturally then we are there.

We next work on the uniqueness of algebraic closure. The main
ingredient is the following extension theorem.

Theorem 0.7 (Extension theorem). Let 0 : K — L be an embedding
to an algebraically closed field L. Let E/K be an algebraic extension.
Then one can extend the embedding o to an embedding ¢ : E — L.
That is, there is an embedding 6 : E — L such that o|x = 0.

We remark that L is not necessarily an algebraic closure of K. For
example, L could be something like K (x), an algebraic closure of K (z).
In order to prove the uniqueness, we need the following useful Lemma.

Sketch of the proof. The staring point is an extension to a simple ex-
tension. More precisely, let © € E be algebraic over K with minimal
polynomial p(z). Then p?(z) is an irreducible polynomial in o(K)[x].
In L, Pick any root v of o(K)[z]. This is possible since L is alge-
braically closed. One claims that there is an isomorphism ( hence an
embedding to L)
g:K(u)— o(K)(v)CL

extending 0. We leave the detail to the readers.

In order to work on the general case, we apply Zorn’s Lemma to the
non-empty P.O. set of fields

S={(F71)KCFCE,7:F— L,T|x =0}

The ordering is given naturally as: (F,7) < (Fy, ) if F} C Fy and
T = T9 |F1 .

By Zorn’s Lemma, there is a maximal element, say E,,. It’s easy to
see that F,, = FE. Otherwise, pick any v € E, which is algebraic over
K and hence over E,,. There is an extension to E,,(u) as we have seen
in the first paragraph. This is a contradiction to the maximality of E,,.
Hence E,, = F. O

Lemma 0.8. Let E/K be an algebraic extension and o : E — E be an
embedding such that o|x = 1g. Then o is an isomorphism.

Proof. If E/K is finite, then injective implies isomorphic in the case of
finite dimensional vector space.

In general, let’s pick any u € E. It suffices to show that u is in the
image of 0. To see this, let p(x) be the minimal polynomial of u over K
and u = uq, ug, ..., u, be the roots of p(x) in E. Let E' := K(uq, ..., u,).
It’s clear that for each 4, o(u;) = u; for some j. Hence o|p gives an
homomorphism from E’ to E’.

Now o|g : B/ — E’ is an injective homomorphism of finite dimen-
sional vector space E'/K. Therefore, o|g is an isomorphism. In par-
ticular, u is in the image of o|g and therefore in the image of 0.  [J



4

Corollary 0.9. Algebraic closure of a field is unique up to isomor-
phism.

Proof. Suppose that F, F' are algebraic closure of K. By the extension
theorem, there are embedding ¢ : E — F and 7 : ' — E such that
o ‘ K =T | K = 1 K-

Hence one has an embedding oot : F' — F', which is an isomorphism
by the Lemma. Similarly, 7 oo is an isomorphism. Hence E and F' are
isomorphic. O



