
Advanced Algebra I

Induced representation

In order to introduce the notion of induced representation, we start
by looking at some examples.

Example 0.1. Let H < G be a subgroup. Then there is a natural
groups action G × G/H → G/H by translation. Hence one has a
permutation representation G → C[G/H]. This representation can be
described as following:
Let W = CeH where H denote the trivial coset in G/H. Let σW = Ceσ

for σ ∈ G/H. Finally, we consider V = ⊕σ∈G/HσW . Then we obtain
a representation of G on V = C[G/H].

One notices that this construction works for any W . So let ρ :
G → GL(W ) be a representation of H. We consider vector spaces
σW := {wσ|w ∈ W}. And we fix a representative sσ ∈ G for each
coset σ ∈ G/H. Now let

V := ⊕σ∈G/HσW.

It’s easy to verify that there is a representation ρ̃ : G → V given as
following:
For s ∈ G, ssσ = sτh for some h ∈ H and τ ∈ G/H. Then we consider
ρ̃s(wσ) = (ρhw)τ .

A careful reader might notices that ρ̃ depends on choices of represen-
tatives sσ. However, different choices give isomorphic representations.
Thus it’s is unique up to isomorphism.

On the other hand, Let ρ : G → GL(V ) be a representation. It’s
restriction gives ρH : H → GL(V ) a representation. If θ : H → GL(W )
is a subrepresentation of ρH , then we can find a G-invariant subspace∑

σ σW , where σW := ρsσW for any representative sσ of σ ∈ G/H.

Definition 0.2. We say that ρ : G → GL(V ) is a representation
induced by the representation θ : H → GL(W ) if V = ⊕σ∈G/HσW .

We remark that on V there are now two representations ρ and θ̃. We
will prove that they are isomorphic by the following Lemma.

Lemma 0.3. Suppose that (V, ρ) is induced by (W, θ). Let ρ′ : G →
GL(V ′) be a representation of G and let f : W → V ′ be a linear map
such that f(θtw) = ρ′tf(w) for all t ∈ H and w ∈ W . Then there
exists a unique linear map F : V → V ′ which extends f and satisfying
F ◦ ρs = ρ′s ◦ F for all s ∈ G.

Proof. We first prove the uniqueness. If F ◦ ρs = ρ′s ◦ F for all s ∈ G,
then for w ∈ σW , we pick any s ∈ σ ∈ G/H, one has ρs−1w ∈ W and

F (w) = F (ρsρs−1w) = ρ′sF (ρs−1w) = ρ′sf(ρs−1w).
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Hence if F is determined by f . It implies that if F ′ is another extension,
then F ′ = F . This proves the uniqueness.

To prove the existence, for w ∈ σW , we define F (w) := ρ′sf(ρs−1w).
We first check that this is well-defined, i.e. independent of choice of
s ∈ σ. Suppose we pick s′ = sh for some h ∈ H. Then

ρ′shf(ρ−1
sh w) = ρ′sρ

′
hf(ρ−1

h ρ−1
s w) = ρ′sf(θhρ

−1
h ρ−1

s w) = ρ′sf(ρs−1w).

Since V = ⊕σW , F is thus defined on V . Moreover, it’s clear that
F |W = f . ¤

Corollary 0.4. Suppose that (V, ρ) and (V ′, ρ′) are induced by (W, θ).
Then they are isomorphic.

Proof. Let f : W → V ′ = ⊕σW be the inclusion. Since θt = ρ′t for
t ∈ H, it’s easy to see that f(θtw) = ρ′tf(w) for all t ∈ H and w ∈ W .
Then f extends to F : V → V ′. Since F |W is an isomorphism, it follows
that F |σW is an isomorphism by the construction of F . Therefore, (V, ρ)
and (V ′, ρ′) are isomorphic. ¤

Corollary 0.5. Suppose that (V, ρ) is induced by (W, θ). Then ρ ∼= θ̃.

Proof. Let ρ′ = θ̃ and V ′ = ⊕σW . Then one sees that

θ̃t(w) = θt(w) = ρtw

for t ∈ H and w ∈ W . We take f = idW then we are done. ¤

We now ready to compute the character.

Theorem 0.6. Let (V, ρ) be a representation induced by (W, θ). Let
R = {sσ} be a system of representatives of G/H. For each u ∈ G, one
has

χρ(u) =
∑

r∈R,r−1ur∈H

χθ(r
−1ur) =

1

|H|
∑

s∈G,s−1us∈H

χθ(s
−1us).

Proof. Since ρ ∼= θ̃, we can compute it by θ̃ and we may assume that

ρ = θ̃.
We first note that ρu maps σW to uσW , where uσ denote the coset

of usσ. We have non-zero trace only at those subspace σW such that
σW = uσW . This is equivalent to σ = uσ and hence equivalently,
s−1

σ usσ ∈ H.
Now, we compute trace on σW with s−1

σ usσ = h ∈ H. By definition,

θ̃s(wσ) = (θhw)σ. Hence

tr(θ̃s|σW ) = tr(θh) = χθ(s
−1
σ usσ).

Add them up, then we get the required equality. ¤

A convenience way to compute is
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Exercise 0.7. If C is the conjugacy class of u, and C ∩H decompose
into conjugacy classes D1, ..., Dr of H. Then

χρ(u) =
|G|
|H|

r∑
i=1

|Di|
|C| χθ(Di).

Example 0.8. Consider S3 < S4. There is a irreducible representation

(W, θ) of degree 2 on S3. It induces a representation (V, θ̃) of degree 8
on S4. It’s character has value 8, 0,−1, 0, 0 on 1, (12), (123), (1234), (12)(34)
respectively. By orthogonal property, one has χeθ = χ3 + χ4 + χ5.

We now fix some notations. Let V be a representation of G and H <
G a subgroup. Then ResV denote the restriction of the representation
of G on V to H.

On the other hand, if W is a representation of H, then IndW denotes
the induced representation.

If V, V ′ are representations of G, then HomG(V, V′) denotes the G-
invariant linear transformation from V to V ′.

Then the extension theorem can be rephrase as

HomH(W, ResV′) ∼= HomG(IndW, V′).

Corollary 0.9 (Frobenius Reciprocity). If V is a representation of G
and W is a representation of H < G, then

< χIndW, χV >G=< χW , χResV >H .

Proof. It suffices to prove this when W and V are irreducible. Note
that < χIndW, χV >G is the number of copies of V appears in the
decomposition of IndW, which equals to dim(HomG(IndW, V)). And
similarly, < χW , χResV >H is the number of copies of W appears in the
decomposition of ResV, which equals to dim(HomH(W, ResV)). ¤


