Basic Algebra (Solutions)

by Huah Chu

Exercises (§1.9, p.62)

1. Let G = (Q,+,0), K = 7Z. Show that G/K ~ the group of complex numbers of
the form €™, 9 € @), under multiplication.

Proof. Define a homomorphism ¢ : G — {e*™|0 € Q} by 6 — €2™. Then ker ¢ = K
and ¢ is surjective. O

2. Show that @ — a~! is an automorphism of a group G if and only if G is abelian,
and if G is abelian, then a — a* is an endomorphism for every kZ.

Proof. (1) ¢ :a — a! is an automorphism
& For all a,b € G, (ab)™ = ¢(ab) = ¢(a)p(b) = a b1
< For all a,b € G, ab = ba, that is, GG is abelian.
(2) G is abelian. jFrom (ab)* = a*b*, we have a — a* is an endomorphism. O

3. Determine Aut G for (i) G an infinite cyclic group, (ii) a cyclic group of order six,
(iii) for any finite cyclic group.

Sol. (i) Let G = (a) be an infinite cyclic group. The generators of G are a and a~'.

Hence, for ¢ € Aut G, ¢(a) = a or a=*. Hence AutG = {1g,¢:a — a™ '} ~ 7Z/27.

(ii) Let G = (a]a® = 1). The generators of G are a and a® by exercise 4, §1.5. hence
AutG ={lg,¢:a — a®} ~7Z/27.

(iii) Let G = (a) by any finite cyclic group with |G| = n. Then all generators of G
are a®, (k,n) = 1. Then Aut G is the set of all homomorphisms defined by ¢ : a — aF,
(k,n) = 1.

Remark. In the case of (iii), Aut G is isomorphic to the group of units of the multi-
plicative monoid (Z/nZ,-). Its structure will be determined in Chap. 4, §11. (Thm.
4.19, 4.20).

4. Determine Aut Ss.
Sol. We shall show that Aut S3 ~ Ss.



Step 1. The elements of Sy are 1, a = (123), a* = (132), b = (12), ab = (13),
(a®b = (23). Then we have the relation ba = a?b. Using this relation, the reader can

verify that
(a™b")(a?b7) = am+(n+1)pbn+q7 m,p=0,1,2; n,qg=0,1 (%)

easily. Since an automorphism preserves the order of an element, hence, for ¢ € Aut G,
#(a) = a* and ¢(b) = a’b for some i = 1,2, j =0,1,2.

Step 2. Define the map ¢;; : G — G by ¢;; : { @—a

b— a’b’
Qbij € Aut G:

We have ¢;;(a™) = a™, ¢;;(a™b) = a"™ b by the definition of ¢;;. Using these, it
is easy to see that ¢;; is bijective. Then we check that ¢;; is a homomorphism in the
following four cases:

(i) # = a™b, y = a™b. Then ¢((a™b)(a"b)) = ¢(a™*?") (by (¥)) = a’™*2"). On the
other hand, gb(amb)(b(a”b) — gimtipgintip = gimtit2(inty) — gimA2int3j — i(m+2n)  The
other three cases: (ii) x = a™b, y = @™, (ili) x = a™, y = a"b, and (iv) x = a™, y = a”
are left to the reader.

Step 3. It is easy to see that ¢19 = 1, ¢11 and ¢12 have order 3. @9, @21 and ¢oo
have order 2. We define the mapping @ : S3 — Aut Sz by a’ — ¢1;, a’b — ¢y;. The
reader can verify that it is an isomorphism.

i=1,2,j=0,1,2. Then

Remark. (1) Since S3 = (a,bla® = b* = 1,ba = a?b) (See §1.11), to prove that ¢;; is
a homomorphism, it is enough to check that (¢4;(a))® = (¢4;(0))* = 1, ¢i;(b)ds(a) =
(61j(a))?(i; ().

(2) In fact, Aut S,, ~ S, for all n # 6, and Aut Ss/Ss ~ Z/27Z, (c.f. 1. J. Rotman:
The theory of groups, p.132, or B. Huppert Endlich Gruppen I, p.173-177).

(3) For other remark, see the remark after exercise 5.

5. Let a € G, a group, and define the inner automorphism (or conjugation) I, to be
the map v — axza™! in G. Verify that I, is an automorphism. Show that a — I, is a
homomorphism of G into Aut G with kernel the center C' of G. Hence conclude that
Inn G = {I,|a € G} is a subgroup of Aut G with Inn G ~ G/C. Verify that InnG is a
normal subgroup of Aut G. Aut G/Inn G is called the group of outer automorphisms.

Proof. The last statement follows from ¢I,¢~*(b) = Iyq)(b). We leave all the verifica-
tions to the reader. g

Remark. A group G is complete in case C(G’) = 1 and AutG ~ G. Exercise 2 in
§1.4 and the remark in the above exercise show that .S,, is complete for n # 2,6.



It can be shown that if G is simple of composite order, then Aut(G) is complete.

6. Let G be a group, G, the set of left translations ay, a € G. Show that G Aut G
is a group of transformations of the set G and that this contains Gr. GpAutG is
called the holomorph of G and is denoted as HolG. Show that if G is finite, then
| Hol G| = |G|| Aut G.

Proof. (1) If g1, € G, ¢ € Aut G, then ¢pgré~" = ¢(g)r. iFrom this fact, we can prove
that G Aut G is a group.

(2) Since g;lgR(x) = g!

rg = I, € AutG, hence ggp = grl,~1. And Gr C

GL Aut G
(3) To prove | Hol G| = |G|| Aut G, it suffices to show that GyNAut G = {1}. Since
gr(1) = g # ¢(1) for ¢ € Aut G, g # 1, the result follows. O

7. Let G be a group such that Aut G = 1. Show that G is abelian and that every
element of G satisfies the equation x? = 1. Show that if G is finite then |G| =1 or 2.

Proof. (1) let G be a group with AutG = 1. Then G/C ~ InnG = 1 where C is
the center of G (by exercise 5). Hence G is abelian. If G is abelian, a — a~! is an
automorphism (by exercise 2). The assumption Aut G = 1 implies that a = a™! for all
a, that is, a®> = 1.

(2) Suppose |G| is finite and G # 1.

Step 1. We prove that GG contains elements ay, ..., a, such that every element of G
can be written in a unique way in the form a — 1% ... a* k; =0, 1:

For this purpose, we show that, for all ¢, there exists a normal subgroup H =
(ay,...,a;) of G such that every element of H can be written as a'' ---a, k; = 0,1,
uniquely. We prove this statement by induction on 7. Note that any subgroup of G is
normal since G is abelian.

Take any 1 # a; € G, then (a;) is normal in G. Suppose we have H = (a;) X - -+ X
(a;). Take any a;41 € G — H. Then H N (a;11) = 1 since |(a;41)| = 2. Because G is
abelian any element of (H,a;,1) can be written in the form hb with h € H, b € {(a;41).
Moreover, the expression is unique: If h1b; = habs, then hythy = boby' € HN{a;4q) = 1
and hy = ho, by = by. Hence the statement.

Step 2. Suppose n > 2. Define the mapping o : G — G by a’fla;” gk =
a¥2af aks .. aF . Obviously, « is a nontrivial automorphism. This contradicts to the
hypothesis Aut G = 1. Thus n =1 and |G| = 2.

Remarks. (1) We reprove Step 2 in the language of vector space. In Step 1, we have
shown that G is abelian and 22 = 1 for all z. Regard G as an additive group, then G is
a vector space over finite field 7 /27 (§4.13) and an automorphism is just a nonsingular
linear transformation. Let {ai,...,a,} be a basis of G. Suppose dim G > 2, then G



has a nontrivial nonsingular linear transformation a; — as, as — a1, and a; — a;,
1 > 2. A contradiction.

(2) When G is an infinite abelian group with 22 = 1 for all z, we can still regard G
as a vector space over 7Z/27. In this case, using Zorn’s lemma, we can find a base for
G. Hence it is not difficult to construct a nontrivial nonsingular linear transformation

on G.

8. Let a be the automorphism of a group G which fixes only the unit of G(a(a) = a =
a =1). Show that a — a(a)a™" is injective. Hence show that if G is finite, then every

element of G has the form a(a)a™!.

Proof. Let a be a fixed point free automorphism (a(a) = a = a = 1). Suppose
a(a)a™ = a(b)b™'. Then a(b~'a) = b~'a. Hence b~'a is fixed by a and b~'a = 1.
Thus a — a(a)a™! is injective.

If |G| < oo, by the pigeon hole principle, the mapping is surjective. U

9. Let G and a be as in 8, G finite, and assume o? = 1. Show that G is abelian of odd
order.

Proof. (1) For any element g of G, g has the form a(a)a™. a(g) = a(ala)a™) =

a*(a)a(a™) = aa(a)™ = g7'. Thus G is abelian by exercise 2.

(2) Next we show that |G| is odd. Suppose to the contrary, there is a € G with
order 2 (exercise 13, §1.2). Then a(a) = a~! = a, contradicts to the hypothesis about
. U

Remark. An automorphism « of G is said to be fixed point free if it leaves only the
unit fixed. This exercise shows that: if G admits a fixed point free automorphism of
order 2, then G is abelian. Some further results are:

Suppose that G admits a fixed point free automorphism « of order n. (1) If n = 3,
then G is nilpotent (for the definition, see Basic Algebra, I, p.243, exercise 6) and
x commutes with a(x) for all z. (2) If n is a prime, then G is nilpotent (John G.
Thompson). (3) G is solvable in general (for the definition, see Basic Algebra, I, p.237).
For more details, we refer to D. Gorenstein: Finite groups, chap. 10, pp.333-357 and
D. Gorenstein. Finite simple groups.

10. Let G be a finite group, o an automorphism of GG, and set

I={geGla(g) =9}

Suppose |I| > 2|G|. Show that G is abelian. If || = 2|G|, show that G has an abelian
subgroup of index 2.



Proof. (1) Let I = {g € Gla(g) = g7'} and |I| > 3|G|. For any h € I, claim:
INnhr ¢ C(h). In fact, if + € I N A7, then * — h™'g with g,z € I. Now
a(h™tg) = (h"tg)~! = g 'h; on the other hand a(h~tg) = a(h)ta(g) = hg~t. Thus
g~t € C(h). It follows that g € C'(h) and 2 = h™'g € C(h) also.

Since |I| = |h | > 3|G|, so [I N h7'| > $|G|. Thus C(h) is a subgroup of order
> £|G|. Then C(h) = G and h € C(G), the center of G. Because this holds for any
hel, so|C(G)| > 3|G| and G = C(G), G is a abelian.

(2) Suppose |I| = 3|G|. Then G can not be abelian, otherwise, [ is a subgroup of G.
Hence there exists h € I — C(G). Let K = I N h™'1, then K = C(h) and |K| = 3|G],
by the proof of (1). Since [G : K] = 2, K is normal. The only property remains to
prove is that K is abelian.

For any k = h™'g € K = C(h), then g € C(h). Thus for ky = h™lgy, ks = h7lgy €
K, gi1gs € C(h) C I. Then (g192)~" = é(g192) = ¢(91)6(g2) = g1 g5 ' and g1 commutes
with go. So k1 commutes with k. O

Remark. The reader is urged to find a finite non-abelian group GG and its automor-
phism o such that |I| = 2|G|. In fact let G = {£1, &4, &5, £k} be the quaternion group
and « the inner automorphism determined by 7. Then [{g € G : a(g) = g~ '}| = 6.



