
Basic Algebra (Solutions)

by Huah Chu

Exercises (§1.12, pp.76–78)

1. Let γ = (12 · · ·n) in Sn. Show that the conjugacy class of γ in Sn has cardinality
(n− 1)!. Show that the centralizer C(γ) = 〈γ〉.
Proof. (1) Let γ = (12 · · ·n). A permutation is conjugate to γ if and only if it has
the form (i1i2 · · · in). Then n permutations (i1i2 · · · in), (i2i3 · · · ini1), (i3 · · · ini1i2), . . .,
(ini1 · · · in−1) are equal. Hence all such permutations has cardinality n!/n = (n− 1)!

(2) Since the conjugacy class of γ has cardinality [G : C(γ)], hence |C(γ)| = n,
〈γ〉 ⊆ C(γ) is obvious. Moreover, |〈γ〉| = n. Then 〈γ〉 = C(γ). ¤

2. Determine representatives of the conjugacy classes in S5 and the number of elements
in each class. Use this information to prove that the only normal subgroups of S5 are
1, A5, S5.

Sol. representative cardinality parity

1
(12)
(123)
(12)(34)
(1234)
(12)(345)
(12345)

1
10
20
15
30
20
24

even
odd
even
even
odd
odd
even

A normal subgroup H is a union of some conjugacy classes and one of them must
be {1}

Case 1. H ⊂ A5. Then |H|||A5| = 60.
Hence the possible order of H is 1, 1 + 20 + 15 + 24. Thus H = {1} or A5.
Case 2. H 6⊂ A5. Then H ∩ A5 / S5 and H/H ∩ A5 ' H · A5/A5 ' S5/A5. Hence

[H : H ∩ A5] = 2. By Case 1, H ∩ A5 = {1} or A5. If H ∩ A5 = A5, then H = S5. If
H ∩ A5 = {1}, then |H| = 2. But a subgroup of order 2 in S5 cannot be normal by
inspecting the table of conjugacy classes constructed above.

3. Let the partition associated with a conjugacy class be (n1, n2, . . . , nq) where n1 =
· · · = nq1 > nq1+1 = · · · = nq1+q2 > nq1+q2+1 = · · · . Show that the number of elements
in this conjugacy class is n!/

∏
qi!

∏
nj.
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Proof. Let S = {(i11 · · · i1n1
)(i21 · · · i2n2

) · · · (iq1

1 · · · iq1
nq1

)(iq1+1
1 · · · iq1+1

nq1+1
) · · · (inq

1 · · · inq
nq)|1 ≤

ijk ≤ n and all ijk are distinct}. Then |S| = n!.
In S, we define an equivalence relation:
(1) For any cyclic (ij1 · · · ijnj

), · · · (ij1 · · · ijnj
) · · · ∼ · · · (ij2 · · · ijnj

i−1j) · · · ∼ · · · (ij3 · · · ijnj

ij1i
j
2) · · · ∼ · · · and so on. For any element α in S, α is equivalent to

∏q
j=1 nj elements

under this relation.
(2) For the first q1 cycles (i11 · · · i1n1

), . . . , (iq1

1 · · · iq1
nq1

), any permutation of these cycles

are equivalent: (i11 · · · i1n1
)(i12 · · · i1n2

) · · · ∼ (i12 · · · i1n2
)(i11 · · · i1n1

) · · · , and so on. The same
equivalence also defined for the second q2 cycles, . . .. Hence any element in S is
equivalent to

∏
qi! elements.

A equivalence class under this two relations determine a partition in this conjugacy
class. Hence the number of partitions is n!/

∏
qi!

∏
nj. ¤

4. Show that if a finite group G has a subgroup H of index n then H contains a normal
subgroup of G of index a divisor of n!.

Proof. Let H be a subgroup of index n. Consider the action of G on G/H by left
translations, T : G → Sym(G/H).

The kernel K of this action is a normal subgroup of G contained in H. And
G/K ∼ Im T is a subgroup of Sym(G/H) = Sn. Hence |G/K| is a divisor of n!. ¤

5. Let p be the smallest prime dividing the order of a finite group. Show that any
subgroup H of G of index p is normal.

Proof. Let H be a subgroup of index p. Applying exercise 4, H contains a subgroup K
which is normal in K and [G : K]|p!. The relation p = [G : H]|[G : K]|p! implies that
[G : K] = p since p is the smallest prime dividing |G|. Thus H = K and H is normal
in G. ¤

6. Show that every group of order p2, p a prime, is abelian. Show that up to isomor-
phism there are only two such groups.

Proof. (1) Let G be a group of order p2 and C(G) the center of G. Suppose G is
not abelian, then |C(G)| = p by Theorem 1.11. Take any g ∈ G − C(G). Since
[G : C(G)] = p, g and C(G) generate G. Any element of G can be written in the
form gih for h ∈ C(G), 0 ≤ i ≤ p − 1. Thus for any two elements gih1, g

ihg ∈ G,
h1, h2 ∈ C(G), (gih1)(g

jh2) = gigjh2h1 = (gjh2)(g
ih1). G is abelian. A contradiction.

(2) Let G be a group of order p2, then G must be a cyclic group or an elementary
abelian group 〈a, b|ap = bp = 1, ab = ba〉:

Case 1. G has an element with order p2. Then G is cyclic.
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Case 2. All non-identity element of G has order p. Take any 1 6= a ∈ G. Then
|〈a〉| = p. Choose b ∈ G−〈a〉. Then a, b generate a group of order p2, hence G = 〈a, b〉.
¤

Remark. ¿From the Sylow’s Theorems (§1.13), a group G with |G| = pe1
1 · · · pen

n con-
tains, for each i, a subgroup of order pei

i and all subgroups of this order are isomorphic.
Thus the problem of constructing finite groups may be regarded as having two parts:
(1) constructing p-groups, and (2) combining p-groups to form a group of order n.
Neither of these problems is solved in general.

The known results about first problem are
(1) If |G| = p, G is cyclic,
(2) If |G| = p2, G is abelian,
(3) If |G| = p3, there are five such groups up to isomorphism. (See M. Hall: The

theory of groups, pp.49–53.)
(4) If |G| = p4, there are 15 groups for p ≥ 3 and 16 groups for p = 2.
(5) There are 51 groups with order 25 and 267 groups with order 26. (M. Hall and

J. K. Senior.)
(6) Rodemich claimed that there are 2356 groups with order 27. For more details,

we refer to Huppert: Endlich. Gruppen Chap. 3.

7. Let H be a proper subgroup of a finite group G, show that G 6= ⋃
g∈G gHg−1.

8. Let G act on S, H act on T , and assume S ∩ T = ∅. Let U = S ∪ T and define for
g ∈ G, h ∈ H, s ∈ S, t ∈ T , (g, h)s = gs, (g, h)t = ht. Show that this defines an actio
of G×H on U .

Proof. Omitted. ¤

9. A group H is said to act on a group K by automorphisms if we have an action of H
on K and for every h ∈ H the map k → hk of K is an automorphism. Suppose this is
the case and let G be the product set K ×H. Define a binary composition in K ×H
by

(k1, h1)(k2, h2) = ((h−1
2 k1)k2, h1h2)

and define 1 = (1, 1) — the units of K and H respectively. Verify that this defines a
group such that h → (1, h) is a monomorphism of H into K ×H and k → (k, 1) is a
monomorphism of K into K×H whose image is a normal subgroup. G is called a semi-
direct product of K and H. Note that if H and K are finite then |K ×H| = |K||H|.
Proof. (1) The composition (k1, h1)(k2, h2) = ((h−1

2 k1)k2, h1h2) on H × K defines a
group.
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(i) The associativity:

((k1, h1)(k2, h2))(k3, h3) = ((h−1
2 k1)k2, h1h2)(k3, h3)

= ((h−1
3 ((h−1

2 k1)k2)k3, h1h2h3)

(k1, h1)((k2, h2)(k3, h3)) = (k1, h1)((h
−1
3 k2)k3, h2h3)

= ((h2h3)
−1k1(h

−1
3 k2)k3, h1h2h3).

We have

(h2h3)
−1k1(h

−1
3 k2)k3

= (h−1
3 h−1

2 )k1(h
−1
3 k2)k3

= (h−1
3 (h−1

2 k1))(h
−1
3 k2)k3 (By the definition (ii) of actions)

= h−1
3 ((h−1

2 k1)k2)k3 (k → hk is an automorphism).

Hence the associative law holds.
(ii) (1,1) is the unit and ((h1k1)

−1, h−1
1 ) is the inverse of (k1, h1). All the verifications

are left to the reader.
(2) From (1, h1)(1, h2) = (1, h1h2) and (k1, 1)(k2, 1) = (k1k2, 1), we know that

h → (1, h) and k → (k, 1) are monomorphisms.
(3) K is normal subgroup of K ×H: Since

(k1, h1)(k2, 1)((h1k1)
−1, h−1

1 ) = ((h1(k1k2))(h1k1)
−1, 1). ¤

Remark. The Jordan-Hölder Theorem claims: for any finite group G admits a com-
position series

G ∈ G1 . G2 . · · · . Gk = 1,

the composition factor Gi/Gi+1 = Qi is simple and is uniquely determined by G (§4.6,
p.241). The inverse question is: given the factor group Qi, how can we recapture G?
We want to construct G inductively. That is, given Qi and Gi+1, we want to determine
Gi such that Gi+1 is normal in Gi and Gi/Gi+1 ' Qi. This problem is called “The
extension problem”. Where Gi is called an extension of Gi+1 by Qi.

Given K and H, the most simple extension of K by Q is the direct product G =
K ×H. A natural generalization of it is semidirect product G of K by H: G contains
subgroup K and H such that K / G, KH = G and K ∩ H = 1. It is not difficult to
see that this definition is the same as that given in exercise.

The extension problem was solved by O. Schreier in 1926.

10. Let G be a group, H a transformation group acting on a set S and let GS denote
the set of maps of S into G. Then GS is a group (the S-direct power of G) if we
define (f1f2)(s) = f1(s)f2(s), fi ∈ GS, s ∈ S. If h ∈ H and f ∈ GS define hf by
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(hf)(s) = f(h−1s). Verify that this defines an action of H on GS by automorphisms.
The semi-direct product of H and GS is called the (unrestricted) wreath product G oH
of G with H.

Proof. If h ∈ H, f ∈ GS define hf by (hf)(s) = f(h−1s).
(1) we first check that this is an action:

(1f)(s) = f(1−1s) = f(s) ⇒ 1f = f.

(h1h2, f)(f) = f((h1h2)
−1s) = f(h−1

2 (h−1
1 s)) = (h2f)(h−1

1 s)

= h1(h2f)(s) ⇒ (h1h2)f = h1(h2f).

(2) The map f → hf is an automorphism on GS:

(i) (h(f1f2))(s) = (f1f2)(h
−1s) = f1(h

−1s)f2(h
−1s) = hf1(s) · hf2(s).

Hence f → hf is a homomorphism.

(ii) Note that the unit in GS is the map 1 : s → 1.

Suppose that hf = 1, that is, hf(s) = f(h−1s) = 1 for all s ∈ S. Since H is
a transformation group acting on S, this implies that f(t) = 1 for all t ∈ S.
Thus f = 1 and f → hf is injective.

(iii) For any g ∈ GS, set f(s) = g(h(s)). Then (hf)(s) = f(h−1s) = g(h(h−1s)) =
g(s). Hence hf = g and f → hf is surjective. ¤

11. Let G, H, S be as in exercise 10 and suppose G acts on a set T . Let (f, h) ∈ G oH
where f is a map of S into G. If (f1, h1), (f −2, h2) are two such elements, the product
in G o H is ((h−1

2 f1)f2, h1h2). If (t, s) ∈ T × S define (f, h)(t, s) = (f(s)t, hs). Verify
that this defines an action of G o H on T × S. Note that if everything is finite then
|G oH| = |G||S||H| and the degree of the action, defined to be the cardinality of the set
on which the action takes place, is the product of the degrees of the actions of H and
of G.

Proof. For (f, h) ∈ G o H, (t, s) ∈ T × S, define (f, h)(t, s) = (f(s)t, hs). We verify
that this defines an action.

(1) (1,1) is the unit of G oH where the first 1 is the unit 1(s) = 1 in GS, the second
1 is the unit in H. Then

(1, 1)(t, s) = (1(s)t, 1s) = (1t, 1s) = (t, s).
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(2) (f1, h1)((f2, h2)(t, s)) = (f1, h1)(f2(s)t, h2s) = (f1(h2s)f2(s)t, h1h2s)
On the other hand

((f1, h1)(f2, h2))(t, s) = ((h−1
2 f1)f2, h1h2)(t, s)

= (((h−1
2 f1)f2)(s)t, h1h2h3)

= ((h−1
2 f1(s)f2(s))t, h1h2s) (by the multiplication in GS)

= (f1(h2s))f2(s)t, h1h2s)

= (f1, h1)((f2, h2)(t, s)).

¤

Remark. An example of wreath product is the Sylow p-subgroups of symmetric group
Sn (see exercise 16, 17 in §1.13).

12. Let G act on S. Then the action is called k-fold transitive for k = 1, 2, 3, . . ., if
given any two elements (x1, . . . , xk), (y1, . . . , yk) in S(k), where the xi and the yi are
distinct, there exists a g ∈ G such that gxi = yi, 1 ≤ i ≤ k. Show that if the action of
G is doubly transitive then it is primitive.

Proof. Let the action of G on S be doubly transitive and π(S) be any nontrivial
partition. Hence there is A ∈ π(S) such that |A| ≥ 2 and A 6= S. Choose x, y ∈ A
and z ∈ S − A. By the hypothesis on G, there exists g ∈ G such that g(x) = x and
g(y) = z. Thus π(S) is not stabilized by G and the action is not primitive. ¤

13. Show that if the action of G on S is effective and primitive then the induced action
on S by any normal subgroup N 6= 1 of G is transitive.

Proof. Suppose that N (6= 1) is not transitive on S. Then the set of orbits of N ,
{Ns}s∈S, forms a partition π(S) of S with |π(s)| ≥ 2. For all g ∈ G and Ns ∈ π(S),
gNs = Ngs ∈ π(S) since N is normal. Thus π(S) is stabilized by G. Since G is not
primitive, π(S) = {{S}|s ∈ S}. Hence hs = s for all h ∈ N , s ∈ S. Since the action of
G is effective, it follows that N = {1}. ¤

Remark. If G is not effective on S, the above exercise is not true. In fact, let G1 be
any primitive action on S, G2 any group. We define a group action of G1 × G2 on S
by (g1, g2) · s = g1s. Clearly {1}×G2 is normal in G1×G2. But {1}×G2 is transitive
only when |S| = 1.
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