Basic Algebra (Solutions)
by Huah Chu

Exercises (§1.12, pp.76—78)

1. Let v = (12---n) in S,. Show that the conjugacy class of v in S,, has cardinality
(n — 1)!. Show that the centralizer C'(y) = (7).

Proof. (1) Let v = (12---n). A permutation is conjugate to v if and only if it has
the form (iyig - - - i,). Then n permutations (iyis - -iy,), (i2lg - - ini1), (i3 - ini1iz), - ..,
(ini1 - i,_1) are equal. Hence all such permutations has cardinality n!/n = (n — 1)!
(2) Since the conjugacy class of v has cardinality [G : C(v)], hence |C(v)| = n,
() € C(7) is obvious. Moreover, |(7)| = n. Then (v) = C(7). d

2. Determine representatives of the conjugacy classes in S5 and the number of elements
in each class. Use this information to prove that the only normal subgroups of S5 are
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Sol. representative | cardinality | parity
1 1 even
(12) 10 odd
(123) 20 even
(12)(34) 15 even
(1234) 30 odd
(12)(345) 20 odd
(12345) 24 even

A normal subgroup H is a union of some conjugacy classes and one of them must
be {1}

Case 1. H C As. Then |H|||A5| = 60.

Hence the possible order of H is 1, 14 20 + 15+ 24. Thus H = {1} or As.

Case 2. H ¢ As. Then H N A5<Ss and H/HNAs ~ H - A5/As ~ S5/As. Hence
[H: HNAs] =2 By Case 1, HNA; = {1} or As. If HN A5 = As, then H = S5. If
H N As = {1}, then |H| = 2. But a subgroup of order 2 in S5 cannot be normal by
inspecting the table of conjugacy classes constructed above.

3. Let the partition associated with a conjugacy class be (ny,no,...,n,) where n; =
S =Ng > Ngit1 = 0 = Ngitg > Ngitget+1 = -+ - Show that the number of elements
in this conjugacy class is n!/ [[ ¢! [[ n;.



Proof. Let S = {(ii"'iil)(if'“ﬂ )-~-(z’?1---i%{zl)(i?ﬂ---i%“ oo (11 ind)| 1 <

. . n2 ’I’Lq1+1
i, < n and all 7] are distinct}. Then |S| = nl.
In S, we define an equivalence relation:

(1) For any cyclic (Z{%J), (1]1@%]) ~ (zézihz—lj) ~ (z%z%]
#i}) -~~~ --- and so on. For any element « in S, « is equivalent to [[j_, n; elements
under this relation.

(2) For the first ¢; cycles (i -- - ), ..., (i{* - - ~ift ), any permutation of these cycles
are equivalent: (if---i} )(ig---ip,) -+~ (ig---ip,)(if - ih ) -+, and so on. The same
equivalence also defined for the second ¢, cycles, .... Hence any element in S is

equivalent to [] ¢;! elements.
A equivalence class under this two relations determine a partition in this conjugacy
class. Hence the number of partitions is n!/[[ ¢! [[n;. O

4. Show that if a finite group G has a subgroup H of index n then H contains a normal
subgroup of G of index a divisor of n!.

Proof. Let H be a subgroup of index n. Consider the action of G on G/H by left
translations, T': G — Sym(G/H).

The kernel K of this action is a normal subgroup of G contained in H. And
G/K ~ImT is a subgroup of Sym(G/H) = S,,. Hence |G/K]| is a divisor of nl. O

5. Let p be the smallest prime dividing the order of a finite group. Show that any
subgroup H of G of index p is normal.

Proof. Let H be a subgroup of index p. Applying exercise 4, H contains a subgroup K
which is normal in K and [G : K||p!. The relation p = [G : H]|[G : K]|p! implies that
[G : K] = p since p is the smallest prime dividing |G|. Thus H = K and H is normal
in G. U

6. Show that every group of order p?, p a prime, is abelian. Show that up to isomor-
phism there are only two such groups.

Proof. (1) Let G be a group of order p? and C(G) the center of G. Suppose G is
not abelian, then |C(G)| = p by Theorem 1.11. Take any ¢ € G — C(G). Since
(G : C(G@)] = p, g and C(G) generate G. Any element of G can be written in the
form g'h for h € C(G), 0 < i < p — 1. Thus for any two elements g'hy, g'h, € G,
hi,hy € C(G), (g'h1)(g°hs) = g'g’hahy = (¢7hs)(g'hy). G is abelian. A contradiction.

(2) Let G be a group of order p?, then G must be a cyclic group or an elementary
abelian group (a,bla? =P = 1,ab = ba):

Case 1. G has an element with order p?. Then G is cyclic.



Case 2. All non-identity element of G has order p. Take any 1 # a € G. Then
|(a)| = p. Choose b € G —{(a). Then a, b generate a group of order p?, hence G = {(a, b).
O

Remark. ;From the Sylow’s Theorems (§1.13), a group G with |G| = p{* - - - p&» con-
tains, for each ¢, a subgroup of order p;* and all subgroups of this order are isomorphic.
Thus the problem of constructing finite groups may be regarded as having two parts:
(1) constructing p-groups, and (2) combining p-groups to form a group of order n.
Neither of these problems is solved in general.

The known results about first problem are

(1) If |G| = p, G is cyclic,

(2) If |G| = p?, G is abelian,

(3) If |G| = p?, there are five such groups up to isomorphism. (See M. Hall: The
theory of groups, pp.49-53.)

(4) If |G| = p*, there are 15 groups for p > 3 and 16 groups for p = 2.

(5) There are 51 groups with order 2° and 267 groups with order 2°. (M. Hall and
J. K. Senior.)

(6) Rodemich claimed that there are 2356 groups with order 27. For more details,
we refer to Huppert: Endlich. Gruppen Chap. 3.

7. Let H be a proper subgroup of a finite group G, show that G # UgeG gHg™*.

8. Let G act on S, H act on T, and assume SNT = (. Let U = SUT and define for
geG, heH, seS, teT, (g,h)s=gs, (g,h)t = ht. Show that this defines an actio
of G x HonU.

Proof. Omitted. U

9. A group H is said to act on a group K by automorphisms if we have an action of H
on K and for every h € H the map k — hk of K is an automorphism. Suppose this is
the case and let G be the product set K x H. Define a binary composition in K x H
by
(k1. h1)(ka, ha) = ((hy "k1)ka, hahs)

and define 1 = (1,1) — the units of K and H respectively. Verify that this defines a
group such that h — (1, h) is a monomorphism of H into K x H and k — (k,1) is a
monomorphism of K into K x H whose image is a normal subgroup. G is called a semi-
direct product of K and H. Note that if H and K are finite then |K x H| = |K||H]|.
Proof. (1) The composition (ki,h1)(ka, he) = ((hy'ki)ks, hihs) on H x K defines a
group.



(i) The associativity:

((kla hl)(k27 h2))(k37 h3)

((hy'k1)ka, hiho)(ks, hs)
((h3 " ((hg k1) ko) ks, hahohs)
(k1, h1)((h3 ko) ks, hahs)
((hohs) ™ k1 (3 ka)ks, hihohs).

(K1, h) (K2, ho) (K3, h3))

We have

(hghg)ilkl(hglkg)kg

= (hy ) 1(hy k) ke

= (hy ( k1)) (h3'ke)ks  (By the definition (ii) of actions)
= h3'((hy'k1)ks)ks  (k — hk is an automorphism).

Hence the associative law holds.

(ii) (1,1) is the unit and ((h1k1)~t, hyt) is the inverse of (ky, hy). All the verifications
are left to the reader.

(2) From (1,h)(1,hy) = (1,hihg) and (ky,1)(ko, 1) = (k1ke,1), we know that
h — (1,h) and k — (k,1) are monomorphisms.

(3) K is normal subgroup of K x H: Since

(1, ) (R, 1) (Pakn) ™' i) = ((ha(kike)) (Ra k)1 1), O

Remark. The Jordan-Holder Theorem claims: for any finite group G' admits a com-
position series

G€G11>G21>"'I>Gk:1,

the composition factor G;/G;y1 = @; is simple and is uniquely determined by G (§4.6,
p.241). The inverse question is: given the factor group @);, how can we recapture G
We want to construct G inductively. That is, given @); and G;,1, we want to determine
G; such that G4 is normal in G; and G;/G;1 ~ @;. This problem is called “The
extension problem”. Where G; is called an extension of G;; by @);.

Given K and H, the most simple extension of K by @ is the direct product G =
K x H. A natural generalization of it is semidirect product G of K by H: G contains
subgroup K and H such that K <G, KH = G and K " H = 1. It is not difficult to
see that this definition is the same as that given in exercise.

The extension problem was solved by O. Schreier in 1926.

10. Let G be a group, H a transformation group acting on a set S and let G* denote
the set of maps of S into . Then G° is a group (the S-direct power of G) if we
define (f1f2)(s) = fi(s)fa(s), fi € G, s € S. If h € H and f € G* define hf by

4



(hf)(s) = f(h™'s). Verify that this defines an action of H on G* by automorphisms.
The semi-direct product of H and G is called the (unrestricted) wreath product G H
of G with H.

Proof. If h € H, f € G® define hf by (hf)(s) = f(h!s).
(1) we first check that this is an action:

(L)(s) = f(17"s) = f(s) = 1f = [.

(hha, F)(f) = f((hiha)™s) = f(hy ' (hi's)) = (haf)(hi's)
= hi(haf)(s) = (hiha)f = ha(haf).

(2) The map f — hf is an automorphism on G*:
©) (A(frf2))(s) = (frf2)(h7"s) = fi(h™1s) fo(hT1s) = hfa(s) - hfa(s).

Hence f — hf is a homomorphism.

(i) Note that the unit in G° is the map 1:s — 1.

Suppose that Af = 1, that is, hf(s) = f(h™'s) = 1 for all s € S. Since H is
a transformation group acting on S, this implies that f(¢) = 1 for all ¢t € S.
Thus f =1 and f — hf is injective.

(iii) For any g € G, set f(s) = g(h(s)). Then (hf)(s) = f(h~'s) = g(h(h™1s))
g(s). Hence hf = g and f — hf is surjective.

oo

11. Let G, H, S be as in exercise 10 and suppose G acts on a set T'. Let (f,h) € Gt H
where f is a map of S into G. If (f1, hy1), (f — 2, hg) are two such elements, the product
in GV H is (hy'f1)fa, hiho). If (t,5) € T x S define (f,h)(t,s) = (f(s)t, hs). Verify
that this defines an action of G H on T x S. Note that if everything is finite then
|GUH| = |G|"®!|H| and the degree of the action, defined to be the cardinality of the set
on which the action takes place, is the product of the degrees of the actions of H and
of G.

Proof. For (f,h) € GUH, (t,s) € T x S, define (f,h)(t,s) = (f(s)t, hs). We verify
that this defines an action.

(1) (1,1) is the unit of G H where the first 1 is the unit 1(s) = 1 in G, the second
1 is the unit in H. Then

(1, 1)(t,s) = (1(s)t, 1s) = (1t,1s) = (¢, s).



(2) (f1, ) ((f2, ho)(t,5)) = (f1, k1) (f2(8)t, has) = (fi(has) f2(s)t, hihas)
On the other hand

((f1,h1)(f2, ha)) (L, 8) = ((hy f1) f2, haha)(t, 5)
((hy ' f1) f2)(s)t, hihahs)

(
(
((h3' f1(s) fa(s))t, hihys)  (by the multiplication in G*)
= (f
= (

1(h2s)) fa(s)t, hihas)
Ji:ha)((f2, ho)(2,5)).

U

Remark. An example of wreath product is the Sylow p-subgroups of symmetric group
Sy, (see exercise 16, 17 in §1.13).

12. Let G act on S. Then the action is called k-fold transitive for £ = 1,2,3,..., if
given any two elements (x1,...,7%), (y1,...,yx) in S®), where the z; and the y; are
distinct, there exists a g € GG such that gz; = y;, 1 < i < k. Show that if the action of
G is doubly transitive then it is primitive.

Proof. Let the action of G on S be doubly transitive and 7(S) be any nontrivial
partition. Hence there is A € 7(S) such that |A] > 2 and A # S. Choose z,y € A
and z € S — A. By the hypothesis on G, there exists g € G such that g(x) = z and
g(y) = z. Thus 7(95) is not stabilized by G and the action is not primitive. O

13. Show that if the action of G on S is effective and primitive then the induced action
on S by any normal subgroup N # 1 of G is transitive.

Proof. Suppose that N (# 1) is not transitive on S. Then the set of orbits of N,
{Ns}ses, forms a partition 7(S) of S with |r(s)| > 2. For all g € G and Ns € 7(S5),
gNs = Ngs € 7(S) since N is normal. Thus 7(S5) is stabilized by G. Since G is not
primitive, 7(S) = {{S}|s € S}. Hence hs = s for all h € N, s € S. Since the action of
G is effective, it follows that N = {1}. O

Remark. If GG is not effective on S, the above exercise is not true. In fact, let G be
any primitive action on S, Gy any group. We define a group action of Gy x G5 on §
by (g1,92) - s = g1s. Clearly {1} x G5 is normal in G; x G5. But {1} x G is transitive
only when |S| = 1.



