
5.5.3 Convergence in Distribution

Definition 5.5.10

A sequence of random variables, X1, X2, . . ., converges in distribution to a random variable

X if

lim
n→∞

FXn(x) = FX(x)

at all points x where FX(x) is continuous.

Example (Maximum of uniforms)

If X1, X2, . . . are iid uniform(0,1) and X(n) = max1≤i≤n Xi, let us examine if X(n) converges

in distribution.

As n →∞, we have for any ε > 0,

P (|Xn − 1| ≥ ε) = P (X(n) ≤ 1− ε)

= P (Xi ≤ 1− ε, i = 1, . . . , n) = (1− ε)n,

which goes to 0. However, if we take ε = t/n, we then have

P (X(n) ≤ 1− t/n) = (1− t/n)n → e−t,

which, upon rearranging, yields

P (n(1−X(n)) ≤ t) → 1− e−t;

that is, the random variable n(1−X(n)) converges in distribution to an exponential(1) random

variable.

Note that although we talk of a sequence of random variables converging in distribution, it

is really the cdfs that converge, not the random variables. In this very fundamental way

convergence in distribution is quite different from convergence in probability or convergence

almost surely.

Theorem 5.5.12

If the sequence of random variables, X1, X2, . . ., converges in probability to a random variable

X, the sequence also converges in distribution to X.
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Theorem 5.5.13

The sequence of random variables, X1, X2, . . ., converges in probability to a constant µ if

and only if the sequence also converges in distribution to µ. That is, the statement

P (|Xn − µ| > ε) → 0 for every ε > 0

is equivalent to

P (Xn ≤ x) →





0 if x < µ

1 if x > µ.

Theorem 5.5.14 (Central limit theorem)

Let X1, X2, . . . be a sequence of iid random variables whose mgfs exist in a neighborhood of

0 (that is, MXi
(t) exists for |t| < h, for some positive h). Let EXi = µ and VarXi = σ2 > 0.

(Both µ and σ2 are finite since the mgf exists.) Define X̄n = ( 1
n
)
∑n

i=1 Xi. Let Gn(x) denote

the cdf of
√

n(X̄n − µ)/σ. Then, for any x, −∞ < x < ∞,

lim
n→∞

Gn(x) =

∫ x

−∞

1√
2π

e−y2/2dy;

that is,
√

n(X̄n − µ)/σ has a limiting standard normal distribution.

Theorem 5.5.15 (Stronger form of the central limit theorem)

Let X1, X2, . . . be a sequence of iid random variables with EXi = µ and 0 < VarXi = σ2 <

∞. Define X̄n = ( 1
n
)
∑n

i=1 Xi. Let Gn(x) denote the cdf of
√

n(X̄n − µ)/σ. Then, for any x,

−∞ < x < ∞,

lim
n→∞

Gn(x) =

∫ x

−∞

1√
2π

e−y2/2dy;

that is,
√

n(X̄n − µ)/σ has a limiting standard normal distribution.

The proof is almost identical to that of Theorem 5.5.14, except that characteristic functions

are used instead of mgfs.

Example (Normal approximation to the negative binomial)

Suppose X1, . . . , Xn are a random sample from a negative binomial(r, p) distribution. Recall

that

EX =
r(1− p)

p
, VarX =

r(1− p)

p2
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and the central limit theorem tells us that

√
n(X̄ − r(1− p)/p)√

r(1− p)/p2

is approximately N(0, 1). The approximate probability calculation are much easier than the

exact calculations. For example, if r = 10, p = 1
2
, and n = 30, an exact calculation would be

P (X̄ ≤ 11) = P (
30∑
i=1

Xi ≤ 330)

=
330∑
x=0

(
300 + x− 1

x

)
(
1

2
)300+x = 0.8916

Note
∑

X is negative binomial(nr, p). The CLT gives us the approximation

P (X̄ ≤ 11) = P (

√
30(X̄ − 10)√

20
≤
√

30(11− 10)√
20

) ≈ P (Z ≤ 1.2247) = .8888.

Theorem 5.5.17 (Slutsky’s theorem)

If Xn → X in distribution and Yn → a, a constant, in probability, then

(a) YnXn → aX in distribution.

(b) Xn + Yn → X + a in distribution.

Example (Normal approximation with estimated variance)

Suppose that √
n(X̄n − µ)

σ
→ N(0, 1),

but the value σ is unknown. We know Sn → σ in probability. By Exercise 5.32, σ/Sn → 1

in probability. Hence, Slutsky’s theorem tells us

√
n(X̄n − µ)

Sn

=
σ

Sn

√
n(X̄n − µ)

σ
→ N(0, 1).

5.5.4 The Delta Method

First, we look at one motivation example. Example 5.5.19 (Estimating the odds)

Suppose we observe X1, X2, . . . , Xn independent Bernoulli(p) random variables. The typical

3



parameter of interest is p, but another population is p
1−p

. As we would estimate p by

p̂ =
∑

i Xi/n, we might consider using p̂
1−p̂

as an estimate of p
1−p

. But what are the properties

of this estimator? How might we estimate the variance of p̂
1−p̂

?

Definition

If a function g(x) has derivatives of order r, that is, g(r)(x) = dr

dxr g(x) exists, then for any

constant a, the Taylor polynomial of order r about a is

Tr(x) =
r∑

i=0

g(i)(a)

i!
(x− a)i.

Theorem (Taylor)

If g(r)(a) = dr

dxr g(x)|x=a exists, then

lim
x→a

g(x)− Tr(x)

(x− a)r
= 0.

Since we are interested in approximations, we are just going to ignore the remainder. There

are, however, many explicit forms, one useful one being

g(x)− Tr(x) =

∫ x

a

g(r+1)(t)

r!
(x− t)rdt.

Now we consider the multivariate case of Taylor series. Let T1, . . . , Tk be random variables

with means θ1, . . . , θk, and define T = (T1, . . . , Tk) and θ = (θ1, . . . , θk). Suppose there

is a differentiable function g(T ) (an estimator of some parameter) for which we want an

approximate estimate of variance. Define

g′i(θ) =
∂

∂ti
g(t)|t1=θ1,...,tk=θk

.

The first-order Taylor series expansion of g about θ is

g(t) = g(θ) +
k∑

i=1

g′i(θ)(ti − θi) + Remainder.

From our statistical approximation we forget about the remainder and write

g(t) ≈ g(θ) +
k∑

i=1

g′i(θ)(ti − θi).
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Now, take expectation on both sides to get

Eθg(T) ≈ g(theta) +
k∑

i=1

g′i(theta)Eθ(Ti − θi) = g(theta).

We can now approximate the variance of g(T) by

Varθg(T) ≈ Eθ([g(T)− g(theta)]2) ≈ Eθ

(
(

k∑
i=1

g′i(theta)(Ti − θi)
2
)

=
k∑

i=1

[g′i(theta)]2VarθTi + 2
∑
i>j

g′i(θ)g′j(theta)Covθ(Ti, Tj).

This approximation is very useful because it gives us a variance formula for a general function,

using only simple variance and covariance.

Example (Continuation of Example 5.5.19)

In our above notation, take g(p) = p
1−p

, so g′(p) = 1
(1−p)2

and

Var(
p̂

1− p̂
) ≈ [g′(p)]2Var(p̂)

[
1

(1− p)2
]2

p(1− p)

n
=

p

n(1− p)3
,

giving us an approximation for the variance of our estimator.

Example (Approximate mean and variance)

Suppose X is a random variable with EµX = µ 6= 0. If we want to estimate a function g(µ),

a first-order approximation would give us

g(X) = g(µ) + g′(µ)(X − µ).

If we use g(X) as an estimator of g(µ), we can say that approximately

Eµg(X) ≈ g(µ),

and

Varµg(X) ≈ [g′(µ)]2VarµX.

Theorem 5.5.24 (Delta method)

Let Yn be a sequence of random variables that satisfies
√

n(Yn−θ) → N(0, σ2) in distribution.
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For a given function g and a specific value of θ, suppose that g′(θ) exists and is not 0. Then

√
n[g(Yn)− g(θ)] → N(0, σ2[g′(θ)2])

in distribution.

Proof: The Taylor expansion of g(Yn) around Yn = θ is

g(Yn) = g(θ) + g′(θ)(Yn − θ) + remainder,

where the remainder→ 0 as Yn → θ. Since Yn → θ in probability it follows that the

remainder→ 0 in probability. By applying Slutsky’s theorem (a),

g′(θ)
√

n(Yn − θ) → g′(θ)X,

where X ∼ N(0, σ2). Therefore

√
n[g(Yn)− g(θ)] → g′(θ)

√
n(Yn − θ) → N(0, σ2[g′(θ)]2).

¤

Example

Suppose now that we have the mean of a random sample X̄. For µ 6= 0, we have

√
n(

1

X̄
− 1

µ
) → N(0, (

1

µ
)4VarµX1).

in distribution.

There are two extensions of the basic Delta method that we need to deal with to complete

our treatment. The first concerns the possibility that g′(µ) = 0.

(Second-order Delta Method)

Let Yn be a sequence of random variables that satisfies
√

n(Yn−θ) → N(0, σ2) in distribution.

For a given function g and a specific value of θ, suppose that g′(θ) = 0 and g
′′
(θ) exists and

is not 0. Then

n[g(Yn)− g(θ)] → σ2 g
′′
(θ)

2
χ2

1
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in distribution.

Next we consider the extension of the basic Delta method to the multivariate case.

Theorem 5.5.28

Let X1, . . . , Xn be a random sample with E(Xij) = µi and Cov(Xik, Xjk) = σij. For a given

function g with continuous first partial derivatives and a specific value of µ = (µ1, . . . , µp)

for which τ 2 =
∑∑

σij
∂g(µ)
∂µi

∂g(µ)
∂µj

> 0,

√
n[g(X̄1, . . . , X̄p)− g(µ1, . . . , µp)] → N(0, τ 2)

in distribution.
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