Advanced Statistical Inference I

Homework 2: Transformations and Expectations

Due Date: October 19th

- 1. (transformation)
 - (a) Exercise 2.2(c).
 - **(b)** Exercise 2.3.
 - (c) Exercise 2.23(a).
- 2. (Simulation)
 - (a) Exercise 2.8(b).
 - **(b)** Exercise 2.9.
 - **(c)** Exercise 2.10.
- 3. (Median)
 - (a) Exercise 2.18.
 - (b) When the median of a random variable X (or its distribution) is any value m such that $P(X \ge m) \ge 1/2$ and $P(X \le m) \ge 1/2$, show that the set of medians is a closed interval $[m_0, m_1]$.
- 4. (Data summary) For any set of numbers x_1, \ldots, x_n and a monotone function $h(\cdot)$, show that the value of a that minimizes $\sum_{i=1}^{n} [h(x_i) h(a)]^2$ is given by $a = h^{-1}(\sum_{i=1}^{n} h(x_i)/n)$. Find functions h that will yield the arithmetic, geometric, and harmonic means as minimizes.

Recall that the geometric mean of non-negative numbers is $(\prod_{i=1}^n x_i)^{1/n}$ and the harmonic mean is $[n^{-1}\sum_{i=1}^n (1/x_i)]^{-1}$.

- 5. Let X be an absolutely continuous random variable with cdf F and having variance σ^2 .
 - (a) Show that

$$\sigma^2 = \frac{1}{2} \int \int_{-\infty < x < y < \infty} F(x) [1 - F(y)] dx dy.$$

(Hint: Try integration by parts.)

- (b) Replace F by the sample distribution function F_n in (a). Is it closely related to the commonly used sample variance?
- 6. (Moment generating function)
 - (a) Exercise 2.31.
 - **(b)** Exercise 2.32.
 - **(c)** Exercise 2.38.
- 7. (Moments and tail probability)
 - (a) Exercise 2.14.
 - (b) Let X be a random variable and a>0. Show that $E|X|^a<\infty$ if and only if $\sum_{n=1}^{\infty}n^{a-1}P(|X|\geq n)<\infty$.

1