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OUTLINE

1. Non-stationary Processes

— Non-stationarity in variance
— Box-Cox transformation
— Non-stationarity in mean
— Eliminate the trend term by differenc-
ng
2. ARIMA Models
— Description
— Properties
— Data Modeling
— Forecasting

3. Regression with Time Series Errors



Nonstationary Time Series Models

e Weakly stationary implies that the mean,
variance and autocovariances of the process
are invariant under time translation

e Figure 2.14 plots monthly observations from
January 1965 December 1990 of the FTA

(Financial times-Actuaries) All Share index.

— It shows that the series to exhibit a promi-
nent upward, but not linear, trend, with
pronounced and persistent fluctuations
about it, which increase in variability as
the level of the series increases.

— non-stationarity in variance:
Write a time series as the sum of a non-
stochastic mean level and a random er-
ror component:

Xt — Mt + €t <1>

and we suppose that the variance of the
errors is functionally related to the mean
level u; by

V(Xt) = Ver) = h*()o”,
where h 1s some known function.
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— Box and Cox (1964) class of power trans-
formations

xd— 1
g(rs) = t \
and
A
— 1
lim Tt
A—0
Al — 1
— lim exp(AInz,) = In ;.

Idea: Consider

g(ws) = gpe) + (2 — Mt)gl(ﬂt)

and

V(g(ae) = [g (u)*h*(ue)o™.
Choose g'(ut) = 1/h(uy) to stabilize the
variance.

— Apply a logarithmic transformation to
FTA all Share index.

— Figure 2.14 indicates that the transfor-
mation linearize the trend and stabilize
the variance.

— When A(pue) = pr, g(pe) = In pae.
The natural logarithms of x; can be used

to stabilize the variance.

3



— The use of logarithms is a popular (why?)
transformation for financial time series, a
constant variance is rarely completely in-
duced by this transformation alone. More
to be seen in Chapters 4 and 7.

e non-stationarity in mean:

How do we model the non-constant mean
level in (1)7

— Figure 2.14 indicates that the transfor-
mation linearize the trend and stabilize
the variance.

— Assume that the mean evolves as a poly-
nomial of order d in time.

— {z;} is decomposed into a trend com-
ponent, given by the polynomial, and a
stochastic, stationary, but possibly auto-
correlated, zero mean error component.

Ty = ]%0 Bit) + ¢(B)ay. (2)

Note that E(e) = ¢(B)E(a;) = 0 and
hence

E<Xt) = E(Mt) = ]%0 ﬁit‘j-
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— Consider the linear trend (d = 1)

Ty = fo + Ot + ay. (3)
Lagging (3) one period and subtracting
this from (3) yields

Tt — i1 = P+ (ar — az1). (4)
Let wy =2y — 241 = (1 — B)xy = Axy.
Then
wy = Ay = i + Aay,

which is stationary (E(W;) = (1) but

not invertible M A(1) process.
— Differencing:

A = 1— B the first difference operator

AY = (1 = B)* the dth difference operator
AN E;Z:O ﬂjtj = d'ﬁd

Any polynomial trend of degree d can be

reduced to a constant by application of
the operator.

— Suggestion: Given any sequence {x;} of
data, apply the operator A repeatedly
until we find a sequence {A%x;} which
can plausibly be modelled as a realization
of a stationary process.
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— A series {x;} is nonstationary but its dth
differenced series {(1 — B)%x;} for some
integer d > 1, is stationary.

— Typically, d =1 or 2.

Note that A%x; = x; — 2241 + T4_o.

— Example

v {26.8,34.7,25.4, ...,38.1,39.5}
(1— Bz : {7.9,-9.3,...,1.4}



ARIMA Models

e A series may need first differencing d times
to attain stationarity and the obtained series
may itself be autocorrelated.

e Suppose this autocorrelation can be mod-
eled by an ARM A(p, q) process.

e The model for the original series is of the
form

o(B) A x; = 0y + 0(B)ay, (5)

where 6y = d!(3;. It is said to be an autoregressive-

integrated-moving average process of orders
p, d and q, or ARIM A(p,d, q).

e X, is said to be integrated of order d, de-
noted I(d).

e In finance, price series are commonly be-
lieved to be nonstationary, but the log re-
turn series, 7+ = In(p;) — In(p;_1) is station-
ary.

— In this case, the log price series is unit-
root nonstationary and, hence, can be
treated as an ARIMA process.
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— The AR polynomial has a characteristic
root at 1.

e An ARIMA model has long memory because
Y; coeflicients in its MA representation do
not decay over time, implying that the past
shock a;_; of the model has a permanent
effect on the system.



Forecasting using ARIMA models:

Given a realization {x;}_, from a general ARIM A(p,d, q)
Process

o(B) Az, = 0y + 0(B)ay.
How do we forecast a future value Xp,p7
e Let
a(B) = ¢(B) A
= (1 —a1B—ayB*— - — ap+dBp+d> .
e Denote a minimum mean square error (MMSE)

forecast based on the data up to time 1" by
Jrn Then

fT,h — E<041XT—|—h—1 + a2XT+h—2 + ...
—|_ap—|—dXT—|—h—p—d + 90 + ar.+p — 91&T+h—1

— . — ean+h—q‘xT7 LTT—1,"" )

e Note that

rrei, ] <0
E(Xrijler, xr_q,- ) { T J =

Jrj, 7>0
and

E(a'T—l—j|xT7 XTT—-1,"" )

afT—FjajSO
0, j>0



e Algorithm:

— Replace past expectations (5 < 0) by
known values, z7; and ar; ;.

— Replace future expectations (J > 0) by
forecast values, fr; and 0.
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Examples:

1st Example:
o AR(2) model
(1 — B — ¢ By = Oy + ay
Hence, a(B) = 1 — ¢1 B — ¢ B>
e Note that
TT4h = Q1TT+h—1 + P2T74h—2 + Oy + aryp

and
frn = (D1+02) frn—1—d2( frh—1— frn—2)+0o.

e By repeated substitution, we have

h—1 j .
Jfrn = 0o j§0(¢1 + ¢2)) + (p1 + ¢2) 27
h—1 .
— 9 j§0(¢1 + @2) (frh—1-j — frp—2—j)
where fro=xr and fr_; = x7r_;.
e As h — o0,
0
Jra= 1 — @1 — ¢
since @1 + ¢o < 1 and || < 1.
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e The best forecast of a future observation
with large lead time is eventually the mean
of the process.

2nd Example:
e ARIMA(0,1,1) model
Axy = (1 — 0B)ay.
Hence, a(B) =1 — B.
e Note that
TTih = TTip—1 + aren — O0arip—1,
fT,l = x7p — Oar
and, for h > 1,
Jrh = JTh-1-
e Note that
ar = (1 —B)(1 —0B) oy
and
fron = (1—0)1—60B) 2y
= (1 —0)(@r+ Oz7_1 + O*xr_o +---).
e The forecast for all future values of = is an

exponentially weighted moving average of
current and past values.
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Regression with Time Series Errors

In many situations, the relationship between
two time series is of major interest.

e Example 1: Consider the market model in
finance that relates the return of an individ-
ual stock to the return of a market index.

— Refer to Examples 7.1 and 7.2.

— Consider weekly observations on the Lon-
don Stock Exchange FTSE 100 index and
the (logarithmic) prices of the company
Legal & General from January 1984 to
December 1993.

e Example 2: Consider the term structure of
interest rates in which the evolution over
time of the relationship between interest rates
with different maturities is investigated.

— Consider two U.S. weekly interest rate
series.

—r1;: the l-year treasury constant matu-
rity rate

— 19 the 3-year treasury constant matu-
rity rate
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— Both series have 1967 observations from
January 05, 1962 to September 10, 1999.

— The data can be obtained from gsbwww.uchicago.edu /fac
e The relationship can be analyzed by the model
rie =+ Oras + ey, (6)

where r1; and ro; are two time series and e;
1S the error term.

e (Quite often, the error term e; is not a white
noise series.

We now use a data example to illustrate a
regression analysis with time series errors.

e Figure 6: It shows the time plots of the two
Interest rates.
Solid line: 1-year rate; Dashed line: 3-year
rate

e Figure 7(a): Plot ry; versus 73
It shows that the two interest rates are highly
correlated.

The fitted model is

r3 = 0.911(£.032) + 0.924(£.004)71+ + €4,

(7)
with R? = 95.8% and &, = 0.538.
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e Figure 8 gives the time plot and ACF of the
residuals of equation (7). The sample ACF
of the residuals shows the pattern of a unit-
root nonstationary time series.

e The unit-root behavior of the interest rates
leads to the consideration of change series
of interest rates. Let ¢y = (1 — A)ry and
c3t = (1 — A)rg. Figure 9 gives time plots
of change series and Figure 7(b) gives the
scatter plot.

e Consider the linear regression c3 = o +
Bcyy + €;. The fitted model is

¢ = 0.0002(%.0015)40.7811(=£.0075)cipter,

(8)
with R? = 84.8% and &, = 0.0682.

e Figure 10 shows the time plot and sample
ACF of the residuals of (8). The ACF in-
dicates existence of serial correlations in the
residuals of (8), but at a much weaker level.

e Modify the model (8) by assuming

€t = Ay — 91%—1
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where {a;} is assumed to be a white noise
series.

Use an M A(1) model to capture the serial
dependence of the error term.
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Figure 7: Scatter plots of U.S. weekly interest rates from January 5, 1962 to September 10, 1999.
(a) 3-year rate versus l-year rate. (b) Change in 3-year rate versus change in 1-year rate
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Figure 8: Residual series of linear regression (37) for U.S. weekly interest rates. (a) Time plot, (b)
Sample ACF.
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