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K-equivalence Relation

Definition 1 - Two (-Gorenstein varieties
X and X’ are K-equivalent, (X =x X'), if 3
‘smooth Y and birational morphisms

2N
X X'
such that ¢*Ky =Q ¢,*KX/.

Theorem 2 - If X and X' are birational ter-
minal varieties with Kx and K nef along the
exceptional loci then X =g X'.



A Geometric Hueristic

For manifolds, this is equivalent to
—8010g(¢p*w)™ = —0d1og(¢"*w)™ + 66.

where w (resp. ') is a Kahler forms on X
(resp. X’). That is,

(¢"w)" = el (¢*w)".
Can one rotate ¢*w to ¢*w’' while fixing

the rate of volume degeneracy? Say, via
Monge-Ampereé equations for ¢t € [0, 1]

wit 1= (wo + 88py)" = eI T (gru)ne



The Formalism of L2-cohomology

Let Ky = ¢*Kx + E =¢" K\ + E, Z = ¢(E)
and Z' = ¢/(E). Then

X\Z2Y\E=2Xx\Z.

Since H'(X,C) £ Ly(X\Z,w) £ L5(Y\E, ¢*w),
under the rotation, we should get

HY(X,C) & HY(X', ).
Problem 3 - However, we are unable to

prove enough regularity of ¢;. It is known
to be C° on Y and C!'! transversal to E.



The p-adic Measure

Assume X and X’ smooth projective. Take
an integral model of the K-equivalence di-
agram X — Spec S with F := K(S) a number
field. Xp has good reduction VP € SpecS.
Let R = Sp with R/P 2 TF,;, q=7p". Let U;'s
be a Zariski open cover of Xp such that
Kxplu, is free. Then for a compact open
subset A C U;(R) C Xg(R),

mx(4) = [ 1%,

(independent of generator Q; ¢ Kx,(U;)).



Equivalence of Galois Representations

m(Xgr(R)) = m(Xz(R)) by the change of
variable formula and X = X'. Since

and by Grothendieck-Lefschetz (¢ # p):

I Xp(F)| =Y (1) Tr(Fry : Hy(Xp, Qp)),

we conclude by Deligne’s theorem and the
Cébotarev density, as Gal(F/F) modules

Hy(Xp, Qo)™ 2 Hy(X]p, Qo)™ .



Equivalence of Hodge Numbers

Let P has charkp =p, K := Fp, G = Gal(K/K)
and C, = K. By base change theorem

HL (X g, Qp)** & HE, (X, Qp)*.
By Faltings’ Hodge-Tate decomposition:
PCr® H™ (Xg, 2 (—i) 2 Cp @ H} (X7, Qp),
) K Qp
Here (i) := ®(lim p,n)®". Since C§ = K and
Cp(i)G =0 for i # 0, we get*

Rt = dim g (Cp ®g, HA (X, Qp) ¥ (1)C.
So WP 9(X) = hP9(X").



A Key Example: The Filling-in Problem

Theorem 4 (Wang) Let X — A be a smooth-
ing of a minimal Gorenstein 3-fold Xqg. Then
X — A is not birational to a projective smooth
family X' — A, up to any finite base change.

Such X’ - A must be terminal Gorenstein.
So X =g X, Xg ~ X and Xy is not Q-
factorial. Consider a projective small mor-
phism X — Xy with X Q-factorial minimal.
Then X ~ Xo ~ X and so X is smooth and

H*(X) = H*(Xp) = H*(X}) = H*(Xy).



Consider the small transition diagram:

X

9,

Xo—X— Xy
If Xo has only ODP, done by H>(X;) =
cokere, e : @;Z[C;] - H>(X,Z) since X is
projective. For cDV, use symplectic defor-
mations to reduce to the ODP case.

Remark 5 - Clemens had shown that if Xg is
a quintic Calabi-Yau with only an A, singu-
lar point then the punctured family XX — AX
s C° trivial. We had shown that this family
admits no smooth projective filling-in.
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Symplectic Deformation of 3D Flops

Index one terminal = isolated cDV = one
parameter deformation of RDP. By Fried-
man, if p € V is isolated cDV and C C U
Is the exceptional curve, then Def(C,U) —
Def(p, V) and both spaces are smooth.

Moreover, One can deform the complex
structure of a nbd of C so that C decom-
poses into Pl’s and the contraction map
deforms to nontrivial contractions of these
Pl's to ODP'’s, while keeping a nbd of
these ODP’s to remain in Def(p, V).
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We can preform this analytic process for
all C”s and p’s simultaneously in each cor-
responding small nbd and then patch them
together smoothly, or as a deformation of
almost complex structures or even sym-
plectically (Wilson).

For smooth flops, we may do this process
for X - X and X’ — X simultaneously to
end up with a birational map which con-
sists of several copies of ordinary Pl-flops.
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Main Conjectures

Fix a birational map f: X --» X’ such that
X =g X'. Let T = ¢, 0¢* be the correspon-
dence determined by I'y C X x X'.

I17T: H(X,Q=H' (X' Q).

II X and X' have isomorphic quantum coho-
mology rings over the birational Kdhler cone.
III1 X and X' have canonically isomorphic com-
plex moduli spaces.

IV X and X' admit symplectic deformations
such that f deforms into ordinary flops.
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Evidences

3D: Kawamata, Mori and Kollar classified
threefold flops. Isomorphism on quantum
ring is due to Li and Ruan.

Hyperkahler: Huybrechts showed that bi-
rational hyperkahler manifolds X and X’
admits deformations X — A and X' —- A
such that X; = X.

So Mukai flops is excluded in IV. Yet it is
necessary to include (at least) all ordinary
P* flops in IV for dimension reason.
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Definition 6 (P* Flops) Let v : Z — S be a
P% bundle inside X of codimension k 4+ 1,
and Ny x|y = 07(-1)®*1. Then E is a
Pt x P* bundle over S and one may blow
down FE in another direction ¢’ : Y — X’ to
get //: 72 =¢'(F) = X'. ¢v':Z' > S is also a
P* bundle with NZ’/X’|¢’ = OPk(—l)@k—l—l:

By
7r1/ /WQ \925'

Zc.__>X Z/c_,X/

It is not hard to prove I and III for P* flops.
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Conclusion: Topological Evidences

Let QU be the cobordism ring of stably
almost complex manifolds. An R-valued
complex genus is a ring homomorphism
¢ : QU — R. The cobordism class is de-
termined exactly by all chern numbers, i.e.
all complex genera. Let Ix be the ideal
generated by X — X’ for X =5, X'. And
similarly I, for P* flops.

Theorem 7 (Totaro) o = (QYV —» QY/1y).

Theorem 8 (Wang) Ix = Iy, so IV is true
up to complex cobordism.
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Complex Elliptic Genera

An R-genus o is defined by Q(z) € R[z]
through Hirzebruch’s recipe: for c(Tx) =
[[7—1(1 + z;) formally,

2Q(X) = [[1_; QX =: [ Kq(e(Tx)).

Kg = K, is the multiplicative sequence.
Let Q(z) =z/f(z). The CEG g is defined
by

) = ok H¢(2)z 7 (2)o(2)
f(x) T2
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The Change of Variable Formula for CEG

Theorem 9 - Let p be the CEG. Then for any
algebraic cycle D in X and birational morphism
.Y - X with Ky = ¢*Kx + > e;E;, we have

J, ete(Tx)) = [, TL A eit1) Ko(e(Ty)),
Equivalently, a GRH type formula
& TLA(Es 0+ 1) Ko(e(Ty)) = Ko(e(Tx)),
)
where the Jacobian factor is defined by

_ —(r=1)(k+¢())t 9+ 12)0(2)
Alt,r) =e o(t + 2)0 (7).
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Idea of The Proof

Theorem 10 (Residue Theorem) For any
cycle D in X and for any blowing-up ¢ .| Y — X
along smooth center Z with exceptional divisor
E, one has for any power series A(t) € R[[t]:

fop AU Ko(e(Ty))

= | A(0) Kqo(e(Tx))
A(t) )
Kq(c(T2)).
FO) M=y f(ni— 1)) 7 °
Here n;’s denote the formal chern roots of the
normal bundle Ny, x.

-+ Resg <
Z.D
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The proof makes use of deformations to
the normal cone to reduce to the case that
X =P;,(Npl). Let p: X — Z with zero sec-
toni: Z >N —->P,(N®1). Then N = *Q
where Q is the universal quotient bundle in
0—-S—p"(N®l) - Q—0.

then apply

o(Ty) = ¢*c(Tx) ¢*c(Q) ™1 (1+E) c(¢*QR0O(-E))

to get the main term [, A(0) Kg(c(Tx)) and
localize the remaining to EF — Z.
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Finally we use Newton formulae for chern
classes ¢« = 0 for 0 < kK < r — 2 and
Fre(r~ Dk = (_1)(r=D+kg (N) for &k > 0 to
reduce everything on £ down to Z. Here
s(N) = sp(N) st s(N)e(N) = 1. QED

From it, for o5 to admits CVF for one
blowing-up we need functional equation
1 . A(zj,m)
[Ti=1 f(=) Zﬂ Lf(eg) iy fs — 25)
When r = 2, let A(t) = A(¢,2). It is

1 A(x) n A(y)
F@Ff@)  F@fy—2)  fWf@—y)
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A lengthy calculation (with help from J.-K.
Yu) gives f which defines ¢, and then it is
easy to guess A(t,r) for all r. This finishes
the proof of CVF for one blowing-up.

By induction we get the CVF for compos-
ite of blowing-ups.

The general case for birational morphism
¢ .Y — X follows from it and Wlodarsczyk’s
weak factorization theorem. Because in
Ky = ¢*Kx + ¢;E;, ¢; does not depend on
the birational model we choose. QED
END

22



