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» The Green function G(z, w) on a flat torus T = C/A,
A = Zw1 + Zw; is the unique function on T x T which satisfies

1

—N;G(z,w) = dy(z) — ]

and fT z,w) dA = 0, where &, is the Dirac measure with
singularity at z = w.

» Because of the translation invariance of /\,, we have

G(z,w) = G(z — w,0) and it is enough to consider the Green
function G(z) := G(z,0). Asymptotically

1
G(z) = —5_log 2| +o(|z[*).



> Not surprisingly, G can be explicitly solved in terms of elliptic
functions.



> Not surprisingly, G can be explicitly solved in terms of elliptic
functions.

> Letz=x+1iy, T:=wy/wy =a+ib e ]Handq:e”irwith
|g] = e ™ < 1. Then

Oi(zT)=—i ), (_1)nq(n+%)ze(2n+1)mz_

n=—oo



> Not surprisingly, G can be explicitly solved in terms of elliptic
functions.

> Letz=x+1iy, T:=wy/wy =a+ib€Handg = ¢™T with
|g] = e ™ < 1. Then

Oi(zT)=—i ), (_1)nq(n+%)ze(2n+1)mz_
n=—oo
> (Neron):
_ 1 (2|, 1,
G(z) = —5 - log 7o) Y




v

v

Not surprisingly, G can be explicitly solved in terms of elliptic
functions.

Letz = x +iy, T := wy/w; = a+ib € Hand g = ™ with
|g] = e ™ < 1. Then

[ee)

) 2n-+1) iz
91 ( = —i n;m 2p(2nt1)
(Neron): ) s .
G(z) = - log 191 EZ; + z—byz
The structure of G, especially its critical points and critical

values, will be the fundamental objects that interest us.
VG(z) =0 <=

oG _ -1 AN
= =1 ((10gl91)z +2mg) =0.
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zero on lattice points and
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> Indeed 81(2)
o(z) = en?/2P02)
&= g0

Hence {(z) — 11z = (log 91(z2))-.

> Letz = twy + swy. By Legendre relation 1wy — 1owq = 2711,
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Recall p(z) =1/224---,{(z) = — [fp=1/z+---.and
o(z) =exp [*{(w)dw =z + - - - is entire, odd with a simple
zero on lattice points and

o(z+ w;) = —elET 19 ()

with 17, = {(z + w;) — {(z) = 2{(3w;) the quasi-periods.

Indeed 81(2)
o(z) = en?/221%) z .
&) 7,00)

Hence {(z) — 11z = (log 91(z2))-.

Let z = twj + swy. By Legendre relation r7ywy — #owy = 2711,
VG(z) = 0if and only if
G, = _ 1 (C(twl + swy) — (tm +5172)) =0.
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Question: How many critical points can G have in T?
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» The 3 half periods are trivial critical points. Indeed,
G(z) = G(—z) = VG(z) = —=VG(—2z).

Letp = Yw;thenp = —pin T and so VG(p) = —~VG(p) = 0.

» Other critical points must appear in pair £z € T.

» Example

For rectangular tori T: (wy, wy) = (1,7 = bi), fw;, i =1,2,3 are
precisely all the critical points.

» Example
For the torus T with T = ¢™/3

periods %wi plus %wg,, %w3.

, there are at least 5 critical points: 3 half

» However, it is very difficult to study the critical points from the
“simple equation” {(twq + swy) = tn1 + sip directly.



> In PDE, the geometry of G(z, w) plays fundamental role in the
non-linear mean field equations (= Liouville equation with
singular RHS): On a flat torus T it takes the form (p € R)

Au+ pe' = pdy.



> In PDE, the geometry of G(z, w) plays fundamental role in the
non-linear mean field equations (= Liouville equation with
singular RHS): On a flat torus T it takes the form (p € R)

Au+ pe' = pdy.

> Itis originated from the prescribed curvature problem
(Nirenberg problem, constant K with cone metrics etc.).



> In PDE, the geometry of G(z, w) plays fundamental role in the
non-linear mean field equations (= Liouville equation with
singular RHS): On a flat torus T it takes the form (p € R)

Au+ pe' = pdy.

> Itis originated from the prescribed curvature problem
(Nirenberg problem, constant K with cone metrics etc.).

> It is the mean field limit of Euler flow in statistic physics.



In PDE, the geometry of G(z, w) plays fundamental role in the
non-linear mean field equations (= Liouville equation with
singular RHS): On a flat torus T it takes the form (p € R)

Au+ pe' = pdy.
It is originated from the prescribed curvature problem
(Nirenberg problem, constant K with cone metrics etc.).
It is the mean field limit of Euler flow in statistic physics.

It is related to the self-dual condensation of abelian
Chern-Simons-Higgs model (Nolasco and Tarantello 1999).



In PDE, the geometry of G(z, w) plays fundamental role in the
non-linear mean field equations (= Liouville equation with
singular RHS): On a flat torus T it takes the form (p € R)

Au+ pe' = pdy.
It is originated from the prescribed curvature problem
(Nirenberg problem, constant K with cone metrics etc.).
It is the mean field limit of Euler flow in statistic physics.

It is related to the self-dual condensation of abelian
Chern-Simons-Higgs model (Nolasco and Tarantello 1999).

In Arithmetic Geometry, G(z, w) also appears in the Arakelov
geometry as the intersection number of two sections z and w of
the arithmetic surface 7 — SpecZ U {co} at the oo fiber 7o, =
Riemann surface T.
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» When p ¢ 87IN, it has been proved by C.-C. Chen and C.-S. Lin
that the Leray-Schauder degree is

dp=k+1 for pe (8km,8(k+1)m),

so the equation has solutions, regardless on the shape of T.

> The first interesting case remained is when p = 871 where the
degree theory fails completely.

» Theorem (Existence Criterion)
For p = 8, the mean field equation on a flat torus T = C/A:
Au+ pe' = pdy

has solutions if and only if the G has more than 3 critical points. Moreover,
each extra pair of critical points p corresponds to an one parameter family
of solutions u,, where lim, ., 1 (z) blows up precisely at z = +p.
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» Liouville’s theorem says that any solution u of Au+¢* =0ina
simply connected domain () C C must be of the form

f1?
A+

where f, called a developing map of u, is meromorphic in Q).

u=c +log

» It is straightforward to show that
73 (f 2 1,
SOC):ﬂZ(]”) :Mzzfiuz.
Le., any developing map f of u has the same Schwartz
derivative.



» Thus for any two developing maps f and f of u, there exists

_(p F_gr. M1
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» Thus for any two developing maps f and f of u, there exists

s= (" __‘7> € PSU(2) such that f = §f := £ 1.
<q P 2 F=9 = vp

» Geometrically the Liouville equation is simply the prescribing
Gauss curvature equation in the new metric g = e"gg over D,
where gy is the Euclidean flat metric on C:

Kg = —e " Au=p. 1

» It is then clear the inverse stereographic projection
2
C—95y, \/,E\N

1 2x 2y —1+ 2% +1?
X,Y,Z) = — , )
(XY, 2) <1+x2+y2 1+x2+y? 1+x2+y2)

VP

provides solutions to (1).
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» In this case the conformal factor is

u

) 2
= (Garem)

» Starting from this special solution for D = A, the unit disk,
general solutions on simply connected domain D can be
obtained by using the Riemann mapping theorem via a
holomorphic map

f:D—A.

» The conformal factor is then the one as expected:

PP

([P
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» Given A, for p = 47/, I € N, by analytic continuing the f’s
among simply connected domains via PSU(2), f is glued into a
meromorphic function on C. (Not yeton T = C/A.)

» Letz = ¢¥™ :H — A* and let F(w) = f(z) = f(e*™™). Then
F(w+1) = SF(w)

for some S € PSU(2). Up to a conjugation, we may start with
another f so that
F(w+1) = e 2°F(w)

for some 6 € [0, 7).

» Now let ¥(w) = e 29F(w). Then
Y(w+1) = e 20@FDE(w 4+ 1) = e 29F(w) = ¥ (w).

Hence ¥ (w) comes from a meromorphic function 1(z) on A*.
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If ¢ has essential singularity at z = 0 then f = z0/ 7y takes
almost all values in C infinitely many times.

But

/ 4bﬂFdA-p/ e"dA < oo
Jax (T4 [f1?)? A '

with the LHS being the spherical area under the inverse
stereographic projections, covered by f(A*).

This implies that i is meromorphic on the whole A.

For p = 4rtl with | € N, the asymptotic of u at z = 0 is given by
u(z) ~ 2llog |z|

since p/27 = 2I.
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> Letn = ord,—g ¢ € Z and ¢ = z"g. Then f = z°¢ with
a=n+0/mand

2| lag +z¢|

u=rcy+2log T+ |2igP

» Ifa=0thenn =0and 0 = 0 (since 0 < 0 < 7). In this case
f = g = ¢ is holomorphic at 0. So we may assume that a # 0.

> The asymptotic is then given by
u(z) ~ 2(|a| —1)log 2.

In particular, |a| =+ 1 € IN, which forces # = 0 because
0 < 6 < 7. Moreover f = z+(#1)¢ is meromorphic at z = 0.
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> First constraint from the double periodicity:

fz+wr1) =Sif, flz+wr) =Sof
with §1S7 = £555;.
> Second constraint from the Dirac singularity:
(1) Letf(z) has a pole at z.
If zo =0 (mod A) then the order r =1+ 1.

Ifzg Z0 (mod A) thenr = 1.

(2) Letf(z) =ag+ar(z—2z0)"+ - - - be regular at z.
Ifzo =0 (mod A) thenr =1+ 1.
Ifzg #0 (mod A) thenr = 1.
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et 0 p —q
> May assume that 51 = 0 e—ifr ,S2 = g P , then

flz+wr) = (2), flz+wa) = Sof (2).
5152 = £5,51 leaves with essentially 2 possibilities:
(1) p=0ande® = +i  (may further assume g = 1).
(2) g=0 (andsop = el2),

> The essential object to consider is the logarithmic derivative

)
o)

Any zero/pole of f gives a simple pole of g. The residue is
+1/ — 1 outside A.

8(z) = (logf(2))
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> Type I (Topological) Solutions:

flz+w)=—f(z), flztw)= f(l)

Then g = (logf)’ isellipticon T' = C/ A, N = Zw, + Z2w;
with
8(z+wr) = —g(2).

» For p = 47, since g must have zeros, we get
f(z) = f(0) +a;12 1 + - - - with £(0) # 0 and g has its only
zeros at z = 0, wy mod A/, both of order I.

> So g has 2] simple poles coming from py, . .., p; (simple zeros of
f)and g4, ...,q; (simple poles of f) on T'. May set

gi=pitwr, i=1,...,L

The first condition forces that }_p; = %wl (mod A).
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» Using elliptic functions on T’ and the addition theorem,

I
8(z) =) (C(z—pi) =Lz —pi — w2)) +1n2/2

1
14 oz p)
3 o Z

_1m (e = @(%w{))

» Lemma (ODE for Slopes)
The slope function s := ¢’/ (p — ey) satisfies the ODE:

s = %53 — 6e55.
» Then 0 = ¢(0) = ¢”(0) = g™ (0) = - - - leads to that all odd

symmetric function of slopes s(p;)’s are zero. This leads to the
evenness of solutions.



» The remaining condition 0 = ¢’(0) = ¢"”'(0) = ¢g®)(0) = - --
leads to the polynomial equations of p(p;)’s using the half
period formula on T" = C/Zw; + Z2wy:

(e1 —e2)(es —ea)

Z4+wy) =e +
o( 2) =€ o) -
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» The remaining condition 0 = ¢’(0) = ¢"”'(0) = ¢g®)(0) = - --
leads to the polynomial equations of p(p;)’s using the half
period formula on T" = C/Zw; + Z2wy:

_ (e1 —e2)(e3 — e2)
pletw) =at ey
» Theorem
All type I solutions u are even with 25:1 pi = %wl (mod A).
(1) No type I solutions for p = 8k, k € IN.
(2) Forp =4mlwithl =2k +1 (k> 0), f has simple zeros at w1 /2
and xp; fori=1,...,k. When k = 0 (p = 47), 3! solution.
(3) The equation is algebraically completely integrable: For
xi = p(pi) —exand X := p(q; = p; + w2) —ea,

ko m kK m 3
Zi:lxi —Zizlxl- =cm,  Xp¥m = U, m=1,...,k
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> Type II (Blow-Up) Solutions:
flztw) =f(2),  flz+w) =*f(2).
» If f satisfies this, e’'f also satisfies this for any A € R. Thus

62/\ lf/(z)|2

uy(z) = —i—log(14_6%—[][(‘2)'2)2

is a scaling family of solutions with developing maps {e"f}.

» The blow-up points for A — co (resp. —o0) are precisely zeros
(resp. poles) of f(z).

» ¢ = (logf) isellipticonT = C/A,sog(z) = A
Then | = 2k since } res;,g = Y.(+1) = 0.
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> Periods integrals. Let L1, L, be the fundamental 1-cycles. Then

Fip) = [ Q@p)dz,

i

where p # Jw; (mod A) and

2@ o)
QP =4 T oG tp) ~ 90 - o)
=20(p)—C(p+2C)—C(p—20).

» Lemma (Periods Integrals and Critical Points)

Let p = twy + swy, then up to 47tilN,

Fi(p) = 2(w1(p) — mp) = 2(C — tin — syp)wy — 4ris,
Fa(p) = 2(w2l(p) — 12p) = 2(g — ty1 — snp)ws + 4rtit.
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z
f2) =fOexp [ (c)de
gives rise to a type II solution <= F;(p) € iR <= VG(p) = 0.

» Theorem (Uniqueness)
For p = 8, the mean field equation Au + pe* = pdg on a flat torus has at
most one solution up to scaling.

» Theorem (Number of Critical Points)
The Green function has either 3 or 5 critical points.

» We were unable to prove it from the critical point equation.
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> Our proof on uniqueness is based on the method of
symmetrization applied to the linearized equation at the unique
even solution in 1) (choose A = —log [f(0)| to get f(0) = 1).

» In fact we prove uniqueness of the one parameter family
Au+ pe" = pdy, p € [4m,87]
on T within even solutions, by the continuity method.

» Theorem

For p € [47, 87, Let u be a solution of Au + pe* = pdy, u(—z) = u(z) in
T (so [re" = 1.) Then the linearized equation at u:

Ap+petp=0 .
T
{ o) =p(-z) "

is non-degenerate, i.e. it has only trivial solution ¢ = 0.



Sketch of the main idea:

Use x = p(z) as two-fold covering map T — S?> = C U {0} and
require p being an isometry:

¢@dz|? = @|dx|? = &0 | (2) [?]dz|*.
Namely we set

o(x) = u(z) — log ¢/ (=) and $(x) := 9(2).

There are four branch points on C U {oo}, pg = 9(0) = co and
pi = := p(w;/2) forj = 1,2,3. Since g/ (z)? = 4H]3:1(x —¢;), then

3
Av+pe’ = Zj:1 (—2m)d, R
AP +pe’p =0



At infinity let y = 1/x. The isometry reads as

4

/ 2
1(z) dz|? w(y) dy? w(y) |@ (Z)| dz|2
e Z|m =¢€ =e V4

9'@1* (e 1
=u(z) —lo lo()[? ~ (*— )EIOSM-
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Thus p > 47 implies that py is a singularity with non-negative «.

By replacing u by u + log p etc., we may (and will) replace the p in the
left hand side by 1 for simplicity. The total measure on T and IR? are
then given by
/e”dz:p§8n and / evdx:E < 4r.
T R2 2

The proof is then reduced to:



Theorem (Symmetrization Lemma)
Let Q C R? be a simply-connected domain and let v be a solution of

Av+evzzl.\]

j=1 lX]'(Spj

in Q). Suppose that the first eigenvalue of A\ + e° is zero on Q) with ¢ the
first eigenfunction. If the isoperimetric inequality with respect to
ds* = e?|dx|*:

202(dw) > m(w) (4 — m(w))

holds for all level domains w = {¢ > t} with t > 0, then

/ e’dx > 2.
Q

Moreover, the isoperimetric inequality holds if there is only one negative o;
and aj = —1.
7
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e It relies on methods of deformations in M and the degeneracy
analysis of half periods.

» Theorem (Moduli dependence**)

(1) Let Q3 C My U {co} 22 S? (resp. Qs) be the set of tori with 3
(resp. 5) critical points, then Q3 U {co} is closed containing iR,
Qs is open containing the vertical line [e™/3,ico).

(2) Both Q)3 and Qs are simply connected with C := dQ)3 = Qs
homeomorphic to S' containing co.

(3) Moreover, the extra critical points are split out from some half
period point when the tori move from Q3 to Q)5 across C.



