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This is a joint work with Yuan-Pin Lee and Hui-Wen Lin.

A general framework to determine g = 0 GW invariants: From I to J.

Let τ = ∑µ τµTµ ∈ H(X), gµν = (Tµ, Tν), Tµ = ∑ gµνTν.

JX(τ, z−1) = 1 +
τ

z
+ ∑

β∈NE(X),n,µ

qβ

n!
Tµ

〈
Tµ

z(z− ψ)
, τ, · · · , τ

〉
0,n+1,β

= e
τ
z + ∑

β 6=0,n,µ

qβ

n!
e

τ1
z +(τ1.β)Tµ

〈
Tµ

z(z− ψ)
, τ2, · · · , τ2

〉
0,n+1,β

,

where τ = τ1 + τ2 with τ1 ∈ H2(X).

Witten’s dilaton, string, and topological recursion relation in 2D gravity
⇐⇒ Givental’s symplectic space reformulation of GW theory.

2 / 26



Let H := H(X),H := H[z, z−1]],H+ := H[z] andH− := z−1H[[z−1]].
H ∼= T∗H+ gives a canonical symplectic structure onH.

q(z) = ∑
µ

∞

∑
k=0

qµ
k Tµzk ∈ H+.

The natural coordinates onH+ are t(z) = q(z) + 1z (dilaton shift),
with t(ψ) = ∑µ,k tµ

k Tµψk ∈ H+ the general descendent insertion.

Let F0(t) be the generating function. The one form dF0 gives a section
of π : H → H+. Givental’s Lagrangian cone L = the graph of dF0.

The existence of C∗ action on L is due to the dilaton equation
∑ qµ

k ∂/∂qµ
k F0 = 2F0. Thus L is a cone with vertex q = 0.

−zJ : H→ zH− is a section over τ ∈ H ∼= −1z + H ⊂ H+.
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Let Lf = TfL be the tangent space of L at f ∈ L and Lτ = L(τ,dF0(τ)).

(i) zL ⊂ L and so L/zL ∼= H+/zH+ ∼= H has rank N := dim H.

(ii) L∩ L = zL, considered as subspaces insideH.

(iii) L is the tangent space at every f ∈ zL ⊂ L. Moreover, Tf = L
implies that f ∈ zL. Thus zL is the ruling of the cone.

(iv) The intersection of L and the affine space −1z + zH− is
parameterized by its image −1z + H ∼= H 3 τ under π.

−zJ(τ,−z−1) = −1z + τ + O(1/z)

is the function of τ whose graph is the intersection.

(v) The set of all directional derivatives z∂µJ = Tµ + O(1/z) spans
L∩ zH− ∼= L/zL.
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Let R = ̂C[NE(X)] be the ground (Novikov) ring.

Denote a = ∑ qβaβ(z) ∈ R{z} if aβ(z) ∈ C[z]. All discussions are only
as formal germs around the neighborhood of t = 0 (q = −1z).

Lemma
z∇J = (z∂µJν) forms a matrix whose column vectors z∂µJ(τ) generates the
tangent space Lτ of the Lagrangian cone L as an R{z}-module.

In fact, by TRR, z∇J is the fundamental solution matrix of the
Dubrovin connection on TH = H×H:

∇z = d− 1
z

dτµ ⊗∑
µ

Tµ ∗τ .

Namely we have the quantum differential equation (QDE)

z∂µz∂νJ = ∑ C̃κ
µν(τ, q)z∂κJ.
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Let p̄ : X→ S be a smooth toric bundle with fiber divisor D = ∑ tiDi.
H(X) is a free over H(S) with finite generators {De := ∏i Dei

i }e∈Λ. Let
t̄ := ∑s t̄sT̄s ∈ H(S). H(X) has basis {Te = T(s,e) = T̄sDe}e∈Λ+ .

Denote by ∂T̄s
≡ ∂t̄s the T̄s directional derivative on H(S),

∂e = ∂(s,e) := ∂t̄s ∏
i

∂
ei
ti ,

and the naive quantization

T̂e ≡ ∂ze ≡ ∂z(s,e) := z∂t̄s ∏
i

z∂
ei
ti = z|e|+1∂(s,e).

As usual, the Te directional derivative on H(X) is denoted by
∂e = ∂Te . This is a special choice of basis Tµ (and ∂µ) of H(X).

∂ze and z∂e are very different, but they are also closely related.
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Let p̄ : X→ S be a split toric bundle quotient from
⊕

Lρ → S. The
hypergeometric modification of JS by the p̄-fibration takes the form

IX(t̄, D, z, z−1) := ∑
β∈NE(X)

qβe
D
z +(D.β)IX/S

β (z, z−1)JS
βS

(t̄, z−1),

where IX/S
β = ∏ρ∈41

1/ ∏
(Dρ+Lρ).β
m=1 (Dρ + Lρ + mz) comes from fiber

localization, and the product is directed when (Dρ + Lρ).β ≤ −1.

In general positive z powers may occur in IX. Nevertheless for each
β ∈ NE(X), the power of z in IX/S

β (z, z−1) is bounded above by a
constant depending only on β. I is defined only on the subspace

t̂ := t̄ + D ∈ H(S)⊕
⊕

i
CDi ⊂ H(X).

Theorem (J. Brown 2009)
(−z)IX(t̂,−z) lies in the Lagrangian cone L of X.
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Definition (GMT)
For each t̂, say zI(t̂) lies in Lτ of L. The correspondence

t̂ 7→ τ(t̂) ∈ H(X)⊗ R

is called the generalized mirror transformation.

Proposition (BF)
(1) The GMT: τ = τ(t̂) satisfies τ(t̂, q = 0) = t̂.
(2) Under the basis {Te}e∈Λ+ , there exists an invertible N×N
matrix-valued formal series B(τ, z), the Birkhoff factorization, such that(

∂zeI(t̂, z, z−1)
)

=
(

z∇J(τ, z−1)
)

B(τ, z),

where (∂zeI) is the N×N matrix with ∂zeI as column vectors. The first
column vectors are I and J respectively (string equation).
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Proof

zI ∈ L ⇒ z∂I ∈ TL = L. Then z(z∂)I ∈ zL ⊂ L and so z∂(z∂)I ∈ L.
Inductively, ∂zeI ∈ L. The factorization (∂zeI) = (z∇J)B(z) follows.

From t̂ = ∑ t̄sT̄s + ∑ tiDi, it is easy to see that

∂zeet̂/z = Teet̂/z, z∂eet/z = Teet/z.

Hence, modulo NE(X), ∂zeI(t̂) ≡ Teet̂/z, z∂eJ(τ) ≡ Teeτ/z.

To prove (1), modulo all qβ’s we have

et̂/z ≡ ∑
e∈Λ+

Be,1(z)Teeτ(t̂)/z.

Thus
e(t̂−τ(t̂))/z ≡∑

e
Be,1(z)Te,

which forces that τ(t̂) ≡ t̂ and Be,1(z) ≡ δTe,1. Then we also have
B(τ, z) ≡ IN×N. In particular B is invertible. This proves (2).
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Theorem (BF/GMT)
There is a unique, recursively determined, scalar-valued differential operator

P(z) = ∑
e∈Λ+

Ce∂ze = 1 + ∑
β∈NE(X)\{0}

qβPβ(ti, t̄s, z; z∂ti , z∂t̄s),

with Pβ polynomial in z, such that P(z)I = 1 + O(1/z). Moreover,

J(τ(t̂), z−1) = P(z)I(t̂, z, z−1),

with τ(t̂) being determined by the 1/z coefficient of the right-hand side.

Proof. We construct P(z) by induction on β ∈ NE(X). We set Pβ = 1
for β = 0. Suppose that Pβ′ has been constructed for all β′ < β. We
set P<β(z) = ∑β′<β qβ′Pβ′ . Let

A1 = zk1qβ ∑e∈Λ+ f e(ti, t̄s)Te

be the top z-power term in P<β(z)I. If k1 < 0 then we are done.
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Otherwise we remove it via the “naive quantization”

Â1 := zk1qβ ∑e∈Λ+ f e(ti, t̄s)∂ze.

In (P<β(z)− Â1)I = P<β(z)I− Â1I, the term A1 is removed since

Â1I(q = 0) = Â1et̂/z = A1et̂/z = A1 + A1O(1/z).

All the newly created terms have curve degree qβ′′ with β′′ > β in
NE(X). Thus we keep on removing the new top z-power term A2,
which has k2 < k1. The process stops in k1 steps and we define Pβ by

qβPβ = −∑1≤j≤k1
Âj.

By induction we get P(z) = ∑β∈NE(X) qβPβ as expected.

Q: Is it possible to get explicit forms/analytic properties of P or B?
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From now on we work with the projective local model of a split Pr flop
f : X 99K X′ with bundle data (S, F, F′), where

F =
r⊕

i=0

Li and F′ =
r⊕

i=0

L′i .

The contraction ψ : X→ X̄ has exceptional loci ψ̄ : Z = PS(F)→ S
with N = NZ/X = ψ̄∗F′ ⊗OZ(−1). Similarly we have Z′ ⊂ X′, N′.

The local model p̄ : X = PZ(N⊕O)
p→Z

ψ̄→ S is a double projective
bundle. Leray–Hirsch =⇒ for h, ξ being the relative hyperplane classes,

H(X) = H(S)[h, ξ]/(fF, fN⊕O ),

where the Chern polynomials take the form (we identify L with c1(L))

fF =
r

∏
i=0

ai := ∏(h + Li), fN⊕O = br+1

r

∏
i=0

bi := ξ ∏(ξ − h + L′i).
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The graph correspondence F = [Γ̄f ] ∈ A(X×X′) induces an
isomorphism F : H(X) ∼= H(X′) in the group level: for t̄ ∈ H(S),

F t̄hiξj = t̄(Fh)i(F ξ)j = t̄(ξ ′ − h′)iξ ′j, i ≤ r.

F also preserves the Poincaré pairing, but not the ring structure.

Theorem (LLW 2010)
F induces an isomorphism of quantum rings QH(X) ∼= QH(X′) under
analytic continuations in the Kähler moduli formally defined by

Fqβ = qF β, β ∈ NE(X).

Let γ, ` be the fiber line class in X→ Z→ S. Then F γ = γ′ + `′, but
F ` = −`′ 6∈ NE(X′). So analytic continuations are necessary.

Li–Ruan 2000 (r = 1, dim X = 3), LLW 2006 (simple Pr flop in any
dimension, S = pt), LLW 2008 (simple flop, any g ≥ 0).
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Any β ∈ A1(X) is of the form β = βS + d` + d2γ where βS ∈ A1(S) is
identified with its canonical lift in A1(Z) with (βS.h) = 0 = (βS.ξ).

h, ξ are dual to `, γ hence β.h = d, β.ξ = d2.

Lemma (Minimal lift and I-minimal lift)

• Given a primitive class βS ∈ NE(S), β = βS + d` + d2γ ∈ NE(X) if
and only if

d ≥ −µ and d2 ≥ −ν,

where µ = maxi{(βS.Li)}, µ′ = maxi{(βS.L′i)}, and
ν = max{µ + µ′, 0}.

• Consequently, β is F -effective (i.e. β ∈ NE(X) and F β ∈ NE(X′)) if
and only if

d + µ ≥ 0 and d2 − d + µ′ ≥ 0.

We define β ∈ NE(X) to be I-effective, resp. F I-effective, by the
above inequalities without assuming βS to be primitive.
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Back to the hypergeometric modification of p̄ : X→ S:

IX = I(t̂; z, z−1) = ∑
β∈NE(X)

qβe
D
z +(D.β)IX/S

β JS
βS

(t̄),

where D = t1h + t2ξ is the fiber divisor and t̄ ∈ H(S).

For a split projective bundle ψ̄ : P = P(F)→ S, F =
⊕r

i=0 Li

IP/S
β =

r

∏
i=0

1
β.(h+Li)

∏
m=1

(h + Li + mz)

;
s

∏
m=1

:=
s

∏
m=−∞

/
0

∏
m=−∞

.

The product in m ∈ Z is directed so that for each i with
β.(h + Li) ≤ −1, the subfactor is in the numerator containing h + Li
(corresponding to m = 0). Hence IP/S

β = 0 if d + µ < 0.

Remark: The relative factor comes from the equivariant Euler class of
H0(C, TP/S|C)−H1(C, TP/S|C) at the moduli point [C ∼= P1 → X]. It
counts only the contribution from βS in generic positions.
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Now IX/S
β = IZ/S

β IX/Z
β is given by

r

∏
i=0

1
β.ai
∏

m=1
(ai + mz)

r

∏
i=0

1
β.bi
∏

m=1
(bi + mz)

1
β.ξ
∏

m=1
(ξ + mz)

.

(Recall ai = h + Li, bi = ξ − h + L′i .) Although IX/S
β makes sense for

any β ∈ N1(X), it is non-trivial only if β ∈ NEI(X).

Proposition (Picard–Fuchs system on X/S)
�`IX = 0 and �γIX = 0, where

�` =
r

∏
j=0

z∂aj − q`et1
r

∏
j=0

z∂bj
, �γ = z∂ξ

r

∏
j=0

z∂bj
− qγet2

.

Here ∂v is the directional derivative: v = ∑ viTi ∈ H2 ⇒ ∂v = ∑ vi∂ti .
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Similarly IX′ is a solution to

�`′ =
r

∏
j=0

z∂a′j
− q`′e−t1

r

∏
j=0

z∂b′j
, �γ′ = z∂ξ ′

r

∏
j=0

z∂b′j
− qγ′et2+t1

,

where the dual coordinates of h′ and ξ ′ are −t1 and t2 + t1 (since
F (t1h + t2ξ) = t1(ξ ′ − h′) + t2ξ ′ = (−t1)h′ + (t2 + t1)ξ ′).

Proposition (F -invariance of PF ideal)

F 〈�X
` ,�X

γ 〉 ∼= 〈�X′
`′ ,�X′

γ′ 〉.

Proof. Since F aj = F (h + Li) = ξ ′ − h′ + Li = b′j and Fbj = a′j for
0 ≤ j ≤ r. It is clear that

F�` = −q−`′et1
�`′ ,

and F�γ = z∂ξ ′ ∏
r
j=0 z∂a′j

− qγ′+`′et2
= z∂ξ ′�`′ + q`′e−t1

�γ′ .
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The Picard–Fuchs system on X and X′ are indeed equivalent under
F . Both I = IX and I′ = IX′ satisfy this system, but in different
coordinate charts “|q`| < 1” and “|q`| > 1” on the Kähler moduli.

However, I and I′ are not the same solution under analytic
continuations. Nor do J and J′, since the general descendent
invariants are not F -invariant. Nevertheless we will see that B(z)
and τ(t̂), hence ∗t, are correct objects to admit F -invariance.

By QDE, the cyclic D module MJ = DJ is holonomic of length
N = dim H with basis z∂µJ. For MI = DzI. The BF/GMT
(∂zeI) = (z∇J)B implies that MI is also holonomic of length N.

The idea is to go backward: To find MI first and then transform it to
MJ. While the derivatives along the fiber directions are determined
by the PF, we still need to control derivatives along the base direction.
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Write t̄ = ∑ t̄iT̄i. This is achieved by lifting the QDE on QH(S)

z∂iz∂jJS = ∑
k

C̄k
ij(t̄) z∂kJS

to H(X). Write βS ≡ β̄ and C̄k
ij(t̄, q̄) = ∑β̄∈NE(S) C̄k

ij,β̄(t̄) qβ̄, then

z∂iz∂jJS
β̄

= ∑
k,β̄1

C̄k
ij,β̄1

z∂kJS
β̄−β̄1

.

For β̄ ∈ NE(S), its I-minimal lift in NE(X) is denoted by β̄I. Then

z∂iz∂jI = ∑
β

qβe
D
z +(D.β)IX/S

β z∂iz∂jJS
β̄

= ∑
k,β,β̄1

qβe
D
z +(D.β)IX/S

β C̄k
ij,β̄1

z∂kJS
β̄−β̄1

= ∑
k,β̄1

qβ̄I
1eD.β̄I

1C̄k
ij,β̄1

z∂k ∑
β

qβ−β̄I
1e

D
z +D.(β−β̄I

1)IX/S
β JS

β̄−β̄1
.
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Theorem (Quantum Leray–Hirsch)

(1) (I-Lifting) The QDE on QH(S) can be lifted to H(X) as

z∂i z∂jI = ∑
k,β̄

qβ̄I
e(D.β̄I)C̄k

ij,β̄(t̄) z∂kDβ̄I (z)I,

where Dβ̄I (z) is an operator depending only on β̄I. Any other lifting is
related to it modulo the Picard–Fuchs system.

(2) Together with the Picard–Fuchs �` and �γ, they determine a first
order matrix system under the naive quantization basis:

z∂a(∂zeI) = (∂zeI)Ca(z, q), where ta = t1, t2 or t̄i.

(3) For β̄ ∈ NE(S), its coefficients in Ca are polynomial in qγet2
, q`et1

and
f(q`et1

), and formal in t̄. Here f(q) := q/(1− (−1)r+1q) is the
“origin of analytic continuation” satisfying f(q) + f(q−1) = (−1)r.

(4) The system is F -invariant, though in general F β̄I 6= β̄I′ .
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Ideas involved in the proof of (2) and (3).

The Picard–Fuchs system generated by �` and �γ is a perturbation
of the Picard–Fuchs (hypergeometric) system associated to the (toric)
fiber by operators in base divisors.

The fiberwise toric case is a GKZ system, which by the theorem of
Gelfand–Kapranov–Zelevinsky is a holonomic system of rank
(r + 1)(r + 2), the dimension of cohomology space of a fiber. It is also
known that the GKZ system admits a Gröbner basis reduction to the
holonomic system.

We apply this result in the following manner: We would like to
construct a D module with basis ∂ze, e ∈ Λ+. We apply operators
z∂t1 , z∂t2 and first order operators z∂i’s to this selected basis.
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Notice that

�` = (1− (−1)r+1q`et1
)(z∂t1)r+1 + · · · ,

�γ = (z∂t2)r+2 + · · · .

This is where f appears. The Gröbner basis reduction allows one to
reduce the differentiation order in z∂t1 and z∂t2 to smaller one. In the
process higher order differentiation in z∂i’s will be introduced.

Using part (1), the I-lifting, the differentiation in the base direction
with order higher than one can be reduced to one by introducing
more terms with strictly larger effective classes in NE(S).

A careful induction will conclude the proof. In fact in the current
special case coming from ordinary flops, neither the GKZ theorem
nor the Gröbner basis were needed.
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Finally we will construct a gauge transformation B to eliminate all the
z dependence of Ca in the F -invariant system

z∂a(∂zeI) = (∂zeI)Ca. (1)

B is nothing more than the Birkhoff factorization matrix

∂zeI(t̂) = (z∇J)(τ)B(τ) (2)

valid at the generalized mirror point τ = τ(t̂). Substituting (2) into
(1), we get

z∂a(∇J)B + z(∇J)∂aB = (∇J)BCa,

hence
z∂a(∇J) = (∇J)(−z∂aB + BCa)B−1 =: (∇J)C̃a. (3)

We must notice the subtlety in the meaning of C̃a(t̂).

23 / 26



Let τ = ∑ τµTµ. Write the QDE as

z∂µ(∇J)(τ) = (∇J)(τ)C̃µ(τ),

then
z∂a(∇J) = ∑

µ

∂τµ

∂ta z∂µ(∇J) = (∇J) ∑
µ

C̃µ
∂τµ

∂ta ,

hence
C̃a(t̂) ≡∑

µ

C̃µ(τ(t̂))
∂τµ

∂ta (t̂). (4)

In particular, C̃a is independent of z. And (3) is equivalent to

C̃a = B0Ca;0B−1
0 (5)

(B−1
0 := (B−1)0, coefficient matrix of z0) and the cancellation equation

z∂aB = BCa − B0Ca;0B−1
0 B. (6)
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Analyze B = B(z) by induction on w := (β̄, d2) ∈ W. The initial
condition is the extremal ray case Bw=(0,0) = Id.
Suppose that Bw′ satisfies FBw′ = B′w′ for all w′ < w. Then

z∂aBw = ∑
w1+w2=w

Bw1Ca;w2 − ∑
w1+w2+w3+w4=w

Bw1,0Ca;w2,0B−1
w3,0Bw4 .

Write Bw = ∑
n(w)
j=0 Bw,j zj. Then in the RHS all the B terms have strictly

smaller degree than w except

BwCa;(0,0) − Ca;(0,0)Bw + Bw,0Ca;(0,0) − Ca;(0,0)B
−1
w,0

which has maximal z degree ≤ n(w). By descending induction on j,
the z degree, we get

∂a(FBw,j − B′w,j) = 0.

The functions involved are all formal in t̄ and analytic in t1, t2, and
without constant term (Bw=(0,0) = Id). Hence FBw,j = B′w,j. Done.
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We have proved that for any t̂ = t̄ + D ∈ H(S)⊕Ch⊕Cξ,

FB(τ(t̂)) ∼= B′(τ′(t̂)),

hence the F -invariance of C̃a(t̂) = B0Ca;0B−1
0 : Explicitly

C̃κ
aν = ∑

n≥0, µ

qβ

n!
∂τµ(t̂)

∂ta 〈Tµ, Tν, Tκ , τ(t̂)n〉β.

The case Tν = 1 leads to non-trivial invariants only for 3-point
classical invariant (n = 0) and β = 0, and also µ = κ. Since κ is
arbitrary, we have thus proved the F -invariance of ∂aτ. Then

∂a(F τ − τ′) = F ∂aτ − ∂aτ′ = 0.

Again since τ(t̂) = t̂ for (β̄, d2) = (0, 0), this proves

F τ = τ′.

END
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