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Quantum cohomology

» Let X be smooth projective variety over C.

» Basis T; € H = H(X), dual {T'}, t = LT}, gij := (T}, Tj).

» Genus zero GW formal prepotential F(t) = (()):

<<ﬂl, v /am» = Z Z al/ e Omy t®n>g:0,m+n,ﬁ-

BENE(X

» 3-pt function Fj = 8Z]kF (T, T;, Tr)), A = Fjj; g, then
T % T; = ZAg(t) Ty

» The Dubrovin connection V on ToH @ C[g°]] x Al is flat:

‘ 1 ‘
V:d—%Zd#@Ai:d—EZd#@Ti*t.
i i



Gromov—Witten invariants

Let .# ¢(X, B) be the moduli stack of n-pointed genus g stable maps
f:(Cxy,...,xn) = Xwith £, [C] = B € Hy(X). We have

evj: Men(X,B) = X,  frflx)), 1<j<n.

For a; € H*(X), ¢j = c1 (x]’-‘wcg ST (X, /S))’ the descendant invariant is

(T30 ), = L e T 0TI

When 2g 4 n > 3, there is a stabilization map
st: Mon(X,B) = Mgn.

Now let ; € H?(.# ) instead. Then the ancestor invariant is

(T, g T 114



Cyclic Z*-modules

> t=ty+1H +t,tg € H, t € H%:

t P T
t/Z 1 _1+ + - z< ’ 11>
(=) s ),
B ty+t Ti
— ot 9" 01 4+(h.B) < n>
=ez + ez T, ,(F .
lg?gn/,’ n! ' Z(Z_lpl) (2) B

» TRR = QDE (denote by zd; = zd,; = zdr,):
za,- 28]] = ;Ai{](t) Zak].
» QH(X) = cyclic 2*-module 2° ] with basis (frame)

20;] =€¢*T; (mod g®) =Tj+---.



Given an ordinary P"-flop
f:X--»X,

the graph I’y C X x X’ induces an isomorphism of motives

F = [y}, : HX) — H(X'),
which preserves the Poincaré pairing. We set

Theorem (Analytic continuation in qé )

The correspondence .# induces an isomorphism of big quantum rings
QH(X) = QH(X') after an analytic continuation over the Novikov
variable q° corresponding to the extremal ray. The results also hold
for relative invariants and (relative) ancestors.



Step 1 [LLW 2008]

» Degeneration + Reconstruction reduce the proof to the
case of local models.

» Let (S, F,F') consist of two v.b.’s F and F’ of rank  + 1 over
a smooth S. The f-excloci Z C X and Z' C X' are

$:Z2="Pg(F) —»S, ¢ :Z =Pg(F)—S,
and the (projective) local model of f is

X =P,(N& &) -Ls X' = Pp(N' @ 0),
where N = Nz,x = 07(—1) ® ¢*F and similarly for N'.
» The flop f is the blowup of X along Z followed by
contracting the exc-divisor E = Z x s Z' along the -ruling.

» The local model of f is a functor over the triples (S, F,F')’s.



Step 2 [LLW 2011]

» For F = @/_(L;, F' = @_ L being split bundles, based on
[Brown 2009], a quantum Leray-Hirsch theorem is proved:

QH(X) =4- p*QH(S) [, &/ (e, fnao)-

» Hereh = zdy, (f = zd¢, and

A h

fe=0r =TTz — 4" [120:n1/
» :
oo =0y = Zaé’Hzag—h+Ll’. —qre”,

are the Picard-Fuchs operators which are the “quantized
version” of the Chern polynomials.

» The pullback p*QH(S) is an admissible lifting of the
Dubrovin connection on H(S) to H(X):



Let D = t"h + t5¢ be the relative divisor class, f € H(S), then
20;20; = ZBGNE(S),k qﬁeD’ﬁ* [AS]Z',B(E) z0x Dg(2)

for some admissible lifting p € NE(X) and differential operator

—¢.p-1
H zag — mz)
m=0
rf —(h+Li).p-1 —(G—h+L}).p-1
I1 [T o, —mz) I (20 pyr,—m2) |-
i=0 m=0 m=0

Here B is admissible if —(h+L;). >0, —(¢ —h+L}).p>0
and —¢.p > 0. It exists, but might not be unique. Nevertheless,
D;(z) is well-defined modulo the Picard-Fuchs ideal (Cly, ().



Now we may compute the first order system
20u(T;) = (T))Cu(z,9%), =" 1,7

under the naive frame T; = 29 (204 )/ (20, )¥'s.
This is “equivalent” to %% JX as Z*-modules.

The analytic continuation of 2?-modules in g follows
easily from the above presentation and

F <|:|g, |:|7> = <|:|€/, |:|7/>'

To get QH(X) from the 2*-module, we need BF/GMT:
Birkhoff factorization/generalized mirror transform.

A technical induction was performed so that this
procedure is compatible with analytic continuations.



Example

Letf : X --» X' bea Pl-flop, (S,F,F') = (P, 6@ 6,0 & 6(1)).
Write H(S) = C[p]/ (p?) with Chern polynomials

fr(h) =W,  fneo(E) =& —h)(E—h+p).

Then H = H(X) = H(S)[h, ]/ (fr, fnae) has dimension N = 12
with basis {T; | 0 < i < 11} being

1, b, & p, hé, hp, &, &p, hé2, hép, Ep, hé2p.

Denote by g1 = gle!', g, = g7et", j = gle’’, where b = [S] = [P].
The Picard-Fuchs operators are

O = (204)* — 01291 29¢ n1ps
D’Y = Zag Za,:_h Zag_h+p — 2.



They lead to a Grobner basis:

(204)% = £(q1) ((20)* — 23, 20y, + 20 205 — 220, 20;),
(20¢)° = q2(1— q1) — zap(zag)z + 220y, (z0¢)* + 20y 20y, Z0g.

Here f(q) := q/(1 — (—1)"*1g) which satisfies
f(q) +£(g7") = (-1)".

H(S) = C1 & Cp has only small parameter § with QDE

0 7
20p (201, 20p) = (201,20p) <1 g) )

We have admissible lifting b' = b — v and D}, = 20g Z0g_,
hence the lifted QDE:

(20,) = g5 ' 207 20z .



We calculate C, in zaaTj =Y Cf;j(z)Tk.
Let * = 4q, ' be the chosen admissible lift.
Setg =1(q"),A=q2—q192, S = g2 + q192- Then

Cp =

1

—2f 1
—f

q192

ng2  fqq° Z0192
q192
zfq*
—zfg*
1
fgr—=2) 1

24142

192




A zq142

A

24192

q192

1
1 2
1 1
-11
-1

zZAg

—q28
A(l+g)

z’g
Z8
2zg

—2zg
2+g

221028
zZAg
201928
zq192(1 + 2g)
—02q" (1 +g)
A(l+g)

n92(2+g)

—2zg




—q1929"

Ag* zq1429"
Aq*
q1q29"
q1q29"
zq*
q" —zq"
q*
_q*
1 —gq

z2(11929" — Ag)
Aq*

(S —7929")8

N9 — Ag

Zzg

z(q" —2)g
—2zg
2zg
(4" -2)g

—221711128
—zAg
—Z1928
—2z2q1028
(A+qiq29%)g
q1929"
—q1928
Z’g

2zg

A gauge transform is needed to remove all appearances of z.
In this example GMT is not needed since the first column
vectors in C,’s are correct: T; +1 = T,




Step 3: splitting principle [LLQW 2014]

Proposition

Given a Ck-bundle F — S, there exists a sequence of blow-ups on
smooth centers ¢ : S — S such that there is a filtration of subbundles

0=FyCFC...CF=¢'F
with rk Fi1/F; =1 for all i; ¢$*F can be deformed to a split bundle.

Proof.
Consider the complete flag bundle over S and a rational section s:

Let ¢ : S — Sresolves s. Then ¢*F admits a complete flag, and
there is a deformation of sending all extension classes to 0. [



In the classical setting
p* :H(S) — H(Fs(F)), ¢* : H(S) — H(S)

are both ring monomorphisms.

They lead to the classical splitting principle.

Such functorialties fail for QH.

Instead, we develop a quantum splitting principle to study

QH(S) --» QH(Fs(F)),  QH(S) --» QH(S).

In particular, .7 -invariance (analytic continuations)
F 1 QH(X(s ) = QH(X(g )

with .Zg" = (q")~ is reduced to the split case.



Starting with (So, Fo, F) = (S, F,F’), we construct (S;, F;, F})i>o:
¢i: Siv1 =BI,S; — S;

for some smooth T; C S;, F;11 = ¢F; and Fz+1 = (P*F,

> Z-invariance for (SI,FZ,F ) can be reduced to the .Z-invariance
for the triple in the next stage (Siy1,Fiy1,Fi ).

» The problem is solved for S; 1 = S since GW theory is invariant
under smooth deformations.

We consider the deformation to the normal cone for T; < S;:
®; : S = Bl (0 (Si x Al) — A,

St = S5; ~ Siy1 U, Pi = Sy,
E;, = Exc¢; = PTZ-(NT[/S,-)/ and P; = Exc®; = PT,-(NT,-/S,- D ﬁ)



» For simplicity, we write
Xs, = X(SirPizF;‘)

etc. when the bundles are from pullbacks (restrictions).
» The degeneration formula in GW theory says that

(o) X5 = Z< a | ﬁ>'(Xs,-+1,XEl-)<a2 | itV >O(XP]-,XE,-)

H

where ji = {(y;, i)} is a H(XE,)-weighted partition.

» Thus, for both factors, we need to control
relative invariants for a smooth divisor pair (Xs, Xp)

by the absolute invariants of Xs and Xp.



A trivial degeneration (to the normal cone)
S~SUpP, P=Pp(N®0O)- 5D
leads to

(@) = Pl | )00 (| )06,

=

H

The problem becomes “inversion of this linear system”,
with coefficients being relative invariants of (Xp, Xp).

Here Xp — Xp is a split Pl-bundle arising from 77 : P — D.
Since D = Pr(N7,s5) — T has

dimT < dim S.

= the absolute invariants for Xp are handled inductively.

20/ 3



To handle (Xp, Xp), fiberwise localization was used in
[Maulik-Pandharipande 2006].

Among other technical issues, localizations create
descendants which breaks % -invariance.

We replaced descendants by descendants of special type,
which solved the simple P"-flop case in [LLW 2006].

And then by ancestors in [Iwao-LLW 2012], we extended
Z-invariance to all ¢ > 0 under simple P"-flops.

Now, to treat general P = Pp(N & 0), localizations are
replaced by more complex degeneration argument and

the strong virtual pushforward property, which extends
earlier works of [H.-H. Lai 2008, Manolache 2012].



Review of relative obstruction theory

The universal curve € = %g,ml(x’ B) withf =ev,1: ¢ — X:

f

€ X

n
Men(X,B),
leads to a perfect obstruction theory and virtual cycle
E*:= (Rmf*Tx)" =L, and [Agu(X,B)]""

[Li-Tian 1998, Behrend-Fantachi 1997]. Also a relative theory
fori: X — X' OR with i, : A1(X) — A;(X’") [Manolache 2012]:

T2 M gn(X,B) = Mgn(X,i.P),

ES := (Rm,fLY)" — L.



It is perfect if ¢ = 0 and X’ is convex (e.g. homogeneous). Then
there is a commutative diagram

Mon(X,B) l’ Mon(X,iB)

T
SDrtO,n

through the Artin stack 9y, of prestable curves. We have
compatible obstruction theories

i*E'* ——=E* ——~E?

]

7*]Lpr —_— ]Lp —1;

and [ 4, (X, B)|VF =7 [ M on(X,i.B)]V".



Strong Virtual Pushforward
» Consider the split P!-bundle
m:Y=Px(L®0) =X,

which has two sections iy : Yp < Yand ie : Yoo — Y.

» Relative/Log GW invariants on (Y, Y) and (Y, Y« ) are
called type I; those on (Y, Yo U Yo ) are called type II. They
are equivalent for ¢ = 0 [Abramovich et. al 2014].

» Let (Y, YoU Yw), (Y, Y0) and (Y, Yo) denote the log
schemes, which are log smooth and integral. And

Mon(Y;1,v) i= Mon((Y,YoUYe), B, v)  etc

be the log stack of stable log maps with curve class B.
> u,v are partitions of dy = |, 5 Yo and deo = |, 5 Y, which
specify the contact orders of marked points in Y and Y.

24 /3



When 6 := 7.8 # 0 or n > 3, we have induced maps:
piMon(Y;u,v) — Mon(X,0),
q: ]O,n(Y;V) — %g/n (X, 9)

Lemma (Virtual dimension count)

Lo dim [ g (Y5, v) V" = dim [ (X, 0)]" +1 - g.
2. dim [ g (Y; )" = dim [ gn(X,0)]" +1 - g+ [; Yo.

Proof. For log moduli stack we need to impose conditions by
the contact orders. In (1) it is dp 4+ d and in (2) it is deo. Now

Cl(Y)IB = (7T*C1(X) + Y() + Yoo)‘B = Cl(X)Q + d(] + doo.

Also (dimY —dimX)(1—-g)=1—g.



Proposition (Strong virtual pushforward for ¢ = 0)

1. In Au( Mo n(X,0)), there exists N(u,v) € Q such that

pil A ou(Y; 0, v)]V" =0,
p*([ﬁo,n(Y; U, y)]vir Nevj [Yo]) = N(]l, 1/) []O,n (X, 9)]vir.

2. Assume fﬁ Yo > 0, then q.[# o, (Y; V)]V = 0.

Proof. Choose M € Pic X such that M and L ® M are both very
ample. Then we have a cartesian diagram of embeddings

Y po(-1,1) @ 0)

|

X —L > pMI  plLeM],

with L = i*€0(—1,1). The proposition holds for 7.



It induces a cartesian diagram between log stacks

Mon (Y1, v) —L— Ao (P(O(=1,1) @ 6); u,v)

I I

o (X,0) —> o (PM x plLem], ([, M, [,L® M)).

As i is strict, the underlying stack-diagram is also cartesian.
The relative perfect obstruction theories E? — IL; and Ej‘ — L; fitin

Ej.‘ IL;
prE ——plL

since p*IL; & IL; (cf. Manolache). Now 7' and j' pullback virtual
cycles. The results for (77, p) follow from that for (77, p). O



Back to (Xp, Xp), i.e. type I invariants

» Recall 7: P = Pp(N @ 0) — D, with Py, Pos = D, induces
H:Xp:PXD(LEBﬁ) — Xp,

with L = (Xp — D)*N and sections Xp,, Xp,, = Xp.

> A non-vanishing theorem modelled on (P', {0}) x Xy is
proved to show the invertibility of the linear system.

» Moreover, under the trivial degenerations
P~PUp, P, (P,Pgy) ~ (P,Py) Up,, P,

the “strong virtual pushforward” and “TRR for ancestors” —
type I invariants are determined by absolute, type 11, and
rubber invariants modulo lower degree ones.



For Xp — Zp — P with relative hyperplane classes ¢, 1, a
class B € NE(Xp) has (Bp,d) € NE(P) x Z withd = fﬂ ¢
The genus 0 generating series
(a)ig = L (a)7d
(ﬁ ) ﬁG(ﬂp,d) f

is a sum over the extremal ray. Similarly for type I, II, etc.

Then for w being pullback insertions from Xp, we have

< 7w H, i@ >(Xpooo) _

(Bp,d)

Y G (7 e Thy i) el )] (e wa)f,

Ln=(T1,I2)

spanned by type Il and type I series with pullback insertions.

XP Xpoo )

Moreover, if fﬁ Py > Othen (w | 7)4 =0.



Proposition (Type I reduction)
Assume fﬁp Py < 0. An ordering is introduced on {V} such that

1. Ifv = {(v;, Bj) } # @ then there exists C(V) > 0, k(V) € Zx,

— — 7 00 XP
C 19 - o B Tt 0 )

is generated by “relative and rubber series” on Xp of class at
most (Bp,d), and those of (Xp, Xp,,) involving class (Bp,d)
whose orders are lower than ( w | V ) g, a)-

2. If V=@ then

(Bp,d)

is generated by series of relative invariants on Xp with curve
classes lower than (Bp,d).

d)



Theorem (Type II invariance)

F-invariance for Xp implies F-invariance for (Xp, Xp, U Xp,, ).

» For fiber class inv., i.e. B € NE(Xp/D), they are reduced to
the cup product on a birational D’ — D and the case

(P',{0,00}) x Xpt.

Thus we consider non-fiber class type II-inv.

» Let k > 0 be the number of non-pullback insertions in
mt: Xp — Xp. If k <1, the strong pushforward (1) applies.

» If k > 2, since

[Xp,] — [Xp,] = 771 (Nxp /x5),

modulo type II-inv with k — 1 non-pullback insertions, we
may assume one is iy, («) and the others are ieo, (1;).



The family W = Bly, (o) Xp X A — Xp x A gives

- . =1 _\ (Xp, Xpy, Xpg,)
W -1y (& Toox (&) | V =
(1w ion) [Time(w) 17 ) )

. . 7\°* =1 -\
%C,7< Al wy gy (a) | Ave >r1< Aer | wy -gzw*(a,') | v >r2'

where 7 = (I'1, T) is the splitting type.
» Here w, wi, w; are pullbacks insertions from Xp.

» The RHS is determined by type II generating functions
with at most k — 1 non-pullback insertions.

» This relation is compatible with .#-invariance, and the
theorem follows by induction on k € IN.

We omit the discussion on rubber calculus. QED



Problem: non-split quantum Leray-Hirsch?

For P = Px(V) = Px(®!_,L;), the QLH says that
PF/X 4 V¥ — VP,
For the primitive class ¢ € NE(P/X), the Picard—Fuchs is
0, = H::1 2041, — qgeth.
When V is non-split, we may still define @ = zd, and
O =fv =+ a (VI + - (V) - ge”.

Under QDE it is essentially equivalent to [],.



For B € NE(X), alift B € NE(P) is admissible if —(h + L;).p > 0
for all i. A minimal effective lift B* is admissible. In this case

r —(h+L;).p -1

Dg.(z) :== H [T (20n41, — m2).

Then the lift of QDE form H(X) to H(P) is

_ Q¥ D Q% —k -
20;20; = Zk,ﬁ gF ePF Aij,B(t) Dg. (z) z0k.
However, Dg.(z) depends on B*.L; in an essential way and it is
unclear if it is equivalent to another expression which does not
depend explicitly on the splitting factors L;’s.

For V non-split, our splitting principle do lead to effective
determinations of QH(Px(V)) by reducing it to the split case. [J



