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In 1994, Yau suggested the study of finite distance boundary
points of the moduli space of Calabi-Yau manifolds, with respect
to the Weil-Petersson metric:

ωWP = −∂∂̄ log
√
−1

n
∫

Xs

Ω(s) ∧ Ω(s).

Candelas et. al. 1990: Conifold (ODP) degenerations of Calabi-Yau
3-folds are at finite WP distance (by way of explicit calculations).
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—, 1995; MRL 1997:

Schmid’s Nilpotent Orbit Theorem =⇒ A CY degeneration X → ∆
is at finite WP distance iff NF n

∞ = 0.

Clemens-Schmid exact sequence =⇒ For a semi-stable CY
degeneration X → ∆ with X0 =

⋃m
i=0 Xi , NF n

∞ = 0 iff there is a
component X0 with hn,0 ≡ h0(K ) 6= 0.

Corollary: Degenerations of CY acquiring only canonical
singularities are at finite WP distance.

—, MRL 2003: Assuming the MMP in dimension n + 1, then the
converse holds in dimension n. In particular, for X → ∆ being a
finite distance degeneration of CY 3-folds, there exists another
birational model X′ → ∆ such that X′0 is a CY with at most
canonical singularities.
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Interesting Geometries occur at finite WP distance:

Extremal transitions: Y 7→ X :

Y

ψ

��
W

i ///o/o/o X ⊃ Xt = X

where ψ is a crepant (K -equivalent) resolution and i is a
smoothing of canonical singularities. Notice that there is a
topology change from Y to X .

Flops: Different crepant resolutions Y and Y ′ of W are related by
flops. hp,q(Y ) = hp,q(Y ′), but they are not homotopy equivalent
and the classical cohomology rings are not isomorphic.
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K -equivalence: For birational projective complex d-dimensional
manifolds f : X 99K X ′, X =K X ′ if φ∗KX = φ′∗KX ′ for some

Y
φ

��~~
~~

~~
~

φ′

  A
AA

AA
AA

X
f // X ′

eg. birational Calabi-Yau’s or minimal models.

Conjecture: There exists F = [Γ̄f ] +
∑

Ti ∈ Ad(X × X ′) which
gives isomorphism of Chow motives [X ] ∼= [X ′]. F is orthogonal
(preserving the Poincaré pairing) and

F : QH(X ) ∼= QH(X ′)

after an analytic continuation over the Kähler moduli. (In general
X and X ′ are not even homotopy equivalent.)
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Gromov-Witten invariants: For α ∈ H(X )⊗n, β ∈ H2(X ,Z)

〈α〉g ,n,β =

∫
[Mg,n(X ,β)]vir

ev∗α

with ev =
∏

ei : Mg ,n(X , β) → X n being the evaluation map.

Big quantum ring: Let {Ti} be a basis of H(X ) and t =
∑

tiTi ,

Fg (t) :=
∑
n,β

qβ

n!
〈tn〉g ,n,β.

The quantum product uses only g = 0. Let Φ = F0,

Ti ∗t Tj =
∑
k

Φijk(t)T k =
∑
k,n,β

qβ

n!
〈Ti ,Tj ,Tk , t

n〉0,n+3,βT
k ,

where gij = (Ti ,Tj), T j = g ijTi is the dual basis.
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Kähler moduli: Let KC
X = H1,1

R (X )×KX be the complexified
Kähler cone and let ω = B + iH ∈ KC

X . Then

qβ = e2πi(ω,β), |qβ | = e−2π(H.β) < 1.

It is conjectured that 〈α〉 =
∑
〈α〉βqβ converges in ω ∈ KC

X .

Analytic continuation: For X =K X ′ and X 6∼= X ′,
H2(X ) ∼= H2(X ′) but KX ∩ KX ′ = ∅ in H2. If F preserves the
Poincaré pairing, then F(Ti ∗t Tj) = FTi ∗Ft FTj is equivalent to

ΦX
ijk(ω, t) = ΦX ′

ijk (Fω,Ft).

up to analytic continuations in ω from KC
X to KC

X ′ . Since ω and
Fω are canonically identified and (ω, β)X = (Fω,Fβ)X ′ , formally
this means

qβ 7→ qFβ .
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Ordinary Pr flops: Let F ,F ′ be rank r bundles over S . It is a
square

E

φ̄

~~||
||

||
|| CC

C

φ̄′

!!C
CC

� � j // Y

φ

}}{{
{{

{{
{{

φ′

!!C
CC

CC
CC

C

Z

ψ̄   A
AA

AA
AA

A
� � i // X

ψ

  B
BB

BB
BB

B Z ′

||
|
ψ̄′

~~||
|

� � i ′ // X ′

ψ′
}}{{

{{
{{

{{

S
� � j′ // X

where Z = PS(F ), Z ′ = PS(F ′) and E = Z ×S Z ′. Moreover

NE/Y = φ̄∗OZ (−1)⊗ φ̄′∗OZ ′(−1),

NZ/X
∼= OZ (−1)⊗ ψ̄∗F ′.

These are the simplest K equivalent maps f : X 99K X ′.
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Theorem (Y.-P. Lee, H.-W. Lin, —; 2006–2008)

(1) For Pr flops f : X 99K X ′, the graph closure F = [Γ̄f ] induces
canonical isomorphism of Chow motives.

(2) For simple Pr flops, the full Gromov-Witten theory in the
stable range 2g + n ≥ 3 can be analytic continued to each
other under the graph correspondence.

(3) For Pr flops, the Gromov-Witten theory in the stable range
2g + n ≥ 3 attached the the extremal rays are invariant up to
analytic continuations.

(4) For Pr flops with split bundles F =
⊕

Li and F ′ =
⊕

L′i , the
big quantum cohomology rings are analytic continuations of
each other under the graph correspondence.
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Genus zero theory: The Conjecture for 3-folds was previously
solved by A. Li and Y. Ruan in 1998. 3 ingredients of their proof:

(1) Symplectic deformations and decompositions of K equivalent
maps into P1 flops. (Kawamata, Kollár, Friedman.)

(2) Multiple cover formula for P1 = C ⊂ X , NC/X = O(−1)⊕2:

〈−〉X0,dC =
1

d3
.

(Aspinwall-Morrison, Voisin, Lian-Liu-Yau.)
Witten 1992: The defect of classical cup product is corrected
by the 3-point functions on C .

(3) Relative GW invariants and the degeneration formula.
(Li-Ruan, Inoel-Parker, J. Li.) For β 6∈ Z[C ],

〈α1, . . . , αn〉g ,n,β = 〈Fα1, . . . ,Fαn〉g ,n,Fβ .
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We make progresses on (2) and (3).

The defect of product structure:

f : X 99K X ′ a simple Pr flop, S = pt, F = [Γ̄f ],
h = hyperplane class of Z = Pr , h′ = hyperplane class of Z ′,
` := [C ] = hr−1 line class in Z (extremal ray) etc.. Then

F[hs ] = (−1)r−s [h′s ].

In particular F` = −`′.
Lemma. For α ∈ Ai (X ), β ∈ Aj(X ), γ ∈ Ak(X ) with
i + j + k = dim X = 2r + 1,

Fα.Fβ.Fγ = α.β.γ + (−1)r (α.hr−i )(β.hr−j)(γ.hr−k).
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Quantum corrections attached to the extremal rays:

dim [Mg ,n(X , β)]virt = −(KX .β) + (dim X − 3)(1− g) + n.

Theorem. For all αi ∈ Ali (X ) with 1 ≤ li ≤ r and∑n
i=1 li = 2r + 1 + (n − 3), there are recursively determined

universal constants Nl1,...,ln , such that for n ≤ 3, N∗ ≡ 1 and

〈α1, . . . , αn〉0,n,d = (−1)(d−1)(r+1)Nl1,...,lnd
n−3(α1.h

r−l1) · · · (αn.h
r−ln).

Consider the basic geometric series f(q) :=
q

1− (−1)r+1q
. Then

f(q) + f(q−1) = (−1)r .
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3-Point functions (small quantum product):

〈α1, α2, α3〉 :=
∑

β∈NE(X )
〈α1, α2, α3〉0,3,β qβ

= (α1.α2.α3) +
∑

d∈N
〈α1, α2, α3〉d` q

d` +
∑

β 6∈Z`
〈α1, α2, α3〉β qβ .

Since (Fαi .h
′(r−li )) = (−1)li (Fαi .Fhr−li ) = (−1)li (αi .h

r−li ),

〈Fα1,Fα2,Fα3〉 − 〈α1, α2, α3〉 = (−1)r (α1.h
r−l1)(α2.h

r−l2)(α3.h
r−l3)

+ (α1.h
r−l1)(α2.h

r−l2)(α3.h
r−l3)((−1)2r+1f(q`

′
)− f(q`)) = 0,

modulo the 3rd (non-extremal) terms.

Unlike the r = 1 case, analytic continuations for the 3rd terms are
needed!

Dragon C.-L. WANG Quantum Invariance under Flops and Transitions
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Big quantum product: For n = 3 + k point extremal invariants
with k ≥ 1, we get

〈α1, . . . , αn〉 = Nl1,...,ln(α1.h
r−l1) · · · (αn.h

r−ln)

(
q`

d

dq`

)k

f(q`)

Since (−1)
P

li = (−1)k+1, taking into account of

q−`
d

dq−`
= −q`

d

dq`

we get 〈Fα1, . . . ,Fαn〉 = 〈α1, . . . , αn〉 for all k ≥ 1 (n ≥ 4).
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Sketch of proof:

The virtual fundamental class: [M̄0,n(X , d`)]
virt is represented

by the Euler class of Ud = R1ft∗e
∗
n+1N, where N = NZ/X :

M0,n+1(Pr , d)
en+1 //

ft
��

Pr

M0,n(Pr , d)

.

That is, [M0,n(X , d`)]
virt = e(Ud) ∩ [M0,n(Pr , d`)] and∫

[M̄0,n(X ,d`)]virt
ev∗α =

∫
M̄0,n(Pr ,d)

ev∗(α|Pr ).e(Ud).
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The theorem is equivalent to∫
M̄0,n(Pr ,d)

e∗1hl1 · · · e∗nhln .e(Ud) = (−1)(d−1)(r+1)Nl1,...,lnd
n−3.

Descendent invariants: Let Li be the line bundle on M̄g ,n(X , β)
whose fiber at (f ;C , (x1, . . . , xn)) is T ∗

xi
C . Let ψi = c1(Li ).〈

τk1(h
l1), · · · , τkn(h

ln)
〉

d
=

∫
M̄0,n(Pr ,d)

(∏n

i=1
ψki

i e∗i hli
)
.e(Ud).

Step 1. One point invariants. For l + k = 2r − 1, 1 ≤ l ≤ r ,〈
τkhl

〉
d

=
(−1)d(r+1)+k

dk+2
C k+1

r .

The invariant is zero if l + k 6= 2r − 1.
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Consider a C× action on P1 with weight z . By the localization
theorem and the work of Lian-Liu-Yau (1996, Mirror Principle I),

J(d`, z−1) ≡ e1∗
e(Ud)

z(z − ψ)
= Pd ≡ (−1)(d−1)(r+1) 1

(h + dz)r+1
.

No mirror transformations are needed since r + 1 ≥ 2.

Step 2. Divisor relation for g = 0. [Lee-Pandharipande 2003]
For L ∈ Pic(X ) and i 6= j ,

e∗i L = e∗j L + (β, L)ψj −
∑

β1+β2=β

(β1, L)[Di ,β1|j ,β2
]vir .

Also ψi + ψj = [Di |j ]
vir and for n ≥ 3, ψj = [Dj |ik ]vir .

For toric varieties, H∗ = A∗ is generated by divisors.

Dragon C.-L. WANG Quantum Invariance under Flops and Transitions
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Deformations to the Normal Cone

X = X × A1

Φ : W → X is the blowing-up along Z × {0}
Wt

∼= X for all t 6= 0

W0 = Y ∪ Ẽ with Ẽ = PZ (NZ/X ⊕ O)

φ = Φ|Y : Y → X is the blowing-up along Z

p = Φ|Ẽ : Ẽ → Z ⊂ X is the compactified normal bundle.

Y ∩ Ẽ = E = PZ (NZ/X ) is the φ− exceptional divisor

By similar constructions we also have Φ′ : W ′ → X′ = X ′ ×A1 and
W ′

0 = Y ′ ∪ Ẽ ′. By definition of ordinary flips we have Y = Y ′ and
E = E ′.
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Representatives of Classes on W0

All cohomology classes α ∈ H∗(X ,Z)⊕n are global and the
restriction α(t) on Wt is defined for all t.

Let j1 : Y ↪→ W0, j2 : Ẽ ↪→ W0, j : E ↪→ Y and j+ : E ↪→ Ẽ .
The class α(0) can be represented by explicit data

(j∗1α(0), j∗2α(0)) = (α1, α2)

such that

j∗α1 = j+∗α2 and φ∗α1 + p∗α2 = α.

Such representatives are not unique. For e being a class in E ,

(φ∗α, p∗α) ∼ (φ∗α− j∗e, p
∗α+ j+∗ e).

Dragon C.-L. WANG Quantum Invariance under Flops and Transitions
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Cohomology Reduction to Local Models

For a simple flop f : X 99K X ′, let α ∩ Z 6= ∅ with representatives
α(0) = (α1, α2) and Fα(0) = (α′1, α

′
2).

If α1 = α′1 then Fα2 = α′2.

Degeneration formula: 4(E ) =
∑

i Si ⊗ S i .

〈α〉Xβ =
∑

I

∑
η∈Ωβ

Cη〈α1;SI 〉
(Y ,E)
Γ1

〈α2;S
I 〉(Ẽ ,E)

Γ2
.

Let 〈α〉X =
∑

β〈α〉Xβ qβ and Ff (qβ) = f (qFβ) be the change of
variables.

To prove the functional equation F〈α〉X ∼= 〈Fα〉X ′
, it is enough to

show that
F〈α2;S

I 〉(Ẽ ,E)
µ

∼= 〈Fα2;S
I 〉(Ẽ ′,E)
µ .
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Apply deformation to normal cone to Ẽ , W0 = Ỹ ∪ Ẽ , . the
degeneration formula (with descendent) implies that

〈α1, . . . , αn, τµ1−1Si1 , . . . , τµρ−1Siρ〉Ẽβ

= 〈α1, . . . , αn;Si1 , . . . ,Siρ〉
(Ẽ ,E)
µ,β +

∑
〈· · · 〉(Ỹ ,E0)〈∗ ∗ ∗〉(Ẽ ,E)

where ∗ ∗ ∗ is of lower order in cohomology degree and contact
order. May apply induction.

So in order to prove F〈α〉X ∼= 〈Fα〉X ′
, it is enough to show that

F〈α1, . . . , αn, τk1Si1 , . . . , τkρSiρ〉Ẽ

∼= 〈Fα1, . . . ,Fαn, τk1FSi1 , . . . , τkρFSiρ〉Ẽ
′

for projective bundles Ẽ and Ẽ ′. Descendent of special type!
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Setup on Local Models

The ordinary cohomology ring of Ẽ = PPr (O(−1)⊕(r+1) ⊕ O) is
given by

H∗(Ẽ ) = Z[h, ξ]/(hr+1, (ξ − h)r+1ξ).

where h = c1(OPr (1)) and ξ = c1(OẼ (1)).

Since c1(Ẽ ) = (r + 2)ξ is semi-positive, Ẽ is a semi-Fano toric
variety.

NE (Ẽ ) = R+`⊕ R+γ with ` the line class in Z (= Pr ) and γ the
fiber line class of Ẽ → Z . Denote

β = d1`+ d2γ.

The virtual dimension = c1(Ẽ ).β + · · · = (r + 2)d2 + ·. So every
〈α〉 =

∑
β〈α〉βqβ is a sum over β with a fixed d2.

Dragon C.-L. WANG Quantum Invariance under Flops and Transitions
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Two Important Special Cases

CASE I: d2 = 0. Then F〈α〉X ∼= 〈Fα〉X ′
has been proved before by

the generalized multiple cover formula.

CASE II: One-point descendent invariant for any d2 ∈ N.

By the theory of Euler data of Lian-Liu-Yau on semi-Fano smooth
toric varieties we get (here no mirror transform is needed)

ev
∗

1

z(z − ψ)
= Pβ =

0∏
m=−∞

(ξ − h + mz)r+1

d1∏
m=1

(h + mz)r+1
d2−d1∏

m=−∞
(ξ − h + mz)r+1

d2∏
m=1

(ξ + mz)

.
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One-point Descendent Invariant of special type

Notation: Denote by X = Ẽ , X ′ = Ẽ ′. It is convenient to consider
the generating series (Givental’s J function)

JX :=
∑

β∈NE(X )

qβev
∗

1

z(z − ψ)
=

1

z2

∑
β∈NE(X )

qβ
∑
k≥0

ev
∗
ψk

zk
.

Theorem
For any α ∈ H∗(X ), the one point function 〈τkξα〉X satisfies the
functional equation (without analytic continuation):

F 〈τkξ.α〉X = 〈τkF(ξ.α)〉X
′
=

〈
τkξ

′.Fα
〉X ′

.

Equivalently, F is linear in Jξ:

F(JX ξ.α) = JX ′F(ξ.α) = JX ′ξ′.Fα.

Dragon C.-L. WANG Quantum Invariance under Flops and Transitions
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Corrections for higher genus: Let dim X ≥ 3, ` ∈ NE (X ) with
(KX .`) = 0, the virtual dimension of Mg ,n(X , d`) is given by

Dg ,n = (dim X − 3)(1− g) + n.

If ` is of flopping type, 〈α〉g ,n,d` depends only on (Z ,NZ/X ) for
d ≥ 1. (But not for d = 0.). If Dg ,n < 0, all GW invariants vanish.

Genus one: If g = 1 then D1,n = n and each insertion is a divisor.
Hence if d ≥ 1 the n-point invariants are determined by

〈−〉1,d =

∫
[M1,0(X ,d`)]vir

1.

For d = 0 and n ≥ 2, the divisor axiom shows that 〈α〉1,n,0 = 0.
n = 1 case requires different consideration.

Dragon C.-L. WANG Quantum Invariance under Flops and Transitions
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Indeed Mg ,n(X , 0) ∼= X ×Mg ,n and

[Mg ,n(X , 0)]vir = e(E) ∩ [X ×Mg ,n]

where E = π∗1TX ⊗ π∗2H∨
g with Hg the Hodge bundle. Let

λi = ci (Hg ). For (g , n) = (1, 1), e(E) = ctop(X )− ctop−1(X ).λ1,

〈α〉X1,0 = −(ctop−1(X ).α)X ·
∫

M1,1

λ1 = − 1

24
(ctop−1(X ).α)X ,

For simple Pr flops, we verify that F〈α〉X1 = 〈Fα〉X ′
1 by proving

〈−〉1,d = (−1)d(r+1) r + 1

24d

and by calculating (c2r (X ).h)− (c2r (X
′).Fh) in local models.

(For r = 1, BCOV 1993, Graber-Pandharipande 1999.)
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For dim X = 3 and g ≥ 2, Dg ,n = n. It is reduced to n = 0. For
simple P1 flop with d ≥ 1, Faber-Pandharipande 2000 showed

〈−〉g ,d :=

∫
[Mg,0(X ,d`)]vir

1 = Cg d2g−3

where Cg = |χ(Mg )|/(2g − 3)!.

The generating function

〈−〉g :=
∞∑

d=0

〈−〉g ,d qd = 〈−〉g ,0 + Cg δ
2g−3f,

is invariant under F since 2g − 3 ≥ 1. For 〈−〉Xg ,0 = 〈−〉X ′
g ,0, the

degeneration analysis reduces the proof to local models, which are
both isomorphic to PP1(O(−1)2 ⊕ O).
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Formal loop space: H+ :=
⊕∞

k=0 H zk = H[z ]. Fg (t) is a
function on Ht , t =

∑
µ,k tµk Tµz

k . The formal loop space over H
is

H := T ∗H+ = H[z , z−1]].

(H,Ω) is symplectic. Let ·̂ be the Heisenberg quantization.

Ancestor potential: In the stable range 2g + m ≥ 3, let
π = ft ◦ st : Mg ,m+l(X , β) → Mg ,m. ψ̄i := π∗c1(Li ).

F̄g (t̄, s) :=
∑

β,m,l

qβ

m!l!
〈t̄m, s l〉g ,m+l ,β

is a function on H+ × H where t̄ =
∑

t̄µk Tµψ̄
k , s =

∑
sµTµ.

AX (t̄, s) := exp
∞∑

g=0

~g−1F
X
g (t̄, s).
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Frobenius formalism: The Dubrovin connection on TH is

∇z = d − 1

z

∑
µ

dsµ ◦ Tµ ∗ .

Recall that ∇2
z = 0 ⇐⇒ WDVV. The fundamental solution N × N

matrix S (N = dim H) is found at ∞ by S = J(s, 1/z).

Semi-simple Frobenius manifolds: If (QH, ∗) is semi-simple,
i.e. there exist eigen-vector fields εi with εi ∗ εj = δij εi , let ui be
the dual (canonical) coordinates and U = diag(u1, · · · , nN). Let
Ψ−1 be the transition matrix from {εi} to {Tµ}. Then Givental
shows that ∇zS = 0 near z = 0 for

S = Ψ−1(s)R(s, z)eU/z

where R is a formal series in z , c.f. Lee-Pandharipande’s notes.
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Ancestor potentials via quantization, the s.s. case: Let
DN(t) =

∏N
i=1 Dpt(t

i ) be the descendent potential of N points.

C. Teleman 2007 classified all semi-simple TFT’s. In particular the
following formula (conjectured by Givental) holds:

AX (t̄, s) = e c̄(s)Ψ̂−1(s)R̂X (s, z)e
dU/z(s)DN(t),

where c̄(s) = 1
48 ln det(εi , εj).

Semi-simplicity for local models: For X = PPr (O(−1)r+1 ⊕ O),
QH∗(X ) is semi-simple. Indeed, for q1 = q` and q2 = qγ ,

QH∗
small(X ) ∼= C[h, ξ][q1, q2]/(h

r+1−q1(ξ−h)r+1, (ξ−h)r+1ξ−q2).

The eigenvalues of h∗ and ξ∗ are all different, hence (QH∗, ∗) is
semi-simple at the origin s = 0. Since semi-simplicity is an open
condition, QH∗(X ) is also semi-simple.
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From descendent to ancestors: Let Dj be the (virtual) divisor on

Mg ,m+l(X , β) as the image of the gluing morphism∑
β′+β′′=β

∑
l′+l′′=l

M0,{j}+l′+•(X , β
′)×XMg ,(m−1)+l′′+•(X , β

′′) → Mg ,m+l(X , β),

Then ψj − ψ̄j = [Dj ]. The j-th point is in the g = 0 component.
In the stable range 2g + n ≥ 3,

〈τk+1,̄l α1, · · · 〉g (t̄, s)

= 〈τk,l+1α1, · · · 〉g (t̄, s) +
∑
ν

〈τk α1,Tν〉0(s) 〈τl T
ν , · · · 〉g (t̄, s).

This reduces all descendent of special type to ancestors. The proof
for higher genus is complete by the degeneration analysis.
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Simple extremal transition in dimension k:

Let X̄ be a k dimensional variety contain only a hypersurface
canonical singularity (p, X̄ ) defined by xk

0 + · · ·+ xk
k = 0.

A crepant resolution can be obtained by a standard blow-up
φ : Y = BlpX̄ → X̄ . X̄ can be smoothed into a flat family X → ∆
with general smooth fiber X = Xt with t 6= 0 and X0 = X̄ . We
call Y 7→ X a simple extremal transition in dimension k.
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Semi-stable degenerations W → ∆ attached to X → ∆:

Notice that the total space X is a smooth variety and W can be
achieved by taking a degree k base change

X′ //

��

X

��
∆

t 7→tk
// ∆

and then set W = Blp′X′. Here p′ ∈ X′ is now a k + 1 dimensional
simple hypersurface singularity of order k in Ck+2. Thus
W0 = Y ∪ Ẽ with Ẽ ⊂ Pk+1 being a degree k Fano hypersurface.
The intersection E = Y ∩ Ẽ , which is the φ exceptional divisor, can
be regarded as a degree k hypersurface in Pk , which is still Fano.
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NE/Ẽ = O(1) and NE/Y = O(−1). (E ,Y ) is equivalent to Pk “cut

out” by a rank 2 split bundle Vk = O(k)⊕ O(−1).

The A model on X can be compared with the one on Y through
the degeneration analysis on the semi-stable family

W

π

��
∆

thanks to the description of Ẽ as a toric Fano hypersurface.

〈a〉X =
∑
µ

〈a1 | µ〉(Y ,E) ∗ 〈a2 | µ〉(Ẽ ,E)

with µ being the splitting/gluing data of curves.
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Let ` ∈ NE (Y ) be the φ extremal ray, which is of flopping type.
The genus 0 extremal function is defined by

f (a) = 〈a〉Yextr :=
∑

d∈Z+

〈a〉Y0,d` qd`.

By the localization calculation in local mirror symmetry or rather
the quantum Serre duality principle, the calculation of f (a) may be
transformed into a calculation on

V +
k = O(k)⊕ O(1)

��
Pk

which in turn reduced to O(k) over Pk−1, that is the case of
Calabi-Yau hypersurface CYk .
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From A model of Y to B model of X :

The key observation is to “observe” the appearance of CYk in the
degeneration family π : W → ∆. In fact,

Theorem
There is a sub-degeneration of VHS which corresponds the the
vanishing cycle along π, whose Picard-Fuchs equation turns out
have f (a) as its solution, up to a mirror change of variable!
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