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1. What is Quantum Cohomology?

A: Deformation of (H(X),∪) by rational curves.
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I Let X/C be a projective manifold, Mn(X, β) be the moduli space
of stable maps

f : (C, p1, . . . , pn)→ X

from n-pointed rational nodal curves to X with image class
β ∈ NE(X), the Mori cone of effective 1-cycles.

I For i ∈ [1, n], let ei : Mn(X, β)→ X be the evaluation map

ei(f ) := f (pi) ∈ X.

I Let t ∈ H = H(X). The g = 0 Gromov–Witten potential

F(t) = 〈〈−〉〉(t) := ∑
n, β

qβ

n!
〈t⊗n〉Xn,β

= ∑
n≥0, β∈NE(X)

qβ

n!

∫
[Mn(X,β)]vir

n

∏
i=1

e∗i t

is a formal function in t and qβ’s (Novikov variables).
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I We call R := C[[q•]] the (formal) Kähler moduli and denote

HR = H⊗R.

I Let {Tµ} be a basis of H and {Tµ := ∑ gµνTν} the dual basis
with respect to the Poincaré pairing

gµν = (Tµ.Tν), (gµν) = (gµν)
−1.

I Let t = ∑ tµTµ. The big quantum ring (QH(X), ∗) is a t-family of
rings QtH(X) = (TtHR , ∗t):

Tµ ∗t Tν := ∑
ε,κ

∂µ∂ν∂εF(t) gεκTκ ≡∑ Fµνε gεκTκ

= ∑
ε,κ
〈〈Tµ, Tν, Tε〉〉(t) gεκTκ

= ∑
κ, n≥0, β∈NE(X)

qβ

n!
〈Tµ, Tν, Tκ , t⊗n〉Xn+3, βTκ .
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I The WDVV associativity equations equip (HR , gµν, Fijk, T0 = 1) a
structure of formal Frobenius manifold over R.

I It is equivalent to the flatness of the Dubrovin connection

∇z = d− 1
z

A := d− 1
z ∑

µ

dtµ ⊗ Tµ∗t

on the formal relative tangent bundle THR for all z ∈ C×:

∂µAν = ∂νAµ, [Aµ, Aν] = 0,

I where the (connection) matrix Aµ for z∇z
µ is z-free:

Aµ(t) = Tµ ∗t .

I This z-free property uniquely characterizes the constant frame
{Tµ} among all frames {T̃µ} with

T̃µ(q•, t, z) ≡ Tµ (mod R).
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I Let ψ = c1(p∗1ωC /Mn
) be the class of cotangent line at the first

marked section p1 : Mn → C of C → Mn, then

J(t, z−1) := 1 +
t
z
+ ∑

β,n,µ

qβ

n!
Tµ

〈
Tµ

z(z− ψ)
, t⊗n

〉X

n+1,β

encodes invariants with one descendent insertion.

I The topological recursion relation (TRR):

〈〈τd+1Ti, Tj, Tk〉〉 = ∑µ
〈〈τdTi, Tµ〉〉〈〈Tµ, Tj, Tk〉〉

implies the quantum differential equation (QDE):

z∂µ z∂νJ = ∑κ
Aκ

µν z∂κJ.

I Let Dz be the ring of differential operators generated by z∂i with
coefficients in O = C[z][[q•, t]]. The Dz-module Odim H associated
to z∂i 7→ z∇z

i is isomorphic to the cyclic Dz-module DzJ.
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I In practice, one might be able to find element

I(t̂, z, z−1) ∈ DzJ(t, z−1)

but only along some restricted variables t̂ ∈ H1 ⊂ H.

I If H1 generates H (either in classical product or quantum
product), then often one may compute J(t, z−1) and ∇z.

I For a toric manifold X, such an I function can be found through
the C×-localization data with t̂ ∈ H≤2(X).

I [Lian–Liu–Yau 1996, Givental 1996] For c1(X) ≥ 0, I(t̂, z−1) can
be found and J(t̂, z−1) is obtained by a mirror transform.

I [Coates–Givental 2005, Iritani 2008, Brown 2010] I(t̂, z, z−1) is
found for all toric manifolds. However, the structures and
computations are far more complicated. Need BF/GMT:

Birkhoff Fatcorizations + Generalized Mirror Transform.
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Example: a Fano toric bundle

X = PP1(O(−1)⊕O)
π−→P1,

c1(X) = h + 2ξ > 0,

H(X) = C[h, ξ]/(h2, ξ(ξ − h)).

Let ` be the zero section, γ the fiber line, then

NE(X) = Z`+ Zγ.

QH(X) =?
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I {T0, T1, T2, T3} = {1, h, ξ, ξ2},

t̂ = t0T0 + D, D = t1h + t2ξ ∈ H2.

I Let q1 = q`et1
and q2 := qγet2

(small parameters), then

I(t̂, z−1) := e
t0T0

z ∑
β=d1`+d2γ

qβe
D
z +(D.β) Iβ = e

t̂
z

∞

∑
d1,d2=0

qd1
1 qd2

2 Id1,d2 ,

Id1,d2 :=
1

d1
∏

m=1
(h + mz)2

d2−d1
∏

m=1
(ξ − h + mz)

d2
∏

m=1
(ξ + mz)

= O(z−2).

I [LLY, Givental] =⇒ I(t̂, z−1) = J(t̂, z−1). However, t3 is missing.

I In general, if c1(X).β < 0 for some β, then the z power→ +∞.
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I Technique: use Naive Quantization to replace z∂3J: e.g.

T̂i I = z∂iI, i = 0, 1, 2, T̂3 I = ξ̂2 I := (z∂2)
2 I.

I In general, since I ∈ DzJ, we get T̂iI ∈ DzJ too. Hence(
T̂iI
)
(t̂, z, z−1) = z∇J(σ(t̂), z−1)B(t̂, z).

I The unique gauge transform is called the BF. It implies

J(σ(t̂), z−1) = z∂0J = ∑i T̂iI · (B−1)0
i =: P(t̂, z∂1, z∂2)I(t̂, z, z−1).

I The z−1 coefficient of PI gives the GMT: t̂ 7→ σ(t̂) ∈ HR .

I In practice, we study B, σ(t̂) via the Picard–Fuchs equations of I:

�` = (z∂1)
2 − q1(z∂2 − z∂1),

�γ = (z∂2 − z∂1)z∂2 − q2.
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I This leads to the connection matrix in the frame T̂iI:

z∂a(T̂iI) = (T̂iI)Ca(t̂, z), a = 1, 2.

I In this example the choice of {T̂iI} leads to

C1 =


−q2 q1q2

1 −q1 q2
q1

1

 , C2 =


−q2 q1q2+zq2

q2
1 q2

1 1

 .

I B(t̂, z) = I4 + q2e03 (ξ̂2 7→ ĥξ) removes the z-dependence:

C̃2(t̂) = −(z∂2B)B−1 + BC2(t̂, z)B−1 =


q2 q1q2

q2
1

1 1

 .

I The first column =⇒ σ(t̂) = t̂. In general C̃ = σ∗A: i.e.

C̃a(t̂) = ∑
µ

Aµ(σ(t̂))
∂σµ

∂ta .
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2. Quantum Motives? The Functoriality Problem

Q: Which part of the structure on QH(X) is functorial?
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I Mk: the category of Chow motives, k the ground field.

I Objects: X̂, where X a smooth variety over k.

I Morphisms are correspondences

Γ ∈ Mor(X̂, X̂′) := A(X×X′).

I Induced map on Chow groups: [Γ]∗ : A(X)→ A(X′):

α 7→ π′∗(Γ.π∗α).

I Linear structures: if X̂ ∼= X̂′ then Ai(X) ∼= Ai(X′) for all i. If k is a
number field, X and X′ have the same L functions for each i.

I However, the ring structures are different: A(X) 6∼= A(X′)!

I [Wang 2002] Is there a universal product structure defined on
Chow motives? Namely a universal family (A , ∗)→ T such that
all geometric realizations (A(X), •) correspond to special points.
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I Typical examples come from ordinary (r, r′)-flops/flips:

E = Z×S Z′ ⊂ Y
φ

uu

φ′

))
P1 ∼= ` ⊂ Z ⊂ X

f //

ψ
))

X′ ⊃ Z′ ⊃ `′ ∼= P1

ψ′uu
S ⊂ X

I ψ̄ : Z = PS(F)→ S, rk F = r + 1, ψ-extremal ray ` = [C].

I NZ/X|ψ̄−1(s)
∼= OPr(−1)⊕(r

′+1) for all s ∈ S.

I Y = BlZX = BlZ′X′, KY = φ∗KX + r′E = φ′∗KX′ + rE. Hence

φ∗KX = φ′∗KX′ + (r− r′)E.
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I For flops r = r′, we have K-equivalence and X̂ ∼= X̂′ via

Φ := [Γf ]∗ = φ′∗ ◦ φ∗ : H(X)
∼−→H(X′).

I It preserves the Poincaré pairing

(Φa.Φb)X′ = (φ′∗Φa.φ∗b)Y = ((φ∗a + ξ).φ∗b)Y = (a.b)X,

but NOT the cup product!

I For the simple case (S = pt), let αi ∈ H2li(X), ∑3
i=1 li = dim X,

(Φα1.Φα2.Φα3)
X′ = (α1.α2.α3)

X −∏3
i=1(αi.hr−li)Z,

where h = c1(OZ(1)) ∈ H2(Z).

I Solution: use quantum product (QtH, ∗t) instead.
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I The effectivity of extremal curve is not preserved:

Φ` = −`′ 6∈ NE(X′).

I It is necessary to consider analytic continuations QH(X) of
QH(X) along the Kähler moduli via the partial compactification

Φqβ = qΦβ toward “q` = ∞”.

I For flops, the functoriality is simply the canonical isomorphism

Φ : QH(X)
∼−→QH(X′).

I In terms of Gromov–Witten invariants: for t ∈ H(X),

Φ〈〈Ti, Tj, Tk〉〉X(t) = 〈〈ΦTi, ΦTj, ΦTk〉〉X
′
(Φt).

I [Li–Ruan] for 3-folds, [LLW, LLQW] for general ordinary flops.
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I The simplest non K-equivalent birational maps preserving the
dimension of Kähler moduli are smooth ordinary flips.

I Pseudo-abelian completion of Chow motives M̃: objects (X̂, p),
where p ∈ End(X̂) = A(X×X) is a projector: p2 = p. Then

X̂ ≡ (X̂, 1) = (X̂, p)⊕ (X̂, 1− p).

I For flips with r > r′, Ψ := [Γf−1 ] induces a sub-motive

Ψ : X̂′ ∼−→(X̂, p), p := Ψ ◦Φ.

I On cohomology
Ψ : H(X′) ↪−→ H(X),

the Poincaré pairing is still preserved (Ψa.Ψb)X = (a.b)X′ , but
not the cup product. Not even the quantum product!

I Solutions?
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3. Statements of Results for Simple Flips

f : X 99K X′
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I We would like to show that QH(X′) can still be regarded as a
sub-theory of QH(X) in a canonical, though non-linear, manner.

I First of all, there is a basic split exact sequence

0 // K // H(X)
Φ // H(X′)
Ψ
ll // 0 .

I The kernel space (vanishing cycles) K has dimension d := r− r′

and is orthogonal to ΨH(X′):

K =
⊕r

j=r′+1
C[Pj].

I Secondly, the Dubrovin connection ∇ can be analytically
continued along the Kähler moduli to a connection Φ∇ under the
rule

Φqβ = qΦβ, β ∈ NE(X).

I As before Φ` = −`′ and analytic continuations are required.
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I We use identification of divisorial coordinates ti and Novikov
variables qβi (divisor axiom): let D = ∑ tiDi, (Di.βj) = δij,

qi := qβi eti
, ∂i =

∂

∂ti = qi
∂

∂qi
.

I Hence
∇µ = ∂µ −

1
z

Tµ∗

has only (formal) regular singularities at qi = 0.

I The resulting connection Φ∇ turns out to be analytic in the
extremal ray variable q` and contains irregular singularities in the
K directions along q` = ∞, that is q`

′
= 0.

I This suggests to extract the Dubrovin connection ∇′ on TH′R ′ ,
where H′ = H(X′) and R ′ = C[[NE(X′)]], from Φ∇

by removing the K directions

— since ∇′ is (formlly) regular.
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I We will show that there is a bundle-decomposition

TH⊗R ′[1/q`
′
] = T ⊕K (∗)

into irregular eigenbundle K which extends K over R ′[1/q`
′
]

and the regular eigenbundle T = K ⊥.

I From WDVV equations, both T and K are shown to be
integrable distributions.

I The integrable submanifold passing through the section

Mq′ ⊃ {(q′ 6= 0, t = 0)}

is then the proposed manifold corresponding to QH(X′).

I However, to relate T , and henceMq′ , to QH(X′), we need to
work on the connection (z-dependent) version of (∗).

I Hence there are non-trivial BF/GMT involved, and it is unclear
what kind of functoriality should exist.
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I The end result turns out to be quite satisfactory — the product
structure is preserved but not the metric (Poincaré pairing)!

Theorem (Lee–Lin–Wang, 2017)
For the local model f : X 99K X′ of simple (r, r′) flips, there is a unique
R ′-point σ0(q′) ∈ H′R ′ and a unique embedding Ψ̂(q′, s) over R ′:

Ψ̂ : H(X′)R ′ −→M ↪−→ H(X)R ′ ,

σ0(q′) + s 7−→ Ψ̂(q′, s).

where s ∈ H(X′), such that

(1) (Ψ̂, σ0) restricts to (Ψ : H′ ↪−→ H, 0) when modulo q`
′
,

(2) Ψ̂ induces an F-embedding over R ′[1/q`
′
]:

(TH′
R ′ [1/q`′ ]

,∇′) �
� dΨ̂ // (THR ′ [1/q`′ ],∇)|M // K ∼= NΨ̂ .
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I In particular, outside the divisor q`
′
= 0, the big quantum

products on the corresponding tangent spaces are preserved.

I Denote the tangent frame by Ψ̂i = ∂iΨ̂ and the induced metric by

gij = (Ψ̂i, Ψ̂j), Ψ̂i := ∑ gijΨ̂j.

I Then Ψ̂ is an F-embedding:

〈〈Ψ̂µ, Ψ̂i, Ψ̂j〉〉X(Ψ̂(q′, s)) = 〈〈T′µ, T′i, T′j〉〉X
′
(σ0(q′) + s).

I Hence there is a family of ring isomorphisms/decompositions:

QΨ̂(q′ ,s)H(X) ∼= Qσ0(q′)+sH(X′)×Cr−r′ ,

which depend on the points (q′, s).
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4. STEP (i)

Irregular Singularity of QH(X) along Vanishing Cycles
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I Small parameters t̂ = t0T0 + D ∈ H≤2(X), ŝ = s0T′0 + D′.

D = t1h + t2ξ = ΨD′ = Ψ(s1h′ + s2ξ ′) = s1(ξ − h) + s2ξ.

s1 = −t1, s2 = t2 + t1.

I Kähler moduli: NE(X) = Z`⊕Zγ, NE(X′) = Z`′ ⊕Zγ′.

Φ` = −`′, Φγ = γ′ + `′,

q1 = q`et1
, q2 = qγet2

,

x = q′1 = q`
′
es1

= 1/q1, y = q′2 = qγ′es2
= q1q2.

I Naive quantization, for i ∈ [0, r], j ∈ [0, r′ + 1], a = hiξj,

â ≡ ∂za := ĥiξ̂j = (z∂h)
i(z∂ξ)

j = (z∂1)
i(z∂2)

j.

I X is Fano, c1(X) = (r− r′)h + (r′ + 2)ξ is ample,

I X′ is bad, c1(X′) = (r′ − r)h′ + (r + 2)ξ ′ has no fixed sign.
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I For β = d1`+ d2γ ∈ NE(X),

Iβ =
1

∏d1
m=1(h + mz)r+1 ∏d2−d1

m=1 (ξ − h + mz)r′+1 ∏d2
m=1(ξ + mz)

I I = et̂/z ∑β eD.βqβIβ is annihilated by Picard–Fuchs equations:

�` = (z∂h)
r+1 − q1(z∂ξ−h)

r′+1,

�γ = z∂ξ(z∂ξ−h)
r′+1 − q2.

I I = I(z−1) =⇒ I = Jsmall and Q0H(X) is “easy”. It is still
non-trivial to write down the Dubrovin connection ∇X.

I The naive frame, for e = hiξj (or even hi(ξ − h)j),

∂ze I ≡ ĥiξ̂j I := (z∂h)
i(z∂ξ)

j I

does not lead to z-free connection matrices for z∂1, z∂2!
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Example: the case of (2, 1) flips.

I For the naive frame respecting H(X) = ΨH(X′)⊕⊥ K, with
v6 = κ̂0 = (ξ̂ − ĥ)2, we have

z∂1(∂
ze I) = z q1

∂

∂q1
(∂ze I) = (∂ze I)C1(q, z),

C1(q, z) =



q1q2 −zq1q2
1 −q1q2

q1q2
1

1
1 −1 q1 −zq1 z2q1

1
−1 1 1 −q1 2zq1

1 q1


.

I It is even unclear where the irregular singularities at q1 = ∞ are
located. (Not just in the K directions?)
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The Ψ-corrected quantum frame

I The quantized basis corresponding to ker Φ is chosen to be

κ̂iI = ĥi(ξ̂ − ĥ)r′+1I, i ∈ [0, r− r′ − 1].

I For e1 ∈ [0, r + 1], e2 ∈ [0, r′], we define

ve := ĥe1(ξ̂ − ĥ)e2 I + δ(e1, e2)
(−1)r′−e2 κ̂e1+e2−(r′+1),

where {
δ(e1, e2)

= 0 if e1 + e2 ∈ [0, r′], and
δ(e1, e2)

= 1 otherwise.

I The added term comes from ker Φ⇐⇒ e1 + e2 ∈ [r′ + 1, r].

I But H2j(X′) with j ≥ r + 1 are also corrected accordingly.

I The frame reduces to a classical basis when modulo NE(X).
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The connection matrices for z∂1 and z∂2.

I For i = 1, 2, the connection matrix Ci(q1, q2) in the Ψ corrected
frame is independent of z. Moreover, Ai(t̂) = Ci.

I Write Ci =

[
C11

i C12
i

C21
i C22

i

]
wrt. H(X) = ΨH(X′)⊕⊥ K.

I Let d = dim K = r− r′.

I For C1, the d× d block corresponding to ker Φ is given by

C22
1 =


(−1)r′+1q1

1
. . .

1

 .

I Other entries in C1 and C2 have “good properties”!
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I Corollary 1. The Ψ-corrected frame corresponds to the constant
frame for ∇X.

I Corollary 2. Under the analytic continuation in the Kähler
moduli over NE(X′), ∇X is irregular in the divisor (x = 0)
precisely in the kernel block.

I To proceed, we denote

R = dim H(X) = (r + 1)(r′ + 2),

R′ = dim H(X′) = (r + 2)(r′ + 1).

And then d = R− R′ = r− r′ = dim K.
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5. STEP (ii)

Block Diagonalizations and BF/GMT over NE(X′)
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I We have Aj(t̂) = Cj, j = 1, 2:

C22
1 =


0 0 · · · (−1)r′+1q1
1 0 · · · 0

. . .
0 · · · 1 0

 =
1
x


0 0 · · · (−1)r′+1

x 0 · · · 0
. . .

0 · · · x 0

 .

I We will now work on the irregular system of PDE in variables
(x, y) with a parameter z.

I The irregularity comes only from x, and it is thus necessary to
keep track of the lowest order entries in x in Cj’s.

I A transformation is needed to bring C22
1 into its “semisimple”

form: let u = x1/d, we modify the constant frame to {Ti} with

{Ti}R′−1
i=0 = {Te}, {TR′+i}d−1

i=0 = {uiki}d−1
i=0 .
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Lemma on shearing (= base change in D-modules).

I Let Y(x) = diag(1R′ , u0, u1, · · · , ud−1). After substitutions
S = YW and x = ud, the equation zx ∂

∂x S = C1S becomes

zu
∂

∂u
W = D1(u, z)W, (∗∗)

D11
1 = d · C11

1 ,

D12
1 = d · C12

1 · diag(u0, u1, · · · , ud−1),

D21
1 = d · diag(u0, u−1, . . . , u−d+1) · C21

1 ,

D22
1 =

d
u
·


0 0 · · · (−1)r′+1

1 −z 1
d u · · · 0

. . . . . .
0 · · · 1 −z d−1

d u

 .

I D21
1 is polynomial in u. Thus, (∗∗) is irregular of Poincaré rank 1

in u, and the irregular part only appears in the (2, 2) block D22
1 .
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I Therefore, D1(z = 0) has R eigenvalues, including 0R′ and d
distinct nonzero eigenvalues from D22

1 (0) as solutions to

ωd = (−1)r′+1.

I By the classical procedure due to Wasow/Shibuya, together
with the flatness of the Dubrovin connection, we conclude that

(i) The connection matrices C1, C2 can be simultaneously block
diagonalized to C̃1, C̃2, such that the (2, 2) blocks are diagonalized.

(ii) Furthermore, the block-diagonalization frame (gauge matrix)

P = [T̃0, . . . , T̃R′−1, T̃R′ , . . . , T̃R−1] =

[
IR′ ∗
∗ Id

]
can be chosen so that T̃i has the initial term Ti in u.

(iii) T spanned by T̃0, . . . , T̃R′−1 and K spanned by T̃R′ , . . . , T̃R−1

lead to reduction of connection and are orthogonal to each other.
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I Extract QH(X′) from QH(X): On X′, let β′ = d′1`
′ + d′2γ′, then

IX′
β′ =

1

∏
d′1
1 (h′ + mz)r′+1 ∏

d′2−d′1
1 (ξ ′ − h′ + mz)r+1 ∏

d′2
1 (ξ ′ + mz)

.

I It has Picard–Fuchs equations

�`′ := (z∂2 − z∂1)
r′+1 − q′1(z∂1)

r+1,

�γ′ := (z∂2)(z∂1)
r+1 − q′2.

I Since �`′ = q−1
1 �` and �γ′ = z∂2�` − q1�γ, we get the

I Key Lemma. Over C[q1, q−1
1 , q2] ∼= C[q′1, q′1

−1, q′2], we have

〈�`,�γ〉 ∼= 〈�`′ ,�γ′〉.

I Corollary. The matrices C̃11
1 , C̃11

2 can be used to compute ∇X′ .
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I For a, b ∈ H(X) we have ab = a ∗ b + ∑β qβcβ for some
cβ ∈ H(X). By induction on the Mori cone we conclude that

Tµ∗ = ∑
β∈NE(X)

qβPβ(h∗, ξ∗)

where Pβ is a polynomial. Since X is Fano, the sum is finite.

I So the block diagonalization in u = x1/d, y, z extends to all Tµ∗.

I In fact C̃11
1 and C̃11

2 , hence all C̃11
µ , are expressible in x, y, z.

I Two technical problems:

(i) Remove the NEW z-dependence in C̃11
µ (x, y, z) introduced in the

block-diagonalization. (Sol. BF/GMT.)

(ii) Since Tµ∗ is generated by h∗ and ξ∗ over NE(X) instead of over
NE(X′), will C̃11

µ (x, y, z) contain negative powers in x? (Sol. No!)
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(i) Let B1 = B1(x, y, z) be the BF matrix and B1(0) := B1(x, y, 0).

[T0, . . . , TR′−1] :=
(
[T̃0, . . . , T̃R′−1]B

−1
1

)
(z = 0).

I Under x = q`
′
es1

, y = qγ′es2
, a = 0, 1, 2, the “z-free” matrix

C′a(ŝ) = −(z∂aB1)B−1
1 + B1C̃11

a B−1
1 = B1(0)C̃11

a;0B1(0)−1(x, y)

is related to A′µ(σ) for T′µ∗′ at σ = σ(ŝ) ∈ H(X′)[[x, y]] via

C′a(ŝ) = ∑µ
A′µ(σ(ŝ))

∂σµ

∂sa (ŝ), a = 0, 1, 2,

〈〈Ta, Tj, Ti〉〉X(ŝ) = ∑µ

∂σµ

∂sa (ŝ)〈〈T
′
µ, T′j , T′i〉〉X′(σ(ŝ)).

I Since (A′µ)i
0 = δi

µ, σ(ŝ) is determined by the first column:

(C′a)
µ
0 (ŝ) = 〈〈Ta, T0, Tµ〉〉X(ŝ) = ∂σµ

∂sa (ŝ).
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6. STEP (iii)

The Non-Linear F-Embedding QH(X′) ↪→ QH(X)
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(ii) The next step is to transform T0 to the identity element (section)
e ∈ T and normalized Ti’s to T̃i’s accordingly.

I Lemma. There is a unique element S0 ∈ T such that

S0 ∗ T0 = e,

and so e acts as zero on K . (This requires delicate calculations!)

I Define the normalized frame on T by

T̃µ := Tµ ∗ S0.

I Theorem (Initial quantum invariance up to a shifting)
Let Ti(q′) = T̃i(q′, ŝ = 0, z = 0) and σ0(q′) = σ(q′, ŝ = 0). Then we have

〈Tµ, Ti, Tj〉X = 〈〈T′µ, T′i, T′j〉〉X
′
(σ0(q′)).
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I An F-manifold M is a complex manifold with a commutative
product structure on each TpM, such that a WDVV-type
integrability condition is forced when p ∈ M varies.

I In QH(X), this is the structure which remembers ∗p but forgets
the metric gij. Hertling and Manin showed that the WDVV
equations can be rewritten as

LX∗Y∗ = X ∗ LY ∗+Y ∗ LX∗

for any local vector fields X and Y.

I I.e., for any local vector fields X, Y, Z, W:

[X ∗ Y, Z ∗W]− [X ∗ Y, Z] ∗W− [X ∗ Y, W] ∗ Z
= X ∗ [Y, Z ∗W]−X ∗ [Y, Z] ∗W−X ∗ [Y, W] ∗ Z

+ Y ∗ [X, Z ∗W]− Y ∗ [X, Z] ∗W− Y ∗ [X, W] ∗ Z.
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I Denote by K the irregular eigenbundle and T := K⊥ the regular
eigenbundle, which extend K and T from s = 0 to big s.

I Lemma
T is an integrable distribution of the relative tangent bundle THR ′ .

In particular, Im Ψ̂ is the integral submanifoldM (over R ′) containing the
slice (q`

′ 6= 0, t = 0) which contains Im Ψ when modulo R ′.

I Proof.
Let X, Z be any local vector fields in T = K⊥. Let Y = ei and W = ej

be idempotents in K. Since a ∗ b = 0 for a ∈ K, b ∈ K⊥,

0 = −X ∗ Z ∗ [ei, ej]− δijej ∗ [X, Z].

Let i = j we get ej ∗ [X, Z] = 0 for all j. Hence [X, Z] ∈ K⊥.
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I The quantum product on the Frobenius manifold H(X′)⊗R ′ is
semi-simple. Let v′0, . . . , v′R′−1 be the idempotent vector fields.

I Dubrovin 1996: [v′i , v′j ] = 0 for all 0 ≤ i, j ≤ R′ − 1. Hence the

corresponding canonical coordinates u′0, . . . , u′R
′−1 satisfying

(u′i(q′, s = 0)) = σ0(q′)

and v′i = ∂/∂u′i exist.

I This was extended to F-manifolds by Hertling. The F-manifold
M is semi-simple in the sense that ∗p on TpM for p ∈ M is
semi-simple. Denote the idempotent vector fields by v1. . . . , vR′ .

I Hertling 2002: [vi, vj] = 0 for all 0 ≤ i, j ≤ R′ − 1. Hence the
canonical coordinates u0, . . . , uR′−1 near each p ∈ M exist in the
sense that vi = ∂/∂ui.
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I Fixing the initial correspondence of frames:

I We have constructed an analytic family of coordinate systems
(u0(q′, p), . . . , uR′−1(q′, p)) parametrized by q′ ∈ R ′. Write

Ti(q′) = ∑R′−1
j=0 aj

i(q
′) vj(q′, s = 0)

for an invertible R′ × R′ matrix (aj
i(q
′)).

I

〈Tµ, Ti, Tj〉X = 〈〈T′µ, T′i, T′j〉〉X
′
(σ0(q′)). (1)

From this relation, we see easily that:

I Lemma
After a possible reordering of {v′j}, we have for all i = 0, . . . , R′ − 1:

T′i = ∑R′−1
j=0 aj

i(q
′) v′j(σ0(q′)).
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I Now we define the map Ψ̂ by matching the canonical coordinates.
Namely, Ψ̂(q′, s) ∈ M is the unique point onM so that

ui(Ψ̂(q′, s)) = u′i(q′, s) = u′i(σ0(q′) + s)

for i = 0, . . . , R′ − 1.

I Since the tangent map Ψ̂∗ matches the idempotents

Ψ̂∗∂/∂u′i = ∂/∂ui,

it induces a product structure isomorphism, and hence an
F-structure isomorphism by “coordinates-free WDVV”.

I Also along s = 0, by Lemma we have

Ψ̂∗T′i = Ti

which matches the initial condition along the R ′-axis.

I H(X′) is contractible =⇒ Ψ̂ exists globally. QED
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Ending Remarks

I Work in progress by LLW:

(1) Globalization to simple (r, r′) flips.

(2) Generalizations to ordinary flips with non-trivial base.

(3) Reconstruction of QH(X) from QH(X′) and “the K-block”.

I Other approaches to quantum flips:

(4) [Woodward et. al.] studying wall crossing of GW invariants in
different GIT quotients.

(5) [Shoemaker et. al] studying asymptotic of I functions in the toric
setup.

I Would be interesting to compare their approaches with ours.
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Example: (2, 1) flip

R = 9, R′ = 8. The following frame (recall I = Jsmall)

v1 = 1̂J = J,

v2 = ĥJ, v3 = (ξ̂ − ĥ)J,

v4 = ĥ2J− (ξ̂ − ĥ)2J, v5 = ĥ(ξ̂ − ĥ)J + (ξ̂ − ĥ)2J,

v6 = ĥ3J− ĥ(ξ̂ − ĥ)2J, v7 = ĥ2(ξ̂ − ĥ)J + ĥ(ξ̂ − ĥ)2J,

v8 = ĥ3(ξ̂ − ĥ)J + ĥ2(ξ̂ − ĥ)2J,

v9 = κ̂0J = (ξ̂ − ĥ)2J,

respects H(X) = Φ−1H(X′)⊕⊥ K when modulo q1, q2.
They are precisely

z∂i J at t ∈ H0 ⊕H2, 1 ≤ i ≤ 9,

and we get the Dubrovin connection:
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A1 = h∗small =



q1q2
1

q1q2
1

1
1 −1

1
−1 1

1 −1 q1


,

A2 = ξ∗small =



−q2 q2 q1q2 q2
1 −q2 q2
1 q1q2

1 q2
1 1

1
1 1

1
q2


.
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x := q′1 = 1/q1, y := q′2 = q1q2.

Chain rule: y ∂y = xy ∂q2 = ∂2, and

x ∂x = x(−x−2 ∂q1 + y ∂q2) = −∂1 + ∂2 = ∂ξ−h.

Further simplification: Let wi = ∑j vjTji

T :=



1
1
1
2 1

1
1
2 1

1
1
2 1

1
1


.

gij := (wi, wi)
X = δ9,i+j, 1 ≤ i, j ≤ 8,

and w9 = v9 = κ0 satisfies (w9, wi)
X = δ9,i.
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A1 =



− 1
2 xy xy xy

− 1
2 xy xy

1 1
4 xy − 1

2 xy
xy

1 − 1
2 xy

1
1 − 1

2
1

− 1
2 1 xy −1/x


,

A2 =



− 1
2 xy xy y xy

1 − 1
2 xy xy

1
2

1
4 xy − 1

2 xy y
1 xy
1 1 − 1

2 xy
1
1 1

1
2 1

xy


.

Irregular in the K-block, of Poincaré rank one.
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Block diagonalization w.r.t. H(X) = Φ−1H(X′)⊕⊥ K

(Wasow 1960’s) + flatness of ∇X =⇒
∃! formal gauge transformation S = PZ

P(x, y, z) = I +
[

0 g•

f• 0

]
=


1 g1

. . .
...

1 g8
f1 · · · f8 1

 ,

such that
z(x ∂x)Z = E1 Z, z(y ∂y)Z = E2 Z

with E1, E2 being block diagonalized. Also, for i′ := 9− i,

fi(x, y, z) = −ḡi′ := −g9−i(x, y,−z).

Get the deformed, (x, y, z)-dependent, frame

w̃i = wi + fiκ̂0, 1 ≤ i ≤ 8, ˜̂κ0 = κ̂0 + ∑8
i=1 giwi.
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From
−z∂kP + AkP = PEk,

the block decomposition is equivalent to[
A11

k + A12
k f• −z∂kg• + A11

k g• + A12
k

−z∂kf• + A21
k + A22

k f• A21
k g• + A22

k

]
=

[
E11

k g•E22
k

f•E11
k E22

k

]
.

In particular we get the equation for fi:

z∂kfi = A22
k fi + (A21

k )i −∑8
j=1 fj(E11

k )ji

= − δk1
x

fi + (Ak)9i −∑8
j=1

(
fj (Ak)ji + fj (Ak)j9 fi

)
.

k = 1: system of inhomogeneous non-linear perturbation of

zx ∂x h = −1
x

h.
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Formality in s = zx

f1 = −x2(1− 3zx + 11z2x2 − 50z3x3 + (274z4 + 6y)x4 − (1764z5 + 87yz)x5

+ (13068z6 + 986yz2)x6 − (109584z7 + 10803yz3)x7 + · · · ),
f2 = − 1

2 x(1− zx + 2z2x2 − 6z3x3 + (24z4 + 5y)x4 − (120z5 + 54yz)x5

+ (720z6 + 489yz2)x6 − (5040z7 + 4472yz3)x7 + · · · ),
f3 = x(1− zx + 2z2x2 − 6z3x3 + (24z4 + 3y)x4 − (120z5 + 30yz)x5

+ (720z6 + 253yz2)x6 − (5040z7 + 2168yz3)x7 + · · · ),

I Formal part: f2, f3 ∼ factorial series in zx.

I f1 ∼ Stirling numbers of first kind, which counts the number of
σ ∈ Sn+1 with exactly two cycles. It satisfies a0 = 1,

an = (n + 1)an−1 + n!, n ≥ 2.

Its closed form is an = (n + 1)!Hn+1.
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f4 = − 1
2 x4y(3− 23zx + 162z2x2 − 1214z3x3 + (9972z4 + 29y)x4 + · · · ),

f5 = x4y(1− 7zx + 46z2x2 − 326z3x3 + (2556z4 + 9y)x4 + · · · ),
f6 = − 1

2 x3y(3− 14zx + 70z2x2 − 404z3x3 + (2688z4 + 23y)x4

− (20376z5 + 407yz)x5 + (173808z6 + 5454yz2)x6 + · · · ),
f7 = x3y(1− 4zx + 18z2x2 − 96z3x3 + (600z4 + 7y)x4

− (4230z5 + 115yz)x5 + (35280z6 + 1448yz2)x6 + · · · ),
f8 = x2y(1− 2zx + 6x2z2 − 24z3x3 + (120z4 + 5y)x4

− (720z5 + 63yz)x5 + (5040z6 + 642yz2)x6 + · · · ).

I f5: an = n!(n−Hn). f7: an = n · n!

I f4 + 1
2 f5 = −x4y(1− 8zx + 58z2x2 + 444z3x3 + 3708z4x4 + · · · )

with coefficients an = (n + 2)(Hn+2 − 2) + (n + 1)!.

I f6 + 1
2 f7 = −x3y(1− 5zx + 26z2x2 − 154z3x3 + · · · ) with

coefficients an = (n + 1)!(Hn+1 − 1).
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Analyticity/Algebracity in t = yx4

Consider the generalized hypergeometric series

b = F( 1
9 , · · · , 8

9 ; 2
8 , · · · , 8̂

8 , 9
8 ; 99

88 t)

= ∑
n≥0

(
9n + 1

n

)
1

9n + 1
tn,

which solves the algebraic equation

tb9 = b− 1.

It is easy to see that

bl = F( l
9 , · · · ; l+1

8 , · · · ; 99

88 t) = ∑
n≥0

(
9n + l

n

)
l

9n + l
tn

is the (l− 1)-th shift with 9
9 and 8

8 skipped.
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By solving the quadratic system on hi’s arising from k = 2:

Theorem (Algebraicity in the CY class t = yx4)
Denote f1(x, y, 0), . . . , f8(x, y, 0) by

x2h1, xh2, xh3, h4, h5, x−1h6, x−1h7, x−2h8.

Then hi(t) depends on t only and we have

h1 = −b6,

h2 = 1
2 b3 − b4, h3 = b3,

h4 = 1
2 (1 + b)− b2, h5 = −1 + b,

h6 = − 1
2 b7t− b8t, h7 = b7t,

h8 = b5t.

Remark: For (r, r′) flips, the CY direction is (yr−r′xr+2)1/D where
D = gcd(r− r′, r + 2).
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BF/GMT along extremal rays x = q`
′
es1 on X′

Denote δ = zx ∂x and its (pseudo) inverse I by

I φ = I (φ− φ(z = 0)) =
∫

φ− φ(z = 0)
zx

dx.

For example, I (f1/x) = 3
2 x2 − 11

3 zx3 + 50
4 z2x4 + · · · (mod y).

Lemma (The Birkhoff factorization matrix B modulo y)
By writing B = I + N we have N2 = 0 and B−1 = I−N. In fact

B =



1
1

1
1

1
−I 2(f1/x) I f2 I f3 1
1
2I 2(f1/x) − 1

2I f2 − 1
2I f3 1

I 3(f1/x− f3) −I 2f2 −I 2f3 1


(mod y).
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Corollary
For local (2, 1) flips, the Dubrovin connection matrices modulo y and up to
GMT are given by

C̄′1 =



0
0
1

0
1

−3x2/2 −x/2 x
3x2/4 x/4 −x/2 1 0
−13x3/9 −x2/4 x2/2 1 0 0


and C̄′2 = A11

2 (mod y). The GMT in the extremal ray variable is

σ(s1h′ + s2ξ ′)

= s1h′ + s2ξ ′+ 3
4 e2s1

q2`′ξ ′2h′ − 13
27 e3s1

q3`′ξ ′3h′ (mod qγ′).
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Example of quantum invariance without BF/GMT

For local (2, 1) flip, the final frame T1 (mod y) is

[ξ − h] := (ξ̃ − h̃)(y = 0, z = 0) = (ξ − h) + xκ0.

Theorem (Invariance along extremal rays)
For extremal primary Gromov–Witten invariants of n ≥ 1 insertions,

〈[ξ − h]⊗n〉X = 〈(h′)⊗n〉X′ = q`
′
.

This is equivalent to the quantum interpretation of Cayley’s formula

ad := 〈κ⊗(d+1)
0 〉Xd` = dd−2, d ≥ 1,

which is the number of spanning trees in the complete graph on d vertexes
(and hence with d− 1 edges).
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Degenerate case I: Flops, r = r′, ker Φ = 0

E.g. Atiyah flops r = 1. The Ψ-corrected frame is

v1 = I,

v2 = ĥI, v3 = (ξ̂ − ĥ)I,

v4 = ĥ2I− (ξ̂ − ĥ)2I, v5 = ĥ(ξ̂ − ĥ)I + (ξ̂ − ĥ)2I,

v6 = ĥ2(ξ̂ − ĥ)I + ĥ(ξ̂ − ĥ)2I.

Let
f = f(q1) =

q1

1− q1
.

Then Picard–Fuchs⇒

v4 = −f−1(z∂1)
2I = −q1f−1(z∂2 − z∂1)

2I = (q1 − 1)κ̂0.

Then we absorb κ̂0 into v4 to get A1, A2 as

60 / 63



A1 =


q1q2

1
q1q2

−f q−1
1 f
1

−1 1

 ,

A2 =


q2(1− q1) q2

1 q2
1 q1q2

1
1 1

1

 .

Now v6 = ĥξ̂(ξ̂ − ĥ)I = ĥξ̂2I− q1q2I does not come from a naive
quantization. The z-independence fails if v6 is not Ψ-corrected.
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Degenerate case II: (r, 0) flips, i.e blow-ups

Example: For (1, 0) flips,

f : X = Σ−1 = PP1(O(−1)⊕O)→ X′ = P2.

Ax =


xy xy

xy
−1

1 −xy −1/x

 ,

Ay =


xy y xy

1 xy
1
−xy

 .
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I In the diagonalization process all the formal series f• and g• in x
do not have constant terms.

I For the resulting 3× 3 matrices E11
x and E11

y , the BF matrix B ≡ I3
(mod x).

I Thus after substituting x = 0 the resulting matrices for Ax, Ay go
to 03 and

Aξ ′ =

 y
1

1

 ,

which recovers the Dubrovin connection on P2 with y = qγ′et′ .

THANK YOU
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