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1. What is Quantum Cohomology?

A: Deformation of (H(X),U) by rational curves.



» Let X/C be a projective manifold, M, (X, B) be the moduli space

of stable maps
f:(Cpr....pn) = X

from n-pointed rational nodal curves to X with image class
B € NE(X), the Mori cone of effective 1-cycles.

» Fori e [1,n],lete; : My(X,B) — X be the evaluation map
ei(f) == f(pi) € X.

» Lett € H = H(X). The g = 0 Gromov-Witten potential

B
E(t) = (-)(1) := Zﬁ?a'< oy X
_ qﬁ ,
- Z /[Mn (X,B) ]er it

n>0, BENE(X)

is a formal function in t and qﬁ’s (Novikov variables).



> We call Z := C[g°] the (formal) K&hler moduli and denote
Hyp =H®RX.

» Let {T,} be abasis of Hand {T# := }_¢""T,} the dual basis
with respect to the Poincaré pairing

Euv = (Ty-Tv)/ (g’”) = (gw)fl.

> Lett =) t"T,. The big quantum ring (QH(X), *) is a t-family of
rings QeH(X) = (TeHy, *t):

Ty #e¢ Ty := Y 0u0u0cF(t) 8T = Y Fuve 8T
€,K

= ATy T, Te)) (1) 87T

B
- ¥ % (Ty, Ty, TS5 X 3 T
x,1>0, BENE(X)



The WDVV associativity equations equip (Hg, guv, Fijk, To = 1) a
structure of formal Frobenius manifold over Z.

It is equivalent to the flatness of the Dubrovin connection

szd—lA::d—EZdﬂ‘@T *¢
z z 5 ¥

on the formal relative tangent bundle THy; for all z € C*:
9, Ay = 0yAy, [Ay,Ay] =0,
where the (connection) matrix A, for szt is z-free:
Ay(t) =Ty .

This z-free property uniquely characterizes the constant frame
{T,} among all frames {T), } with

Tu(q°t,z) =T, (mod Z).



> Let = c1(pjwy ,5;,) be the class of cotangent line at the first
marked section py : M, — € of € — M, then

-1y ._ E f T ®n X
J(tz ).—1+Z+ﬁ%n!T;¢<z(2_¢),t

encodes invariants with one descendent insertion.

» The topological recursion relation (TRR):
(a1 Ty, Ty, Te)) = )2, (T, Ty ) (T, 5, Ti)
implies the quantum differential equation (QDE):
20, 20y] =) A%, 204].
> Let 27 be the ring of differential operators generated by zd; with

coefficients in & = C[z][¢*,t]. The 2*-module 64™H associated
to zo; — zV7 is isomorphic to the cyclic Z*-module Z*].



In practice, one might be able to find element
I(t,z,z7Y) € 29(t,z71)

but only along some restricted variables t € H; C H.

If Hy generates H (either in classical product or quantum
product), then often one may compute J(t,z~!) and VZ.

For a toric manifold X, such an I function can be found through
the C*-localization data with t € H=?(X).

[Lian-Liu—Yau 1996, Givental 1996] For cl(X) >0,1(f,z7!) can
be found and J(t,z7!) is obtained by a mirror transform.

[Coates-Givental 2005, Iritani 2008, Brown 2010] I(#, z, z’l) is
found for all toric manifolds. However, the structures and
computations are far more complicated. Need BF/GMT:

Birkhoff Fatcorizations + Generalized Mirror Transform.



Example: a Fano toric bundle
X =Pmu(0(-1)® 0) P,
C1(X> =h+2¢>0,
H(X) = C[h, ]/ (H,5(E — h)).

Let ¢ be the zero section, 7y the fiber line, then
NE(X) = Z{ + Zy.

QH(X) =?



> {TO/Tll TZ/T3} = {1lhI§I€2}/
t=19Ty+D, D=*th+¢cH.

> Letqy = glet’ and g, := 7"’ (small parameters), then

1, D [ d
Z qﬁgz +(D'ﬁ) Ilg = ez Z ‘hlqu Idl/dZ’

I{z7Y):=¢=
ﬁ=d1€+d27 dq,dp=0
1 -2
Idl'dz = dq dy—dy dy - O(Z )-
[T (h+mz)? T1 (& —h+mz) T] (& +mz)
m=1 m=1

m=1

» [LLY, Givental] = I(},z7!) =
» In general, if c;(X).f < 0 for some f, then the z power — +co.

J(£,z71). However, 3 is missing.
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Technique: use Naive Quantization to replace z0d3]: e.g.
Til=z90, i=0,1,2, Tsl=I:= (zd)2L.

In general, since I € %], we get "_T"Z-I € 9%] too. Hence

~

(Tid) (t,z,z71) = 2V](o(t),z 1)B(E 2).
The unique gauge transform is called the BE. It implies
Jo(®),z71) =230] = Y, Tl - (B™1)] =: P(t,201,202)1(},2,27").

The z~! coefficient of PI gives the GMT: t — ¢ (t) € Hy.

In practice, we study B, o(t) via the Picard-Fuchs equations of I:

Dg = (281)2 — q1(282 — Zal),
Oy = (202 — 201)z02 — q2.



v

v

v

This leads to the connection matrix in the frame Til :
20,(Til) = (TiNCa(t,2), a=1,2.

In this example the choice of {T;I} leads to

—q2 Q192 —q2 q192+2z4q>
1 —q¢ 92 g2
C1 = Gy =
1 ql 2 1 L]z
1 1 1

B(t,z) = I4 + g2e03 (52 — lf@) removes the z-dependence:
42 9192
Co(t) = —(20:B)B™ +BGo(£2)B" = | 72
1 1
The first column = ¢(t) = t. In general C = c*A: i.e.
oact

Cald) = L Au(e(®) 5
M



2. Quantum Motives? The Functoriality Problem

Q: Which part of the structure on QH(X) is functorial?



M the category of Chow motives, k the ground field.
Objects: X, where X a smooth variety over k.

Morphisms are correspondences
I € Mor(X,X') := A(X x X').
Induced map on Chow groups: [I']. : A(X) — A(X):
a v 7, (T.r*w).

Linear structures: if X 2 X’ then A/(X) = A/(X’) for alli. If kis a
number field, X and X’ have the same L functions for each i.

However, the ring structures are different: A(X) 2 A(X')!

[Wang 2002] Is there a universal product structure defined on
Chow motives? Namely a universal family (<7, x) — T such that
all geometric realizations (A(X), ®) correspond to special points.



» Typical examples come from ordinary (r,r’)-flops/flips:

Pl2f(cZCcX-——————-2————— =X D7 > =p!
\ /

» §:Z = Pgs(F) — S, rkF = r + 1, p-extremal ray ¢ = [C].
> NZ/X|1/_)—1(5) = ﬁpr(*l)aa(rurl) foralls € S.
» Y =Bl X = BIZ/X/, Ky = ¢*Kx + r'E = (P/*KX/ + rE. Hence

(P*KX = (P/*le —+ (1’ — T’I)E.



» For flops r = 1/, we have K-equivalence and X 2 X’ via
b= [Tf]* = ¢, o¢* 1 H(X) — H(X').
» It preserves the Poincaré pairing
(®a.®b)* = (¢ @a.g™b)’ = ((9%a+0)-¢"b)" = (ab)%,
but NOT the cup product!

» For the simple case (S = pt), let a; € H¥i(X), Y3, I; = dim X,

1 3 —1
(q)Dél.CDDCQ.CDDQ)X = (DC].DQ.(X3)X — Hi:l (Déi.hr Z’)Z,

where h = ¢1(07(1)) € H?(Z).

» Solution: use quantum product (Q¢H, *¢) instead.
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The effectivity of extremal curve is not preserved:

Ol = —{' ¢ NE(X).

It is necessary to consider analytic continuations QH(X) of
QH(X) along the Kédhler moduli via the partial compactification

”

Oqf = g% toward “gf = oo,

For flops, the functoriality is simply the canonical isomorphism

@ : QH(X) = QH(X).
In terms of Gromov-Witten invariants: for t € H(X),
OUT;, T;, Te) X (1) = (@T;, @T), DT, )X (D).

[Li-Ruan] for 3-folds, [LLW, LLQW] for general ordinary flops.



The simplest non K-equivalent birational maps preserving the
dimension of Kihler moduli are smooth ordinary flips.

Pseudo-abelian completion of Chow motives M: objects (X,p),
where p € End(X) = A(X x X) is a projector: p> = p. Then

PN PN

X=(X1)=XpeeX1-p).

For flips with r > #', ¥ := [[};1] induces a sub-motive

A

¥Y:X =(Xp), p=Yod.
On cohomology
Y:H(X') — H(X),

the Poincaré pairing is still preserved (¥a.¥b)X = (a.b)X’, but
not the cup product. Not even the quantum product!

Solutions?



3. Statements of Results for Simple Flips

f:X-->X



We would like to show that QH(X") can still be regarded as a
sub-theory of QH(X) in a canonical, though non-linear, manner.

First of all, there is a basic split exact sequence

0—>K——>=H(X)—2~H(X) ——>0.
Y

The kernel space (vanishing cycles) K has dimension d := r — r/
and is orthogonal to YH(X'):

r ,
K = C[P/
j=r'+1 [P)

Secondly, the Dubrovin connection V can be analytically
continued along the Kihler moduli to a connection @V under the
rule

oqf =¢®, B e NEX).

As before ®¢ = —{' and analytic continuations are required.
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We use identification of divisorial coordinqtes # and Novikov
variables qﬁi (divisor axiom): let D = }_#'D;, (Di.ﬁ]-) = Gjj,
i 0 d
. ABi ot = g
qi ~—l7ﬁ€/ az—ati_qlaqi-
Hence 1

has only (formal) regular singularities at q; = 0.

The resulting connection ®V turns out to be analytic in the
extremal ray variable q‘ and contains irregular singularities in the

K directions along g* = oo, that is qf/ =0.

This suggests to extract the Dubrovin connection V' on TH',,
where H' = H(X') and #' = C[NE(X')], from ®V

by removing the K directions

— since V' is (formlly) regular.



We will show that there is a bundle-decomposition
THo Z[1/4"| = T & (%)
into irregular eigenbundle . which extends K over %'[1/4"]

and the regular eigenbundle 7 = # .

From WDVYV equations, both .7 and .#" are shown to be
integrable distributions.

The integrable submanifold passing through the section
My > {(¢ #0,t=0)}

is then the proposed manifold corresponding to QH(X').

However, to relate .7, and hence M/, to QH(X'), we need to
work on the connection (z-dependent) version of ().

Hence there are non-trivial BF/GMT involved, and it is unclear
what kind of functoriality should exist.



» The end result turns out to be quite satisfactory — the product
structure is preserved but not the metric (Poincaré pairing)!

Theorem (Lee-Lin-Wang, 2017)
For the local model f : X --» X' of simple (r,1") flips, there is a unique
'-point 0o(q') € H'yy and a unique embedding ¥ (q',s) over %'
‘/I\I : H(X/)%/ — M — H(X)g/,
o) +s— ¥(qs).

where s € H(X'), such that

(1) (¥, 00) restricts to (¥ : H' — H,0) when modulo g,

() ¥ induces an F-embedding over #'[1/4":

d‘F ~Y
(TH' V)~ (THyppq g V)t — # =N

#'1/q")

~€)

23/63



In particular, outside the divisor qg/ = 0, the big quantum
products on the corresponding tangent spaces are preserved.

Denote the tangent frame by ¥; = 9;% and the induced metric by
8ij = (%, 1?j)/ ¥ = Zgi@j-
Then ¥ is an F-embedding:
(T, T N (F(d5) = (T3, T T (00(q)) +5).
Hence there is a family of ring isomorphisms/decompositions:
Qggrs)H(X) = Quyg)4sH(X) x c,

which depend on the points (7', s).
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4. STEP (i)

Irregular Singularity of QH(X) along Vanishing Cycles



v

v

v

v

Small parameters t = {°Ty + D € H<2(X), 8 = s°T) + D'.

D =th+?F =YD =¥ (s'W 4 s°¢) = s'(& — h) + s

st=—t, =41l
Kéhler moduli: NE(X) = Z{ & Zv, NE(X') = ZU' & Z~'.
Sl=—1, Dy=9+71,
m=qd, p=qe,
x=qi=q"¢ =1/q,  y=gr=4"¢ = qp.
Naive quantization, fori € [0,7],j € [0,7 +1],a = h'&,
= W8 = (20,)'(29¢)) = (201)(292).

Xis Fano, ¢1(X) = (r— 7 )h + (r' + 2)¢ is ample,
X"isbad, ¢1(X") = (v — )i/ + (r 4+ 2)&’ has no fixed sign.

a
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For B = di{ + dyy € NE(X),

1
10+ mz) 1220 (E — o mz)” 1 T2 (€ + mz)

Ig=

I=¢l/z Y eP-PgPl p is annihilated by Picard-Fuchs equations:

Op = (20,)" ! = q1(201,)" Y,
D'}’ = zag(zaé_h)’/“ — 2.

[=1(z7!) = I = Jga and QoH(X) is “easy”. It s still
non-trivial to write down the Dubrovin connection VX.

The naive frame, for e = h'¢/ (or even k(& — h))),
I = 1= (20),) (z0¢) I

does not lead to z-free connection matrices for zdq, zd,!



Example: the case of (2,1) flips.

» For the naive frame respecting H(X) = YH(X') &+ K, with
v6 = ko = (& — )2, we have

zd1(0*¢I) = quai(aze I) = (0*°1) C1(q,2),

q1
[ q192 *quﬁh_
1 —q192
q192
1
Ci(g,2) = 1 ,
1 -1 7 -z z°01
1
-1 11 —q 2zqq
i I g

» It is even unclear where the irregular singularities at g; = oo are
located. (Not just in the K directions?)
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The Y-corrected quantum frame

» The quantized basis corresponding to ker @ is chosen to be
Rl=HE-R",  ielor—+ —1].

» Fore; € [0,7+ 1], ep € [0,7], we define

/

Ve = fie (6 )EZI+ ‘S(el ez)( 1)r 7627%@1—&-@2—(;"-&-1)’

where
{J(el,ez) =0 ifej+e € [0, 7’/], and

e =1 otherwise.

1,€2)
» The added term comes from ker ® <= e; +e, € [ +1,7].
» But HY(X') withj > r + 1 are also corrected accordingly.

> The frame reduces to a classical basis when modulo NE(X).
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The connection matrices for zd; and zd».

» Fori = 1,2, the connection matrix C;(q1,42) in the ¥ corrected
frame is independent of z. Moreover, A;(t) = C;.

1 12

> Write C; = {Cal CEZ} wrt. H(X) = YH(X") &+ K.
i i

> Letd =dimK=r—7.

v

For Cy, the d x d block corresponding to ker ® is given by

(—1)"* g
CZZ — 1

1

v

Other entries in C; and C; have “good properties”!



Corollary 1. The Y-corrected frame corresponds to the constant
frame for VX.

Corollary 2. Under the analytic continuation in the Ké&hler
moduli over NE(X'), VX is irregular in the divisor (x = 0)
precisely in the kernel block.
To proceed, we denote

R=dimH(X) = (r+1)(r' +2),

R =dimH(X') = (r+2)(¥ +1).

Andthend =R - R =r—7+ =dimK.



5. STEP (ii)

Block Diagonalizations and BF/GMT over NE(X')



We have A;(t) = Cj,j = 1,2

o 0 .- (_1)r’+1q1 o 0 .- (_1)r'+1
0o ... 0 11x o .. 0
22 ——
C = =73
o --- 1 0 0 X 0

We will now work on the irregular system of PDE in variables
(x,y) with a parameter z.

The irregularity comes only from x, and it is thus necessary to
keep track of the lowest order entries in x in C;’s.

A transformation is needed to bring C3? into its “semisimple”

form: let u = x'/?, we modify the constant frame to {T;} with

(T = {Te},  {Tr}o) = {w'ki}io).



Lemma on shearing (= base change in Z-modules).

> Let Y(x) = diag(1X,u%,u!,- - -, u®1). After substitutions
S = YW and x = u?, the equation zxaa—xS = (1S becomes

zu%W =D1(u,z)W, (%)
Dl — 4.l
Di?2 = d-Cl?- diag(u®, u?, - - ,ut ),

D2 =4 - diag(u®u?,... ,u” . c2,

0 0 . (_1)r’+1
2 d |1 —z%u 0
= |
o - 1 —z%u

> D%l is polynomial in u. Thus, (*x) is irregular of Poincaré rank 1
in 1, and the irregular part only appears in the (2,2) block D3,



» Therefore, D; (z = 0) has R eigenvalues, including 08" and d
distinct nonzero eigenvalues from D3%(0) as solutions to

Wt = (_1)r/+l.
» By the classical procedure due to Wasow /Shibuya, together

with the flatness of the Dubrovin connection, we conclude that

(i) The connection matrices C1, C; can be simultaneously block
diagonalized to Cy1, C, such that the (2,2) blocks are diagonalized.

(ii) Furthermore, the block-diagonalization frame (gauge matrix)

T T T T I/ k
P=[To,...,Tr—1,Trr,---, Tr1] = [f: Id}

can be chosen so that T; has the initial term T; in u.
(iii) 7 spanned by Ty, ..., Tg/_1 and # spanned by Tg, ..., Tr_1
lead to reduction of connection and are orthogonal to each other.



v

v

v

v

Extract QH(X') from QH(X): On X/, let B’ = d{{' 4+ d,7/, then
1

!
X =
B L —d]

Ty (4 mz)™ 1 T}
It has Picard-Fuchs equations

Op = (20, —201)" 1 — g} (201)"*,

O, = (205)(z01)" ™" — g
Since O = g, '00; and U = zdUy — q10,, we get the
Key Lemma. Over C[q1,4; ', 2] = C[q’l,q’lfl,q’z], we have
(O, Oy) = (O, Oy).

Corollary. The matrices C}!, C}! can be used to compute vX.

(C' 7 mz)”l H‘fﬁ (6/ 4 mz).
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(i)

(ii)

Fora,b € H(X) wehaveab =axb+ ), CI‘BC;; for some
cg € H(X). By induction on the Mori cone we conclude that

Tyx= 3 aPPpllin %)
BENE(X)
where Py is a polynomial. Since X is Fano, the sum is finite.
So the block diagonalization in u = x1/9,, z extends to all T;.
In fact C%l and C%l, hence all C}}, are expressible in x, y, z.
Two technical problems:

Remove the NEW z-dependence in C%,l (x,y,z) introduced in the
block-diagonalization. (Sol. BF/GMT.)

Since T),* is generated by h* and {* over NE(X) instead of over
NE(X'), will C,/'(x, y,z) contain negative powers in x? (Sol. No!)
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(i) Let By = By(x,y,z) be the BF matrix and B1(0) := Bi(x,y,0).

[To, ..., Trr_q] = ([TO,...,TR,,l]Bl—l)(z =0).

» Under x = qf/esl, y= q”/esz, a=0,1,2, the “z-free” matrix
Ci(8) = —(204B1)B; " +B1Cy' By = B1(0)CiB1(0) ' (v, )
is related to A, (0) for Tj+" at o = o(8) € H(X')[x,y] via

a M
/ ) / (3) A _
C,(8) Z}‘A o(8) e —(8), a=0,1,2,

(Ta, T, TH*() = ) s 8) (T3, T/, TN ((3))-

iz asa

> Since (A;l)é = (5;4, o (8) is determined by the first column:

(CLE) = (T To, T ¥(8) = 220 (5)

38/63



6. STEP (iii)

The Non-Linear F-Embedding QH(X') — QH(X)



(ii) The next step is to transform Ty to the identity element (section)
e € 7 and normalized T;’s to T;’s accordingly.

» Lemma. There is a unique element Sy € .7 such that
SO * TO =e,

and so e acts as zero on .%". (This requires delicate calculations!)

> Define the normalized frame on 7 by
TH := Ty % So.
» Theorem (Initial quantum invariance up to a shifting)
Let T;(q') = T;(q’,8 = 0,z = 0) and 0y(¢') = o(q’,8 = 0). Then we have

(T, T, Tj)% = (T}, T, T (00 (4))-

40/
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» An F-manifold M is a complex manifold with a commutative
product structure on each T, M, such that a WDV V-type
integrability condition is forced when p € M varies.

» In QH(X), this is the structure which remembers *, but forgets
the metric g;;. Hertling and Manin showed that the WDVV
equations can be rewritten as

LX*Y* = X% Ly * —|—Y* Lx*
for any local vector fields X and Y.
> Le., for any local vector fields X, Y, Z, W:

[(XxY,ZxW|—[XxY,Z]*W—[XxY,W|*xZ
=Xx[Y,Z+«W] = X[V, Z]xW—-Xx[Y,W]xZ
+Y*[X,Z+«W] =Y *[X,Z]«* W =Y % [X, W] x Z.

41/63



» Denote by K the irregular eigenbundle and 7 := K the regular
eigenbundle, which extend .#" and .7 from s = 0 to big s.

» Lemma
T is an integrable distribution of the relative tangent bundle TH gy

In particular, Tm ¥ is the integral submanifold M (over %') containing the
slice (q” # 0,t = 0) which contains Im'¥ when modulo #'.

» Proof.
Let X, Z be any local vector fields in 7 = KL LetY =e¢jand W = ej
be idempotents in K. Sinceaxb =0fora € K,b € K+,
0= —X*Zx e e] — djjej * [X, Z].

Leti = jwe getej x [X,Z] = 0 for all j. Hence [X, Z] € Kt O
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The quantum product on the Frobenius manifold H(X) ® #’ is
semi-simple. Let v, ..., v},_; be the idempotent vector fields.

Dubrovin 1996: [vg,v]’»] =0forall0 <i,j <R’ —1. Hence the

0 IR

corresponding canonical coordinates u”°, ..., u'® ~1 satisfying

(u'(q',s =0)) = oo(q')
and v} = 9/ou’ T exist.

This was extended to F-manifolds by Hertling. The F-manifold
M is semi-simple in the sense that x, on T, M forp € M is
semi-simple. Denote the idempotent vector fields by v;....,vg:.

Hertling 2002: [vi,v]-] =0forall0 <i,j <R —1. Hence the

0 R'—1

canonical coordinates u", ..., u near each p € M exist in the

sense that v; = 9/9u’.



» Fixing the initial correspondence of frames:

> We have constructed an analytic family of coordinate systems
u°(q',p),...,uR~1(q,p)) parametrized by q' € #'. Write

R'-1 j
Ti(q/> = ijo a]i(q/) Uj(q//S = 0)
for an invertible R’ x R’ matrix (a]l:(q’ ).

(T, T, T = (T3, T, T (00(q)-

From this relation, we see easily that:

» Lemma
After a possible reordering of{v]{}, we have foralli =0,...,R' —1:

T = Y5 () o (on(d).

1)
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Now we define the map ¥ by matching the canonical coordinates.
Namely, ¥(4',s) € M is the unique point on M so that

u'(¥(q,s)) =u'(q,s) = u"(00(q') +s)
fori=0,...,R —1.
Since the tangent map ¥, matches the idempotents
¥.0/0u"" =0a/u,

it induces a product structure isomorphism, and hence an
F-structure isomorphism by “coordinates-free WDVV”.

Also along s = 0, by Lemma we have
Y.T, =T,
which matches the initial condition along the %’-axis.

H(X') is contractible == ¥ exists globally. QED



Ending Remarks

» Work in progress by LLW:

(1) Globalization to simple (r, ") flips.

(2) Generalizations to ordinary flips with non-trivial base.

(3) Reconstruction of QH(X) from QH(X’) and “the K-block”.
> Other approaches to quantum flips:

(4) [Woodward et. al.] studying wall crossing of GW invariants in
different GIT quotients.

(5) [Shoemaker et. al] studying asymptotic of I functions in the toric
setup.

» Would be interesting to compare their approaches with ours.
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Example: (2,1) flip
R =9, R’ = 8. The following frame (recall I = J;,.1)

’Ul—i]—],
vy =hl, vy=(E-h)J,
vy =] — (E -2, wvs=h(E-M)]+(E-h)?,
" S
h

respects H(X) = ® 'H(X’) &+ K when modulo 41, 4.
They are precisely

z0;] atte HOoH?, 1<i<9,

and we get the Dubrovin connection:



A = h*small =

Ay = ‘:*small =

4192

q192

n |
1n4qz q2
—q2 92

q192
q2

q2




xi=q=1/q1, y:=q=qq
Chain rule: yd, = xydy, = 92, and

X0y = x(—x"20g, +y0g,) = —01 + 02 = O _.
Further simplification: Let w; = Y viTji

-1 S

~
Il
Nl =
[y
N =
—_

NI= =
—_

L 1

._ X o o .
8ij 1= (wj, w;)* = 09,i+js 1<4,j<8,
and wy = vy = K satisfies (wg, w;)X = dy ;.
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=
[

—3xy Xy

xy
—ﬁxy xy
1 R
xy
1 —%xy
1
1 =
1
% xy | —1/x
-3y xy xy ]
! 2
2 Xy Xy y
xy
—3%y
1
1 1
1 1
xy i

Irregular in the K-block, of Poincaré rank one.




Block diagonalization w.r.t. H(X) = @ 'H(X') &+ K

(Wasow 1960’s) + flatness of VX =
3! formal gauge transformation S = PZ

1 81
0 g* B :
P(x,y,z :I—l—{ }: : -,
(% y,2) f0 | g
1 fy 1

such that
z(x0x)Z = E1 Z, z(yoy)Z =Ex Z

with E, E; being block diagonalized. Also, for i’ :=9 —1i,
filx,y,z) = =8y = —g9-i(x,y, —2).

Get the deformed, (x,y,z)-dependent, frame

_ . . - ) 8
w; = w; + fikg, 1<i<8, Ko = Ko + Zi:l giw;.
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From
—2z0i P + AP = PEy,

the block decomposition is equivalent to

A+ AR —20k8" + Ap'g* + Aiz] [fE” g'Eiz] ‘

—20ifo + AX + AZZf, AZlg® + A2 El 2

In particular we get the equation for f;:
8
2Difi = APf -+ (AT = 0 FE
5]( 8
= —71 i+ (Ax)oi — Zj:1 (fj (Ap)ii +f; (Ak)j9fi)'
k = 1: system of inhomogeneous non-linear perturbation of

zxdy h = —lh.
X

52 /63



Formality in s = zx

fi = —x3(1 = 3zx + 112%x% — 502°x° + (274z* + 6y)x* — (17642° 4 87yz)x°
+ (130682° + 986yz2)x® — (109584z” 4 10803yz>)x” + - - -),
fo=—3x(1—zx+ 272x% — 62°%° + (242* + 5y)xt — (1202° + 54yz)x°

+ (7202° + 489yz2)x® — (504027 + 4472yz>)x” + - - -),
f = x(1 — zx + 22%%% — 62°° + (24z* + 3y)x* — (1202° 4 30yz)x°
+ (72028 4 253yz?)x® — (504027 + 2168yz")x” + - - -),

v

Formal part: f,, f3 ~ factorial series in zx.

v

f1 ~ Stirling numbers of first kind, which counts the number of
o € 5,41 with exactly two cycles. It satisfies ap = 1,

ap = (n+1)a,_1+n!, n>2.

Its closed formisa, = (n + 1)!H, 1.



fr = —3xty(3 — 23zx + 16222x% — 12142°x% + (9972z* +29y)x* + - - ),
f5 = x*y(1 — 7zx 4 462°x% — 3262°% + (2556z* + 9y)x* + - - -),
fo = — 123y (3 — 14zx + 702%x* — 4042°%° + (2688z* + 23y)x*
— (203762° + 407yz)x> + (173808z° + 5454y2)x® + - - ),
fr = 3y(1 — 4zx + 1822x% — 962°x% + (600z* + 7y)x*
— (42302° + 115yz)x° + (352802° + 1448yz%)x® 4 - - -),
fs = x%y(1 — 2zx + 6x°2% — 242°x% + (1202* + 5y)«*
— (7202 + 63yz)x° + (50402° 4 642yz%)x® + - - - ).

> fs:a, =nl(n—Hy). f7iay, =n-n!

> fi+ 3fs = —xty(1 — 8zx + 582%x2 + 44423x% + 3708z%x* + - - )
with coefficients a, = (n+2)(Hy42 —2) + (n + 1)

> fo+ 3f7 = —xy(1 — 5zx + 262%x% — 1542%x3 + - - - ) with
coefficients a, = (n+1)!(H,41 — 1).



Analyticity/Algebracity in t = yx*

Consider the generalized hypergeometric series

which solves the algebraic equation
th” =b—1.

It is easy to see that

T 141 L9 m+1\ 1
b—F(w”'fsr“‘rsst)_Z( n Joniit

n>0

is the (I — 1)-th shift with § and § skipped.



By solving the quadratic system on k;’s arising from k = 2:

Theorem (Algebraicity in the CY class t = yx*)
Denote f1(x,y,0),...,fs(x,y,0) by

xzhl, xhz, xh3, h4, h5, x*1h6, x*1h7, Xﬁzhg.
Then h;(t) depends on t only and we have
hy = —b°,
hy =10 —b*, 3 =107,
hy=3(1+4b)—b?,  hs=—1+b,
he = —307t V%, hy =Vt
hg = b°t.

Remark: For (r,7) flips, the CY direction is (/" x"+2)1/D where
D =gcd(r—7+,r+2).
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BF/GMT along extremal rays x = qg,esl on X’
Denote § = zx dy and its (pseudo) inverse .# by

I = I(p—¢(z=0)) /‘P 4’

For example, .7 (f /x) = 3x% — 131 2 + Q224 + -+ (mod y).
Lemma (The Birkhoff factorization matrix B modulo y)
By writing B = I + N we have N?> = 0 and B! = I — N. In fact

i} . i
1
1
1

B= 1 (mod y).

—72(f1/x) It I3 1

372 (A/x)  —3Ih —3If 1

I (A/x—fz) —Ih —I3 1]

&)
S



Corollary

For local (2,1) flips, the Dubrovin connection matrices modulo y and up to
GMT are given by

o

= 0
1
—3x2/2  —x/2 X
3x2/4 x/4 —x/2 1 0
| —13x3/9 —x%/4 x%/2 100

and C, = ALY (mod y). The GMT in the extremal ray variable is
o(s'h +s*¢)

= sy + SZ€/+%EZSlq2E’€/2h/ . %6351 q3£’§/3h/ (mod qry’).



Example of quantum invariance without BEFGMT
For local (2,1) flip, the final frame T; (mod y) is

[C—h = (—h)(y=0z=0)=(Z—h)+xK.

Theorem (Invariance along extremal rays)

For extremal primary Gromov-Witten invariants of n > 1 insertions,
(& —H=mX = (W)= X = q".
This is equivalent to the quantum interpretation of Cayley’s formula
agi= (e Y = a2 dn,

which is the number of spanning trees in the complete graph on d vertexes
(and hence with d — 1 edges).
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Degenerate case I: Flops, r =/, ker® = 0

E.g. Atiyah flops r = 1. The Y-corrected frame is

Let

Then Picard-Fuchs =
Uy = —f! (Zal)zl = —qlf_l (Zaz — Zal)zl = (ql — 1)1%0.

Then we absorb % into v4 to get A1, A as
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[ q192
1
_ q192
Al - _f fh_lf s
1
L -1 1
[ 2(1—-q1) a2
1 qZ
_ |1 q1492
Ay = 1
1 1
i 1

Now vg = ﬁg(é — fz)I = fzézl — 1421 does not come from a naive
quantization. The z-independence fails if vg is not ¥-corrected.
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Degenerate case II: (7,0) flips, i.e blow-ups

Example: For (1,0) flips,

f:X=% 1 =Pu(0(-1)®0) > X =P~

I xy
Ay = N I
i —xy | —=1/x
R AEY
A, = ) XY
L —Xy




In the diagonalization process all the formal series f, and g° in x
do not have constant terms.

For the resulting 3 x 3 matrices E1! and E;l, the BF matrix B = I3
(mod x).

Thus after substituting x = 0 the resulting matrices for Ay, Ay go
to 03 and

Yy
AC/ = 1 P
1

: . . . !4l
which recovers the Dubrovin connection on P? with y = g7 e" .

THANK YOU
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