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I This is a joint project with Chang-Shou Lin and Ching-Li Chai.

I The Green function G(z, w) on a flat torus T = C/Λ,
Λ = Zω1 + Zω2 is the unique function on T× T which satisfies

−4zG(z, w) = δw(z)− 1
|T|

and
∫

T G(z, w) dA = 0, where δw is the Dirac measure with
singularity at z = w.

I Because of the translation invariance of4z, we have
G(z, w) = G(z−w, 0) and it is enough to consider the Green
function G(z) := G(z, 0). Asymptotically

G(z) = − 1
2π

log |z|+ O(|z|2).
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I Not surprisingly, G can be explicitly solved in terms of elliptic
functions.

I Let z = x + iy, τ := ω2/ω1 = a + ib ∈H and q = eπiτ with
|q| = e−πb < 1. Then

ϑ1(z; τ) = −i
∞

∑
n=−∞

(−1)nq(n+ 1
2 )2

e(2n+1)πiz.

I (Neron):

G(z) = − 1
2π

log
∣∣∣∣ ϑ1(z)
ϑ′1(0)

∣∣∣∣+ 1
2b

y2.

I The structure of G, especially its critical points and critical
values, will be the fundamental objects that interest us.
∇G(z) = 0⇐⇒

∂G
∂z
≡ −1

4π

(
(log ϑ1)z + 2πi

y
b

)
= 0.

3 / 29



I Recall ℘(z) = 1/z2 + · · · , ζ(z) = −
∫ z

℘ = 1/z + · · · . and
σ(z) = exp

∫ z
ζ(w) dw = z + · · · is entire, odd with a simple

zero on lattice points and

σ(z + ωi) = −eηi(z+ 1
2 ωi)σ(z)

with ηi = ζ(z + ωi)− ζ(z) = 2ζ( 1
2 ωi) the quasi-periods.

I Indeed

σ(z) = eη1z2/2 ϑ1(z)
ϑ′1(0)

.

Hence ζ(z)− η1z = (log ϑ1(z))z.

I Let z = tω1 + sω2. By Legendre relation η1ω2 − η2ω1 = 2πi,
∇G(z) = 0 if and only if

Gz = − 1
4π

(
ζ(tω1 + sω2)− (tη1 + sη2)

)
= 0.

I Question: How many critical points can G have in T?
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I The 3 half periods are trivial critical points. Indeed,

G(z) = G(−z)⇒ ∇G(z) = −∇G(−z).

Let p = 1
2 ωi then p = −p in T and so ∇G(p) = −∇G(p) = 0.

I Other critical points must appear in pair ±z ∈ T.

I Example (Maximal principle)
For rectangular tori T: (ω1, ω2) = (1, τ = bi), 1

2 ωi, i = 1, 2, 3 are
precisely all the critical points.

I Example (Z3 symmetry)
For the torus T with τ = eπi/3, there are at least 5 critical points: 3 half
periods 1

2 ωi plus 1
3 ω3, 2

3 ω3.

I However, it is very difficult to study the critical points from the
“simple equation” ζ(tω1 + sω2) = tη1 + sη2 directly.
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I In PDE, the geometry of G(z, w) plays fundamental role in the
non-linear mean field equations (= Liouville equation with
singular RHS): On a flat torus T it takes the form (ρ ∈ R+)

4u + ρeu = ρδ0.

I It is originated from the prescribed curvature problem
(Nirenberg problem, constant K with cone metrics etc.).

I It is the mean field limit of Euler flow in statistic physics.

I It is related to the self-dual condensation of abelian
Chern-Simons-Higgs model (Nolasco and Tarantello 1999).

I In Arithmetic Geometry, G(z, w) also appears in the Arakelov
geometry as the intersection number of two sections z and w of
the arithmetic surface T → Spec Z∪ {∞} at the ∞ fiber T∞ =
Riemann surface T.
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I When ρ 6∈ 8πN, it has been proved by C.-C. Chen and C.-S. Lin
that the Leray-Schauder degree is

dρ = n + 1 for ρ ∈ (8nπ, 8(n + 1)π),

so the equation has solutions, regardless on the shape of T.

I The first interesting case is when ρ = 8π where the degree
theory fails completely.

Theorem (Existence criterion via ∇G for n = 1)
For ρ = 8π, the mean field equation on a flat torus T = C/Λ:

4u + ρeu = ρδ0

has solutions if and only if the G has more than 3 critical points. Moreover,
each extra pair of critical points ±p corresponds to an one parameter family
of solutions uλ, where limλ→∞ uλ(z) blows up precisely at z ≡ ±p.
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I Structure of solutions.

I Liouville’s theorem says that any solution u of4u + eu = 0 in a
simply connected domain Ω ⊂ C must be of the form

u = c1 + log
|f ′|2

(1 + |f |2)2 ,

where f , called a developing map of u, is meromorphic in Ω.

I It is straightforward to show that for ρ = 8πµ,

S(f ) ≡ f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

= uzz −
1
2

u2
z = −2µ(µ + 1)

1
z2 + O(1).

I.e., any developing map f of u has the same Schwartz derivative
S(f ), which is elliptic on T.
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I By the theory of ODE, locally f = w1/w2 for two solutions wi of
the Lamé equation Lη,B y = 0:

y′′ +
1
2

S(f )y = y′′ − (η(η + 1)℘(z) + B)y = 0

for some B ∈ C.

I Even more, for any two developing maps f and f̃ of u, there

exists S =
(

p −q̄
q p̄

)
∈ PSU(2) such that f̃ = Sf :=

pf − q̄
qf + p̄

.
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Lemma (Existence of developing map for µ ∈ 1
2Z)

Given Λ, for ρ = 4π`, ` ∈N, by analytic continuation across Λ, f is glued
into a meromorphic function on C. (Instead of on T = C/Λ.)

I First constraint from the double periodicity:

f (z + ω1) = S1f , f (z + ω2) = S2f

with S1S2 = ±S2S1.

I Second constraint from the Dirac singularity:

(1) If f (z) has a zero/pole at z0 6∈ Λ then order r = 1.

(2) f (z) = a0 + a`+1(z− z0)`+1 + · · · be regular at z0 ∈ Λ.
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I Type I (Topological) Solutions⇐⇒ ` = 2n + 1:

f (z + ω1) = −f (z), f (z + ω2) =
1

f (z)
.

Then

g = (log f )′ =
f ′

f

is elliptic on T′ = C/Λ′, Λ′ = Zω1 + Z2ω2 with the only
(highest order) zeros at z0 ≡ 0 (mod Λ) of order ` = 2n + 1.

I The equations 0 = g(0) = g′′(0) = g(4)(0) = · · · implies that f is
an even function. So f has simple zeros at ±p1, . . . ,±pn and
ω1/2.

I The remaining equations 0 = g′(0) = g′′′(0) = g(5)(0) = · · ·
leads to the polynomial system for ℘(pi)’s:
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Theorem (Type I evenness and algebraic integrability)

(1) For ρ = 4π`, ` = 2n + 1. All type I solutions u are even. f has simple
zeros at ω1/2 and ±pi for i = 1, . . . , n, and poles qi = pi + ω2.

(2) For xi := ℘(pi), x̃i := ℘(qi), and m = 1, . . . , n,

∑n
i=1 xm

i −∑n
i=1 x̃m

i = cm, (xm − e2)(x̃m − e2) = µ,

for some constants cm and µ = (e2 − e1)(e2 − e3). This is a 2n affine
polynomial system in C2n of degree 2nn!.

(3) The corresponding Lamé equation Lη=n+1/2,B y = 0 has finite
monodromy group M (in fact PM = V4) hence there is a polynomial
pn of degree n + 1 such that pn(B) = 0. (Brioschi-Halphen 1894.)
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I Type II (Scaling Family) Solutions⇐⇒ η = n (` = 2n):

f (z + ω1) = e2iθ1 f (z), f (z + ω2) = e2iθ2 f (z).

I If f satisfies this, eλf also satisfies this for any λ ∈ R. Thus

uλ(z) = c1 + log
e2λ|f ′(z)|2

(1 + e2λ|f (z)|2)2

is a scaling family of solutions with developing maps {eλf}.
I The blow-up points for λ→ ∞ (resp. −∞) are precisely zeros

(resp. poles) of f (z).

I g = (log f )′ is elliptic on T = C/Λ, with highest order zero at
z = 0 of order ` = 2n.
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I 0 = g′(0) = g′′′(0) = · · · = g(2n−1)(0) implies that g is even.

I We may write

g(z) =
℘′(p1)

℘(z)− ℘(p1)
+ · · ·+ ℘′(pn)

℘(z)− ℘(pn)

constraint by 0 = g(0) = g′′(0) = · · · = g(2n−2)(0). These give
rise to n− 1 equations on p1, . . . , pn.

I And then
f (z) = f (0) exp

∫ z

0
g(ξ) dξ

which should satisfies (the n-th equation)∫
Li

g ∈
√
−1R, i = 1, 2.
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I Periods integrals. Let L1, L2 be the fundamental 1-cycles. Then

Fi(p) :=
∫

Li

Ω(ξ, p) dξ,

where p 6≡ 1
2 ωi (mod Λ) and

Ω(ξ, p) = A
σ2(ξ)

σ(ξ − p)σ(ξ + p)
=

℘′(p)
℘(ξ)− ℘(p)

= 2ζ(p)− ζ(p + ξ)− ζ(p− ξ).

I Lemma (Periods integrals and critical points)
Let p = tω1 + sω2, then up to 4πiN,

F1(p) = 2(ω1ζ(p)− η1p) = 2(ζ(p)− tη1 − sη2)ω1 − 4πis,
F2(p) = 2(ω2ζ(p)− η2p) = 2(ζ(p)− tη1 − sη2)ω2 + 4πit.
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I E.g. when ρ = 8π (` = 2), p1 = p, p2 = −p, g(z) = Ω(z, p) and

f (z) = f (0) exp
∫ z

0
g(ξ) dξ

gives rise to a type II solution⇐⇒ Fi(p) ∈ i R⇐⇒ ∇G(p) = 0.

I Theorem (Uniqueness, Lin-W 2006, Annals 2010)
For ρ = 8π, the mean field equation4u + ρeu = ρδ0 on a flat torus has at
most one solution up to scaling.

I Theorem (Number of critical points)
The Green function has either 3 or 5 critical points.

I We were unable to prove it from the critical point equation.
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• It remains to study the geometry of critical points overM1,
which relies on methods of deformations and the degeneracy
analysis of half periods.

Theorem (Moduli dependence, Lin-W 2011)

(1) Let Ω3 ⊂M1 ∪ {∞} ∼= S2 (resp. Ω5) be the set of tori with 3 (resp.
5) critical points, then Ω3 ∪ {∞} is closed containing iR, Ω5 is open
containing the vertical line [eπi/3, i∞).

(2) Both Ω3 and Ω5 are simply connected with C := ∂Ω3 = ∂Ω5
homeomorphic to S1 containing ∞.

(3) Moreover, the extra critical points are split out from some half period
point when the tori move from Ω3 to Ω5 across C.

(4) (Strong uniqueness) The map Ω5 → [0, 1]2 by τ 7→ (t, s) for
p(τ) = tω1 + sω2 is a bijection onto4 = [( 1

3 , 1
3 ), ( 1

2 , 1
2 ), (0, 1

2 )].
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M1

0 1
2 1

i

1
2 (1 + i)

1
2 + b1i

Figure: Ω5 contains a neighborhood of eπi/3.

• On the line Re τ = 1/2 which are equivalent to the rhombuses
tori, the proof relies on functional equations of ϑ1.

• The general case uses modular forms of weight one.

Figure: Ω5 contains a neighborhood of eπi/3.

• On the line Re τ = 1/2 which are equivalent to the rhombuses
tori, the proof relies on functional equations of ϑ1.

• The general case uses modular forms of weight one.
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I Idea of proof: Hecke (1926):

Ψ(N) := #{ (k1, k2) | (N, k1, k2) = 1, 0 ≤ ki ≤ N− 1 }.

Consider the weight one modular function for Γ(N):

ZN,k1,k2(τ) := ζ
(k1ω1 + k2ω2

N
; τ
)
− k1ω1 + k2ω2

N
= −ZN,N−k1,N−k2(τ);

I and the weight Ψ(N) one for full modular group:

Z(τ) ≡ ZN(τ) := ∏
(N,k1,k2)=1

ZN,k1,k2(τ) ∈ MΨ(N)(SL(2, Z)).

I Each τ ∈H with Z(τ) = 0 is (at least) a double zero.
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I For odd N ≥ 5, νi(Z) = νρ(Z) = 0,

I At ∞, Hecke calculated the asymptotic expansion:
ν∞ = φ(N/2) = 0,

I Then the RR:

(Z)red =
1
2

deg Z =
1
2 ∑

p
νp(Z) =

Ψ(N)
24

.

I Take N prime, this suggests a 1-1 correspondence between Ω5
and

4 = [( 1
3 , 1

3 ), ( 1
2 , 1

2 ), (0, 1
2 )]

under the map Ω5 → [0, 1]2:

τ 7→ (t, s), where p(τ) = tω1 + sω2.
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Theorem (Periods integrals and type II evenness)

I If solutions exist for ρ = 8nπ, then there is a unique even solution
within each type II scaling family. (` = 2n, an+i = −ai.)

I The solution u is determined by the zeros a1, . . . , an of f . In fact

g(z) =
n

∑
i=1

℘′(ai)
℘(z)− ℘(ai)

=
n

∑
i=1

Ω(z, ai),

f (z) = f (0) exp
∫ z

g(ξ) dξ = f (0)
n

∏
i=1

exp
∫ z

Ω(ξ, ai) dξ.

The condition ordz=0 g(z) = 2n leads to equations for a1, . . . , an:
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Theorem (Green/polynomial system)
For ρ = 8nπ, n ∈N, the n equations for a1, . . . , an are precisely

℘′(a1)℘r(a1) + · · ·+ ℘′(an)℘r(an) = 0,

where r = 0, . . . , n− 2, and

∇G(a1) + · · ·+∇G(an) = 0.

Theorem (Hyperelliptic geometry/Lamé curve)
For xi := ℘(ai), yi := ℘′(ai), the first n− 1 algebraic equations

∑ yixr
i = 0, r = 0, . . . , n− 2,

defines a hyperelliptic curve under the 2 to 1 map a 7→ ∑ ℘(ai):

Xn := {(xi, yi)} ⊂ SymnT −→ (x1 + · · ·+ xn) ∈ P1.
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I The proof relies on its relation to Lamé equations:

f = exp
∫

g dz = exp
∫ n

∑
i=1

(2ζ(ai)− ζ(ai − z)− ζ(ai + z)) dz

= e2 ∑n
i=1 ζ(ai)z

n

∏
i=1

σ(z− ai)
σ(z + ai)

=
wa

w−a
,

where w(z) = wa(z) := ez ∑ ζ(ai)
n

∏
i=1

σ(z− ai)
σ(z)

.

I Theorem (Explicit map a 7→ Ba)
a ∈ Xn if and only if wa and w−a are solutions of the Lamé equation

d2w
dz2 −

(
n(n + 1)℘(z) + (2n− 1) ∑n

i=1 ℘(ai)
)

w = 0.
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I Idea of the Analytic Proof. Consider
y2 = p(x) = 4x3 − g2x− g3, where (x, y) = (℘(z), ℘′(z)), and we
set (xi, yi) = (℘(ai), ℘′(ai)). Consider a basis of solutions to the
Lamé equation by Λa(z), Λ−a(z), where

Λa(z) :=
wa(z)

∏n
i=1 σ(ai)

= ez ∑ ζ(ai)
n

∏
i=1

σ(z− ai)
σ(z)σ(ai)

. (1)

I Let X = ΛaΛ−a. By the addition theorem,

X(z) = (−1)n
n

∏
i=1

σ(z + ai)σ(z− ai)
σ(z)2σ(ai)2 = (−1)n

n

∏
i=1

(℘(z)− ℘(ai)).

That is, X(x) = (−1)n ∏n
i=1(x− xi) is a polynomial in x.
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I Key: X(z) satisfies the second symmetric power:

d3X
dz3 − 4(n(n + 1)℘ + B)

dX
dz
− 2n(n + 1)℘′X = 0,

hence a polynomial solution, in variable x, to

p(x)X′′′ + 3
2 p′(x)X′′ − 4((n2 + n− 3)x + B)X′ − 2n(n + 1)X = 0.

(2)
X is determined by B and certain initial conditions.

I Write X(x) = (−1)n(xn − s1xn−1 + · · ·+ (−1)nsn), (2) translates
to a linear recursive relation for µ = 0, · · · , n− 1 (we set s0 = 1):

0 = 2(n− µ)(2µ + 1)(n + µ + 1)sn−µ − 4(µ + 1)Bsn−µ−1

+ 1
2 g2(µ + 1)(µ + 2)(2µ + 3)sn−µ−2 − g3(µ + 1)(µ + 2)(µ + 3)sn−µ−3.

I Since B = (2n− 1)s1, the initial relation for µ = n− 1 is
automatic. Thus all si’s, X, and ±a, are determined by B alone.
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C.-L. Chai offered a purely algebraic proof without Lamé equations:

Theorem (Chai-Lin-W 2012)

I There is a natural projective compactification X̄n as a, possibly
singular, hyperelliptic curve defined by

C2 = `n(B, g2, g3)

= 4Bs2
n + 4g3sn−2sn − g2sn−1sn − g3s2

n−1,
(3)

in (B, C), where sk = sk(B, g2, g3) = rkBk + · · · ∈ Q[B, g2, g3], is an
universal polynomial of homogeneous degree k with deg g2 = 2,
deg g3 = 3, and B = (2n− 1)s1.

I Thus deg `n = 2n + 1 and X̄n has arithmetic genus g = n.

I The curve X̄n is smooth except for a finite number of τ, namely the
discriminant loci of `n(B, g2, g3), so that `n(B) has multiple roots.
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I Now we study the last equation on X̄n:

0 = −4π
n

∑
i=1
∇G(ai) =

n

∑
i=1

ζ(ai)−
n

∑
i=1

(tiη1 + siη2), (4)

where ai = tiω1 + siω2.

I Then for the rational function on Tn:

En(a1, . . . , an) := ζ(a1 + · · ·+ an)−
n

∑
i=1

ζ(ai),

we get, by assuming (4),

En(a) = ζ(∑ ai)− (∑ ti)η1 − (∑ si)η2

= Z(∑ ai)

= −4π∇G(∑ ai).
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I It is thus crucial to study the branched covering map

σ : X̄n → T, a 7→ σ(a) :=
n

∑
i=1

ai.

Theorem (New modular functions)

(1) The map σ has degree equals 1
2 n(n + 1).

(2) There is a universal (weighted homogeneous) polynomial
Wn(x) ∈ C[g2, g3, ℘(∑ ai), ℘′(∑ ai)][x] of degree 1

2 n(n + 1)
such that

Wn(En) = 0.

(3) The function Zn := Wn(Z) is modular of weight 1
2 n(n + 1).
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I Idea of proof for (1): Apply Theorem of the Cube: For any three
morphisms f , g, h : Vn −→ T and L ∈ Pic T,

(f + g + h)∗L ∼= (f + g)∗L⊗ (g + h)∗L⊗ (h + f )∗L

⊗ f ∗L−1 ⊗ g∗L−1 ⊗ h∗L−1.

I Apply to the case Vn ⊂ Tn which is the ordered n-tuples so that
Vn/Sn = X̄n. We prove inductively that the map

fk(a) := a1 + · · ·+ ak

has degree 1
2 k(k + 1)n!. It is easy to check for k = 1, 2. From k to

k + 1, we let f = fk−1, g(a) = ak, and h(a) = ak+1.

I Then fk+1 has degree n! times

1
2 k(k + 1) + 3 + 1

2 k(k + 1)− 1
2 (k− 1)k− 1− 1 = 1

2 (k + 1)(k + 2).
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Example (n = 2)
For E2(a1, a2) = ζ(a1 + a2)− ζ(a1)− ζ(a2),

E3
2(a)− 3℘(a1 + a2)E2(a)− ℘′(a1 + a2) = 0

on Xn. The equation on Tn has one more term − 1
2 (℘′(a1) + ℘′(a2)).
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