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» This is a joint project with Chang-Shou Lin and Ching-Li Chai.

> The Green function G(z,w) on a flat torus T = C/ A,
A = Zw1 + Zw; is the unique function on T x T which satisfies

1

—N\;G(z,w) = dy(z) — il

and fT z,w)dA = 0, where J, is the Dirac measure with
singularity at z = w.

» Because of the translation invariance of /\,, we have

G(z,w) = G(z — w,0) and it is enough to consider the Green
function G(z) := G(z,0). Asymptotically

1
G(z) = —5 - log 2] +0(|z[%).
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Not surprisingly, G can be explicitly solved in terms of elliptic
functions.

Letz =x+iy, T:=wy/w; =a+ib € Hand g = ¢™" with
|g| = e ™ < 1. Then

— 2n+1)7iz.
% ( =—i n_z_oo 2e(2n+1)
(Neron): . 5 .
G(z) = 5 108 g5} + "
The structure of G, especially its critical points and critical

values, will be the fundamental objects that interest us.
VG(z) =0 <~

oG

-1 AN
5 4— ((10g191)z + 27115) =0.



Recall p(z) =1/22+ -+, {(z) = — [fp=1/z+---.and
o(z) =exp [*{(w)dw =z + - - - is entire, odd with a simple
zero on lattice points and

o(z+w;) = —e’7i(z+%“’i)(7(z)

with 17, = {(z + w;) — {(z) = 2{(4w;) the quasi-periods.

Indeed
U'(Z) — emzz/Z 191 (Z)

9(0)
Hence {(z) — 11z = (log 91(z))-.

Let z = twj + swy. By Legendpre relation nywy — #pwy = 2711,
VG(z) = 0if and only if
G = — (Z(twr +swy) — (g +s72)) = 0
. = E(@ w1 + swy i 5772)— .

Question: How many critical points can G have in T?
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» The 3 half periods are trivial critical points. Indeed,
G(z) = G(—z) = VG(z) = —=VG(-2z2).
Letp = Jw;thenp = —pin T and so VG(p) = —VG(p) = 0.

» Other critical points must appear in pair £z € T.

» Example (Maximal principle)

For rectangular tori T: (w1, wy) = (1, T = bi), %wi, i=1,2,3are
precisely all the critical points.

» Example (Z3 symmetry)
For the torus T with T = ¢™/3
periods 1w; plus %w3, %wg.

, there are at least 5 critical points: 3 half

» However, it is very difficult to study the critical points from the
“simple equation” {(fwq + swy) = tn1 + sy directly.
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In PDE, the geometry of G(z, w) plays fundamental role in the
non-linear mean field equations (= Liouville equation with
singular RHS): On a flat torus T it takes the form (p € R)

Au+ pe' = pdy.
It is originated from the prescribed curvature problem
(Nirenberg problem, constant K with cone metrics etc.).
It is the mean field limit of Euler flow in statistic physics.

It is related to the self-dual condensation of abelian
Chern-Simons-Higgs model (Nolasco and Tarantello 1999).

In Arithmetic Geometry, G(z, w) also appears in the Arakelov
geometry as the intersection number of two sections z and w of
the arithmetic surface 7 — SpecZ U {0} at the oo fiber 7o, =
Riemann surface T.



» When p ¢ 87N, it has been proved by C.-C. Chen and C.-S. Lin
that the Leray-Schauder degree is

dp=n+1 for pe (8nm,8(n+1)m),

so the equation has solutions, regardless on the shape of T.

» The first interesting case is when p = 87 where the degree
theory fails completely.

Theorem (Existence criterion via VG for n = 1)
For p = 8, the mean field equation on a flat torus T = C/A:
Au + pet = pdy

has solutions if and only if the G has more than 3 critical points. Moreover,
each extra pair of critical points p corresponds to an one parameter family
of solutions u,, where lim, ., 1 (z) blows up precisely at z = +p.



» Structure of solutions.

» Liouville’s theorem says that any solution u of Au +¢* = 0ina
simply connected domain (2 C C must be of the form

[F'?
"B

where f, called a developing map of u, is meromorphic in Q).

» It is straightforward to show that for p = 87y,

11 1"\ 2
s) =27 =3 (55) == 31 = —2u(u+ 13 +000).

Le., any developing map f of u has the same Schwartz derivative
S(f), which is elliptic on T.



» By the theory of ODE, locally f = w; /w> for two solutions w; of
the Lamé equation L, gy = 0:

v+ %S(f)y =y = +1)p(z) + By =0

for some B € C.
» Even more, for any two developing maps f and f of u, there

- p -1 o P17
ts S = _'] € PSU(2) such that f = Sf := -,
exists (q P) (2) f=5f pr




Lemma (Existence of developing map for y € %Z)

Given A, for p = 4rtl, £ € IN, by analytic continuation across A\, f is glued
into a meromorphic function on C. (Instead of on T = C/A.)

> First constraint from the double periodicity:

fz+wr) =Sif, flz4+wr) =Sof
with 5,5, = £5,5;.
> Second constraint from the Dirac singularity:
(1) If f(z) has a zero/pole at zg ¢ A then order r = 1.
(2) f(z) =ap+ap1(z—20)1 + - - beregularatzy € A.



> Type I (Topological) Solutions <= ¢ = 2n + 1:

1
flz+w1) = —f(2), f(Z+aJ2):J@.

Then

— (loefy =1
g = (logf) 7

is ellipticon T" = C/A/, A" = Zw + Z2w, with the only
(highest order) zeros at zp = 0 (mod A) of order ¢ = 2n + 1.

» The equations 0 = g(0) = ¢"(0) = ¢*)(0) = - - - implies that f is
an even function. So f has simple zeros at +py, ..., £p, and
w1 /2.

» The remaining equations 0 = ¢’(0) = ¢"’(0) = ¢!®(0) = - --
leads to the polynomial system for p(p;)’s:
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Theorem (Type I evenness and algebraic integrability)

(1) Forp =4ml, £ = 2n+ 1. All type I solutions u are even. f has simple
zeros at wy /2 and £p; fori =1,...,n, and poles q; = p; + wy.

(2) Forx;:= p(p;), X = p(q;),andm =1,...,n,

Yo=Y A =, (m—e2) (R —e2) =,

or some constants ¢y, and 1 = (ex — eq)(ep — e3). This is a 2n affine
K
polynomial system in C*" of degree 2"n!.

(3) The corresponding Lamé equation Ly—,1/2pYy = 0 has finite
monodromy group M (in fact PM = V4) hence there is a polynomial
pn of degree n + 1 such that p,(B) = 0. (Brioschi-Halphen 1894.)
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> Type II (Scaling Family) Solutions <= 1 =n ({ = 2n):
flzt+wi) =0f(z),  flz+w) = ().

» If f satisfies this, ¢'f also satisfies this for any A € R. Thus

e /(
M)L(Z) = +logm

is a scaling family of solutions with developing maps {e"f}.

» The blow-up points for A — oo (resp. —o0) are precisely zeros
(resp. poles) of f(z).

> ¢ = (logf)'isellipticon T = C/A, with highest order zero at
z =0 of order ¢ = 2n.



»0=¢'(0)=¢"0)="---= g(Z”’l)(O) implies that g is even.

> We may write

¢ (p1) ¢ (Pn)
)= —FU 4.4
= Sw - T 5@ - )
constraint by 0 = g(0) = g”(0) = - - - = ¢(2"=2)(0). These give
rise to n — 1 equations on py, ..., pn.

> And then .
£2) = FO)exp [ g(2)de

which should satisfies (the n-th equation)

/gE\/—llR, i=1,2.
L;
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> Periods integrals. Let L1, L, be the fundamental 1-cycles. Then
Fi(p) := /L QG p)dg,

where p # Jw; (mod A) and

() o)
AP = AT e tp ~ 9@ - o)
=2 (p)— L(p+8) —L(p ).

» Lemma (Periods integrals and critical points)

Let p = twy + swy, then up to 47ilN,

Fi(p) = 2(w1l(p) —mp) = 2(Z(p) — tn1 — sn2)wy — 4ris,
Fo(p) = 2(w2l(p) — m2p) = 2(G(p) — ty1 — snp2)ws + 4mit.
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» Eg.whenp=81({ =2),p1 =p,p2 = —p,g(z) = Q(z,p) and

z
£z) = FO)exp [ g(@)de
0
gives rise to a type II solution <= F;(p) € iR <= VG(p) = 0.

» Theorem (Uniqueness, Lin-W 2006, Annals 2010)

For p = 8, the mean field equation Au + pe* = pdg on a flat torus has at
most one solution up to scaling.

» Theorem (Number of critical points)
The Green function has either 3 or 5 critical points.

» We were unable to prove it from the critical point equation.
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e It remains to study the geometry of critical points over M,
which relies on methods of deformations and the degeneracy
analysis of half periods.

Theorem (Moduli dependence, Lin-W 2011)

(1) Let Q3 C My U {co} 22 S? (resp. Q) be the set of tori with 3 (resp.
5) critical points, then Q3 U {oo} is closed containing iR, Qs is open
containing the vertical line [¢™/3,ic0).

(2) Both Q3 and Qs are simply connected with C := dQ3 = Qs
homeomorphic to S* containing co.

(3) Moreover, the extra critical points are split out from some half period
point when the tori move from Q3 to Qs across C.

(4) (Strong uniqueness) The map Qs — [0,1]2 by T > (t,s) for
p(T) = twy + swy is a bijection onto A = [(3,3), (L, 5,0, D]
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L4 by

Figure: Q5 contains a neighborhood of ¢7/3.

e On the line Re T = 1/2 which are equivalent to the rhombuses
tori, the proof relies on functional equations of ¢;.

e The general case uses modular forms of weight one.
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> Idea of proof: Hecke (1926):
¥(N) == #{ (k1, k) | (N, k1, k2) =1,0 <k; <N —11}.
Consider the weight one modular function for I'(N):

kw1 + khw kiw1 + kyw
ZN,kl,kz(T)3:€< 1 1N 2 2;T)_ 1 1N 207

= —ZNN—k ,N—k, (T);
» and the weight ¥(N) one for full modular group:

Z(M)=2Zn(t) = T]  ZNkk(T) € My (SL(2,2)).
(N/kllkZ):l

» Each v € H with Z(t) = 0is (at least) a double zero.
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Forodd N > 5, v(Z) = v,(Z) =0,

At co, Hecke calculated the asymptotic expansion:
Voo = ¢(N/2) =0,
Then the RR:

1 1 _¥(N)
(Z)red = > degZ = ) ;Vp(z) = oz -

Take N prime, this suggests a 1-1 correspondence between ()5

and
A=133)(37),03)]
under the map Qs — [0,1]%:

NI—

T+— (t,5), where p(7)=twi+ swy.

20/
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Theorem (Periods integrals and type II evenness)

> If solutions exist for p = 8nrt, then there is a unique even solution
within each type I scaling family. ({ = 2n, a,,; = —a;.)

> The solution u is determined by the zeros ay, ... ,a, of f. In fact

The condition ord,—( g(z) = 2n leads to equations for ay, . .., a,:
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Theorem (Green/polynomial system)
For p = 8nm, n € N, the n equations for ay, . .. ,a, are precisely

o' (@)’ (@) + - + o' (an) e (an) = 0,
wherer =0,...,n—2,and
VG(a)+---+ VG(ay) = 0.
Theorem (Hyperelliptic geometry/Lamé curve)
For x; := p(a;), y; :== ¢ (a;), the first n — 1 algebraic equations
Y yxj =0, r=0,...,n—2,

defines a hyperelliptic curve under the 2 to 1 map a — Y p(a;):

X = {(x;,y;))} € Sym"T — (x; + - +x,) € PL.
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» The proof relies on its relation to Lamé equations:

= ex dz = ex nZai—ui—z—aizdz
f=exp [ gz = exp [ Y2~ tlas—2) ~ fai+2)

n
_ 2% l(ay)z ‘7(2 - ai) _ Wy
e o5

i=1 U( + l) w_,’
n
where w(z) = w,(z) := L) M‘
() ) i1 o(2)

» Theorem (Explicit map a — B,)

a € X, if and only if w, and w_, are solutions of the Lamé equation

2
% B (ﬂ(n +D)p) +@n—-1)Y ", p(ﬂ,’))w =0



> Idea of the Analytic Proof. Consider
y? = p(x) = 4x° — gox — g3, where (x,y) = (p(2), ¢'(2)), and we
set (x;,v;) = (p(a;), ' (a;)). Consider a basis of solutions to the
Lamé equation by A,(z), A_,(z), where

Aa(z) := _We(2) v 1:1 m M

> Let X = A;A_,;. By the addition theorem,

X(z) = (1) [T ZETM0E =) (o) — ola).

Uiy [l

Thatis, X(x) = (—1)"TTL; (x — x;) is a polynomial in x.

24 /29



> Key: X(z) satisfies the second symmetric power:

X X ,
e —4(n(n+l)p+B)E —2n(n+1)p'X =0,

hence a polynomial solution, in variable x, to
p(x)X" + 3p'(x) X" — 4((n* +n - 3)x + B)X' —2n(n+1)X = 0.
@)

X is determined by B and certain initial conditions.
> Write X(x) = (=1)"(x" —s12" 1+ -+ + (=1)"s,), (2) translates
to a linear recursive relation for y = 0,--- ,n — 1 (we set sy = 1):
0=2mn—uwu+1)(n+p+1)sy—p —4(p+1)Bsy,_; 1
+ 382 (1 + 1) (1 +2) 2p + 3)su—pu—2 — g3 (i + 1) (1 +2) (4 + 3)50—p-3.

» Since B = (2n — 1)sq, the initial relation for p = n — 11is
automatic. Thus all s;’s, X, and =+a, are determined by B alone.

)
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C.-L. Chai offered a purely algebraic proof without Lamé equations:

Theorem (Chai-Lin-W 2012)

> There is a natural projective compactification X,, as a, possibly
singular, hyperelliptic curve defined by

C2 = ‘gn (B/g2lg3)

2 2
= 4Bs;, +4935,—25n — §251—15n — §35,1/

)

in (B, C), where s, = s;(B,$2,93) = 1:B* + - - - € Q[B, g2, 3], is an
universal polynomial of homogeneous degree k with deg g = 2,
deggs = 3,and B = (2n —1)s;.

> Thus deg ¢, = 2n + 1 and X, has arithmetic genus ¢ = n.

> The curve Xy, is smooth except for a finite number of T, namely the
discriminant loci of £, (B, §2,83), so that £,,(B) has multiple roots.

26/ 2



» Now we study the last equation on X;;:

n

Z(a;) — Y (tim +sin2),

i=1

M-

I
—

n
0=—4m) VG() =
i=1

where a; = tjw; + sjw».

» Then for the rational function on T":

n

En(ar,...,an) :=f(m + -+ +ay) — Eg(ai),

i=1

we get, by assuming (4),

En(a) = C() ai) — Yt — (Y_si)m
=Z()_a;)

= —4nVG()_a).

(4)
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» It is thus crucial to study the branched covering map

c:X,—T, a—ola):=)a.

Theorem (New modular functions)

(1) The map o has degree equals %n(n +1).
(2) There is a universal (weighted homogeneous) polynomial
W (x) € Clga, g, 9(Las), o' (L a;))[x] of degree In(n+1)
such that
Wy, (E,) = 0.

(3) The function Z, := Wy(Z) is modular of weight $n(n +1).
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» Idea of proof for (1): Apply Theorem of the Cube: For any three
morphisms f,g,h: V, — Tand L € PicT,

F+g+h)' L2 (f+9)'L®(g+h)*Le (h+f)L
@f L 'eg L tonL

» Apply to the case V;; C T" which is the ordered n-tuples so that
Vyu/Sn = X, We prove inductively that the map

fi(@) ==a1+ - +a

has degree $k(k -+ 1)n!. It is easy to check for k = 1,2. From k to
k+1,weletf =fi_1,8(a) = a, and h(a) = ar,1.

» Then f; 1 has degree n! times

Tk(k+1)+3+ k(k+1) = J(k—Dk—1-1=J(k+1)(k+2).
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Example (n = 2)
For Ex(a1,a2) = (a1 +a2) — {(a1) — {(a2),

E3(a) — 3p(a1 + a2)Ex(a) — ¢/ (a1 +az) =0

on X,,. The equation on T" has one more term —3 (¢'(a1) + ¢'(2)).
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