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Calabi-Yau manifolds

» A Calabi-Yau manifpld X" is a complex projective n-fold
with Kx =2 Ox and h'(0x) =0for1 <i<n-—1.
» Yau (1976): Ricci flat metrics on X are in one to one

correspondence with (], w) where | is a complex structure
on X and w € H"(X) is a Kéhler class.

» Bogomolov-Todorov-Tian (1987): The deformation theory
is unobstructed, namely the Kuranishi space .#x = Def (X)
is smooth of dimension 1"~ (X) = h!(X, Tx).

» Namilawa (1994): BTT holds for Calabi-Yau 3-fold with at
most terminal singularities.

Local analytically (p € X) = cDV/u, with
cDV = f(x,y,z) + tg(x,y,z,t) where f is an ADE equation.



Ried’s fantesy: How to classify Calabi—Yau 3-folds?

» Finite topological type?
» Are Calabi-Yau 3-folds all “connected” through extremal
transitions? Or even conifold (i.e. ODP) transitions?

Y
|s
X=x52-X

where 1 is a projective crepant contraction and X; is a
projective smoothing of X = Xy. (Denote Y \, X, X Y.
» If X is a conifold with ODP py, - - - , p, then Y contains k
¢-exceptional curves C; = P! with N¢./y & O (—1)%2, X
contains k vanishing spheres S; & S% with Ng,/x = T*S%:

9(S* x D%) = $® x §* = 9(D* x §?),

» Irreducible family via non-projective Calabi—Yau’s??



Main examples

Up to date, there are more than 107 Calabi-Yau 3-folds found
with different topological types!
» Complete intersections in toric varieties. E.g. (5) C P*.

» H. Clemens 1983: Double solids. E.g. Branched double
cover of P? along a degree 8 surface.

» C. Schoen 1988: Fiber product of elliptic surfaces
X = 51 X pt Sz,

where r; : S; — P! is a relatively minimal elliptic surface
with section and without reduced fibers.

» The singular fibers are of type I, : t = xy, I : t = yz —x3,
Il : t = x(y*> — x), IV : t = xy(x +y). If A; is the critical
value of r;, then X is singular over A; N A;. Any
deformation of X is still of the form, hence smoothable.



Classical working problems

» E. Viehweg 1990-97: The moduli space .#, of polarized
Calabi—Yau varieties with at most canonical singularities
(with a fixed Hilbert polynomial /) is quasi-projective.

> W-1996: The Weil-Petersson metric (for () a section of n
forms)

wwp 1= —adlog Q(Q), Q)
has finite distance towards the boundary point of .#,
which corresponds to CY with canonical singularities.

» W-2003: MMP = The converse holds for one dimensional
moduli. Hence OK for Calabi—Yau 3-folds.

» T.-J. Lee, W- 2013*: The WP metric completion of .#}, is
precisely .. (Small complex structure limits.)



Reid: Is that possible to deform a terminal (or canonical)
extremal transition Y N\, X into a conifold transition?

R. Friedman 1986: The local contraction (Y,C) — (X, p)
can always be deformed into a ODP contraction

(Y, 11C;) — (X', {p:}) with many ODP p;’s.

Moreover, a ODP contraction Y — X is globally
smoothable if and only if there is a totally non-trivial
relation )" a;[C;] = 0 with a; # 0 for all .

Y. Namikawa 2002: If X = Sy X1 S, has a type III x III
singularity, then any extremal transition through X is not
deformable into conifold trasnaitions!

S.-S. Wang 2012: OK if we allow deformations,
decompositions and flops. In fact 2 steps conifold
transitions are enough for C. Schoen’s examples.



Quantum aspects on projective conifold transitions

» The purpose of this talk is to give some observations on
the quantum A and B models under a projective conifold
transition Y \, X of Calabi-Yau 3-folds. This is based on a
joint project with H.-W. Lin and Y.-P. Lee.

» A model: Gromov-Witten theory.

» B model: Kodaira-Spencer theory (or VHS in the genus
Zero case).

» Itis clear that A(X) < A(Y) (Y has extremal rays) and
B(X) > B(Y) (X has vanishing cycles).

» But we expect that the full “TQFT” is “invariant”
regardless the choices of CY’s!

» Other aspects: Candelas, Strominger, Thomas—Yau,
Tseng—Yau, Rong-Zhang, Xu, Lau (and many more ...).



Global constraint on conifold trsnaition Y \ X
» The Euler numbers satisfy
X(X) —kx(8%) = x(Y) — kx(8?).

That s, 1 (i3(X) — h3(Y)) + (K2(Y) — K2(X)) = k.

» Extremal transitions preserve h1*Y = 1h%(K), hence
i H0P(X) = (V) = (%) = 1Y)
is the lose of complex moduli, and
p =1 (Y) — K (X) = k1 (Y) - W (X)

is the gain of Kdhler moduli.

» The relation then reads as

u+p ==



Factorization into two semi-stable reductions

» The transition X Y can be achieved as a composition of
two semi-stable degenerations: .2~ — A and % — A.

> The first one (complex degeneration) f : 2~ — A is the
semi-stable reduction

X —X—X

N

A 2:1 A

for X — A obtained by a degree two base change ¥ =S A
followed by the blow-up 2~ — X’ of the 4D nodes

piex!, i=1,...k



» The special fiber

k
2o =X U] [Xi
i=0

is a SNC divisor with
l/~7 : X() = Y — X

being the blow-up atall p/sand X; = Q; ¥ Q C P*isa
quadric threefold fori =1, ..., k.

» Let XUl be the disjoint union of j + 1 intersections from
X;’s. Then X% = Y1[;Q; and X!l = [, E; where

Ei=YNnQ =P x P!

are the i exceptional divisors.



The second one (Kéhler degeneration) g : % — A is simply
the deformations to the normal cone

@ == BIHCZ‘X{O}Y X A — A.
The special fiber

k
P =YoU]]Yi
i=1

with ¢ : Yo = Y — Y being the blow-up along the curves
Ci/’'s and

1

YZ'IEZ'
fori=1,...,k

Non-trivial terms for Y/ are Y = Y[, E; and Y[V = [ [, E;
where E; = Y N E; is the oo divisor of 7r; : E; — C; = PL.

E=Pn(0(-1)®0)



Limiting mixed Hodge theory

» Consider the period map ¢(t,s) of a variation of Hodge
structures F7; with unipotent monodromy T; around D; in
the SNC divisor D = Jl_, D;: Let N; = log T;, ®(z,s) its
lifting with t; = €2, and let ¥(z,s) := e ?N®(z,s) where
zN = Z]}-‘:l ziN;. Then ¥ descends to ¢ : (t,5) € A* — D:

H* x A1 d D
|

A= (A x Ar L DTy, T

» W. Schmid’s nilpotent orbit theorem 1971:
P(t,s) = eNp(t,s) where 1 is holomorphic over A"
P(0,s) = F2,(s) is called the limiting Hodge filtration.
The nilpotent orbit eV (0, s) approximates ¢ “nicely”.



Let a(t,s) be a section of i(t,s)".

a(t,s) = ao(s ~|—201]

with ag(s) € F%(s). Then zN = Y (log t;)N;/2i,
Q(t,s) = eNa(t,s) = eNag(s) + e Y a1 j(s)tj + -

In the case of conifold degenerations of Calabi—Yau 3-folds,
Njag(s) = 0 for all j and N;N; = 0 for any i, j. This follows
from the one parameter case since N = }_n;N; along the
curve u — (u™, .-, u™,s) for any fixed s.

We first consider the one parameter case hence

tlogt
27

Q) =ap+ Na; + -

F2, and Wy defines a MHS. We will see that N?> = 0 soon.



» Now we compare the MHS on H(Z2)), computed from
EN(2o) = HI(XP) with Cech 6 : HI(X!P!) — HI(XP+1]),
and the limiting MHS on H(X) (also H(%) and H(Y)):

» The Clemens-Schmid exact sequences for MHS's are

0 — H3(2%) —»H3(X) 25 H3(X) — H3(25) — 0
0 — HO(X) — He(2%) — H2(20) —H2(X) 250,
0 — H3 (%) —H3(Y) 50,
0 — H(Y) — He(%) — H2(%) —H2(Y) 250,

where N is trivial for % — A.

» Since H2(.2p) is of weight 2, N on H?(X) is also trivial and
the Hodge structure does not degenerate at all.



» Let K = ker(N : H3(X) — H3(X)) = H*(20). Then
K = H3(Y) @ coker(d).

» From the the limiting Hodge diamond,

H3?H?
HZ'H® Hz'H® ~|N HZH? HEH®
coker ()

we conclude that G}YH?(X) = H3(Y) and

u = h22H® = hl'H® = dim coker(9).



» Lemma. V* = H2 ’H3 and V = H1 1H3,

» Proof: For any 3-fold isolated singularities,
0=V —=H3X) = H3(X)— 0

is exact. Dually 0 — H*(X) — H3(X) — V* — 0.

» The invariant cycle theorem (c.f. BBD) implies that
H3(X) = kerN = K = H3(2p). Hence

V* = HX*H® = F2.G) H3(X).
The non-degeneracy of Q(Na, ) on G}H?(X) implies that

HY'H® = NHYH® = (H¥H)* = v = V.



» Theorem (Basic exact sequence)
The group of vanishing S* cycles on Y and the group of vanishing S
cycles on X are linked by the weight 2 exact sequence

k t
0 — H2(Y)/HA(X) 25 @ HA(E;) /HA(Q)) 25 K/H3(Y) 2 V — 0.

i=1

Here A € My, (Z) is the relation matrix for Ci’s and B € My, (Z)
is the relation matrix for S;’s. In particular

B=kerA! and A =kerB'.

» Remark: This sequence in fact splits:
0 — Z° — ZF — Z' — 0. We eventually want to have a 2
module version (non-split) of this.



A key construction

» Consider the topological construction: For any non-trivial
relation Zﬁ-‘zl a;[C;] = 0, there is a 3-chain W in Y with
k
oW = ZaiCi.
i=1

» Under ¢ : Y — X, C; collapses to the node p; hence
» Asin Lemma, W deformes (lifts) to v € H3(X, Z) in nearby
tibers. Using the intersection pairing, we get

PD(v) € H3(X, Z).

Restricting to the vanishing cycle space V, PD(vy) € V*.



> In the proof we establish the correspondence for each
column vector A; = (ayj, - - - ,ay;)" with the element
PD(7;) € V*,1 <j < p, characterized by

aij = (7}.51)-

» Dually, we denote by Ty, ---,T, € H?(Y) /tor those
divisors which form an integral basis of the lattice in
H?(Y) dual (othogonal) to Hy(X) C Ha(Y). In particular
they form an integral bases of H? (Y)/ H? (X).

» Notice that we may choose T;’s, | = 1,...,p, such that T}
corresponds to the [-th column vector of the matrix B via

by = (C.Ty).



The implication (A(X), B(X)) = (A(Y),B(Y))

Gromov—Witten and Dubrovin connections
Using the degeneration formula, we may relate the GW theory
on X with that on Y by way of Y.

» For B € NE(X)\{0} and @ € H;;,,(X)?",
@onp= 2 (@gny
p(7)=p

where j : Hjy (X) — H(Y) is defined by j(a) = ¢.(ag) with
(a;)f_, € H(Y1IQ:) being the admissible lifting of a with
a; = 0 for all i # 0. The sum is indeed finite!

» For 3-fold conifold transitions and for even dimensional
classes it was first derived by Li-Ruan using symplectic
glueing formula and later reinterpreted by Liu-Yau using
Jun Li’s algebraic degeneration formula.
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» Lets =Y. sT. € H?(X) where T¢’s is a basis of H*(X).
The pre-potential function is given by

© ﬁ
Z Z "o o +Znﬂlﬁ€’“)
n=0 BeNE( !

B0

where n;}( = <>€J(,0,/5' with formal variables g¥’s.

» Itis a function in the Kahler moduli via g# = exp 27i(B.w),

w = B +iH in the complexified Kihler cone ¥ of X.

» Strictly speaking we need to consider s € H”(X). This will
only change the topological part s> /3! with

s = SOTO + ZseTe + ES€T€ + SQTO.
€ 4

Notice: We use Greek indices for variables from H(X).



» Similarly we have FJ () on H>(Y) x KL. Here
t=s+4+u
with respect to H>(Y) = jH?(X) & @!_, ZT, and write
0
u= ZulTl.

=1

» For C = P! with twisted bundle N = & (—1)%2,

1
ES() = Y nlfglclef© = ¥ = FC1AC),
deN deN

» We also consider the total (global) extremal function
Y P &G
Eg(t) := T Z%EO’(t).
1=

where Eg ‘(t) depends only on u.



v

v

v

Hence a splitting of variables

1'((5 +u)® —s —ud).

Fy(s+u) = FY(s) + E} (u) + 3l

The structural coefficients for QH®(Y) are Cpor = B%QRFg

The part F{(s) simply comes from QH®(X).
For the part E{ (u),

K
Cpun = (T1.Tw.Ta) + Y ¥ (Ci.Ty) (Ci.Ton) (Ci.Ty) 1€t
i=1delN

= (T1.Tw.Ty) + szlbzmbznf eXpZ 1pu
i=1

Here

Ci.u)



> The degeneration loci E = J¥_; E; of the GW theory
consists of the k hyperplanes defined by

E;j:= {u | w; Ep bipu? = 0}

Whenever p > 1, E is not a normal crossing divisor.
» The Dubrovin connection on TH*’(Y)

VE—d— LYt o Tps
2P

“restricts” to the Dubrovin connection on TH* (X).
» For the other part with basis T;’s and T"s, we have
ZV5T" = =6, T°,

5 Tm=— E‘Zzl Clmn(u)Tn - chmeTez
€

sze Tm - — ZZ:1 CemnT”.

24 /36



» E.g. the nilpotent monodromy N) along E; is given by

j 271

» Unfortunately, for § # 0, in the finite sum

X Y
(—)p = dZ<_>f(ﬁ)+2i-;1 d;[Ci]

i

we still need to extract the individual term to determine
QH(Y) completely.

» WDVYV equations can help to determine the off diagonal
constants Cepp’s, but give no further constraints.

> Indeed, the term with v = j(B) + Y5, d;[C/] corresponds to
those C C X, [C] = B, and the linking number L(C, S;) of C
with S;isd; fori=1,...,k.



The implication (A(Y),B(Y)) = (A(X), B(X))
Periods and Gauss-Manin connections
» Recall VM on 7% = R¥f,C ® 05 — S for a smooth family
f: % — Sis a flat connection with flat sections R, C.

» Let d; € Hi(X,Z)/tor be a homology basis for a fixed
refernce fiber X = 25, with dual basis 6; € H¥(X,Z).
Then J; can be extended to be (multi-valued) flat sections
in RFf,Z. For 7 € T(S, #*), we may write

ﬂ:Z$A%

with coefficients being the “multi-valued” period integrals.
> Let (s;) be a local coordinates system in S. Then

E)/E)s] 25* / 88]

26 /36



When f : 2~ — S contains singular fibers, VE™ admits a
logarithmic extension to the boundary.

We need to investigate the local complex moduli space of
X towards the conifold degeneration boundary D:

My

|

%XH%X >DDD ﬂ(.//y)

By the BBT unobstructedness theorem, periods of
vanishing cycles give rise to a natural coordinates system
of the deformations of X in the transversal directions
towards D > [X] with the same singularity type.

The “invariant periods” then lift to the small resolution Y
to give rise to the periods on Y.



Let A = (a;;) € My, (Z) be the relation matrix for C;’s.
Recall the basis {PD(’)/])} _, of vanishing cocycles V*:

PD(vj)([Si]) = (7;.S1) :==a;5, 1<j<p.

We may choose yj € H3(X) so that v; € H3(Y)*.
Vanishing cycles: Let I'; € V be the dual basis, (T}.y;) = d;.
We may construct a symplectic basis of H3(X, Z):

Ko, &1, , &p, ﬁOI ﬁl/ e /ﬁh/ (D(] ﬁk) ]k/

where h = h*1(X), withaj =T for 1 <j < p.
Then any 7 € H3(X,C) = C?("+1) is identified with

h
ﬂ:Za?/Hﬁ?/n-
i=0 &; Bi



The symplectic basis property implies that

af () = (Tg)  Bi(D) = —(Tay) = ().
This leads to the important observation that we may
modify 1; by vanishing cycles to get

v = Bj-
So, (7j.71) =0for1 <j,I < pand (ocjf*.Si) = (5i.Bj) = —aj.
Bryant-Griffiths: w; = [ o, {2 form the coordinates of the
image of the period map in P(H?) = P?'~1 as a Legendre
submanifold of the holomorphic contact structure.
By the flatness of V&M, there is a holomorphic
pre-potential function u(wy, - - - ,wy,) such that

u
U = = Q,
! E)wl- Bi

and hence

h
Q=) waj +u;p;.
i=0



» In particular,
h h
aiQ = 0(;k + Zui]‘ﬁ;, 8;7}0 = Z uijk,BZ-
j=1 k=1

» By the Griffiths transversality, 9;() € 2, aijQ € F!, and all
are orthogonal to F3. Hence we have the cubic form

u = (7rD.97Q) = 4 (QFQ) — (QLZHO) = —(Q30).

This is known as the Yukawa coupling.

» We will write down the extension of the Yukawa coupling
across the degenerate loci D C .#x.



» Recall Friedman’s result on partial smoothing of ODP’s in
the following form: Let A = [Al,- -, A"] be the relation
matrix. For any r € C¥, the relation vector

I .
Ar = Z T’jA]
j=1

gives rise to a (germ of) partial smoothing of those ODP’s
pi € X with Ar,i 7& 0.
» Thus for 1 <i <k, the linear equation

w; = 71'1'(Ar) =nap + - Ty = 0

defines a codimension one hyperplane D' C C*.
» D=~ , DI c C*is NOT a SNC.



» Now the small resolution i : Y — X leads to an
embedding .#y C .#x of co-dimension p. As germs of
analytic spaces we thus have

My =N X My S (1,9).

» Along each hyperplane D' there is a monodromy operator
T; with associated nilpotent monodromy N; = log T;.

> A degeneration from X to X; with [X;] € D' a general point
(¢ D" with i1 # i) contains only one vanishing cycle

[S7] = pi-
» The Picard-Lefschetz formula says that for any o € H>(X),

Nio = (¢-PD([S}]))PD([S}])-



» If a period on a vanishing cycle I is single valued then it
admits continuous extensions to A", hence is holomorphic
on A". This is equivalent to that foralli=1,...,k

/rNia(r,s) =

» By a holomorphic change of coordinates, and by shirking
the neighborhood if necessary, we may assume that
fr (r,s) = rjfor1 <j < p. In particular,

Q(r,s) =a Zf*r] (mod V4).



Proposition
In such parameters Q)(r, s) takes a simple form

w; log w;

" k
Q=ap(s)+ ) Tirj+hot —) o

j=1 i=1

PD([Si])-

Here h.o.t. denotes terms in V- which are at least quadratic in
SRR

» Indeed, by embedded resolution and the nilpotent orbit
theorem we have

Q =a(s -I-ZF*r]-l-hot —I-lelogwlNF*
1 ]7

Then

U
Z Nil"]"kr]- Z a;;PD([S = w;PD([Si]).
j=1



v

v

v

v

Since Q)(s) = ay(s) fors € Ay,

k
w; log w;
uy(r,s) = | Q=uy(s) +hot —Y ———2-= [ PD([S]).
P By P ; 27i By
For1l <p < uwe get
up(r,s) = | Q =uy(s) +hot + i waw.
By i=1 27t

Otherwise we get simply u,(r,s) = up(s) +h.o.t..

The asymptotic of the Yukawa coupling is determined:

logw; +1

upm—hoH—Z i

i=1

AipQim,

Upmn = h.o.t. + Z alpalmazn



Conclusion:

» We still don’t know how to connect two Calabi—Yau 3-folds
of different topological types through extremal transitions.

» If there is indeed an extremal transition Y \, X, then it is
reasonable to expect that it can be decomposed /deformed
into conifold transitions up to flops.

» For a conifold transition X Y, (A(X), B(X)) determines
(A(Y),B(Y)) up to knowledge of linking numbers L(C, S;).
While .#y C #x, A(Y) is only partially determined by
A(X) and the relation matrix B of vanishing spheres S;’s.

» (A(Y),B(Y)) determines (A(X), B(X)) up to regular terms
of the Gauss-Manin connection on .Z%. VM on .#y gives
the boundary Yukawa coupling, the log part is determined
by the relation matrix A of the extremal curves C;’s.



