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Minimal Models for Algebraic Surfaces

Theorem 1 (Castelnuovo) Let X be a smooth

projective surface and C ⊂ X be an irreducible

curve. Then there exists a birational morphism

φ : X → X̄ contracting exactly the curve C

down to a smooth surface X̄ if and only if C is

a (−1) curve. That is, C ∼= P1 and C2 = −1.

Definition 2 A smooth surface is called mini-

mal if it contains no (-1) curves.

Definition 3 The Kodaira dimension κ(X) of

a proper smooth variety X is defined to be

κ(X) = lim
`→∞

dim Im
[
Φ` : X ··→ P

(
H0(X, K`)

)]
.

Theorem 4 (Enrique) Any surface X admits

birational minimal models and it is unique if

κ(X) 6= −∞. Moreover, κ(X) = −∞ if and

only if X is birationally ruled, i.e. C ×P1.
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Mori Theory: Minimal Model Program

Definition 5 (Reid) A normal variety X is ter-
minal if KX is Q-Cartier and for some (hence
any) resolution of singularities φ : Y → X, one
has KY =Q φ∗KX +

∑
aiEi with ai ≥ 0.

Theorem 6 (Mori, Kawamata, Shokurov) Let
X be a terminal variety. If KX is not nef, each
extremal ray R ∈ NEK<0 is spanned by a ra-
tional curve C. The extremal contraction ψR :
X → X̄ defined by a supporting divisor D of R is
a morphism such that ψR(C′) = pt ⇔ [C′] ∈ R.

One end up with 3 possibilities on X̄:
1. dim X̄ < dimX: X → X̄ is a fiber space.
2. ψR is divisorial: dimExc(φR) = n− 1, OK.
3. ψR is small: dimExc(φR) < n − 1. In this
case, X̄ is very singular, it is not Q-Gorenstein!

Definition 7 X is a minimal model if it is
terminal and KX is nef.
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Three Dimensional Flips/Flops

Definition 8 A (KX + D) log-flip of a log-
extremal contraction ψ is a diagram

X

ψ ÃÃ@
@@

@@
@@

@

f
// X+

ψ+||zz
zz

zz
zz

X̄

such that f is an isomorphism in codimension
one and KX+ + D+ is ψ+-ample.

The case D = 0 is called a flip.
The case KX is ψ-trivial is called a D-flop.

Theorem 9 (Mori) 3D flips exist.

Theorem 10 (Reid, Mori) A 3D terminal sin-
gularity of index r has the form cDV/µr: cDV
:= isolated singularity f(x, y, z)+ tg(x, y, z, t) =
0 in C4 where f is an ADE equation.

Theorem 11 (Kollár, Mori) 3D flops exist in
families. Also 3D birational Q-factorial mini-
mal models are related by a sequence of flops.
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Summary of 3D Mori Theory

∞. The MMP works. It ends up with a Q-

factorial minimal model.

3. The minimal models are not unique, but

any two Q-factorial minimal models X and X ′
are related by a sequence of flops and flops are

completely classified.

2. Def(X) ∼= Def(X ′) canonically.

1. H∗(X) ∼= H∗(X ′), IH∗(X) ∼= IH∗(X ′) com-

patible with the mix (pure) Hodge structures.

0. X ′ has the same singularity type as X.

What Can One expect in HD Theory?

“0” is wrong in general. ”∞” is infinitely hard.

But the remaining “1”, “2” and “3” do not

depend on it. Notice even in 3D, the ring struc-

tures in “1” is usually different.
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K-equivalence Relation

Definition 12 Two Q-Gorenstein varieties X
and X ′ are K-equivalent, denoted by X =K X ′,
if ∃ smooth Y and birational morphisms φ, φ′:

Y
φ
~~}}

}}
}}

}} φ′
!!CC

CC
CC

CC

X X ′

such that φ∗KX = φ′∗KX ′.

Theorem 13 If X and X ′ are birational termi-
nal varieties such that KX and KX ′ is nef along
the exceptional loci then X =K X ′.

A Geometric Hueristic: For manifolds, this
is the same as c1-equivalent. For ω (resp. ω′)
Kähler forms on X (resp. X ′), we get

−∂∂̄ log(φ∗ω)n = −∂∂̄ log(φ′∗ω′)n + ∂∂̄f.

That is, φ∗ω and φ′∗ω′ have quasi-equivalent
volume forms. Can one rotate φ∗ω to φ′∗ω′
through Riemannian metrics while keeping the
quasi-equivalence class of degenerate volume
forms?
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p-adic Integral and Betti/Hodge Numbers

We will assume X and X ′ smooth from now on.
Take an integral model of the K-equivalence
diagram, e.g. X → SpecS etc. For almost all
prime P in S we have good reductions. In such
cases, let R = ŜP . Let Ui’s be a Zariski open
cover of X such that KX |Ui

is free. Then for
a compact open subset S ⊂ Ui(R) ⊂ X(R), we
define its measure by (R/P ∼= Fq, q = pr.)

mX(S) ≡
∫

S
|Ωi|p

(Independent of Ω.) The p-adic measure of
X(R) and X ′(R) are the same by the change
of variable formula and X =K X ′. But since

mX(X(R)) =
|X̄(Fq)|

qn
,

we conclude that X and X ′ have the same local
zeta factors for almost all P . This implies that
hp,q(X) = hp.q(X ′) by Faltings’ p-adic Hodge
Theory.
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Application to The Filling-in Problem

Theorem 14 Let X → ∆ be a projective smooth-
ing of a minimal Gorenstein 3-fold X0. Then
X → ∆ is not birational to a projective smooth
family X′ → ∆.

If X′ → ∆ exists then it must be terminal
Gorenstein. So X =K X′, in particular they
are isomorphic in codimension one, so X0 is
birational to X′0. If X0 is Q-factorial then it
must be smooth and we already get a contra-
diction. Otherwise consider a projective small
morphism X → X0 from a (Q-factorial) mini-
mal model X to X0. X ∼ X0 ∼ X′0. Hence X is
smooth and H∗(X) ∼= H∗(X′0)

∼= H∗(Xt).
Consider the contraction/smoothing diagram:

X

²²

X0 ⊂ X ⊃ Xt

If X0 has only ODP, done by explicit formula
for χ or bi. For general cDV, use symplectic
deformations to reduce to the ODP case.
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Symplectic Deformation of 3D Flops

– Since index one terminal ≡ isolated cDV ≡
one parameter deformation of surface RDP’s.
By Friedman’s result, if p ∈ V is isolated cDV
and C ⊂ U is the corresponding germ of the
exceptional curve contracted to p, then there
is an inclusion Def(C, U) → Def(p, V ) and both
spaces are smooth.
– One can deform the complex structure of
a nbd of C so that C decomposes into sev-
eral P1’s and the contraction map deforms to
nontrivial contractions of these P1’s to ODP’s,
while keeping a nbd of these ODP’s to remain
in Def(p, V ).
– We can preform this analytic process for all
C’s and p’s simultaneously in each correspond-
ing small nbd and then patch them together
smoothly or even symplectically (Wilson).

For flops, we may do this process for X → X̄

and X ′ → X̄ simultaneously to end up with
several copies of classical P1-flops.
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Complex Elliptic Genera and Cobordism

For a commutative ring R, an R-genus ϕ is

defined by Q(x) ∈ R[[x]] through Hirzebruch’s

multiplicative sequence KQ (or Kϕ).

Let Q(x) = x/f(x). The CEG ϕell is defined

by

f(x) = e(k+ζ(z))x σ(x)σ(z)

σ(x + z)
,

Theorem 15 Let ϕ be the CEG. Then for any

algebraic cycle D in X and birational morphism

φ : Y → X with KY = φ∗KX +
∑

eiEi, we have
∫

D
Kϕ(c(TX)) =

∫

φ∗D

∏
i
A(Ei, ei+1)Kϕ(c(TY )).

where the Jacobian factor is defined by

A(t, r) = e−(r−1)(k+ζ(z))t σ(t + rz)σ(z)

σ(t + z)σ(rz)
.
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Idea of The Proof

(Residue Theorem) For any cycle D in X and
for any blowing-up φ : Y → X along smooth
center Z with exceptional divisor E, one has
for any power series A(t) ∈ R[[t]]:

∫

φ∗D
A(E)KQ(c(TY )) =

∫

D
A(0)KQ(c(TX))

+
∫

Z.D
Res t=0

(
A(t)

f(t)
∏r

i=1 f(ni − t)

)
KQ(c(TZ)).

Here ni’s denote the formal chern roots of the
normal bundle NZ/X.
The proof makes use of deformations to the
normal cone to reduce to the case that X =
PZ(N ⊕ 1), then apply

c(TY ) = φ∗c(TX)φ∗c(Q)−1 (1+E) c(φ∗Q⊗O(−E)).

φ̄∗ek = 0 for 0 ≤ k ≤ r − 2

φ̄∗e(r−1)+k = (−1)(r−1)+ksk(N) for k ≥ 0.

(s(N) =
∑

sk(N) such that s(N)c(N) = 1.)
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Main Conjectures

Fix a birational map f : X · · → X ′ such that

X =K X ′. T := φ′∗ ◦ φ∗ be the cohomology

correspondence determined by Γ̄f ⊂ X ×X ′.
I (canonical isomorphism)

T : Hi(X,Q)
∼−→Hi(X ′,Q),

and respects the rational Hodge structures.

II (quantum cohomology/Kähler moduli)

T also induces an isomorphism on the quantum

cohomology rings over the extended Kähler

moduli spaces.

III (birational complex moduli)

X and X ′ have canonically isomorphic (at least

local) complex moduli spaces.

IV (soft decomposition)

X and X ′ admit symplectic deformations such

that the K-equivalence relation deformed into

copies of classical flops.
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Topological Evidences

Let ΩU be the cobordism ring of stably almost

complex manifolds. An R-valued complex

genus is a ring homomorphism ϕ : ΩU → R.

The cobordism class is determined exactly by

all the chern numbers of the stable tangent

bundle, i.e. by all its complex genera.

Definition 16 (Classical Pk Flops) Let Z ∼=
Pk inside an (n = 2k +1)-D smooth variety X

and NZ/X = OZ(−1)⊕k+1. Then E ∼= Pk × Pk

and one may blow down E in another direction

φ′ : Y → X ′ to get j′ : Z′ = φ′(E) ↪→ X ′. Z′ is

also a Pk with normal bundle OPk(−1)⊕k+1:

E
π1}}{{

{{
{{

{{ EEE
E

π2""EE
E

� � j
// Y

φ
||yy

yy
yy

yy
y

φ′
""EEEEEEEE

Z � � i // X Z′ � � j
′

// X ′

Let Ik be the ideal generated by all [X]− [X ′].
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Conclusion

Theorem 17 (Totaro) ϕell = (ΩU → ΩU/I1).

Theorem 18 (W-) Let IK be the ideal gener-

ated by X − X ′ for X =K X ′. Then IK = I1.

So Conjecture IV is true up to complex cobor-

dism.

Recently Huybrechts (supplementaed by a the-

orem of Demailly and Pann) has shown that bi-

rational hyperk”ahler manifolds X and X ′ ad-

mits deformations X → ∆ and X′ → ∆ such

that Xt
∼= X′. This is the reason we do not

need to consider Mukai flops in IV.

It is necessary to include (at least) all IK to

formulate IV by dimension reason. END
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