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Abstract

Throughout this talk, let
E:ET:C/AT, A:AT:Z+ZT
be a flat tori, where T € H.
I will discuss non-linear singular Liouville equation on E; of the form
n
u _
Au+e' =4 Z; didp,,
]:

where d; > 0, p; € Er are distinct points and 4, is the delta measure
atp;. Letd := Z]’?:l d; be the total singular strength.

This is also the equation of conic metric with constant curvature
K =1 outside p;s.



Under developing maps, it corresponds to the unitary monodromy
problem of generalized Lamé equations

w' = (iﬂj(ﬂj+1)@(zpj) + i}AJ’C(ZPJ') +B)w.
= =

where 77; :=d; /2.

Under the integrality assumption d; € IN, the equation is an
algebraically integrable system and methods in algebraic geometry
and modular forms can be brought in to study the detailed structures
of the moduli spaces of solutions.

When the total strength d is odd, the structure behaves stably in T.

When d is even, it depends on T in a delicate manner.

In this talk, I will report only on the case n = 1.
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Green functions on tori

» The Green function G(z,w) on E = C/A, A = Zw, + Zw, is the
unique function on E x E which satisfies

1

—N;G(z,w) = dy(z) — TE]

and [ G(z,w)dA = 0.

» Translation invariance of A, implies G(z,w) = G(z — w, 0) and it
is enough to consider G(z) := G(z,0). Asymptotically

1
G(z) = —5 - log 2] +0(|z/%).
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v

v

v

G can be explicitly solved in terms of elliptic functions.

Letz=x+iy, T:=wy/w; =a+ib € Hand g = ¢™" with
lg| = e7™ < 1. We have the odd theta function

19 = 2 (2n+l)mz

n=—oo
(Neron): On E; (notice the T dependence),

191 (Z; T)
81(0;7)

The structure of G is fundamental for us. E.g.

1

G(z 1) = —Elog L

+C(7).

_ oG _ -1 AN
VG(z) =0 <= 5 = ((1og191) —i-ZmE) =0.
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> Recall the Weierstrass elliptic functions with periods A:

plz :zz+2( %)’

wEN*

—/p:;—i—---, —exp/ w)dw=2z+---

» 0 is entire, odd with a simple zero on lattice points and
— izt @)
o(z+ w;) = —€lVFT2%g(z),

where 7; = {(z + w;) — {(z) = 2{(1w;) are the quasi-periods.

» Indeed 81(2)
onz2/2V1\%) z
O(Z) 19/ (0) :

Hence (log #1(z)). = (z) — 112
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Wesetwi =1, wp =T =a+bi, w3 = wy + wy, and
z=x+Yi=rwy +swy = (r+ sa) + sbi.

By Legendre’s relation 11wy — 12wy = 2711,

(log ®1)- + 27ri% = (0(2) — mz) + 2ris

Hence VG(z) = 0 if and only if
—471G; = {(rwy + swq) — (rqy +smp) = 0.

Question: How many critical points can G have in E? What is
the dependence of it in T € H?
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» The 3 half periods are trivial critical points. Indeed,
G(z) = G(—z) = VG(z) = —VG(—2z).

Letp = jw; thenp = —pin Eand so VG(p) = —VG(p) = 0.

» Other critical points must appear in pair £z € E.

Example (Maximal principle)
For rectangular tori E: (wy, wy) = (1,T = bi), tw;, i =1,2,3 are
precisely all the critical points.

Example (Z3 symmetry)

For the 60 degree torus E with T = p := ¢”/3, there are 2 more points

_ 1 _ 1 _ 2
p= 3(4.)3, —p = _§W3 = §(U3.
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Periodic singular Liouville equations

» The geometry of G plays a fundamental role in the non-linear
mean field equations. On a flat torus E it takes the form (p € R)

Au+ e = pdy.

> Itis the mean field limit of Euler flow in statistic physics. It is
also related to the self-dual condensation of abelian
Chern-Simons-Higgs model (Nolasco and Tarantello 1999).

> When p ¢ 87lN, it was been proved by C.-C. Chen and C.-S. Lin
(CPAM 2014) that the Leray-Schauder degree is

dp=n+1 for 8nm<p<8(n+1)m,

which is independent of the shape (moduli) of E.
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> The first interesting case (critical value) is when p = 87t where
the degree theory fails completely.

Theorem (Lin—W, Existence criterion via VG for n = 1)

For p = 8, the mean field equation on a flat torus E = C/A
Au+ e = 87y

has solutions if and only if the G has more than 3 critical points.

Moreover, each extra pair of critical points £p corresponds to an one
parameter family of solutions uy, where limy ., u, (z) blows up precisely
atz = £p.
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» Structure of solutions.

> Liouville’s theorem says that any solution u# of Au +¢* =0ina
simply connected domain (2 C C must be of the form

8f"|?
1+ [f12)*

where f, called a developing map of u, is meromorphic in Q).

u = log

» It is straightforward to show that for p = 877 € IR,

" 1"\ 2
S(f) _f_ % <f},> = Uy, — %ug = —2;7(;7+1)le +0(1).

Le., any developing map f of u has the same Schwartz derivative
S(f), which is elliptic on E. Hence there is a B € C such that

5(f) = =2(n(n + 1)p(z) + B).
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» By the theory of ODE, locally f = w; /w, for two solutions w; of
the Lamé equation L, gy = 0:

v+ 380y =¥~y + V(=) + By =0.

» Furthermore, for any two developing maps f and f of u, there

exists S = (Z _ﬁq) € PSU(2) such that

pf—1q
flf+P

> So, solutions to the mean field equation correspond to Lamé
equations with unitary projective monodromy groups.

f=5f=
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» Geometrically the Liouville equation is simply the prescribing
Gauss curvature equation in the new metric g = e“gg over D,
where w = u/2 —log V2 and Qo is the Euclidean flat metric on C:

Ky =—e"Au=1. (1)

» Itis then clear the inverse stereographic projection C — S?

2x 2y —1+2% 412
XIYIZ = 4 4
( ) (1—|—x2+y2 142 +y? 1+x2+y2>

provides solutions to (1) with conformal factor

1 1
ew fnd eiM*ElOgZ =

1+ z)%

14 /48



» Starting from this special solution for D = A, the unit disk,

general solutions on simply connected domain D can be
obtained by using the Riemann mapping theorem via a
holomorphic map

f:D— A

The conformal factor is then the one as expected:

u __ 8|.f/‘2
CT AT P

The problem is to glue the local developing maps to a “global
one”. This is a monodromy problem on the once punctured
torus E* = E\{0}. Since it is homotopic to “8”, we have

Hl(EX,Xo) =ZxZ

being a free group of rank two.
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Lemma (Developing map for 7 = 1/ € %Z)

Given A, for p = 4rtl, £ € IN, by analytic continuation across A\, f is glued
into a meromorphic function on C. (Instead of on E = C/A.)

> First constraint from the double periodicity:

fz+wr) =Sif, flz4+wr) =Sof
with 5§15, = £5,5; (abelian projective monodromy).
> Second constraint from the Dirac singularity:
(1) If f(z) has a zero/pole at zg ¢ A then order r = 1.

(2) f(z) =ag+ap1(z—2) 1 +--- isregularatzg € A.
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» Type I (Topological) Solutions <= ¢ = 2n 4 1:

fetw)=f@),  flaton)= o
Then ¢ = (logf)" = f'/f takes the form
l

; (z—pi) = C(z—pi—w2)) +c

which is ellipticon E' = C/ A/, A’ = Zwy + Z2w, with the only
(highest order) zeros at zp = 0 (mod A) of order ¢ = 2n + 1.

» The equations 0 = g(0) = ¢"(0) = ¢*)(0) = - - - implies that f is
an even function (a non-trivial symmetric function argument).
So f has simple zeros at £p;, ..., £p, and wy /2.

» The remaining equations 0 = ¢’(0) = ¢"’(0) = ¢!®(0) = - --
leads to the polynomial system for p(p;)’s:
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Theorem (Type I integrability, p = 471(2n + 1))

(1) Forp =4ml, £ = 2n+ 1. All solutions are of type I and even. f has

simple zeros at wy /2 and £p; fori =1,...,n, and poles q; = p; + w».

(2) Forx;:= p(pi), X = p(qi),andm =1,...,n,

Yo=Y A=, (m—e)(Fm—e) =g,
for some constants cp, and p = (e; —eq) (e — e3).

(3) The corresponding Lamé equation Ly—,1/2pYy = 0 has finite
monodromy group M (in fact PM = Ky) hence there is a polynomial
pn of degree n + 1 such that p,(B) = 0. (Brioschi-Halphen 1894.)

This is far more precise than the degree counting.
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» Type II (Scaling Family) Solutions <= 1 =n ({ = 2n):
flzt+w) =ef(z),  flz+ws)=%f(2).
» If f satisfies this, ¢'f also satisfies this for any A € R. Thus

| 8e2A V/( ’2
uy(z) = log m
is a scaling family of solutions with developing maps {e"f}.

> u, is a blow-up sequence. The blow-up points for A — oo
(resp. —o0) are precisely zeros (resp. poles) of f(z).

> ¢ = (logf)' is elliptic on E = C/A, with highest order zero at
z =0of order £ = 2n.
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»0=¢'(0)=¢"0)="---= g(Z”’l)(O) implies that g is even.
» Suppose that g(z) has zeros +py, - - - , £p,. We may write

)
8@ = S — o)

constrained by 0 = g (0) = ¢(2"=2)(0). These give rise to
the first n — 1 equations on py, .. ., pn (g(0) = 0 is automatic.)

> And then .
0)exp [ g(2)de

should satisfy the n-th equation on monodromy

/gE\/—llR, i=1,2.
L;

20/
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> Periods integrals. Let L1, L, be the fundamental 1-cycles. Set

Fi(p) = [ Qe p)d = /(g“’;()da

wherep ¢ 1A and —2 0 — 2¢(p) — Z(p+&) — L(p — O
p(6)—p(p)

Lemma (Periods integrals and critical points)

Let p = rwq + swo, then (modulo 47tilN)

2(w1l(p) —mp) = 2(¢(p) — rin — siz)wy — 4rtis,
Fa(p) = 2(w28(p) — m2p) = 2(5(p) — riy — snp2)ws + 4rtir.

» Hence

/L gde = fPi(pj) €V-IR, i=12+=) VG(p) =0.
i j=1
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» Whenp=8n(n=1,¢=2),p1 =p,p2 = —p,8(z) = Q(z,p).
£2) =F(©) exp [ () dz
leads to a solution <= F;(p) € vV—1R < VG(p) = 0.

» Theorem (Uniqueness, Lin-W 2006, Annals 2010)
For p = 8, the mean field equation Au + e* = pdy on a flat torus has at
most one solution up to scaling.

» Corollary (Number of critical points)
The Green function has either 3 or 5 critical points.

» New proof were found in 2016 by Eremenko et. al. using
anti-holomorphic dynamics.
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Geometry of critical points over M;

Theorem (Moduli dependence, Chen-Kuo-Lin-W, JDG)

(1) Let Q3 C My U {co} 22 S? (resp. Q) be the set of tori with 3 (resp.
5) critical points, then Q)3 U { oo} is closed containing iR, O)s is open
containing the vertical line [e™/3,ico).

(2) Both Q)3 and Qs are simply connected with C := dQ)3 = Qs
homeomorphic to S' containing co.

(3) Moreover, the extra critical points are split out from some half period
point when the tori move from Q3 to Qs across C.

(4) (Strong uniqueness) The map Qs — [0,1]2 by T — (t,s) for
p(T) = rwy + swy is a bijection onto

A=1G3D.G D OD)

N—=

N
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L4 by

0 ! 1
Figure: (5 contains a neighborhood of e™/3.

e On the line Re T = 1/2 which are equivalent to the rhombuses
tori, the proof relies on functional equations of ¢;.

e The general case uses modular forms of weight one.
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> Idea of proof:

Y(N) :=#{ (k1,k) | (N, ki,ky) =1,0<k; <N —1}.

Consider the weight one modular function for I'(N):

kw1 + kow kim +k
INju (T) = g(%ﬁ) _ %

= —ZN,N—ky N—k, (T)
(first studied by Hecke (1926));
» and the weight ¥(N) one for full modular group:

Zn(t) = 1 Znki (1) € My (SL(2,Z)).
(N,kllkz)il

» Each T € H with Zy(7) = 0is (at least) a double zero.
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Forodd N > 5, v;(Zn) = v,(Zn) =0,

At co, Hecke calculated the asymptotic expansion:
Veo(ZN) = ¢(N/2) =0,

Then the degree formula for modular forms (Riemann-Roch):

L 1 ¥(N)
(ZN)red = EdegZN = E;VP(ZN) =~

Take N prime, this suggests a 1-1 correspondence between ()5
and

A=[(33) (22, 07)
under the map Qs — [0,1] x [0, 1]:

T (r,s), where p(T)=rwy+ swy.

26/
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The actual proof: Deformations in 7, s & %Z.

Let F C H be the fundamental domain for I'y(2) defined by
F:={teH|0<Ret <1, |t—3%>1}

We analyze solutions T € F for Z,(7) = 0 by varying (7,s).

For T € dF, E is a rectangle and the only critical points of G are
half periods. So Z,s(1) # 0 for T € oF.

Based on this, we use of the argument principle along the curve
OF to analyze the number of zeros of Z; s in F.

We deduce from the Jacobi triple product formula that

where z = r + sT.
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» Lemma (Asymptotic behavior of Z;; on cusps)
We have Z;s(—1/7) = TZ_s4(7T), and for t € (0,1),

-1 2711
Zs(T) = Tz,s,r(—l/r) = ?(% —r+o(1))
as T — 0.
Similarly, Z,s(T+ 1) = Zyys,(7), and forr+s € (0,1),

27ti (1

Zrs(T) = Zpyss(T—1) = — (- (r+s)+o(1)).
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» Lemma (Non-Vanishing)
For any T € H, the addition law implies that
() ¢(Jwi + gw2)) # 3m + 3772
(ii) (gw1+ gwa)) # g + g7z
» For (ii), we choose z = %(wl +wy) = %wg, and u = %wg,. Then
0# _vla) {(3ws) +{(—gws) — 20 (§ws)
p(z) —pu) : o 0
= —3(0(gw1 + gw2) — §111 — §12)-
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» Claim: Suppose that
(1,5) € [0,1] x [0, 3\ {(0,0), (5,0), 0, 3), (1, })}.
Then Z, s(7) = 0 has a solution T € H if and only if that
(r,s) € Ni={(r,s) |0<rs< i r+s>1ih

Moreover, the solution T € F is unique for any (r,s) € A.

> Proof: The cases (t,s) ¢ A are excluded by the Lammas. From

1 1 8
Veo(Z3) + 5vi(Z3) + Zvp(Z3) + Z vp(Z3) = —,
2 3 ) 12
p7#00,ip
Z% %(p) = Z%%(p) =0 = 1p(Z(3)) = 2 and other terms = 0.
Thus T = p is a simple root to Zy, %( T)=0.

QED
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Hyperelliptic geometry and Lamé curves

Theorem (Periods integrals and type II solutions)
Consider the mean field equation Au + e = pdy on E = C/A.

> If solutions exist for p = 8nrt, then there is a unique even solution
within each type I scaling family. (¢ = 2n, a,,; = —a;.)

> The solution u is determined by the zeros ay, ... ,a, of f. In fact
L o (a) z
SO =) ooy @ =00 [ s@)d

» ord,—og(z) = 2n leads to n — 1 equations fora = {ay, ... ,a,}.

> The n-th equation is given by le_ 8 € vV —1R, which is equivalent to

i VG(ai) =0.
i=1
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> The n — 1 algebraic equations:

» Under the notations (w, x;,y;) = (9(2), 9(4;), 9’ (a;)),

vl 0y
wl—xj/w

X n y-x(
Yi%j . I7j
72 + Z; w1 +

8\‘
M:

> Since ¢(z) has a zero at z = 0 of order 2n and 1/w has a zero at
z = 0 of order two, we get
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Theorem (Green/polynomial system)
For p = 8nm, n € IN, the n equations for a = {ay,...,a,} are precisely

@' (a1)p"(a1) + -+ + ' (an) 9" (an) = 0,
wherer =0,...,n—2,and VG(ay) + - - - + VG(ay) = 0.

Theorem (Hyperelliptic geometry/Lamé curve)
For x; := p(a;), y; :== ¢ (a;), the first n — 1 algebraic equations

Y yixi=0, r=0,...,n-2,
defines an affine hyperelliptic curve under the 2 to 1 map a — Y p(a;):

Xn = {(x,y)} € Sym"E — (x1+ - +x4) € PL.
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> The proof relies on its relation to Lamé equations:

= ex dz = ex ; D) —C(a; —z) — {(a d
f=ew [giz=exp [ Y000w) =) - i+ 2) bz

Pz T IE) gy @

sro(z4a) W_g

n — .
where w,(z) := L@ T oz —a) is the basic element.
i1 0(z)o(a;)

» Theorem (Explicit map a — B, = (2n —1) Y} p(a;))
a € X, if and only if w, and w_, are two solutions of the Lamé equation
dzw n o
I (n(n +Dp(z)+(2n—1) Zi:l p(a,»))w =0.

» This is a long calculation via the polynomial system (omitted).
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> Idea of proof on the hyperelliptic structure on X;,.

» Consider y? = p(x) = 4x® — gox — g3, where
(,y) = (p(2),9'(2)), and we set (x;, i) = (p(ai), 9" (a;))-
Consider a basis of solutions to the Lamé equation

w" = (n(n+1)p(z) + B)w

(for some B) given by w,(z) and w_,(z).
> Let X(z) = wa(z)w—a(z). By the addition theorem,

z+a;)o(z —a;) L

x(a) = (1 [T 7T — (T T(0le) - o).

i=1 i=1

Thatis, X(x) = (=1)"ITL; (x — x;) is a polynomial in x.
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> Key: X(z) satisfies the second symmetric power of the Lamé
equation:

a3X

i 4+ 1)p+B) X Zonn+ 1)/ =0,

dz
» Hence X(x) is a polynomial solution, in variable x, to
p(x)X" 4+ 3p'(x) X" — 4((n* +n —3)x + B)X' —2n(n+1)X = 0.

» X is determined by B and certain initial conditions.
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Write X(x) = (—=1)"(x" — 12" 1 + - - + (=1)"s,), this translates
to a linear recursive relation for y =0,--- ,n —1:
0=2n—p)u+1)(n+p+1)syp—p
—4(p+1)Bs; 1
+ 382+ 1) (4 +2) (24 +3)55 2
—&3(u+1) (1 +2)(pt + 3)sp—p—3.
We set sg = 1.
For y = n—1we get B = (2n — 1)s; as expected.
Thus all sy, - - - , 54, X(z), are determined by sy, i.e. by B, alone.

In fact, a slightly more work shows that the seta = {g;} is also
determined by B up to sign. Hencea — B, is 2 to 1.

QED



Theorem (Chai-Lin-W 2012, CJM 2015)

> There is a natural projective compactification X, C Sym"E as a,
possibly singular, hyperelliptic curve defined by

C* = £4(B,§2,83) = 4Bs;, + 48351251 — §25n—15n — 83551/
in affine coordinates (B, C), where

sp = 5¢(B,g2,93) = kBX + - -- € Q[B, $2, 3]

is an universal polynomial of homogeneous degree k with deg g, = 2,
deggs = 3,and B = (2n —1)s;.

> Thus deg l, = 2n + 1 and X, has arithmetic genus ¢ = n.

> The curve Xy is smooth except for a finite number of T, namely the

discriminant loci of £, (B, §2,83), so that £,,(B) has multiple roots. In
particular X, is smooth for rectangular tori.
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> The second technique used in p = 87t is to use the method of
continuity to connect to the known case p = 47 by establishing
the non-degeneracy of linearized equations.

» For general p, such a non-degeneracy statement is out of reach.
However, since solutions u, always exist for p = 87, 17 ¢ IN, it
is natural to study the limiting behavior of u, as 7 — n. If the
limit does not blow up, it converges to a solution u for p = 87mn.

» For the blow-up case, we have the connection between the
blow-up set and the hyperelliptic geometry of Y,, — P!
» Theorem (Chai-Lin—-W, CJM 2015)

Suppose that S = {ay, - - - ,a,} is the blow-up set of a sequence of solutions
uy, to with pp — 8mnask — oo, then S € Yy, := X, \ {o0}. Moreover,

(1) If px # 87mtn then S is a branch point (a = —a) of Y, — C.
(2) If px = 8mtn for all k, then S is not a branch point of Y.
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Pre-modular forms

» Now we study the last equation on X:
0=—4m) " VG(a) =Y " Z(a). )
> Consider the rational function on E™:
zo(ay, .. an) = C(a + - +an) =Y L(a).
» Leta; = rjwq + s;wy, then

—4r) VG(a;) =Y (C(a;) —rim — sia)
=0 ) — Qo rm — (Y_si)n2 — za(a)
=Z()_a;) — zu(a).

Hence (2) is equivalent to

zu(a) = Z(}_a). 3)

40/
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» It is thus crucial to study the branched covering map
_ n
0: X, —~E,  a—o(a):=)_a.
i=1

Theorem (Lin-W 2013, JEP 2017)

(1) dego = in(n+1).
(2) There is a universal (weighted homogeneous) polynomial
Wi (x) € Clg2,83, 9(0), ¢ (0)][x] of degree 3n(n + 1) with

Wy(z,) = 0.

Moreover, z, € K(Xy,) is a primitive generator for the field
extension K(X,,) over K(E).

(3) The function Z,(c; T) := Wy (Z) is pre-modular of weight
in(n+1). That is, it is T(N)-modular if ¢ € E<[N].
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Idea of proof for (1): Apply Theorem of the Cube: For any three
morphisms f,g,h: V, — Eand L € PicE,

F+g+h)' L2 (f+9)L®(g+h)* Lo (h+f)*L
f L gL ton L

Apply to the case V;; C E" which is the ordered n-tuples so that
Vu/Sn = Xy, and deg L = 1. We prove inductively that the map

fe(a) :==ar+ -+

has degree %k(k + 1)n!. This is NOT HARD to check for k = 1, 2.

Fromktok+1,weletf = f_1,g(a) = ar, and h(a) = ag4.

Then f;, 1 has degree n! times

Tk(k+1)+3+ 2k(k+1) = J(k—Dk—1-1=J(k+1)(k+2).
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Idea of proof of (2): Major tool: tensor product of two Lamé
equations w" = [yw and w’ = Lw, where [ = n(n+1)p(z),
11 =I+B, al’ldlz :I+Bb

For X, (7) smooth, and a general point 0y € E, we need to show
that the %n(n + 1) points on the fiber of X, — E above oy has
distinct z,, values. It is enough to show that for o (a) = o(b) = oy,
the condition }_ ¢ (a;) = Y_{(b;) implies B, = By, (and then a = b).

If w] = [jw; and wy = Dw,, then the product g = wyw, satisfies
q//// —2( JrIz)q// B 61/67/ + ((By — Bb)z _ 2[”)q =0.

If a # b, by addition law we find that Q = w,w_; + w_swy is an
even elliptic function solution, namely a polynomial in x = p(z).
This leads to strong constraints on the corresponding 4-th order
ODE in variable x, and eventually leads to a contradiction for
generic choices of 0y.
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)2 —2(2(n? + 1 — 12)x + By + By)p(x))d
— ((2(n* + 1= 3)x+ By + By)p(x) + 6(n* + n — 2)p(x))§
+ ((Bo — Bp)* — n(n+1)p(x))q = 0.

(4)

As an even elliptic function, Q takes the form

- cljwm ~ola)) = c@x )
=C(x" — s s 2 — 4 (—1)sy),

The x"*2 terms agree automatically. The x"*! degree gives

B, +B
Z@Q: :1a_b %Z@az‘i‘zp
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n+2—i

Inductively the x coefficient in (4) gives recursive relations

to solve s; interns of B, + By, (B; — B,)? and g,g3fori=1,...,n.

Indeed
s; = 5i(By + By, (Bs — Bb)2,gz,g3) = C;(Bs + Bb)i + -

is homogeneous of degree i if we assign deg B, = deg B, = 1
and deg g, = 2, deggs = 3.

There are two remaining consistency equations F; = 0, Fp = 0
coming from the x! and x° coefficients in (4).

In fact (B, — By)? is a factor of both equations and we may write
Fy(By,By) = (Bs — By)*1Gy(By, By) and
Fo(Ba, By) = (Ba — By)**Go(Bs, By).-

If B, # By, (ie Lp(a;) # L p(bi)), then
Gl (Bll/ Bb) =0, GO(BIZI Bb) =0,

which has only a finite number of solutions (B,, By)’s, i.e. E¢’s.
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Example (of compatibility equations for n = 2)
For n = 2 we have s; = # (B, + B}) and

52 %(Ba + Bb) + 7 (B Bb)2 - %82-

The first compatibility equation from x! is (after substituting s;)

t(By — By)*(Bs + By) = 0.

The second compatibility equation from x° is
(Ba — Bb) (36 (Ba + Bb) 72 (B Bb)z - %82> =
If B, # By, then B, = —B, and then we can solve B, By:
B; =3¢, = p(m) + p(a2) = £/82/3.

Such a € X, indeed lies at the branch loci of the Lamé curve.
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Example (n = 2)
For zy(a1,a2) = {(a1 +az) — {(a1) — {(az), on Xy:

z3(a) = 3p(a1 + a2)z2(a) — ' (a1 +az) = 0.
On E? it has one more term — 1 (o' (a1) + ¢/ (a2)). Thus,

Zo(0;7) = Wa(Z) = 28 — 3p(0)Z — ¢ (o).

Example (n = 3)
Forz = z3(a) = {(a1 + a2 + a3) — {(a1) — {(az2) — {(a3), on X:

28 — 15pz* — 200'2% + (¥ gy — 459%)2* — 129/ pz — 39> = 0.

Thus, Z3(0’,’ ”L') = W3(Z).
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» Key point: Z; = Z = —4nVG is the Hecke modular function.
The critical point equation (<= type II solutions of MFE) is
transformed into zero of pre-modular forms.

» For general n > 1, we have the equivalences:

e Solution u to MFE for p = 87tn.
e Periods integral / g€ V—1R (= wj coordinates of }_a;.)
L

n
Green equation Y | VG(a;) = 0 on X,
i=1
zy(a) = Z((a)).
e Non-trivial zero of Z,(0; T) := Wy(Z2).

» Remark on the last one: the branch pointa € Y,,\X,, (2 # —a)
satisfies the Green equation trivially.

END
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