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Abstract. This is a continuation of [10], where it was shown that
K-equivalent complex projective manifolds have the same Betti
numbers by using the theory of p-adic integrals and Deligne’s so-
lution to the Weil conjecture. The aim of this note is to show that
with a little more book-keeping work, namely by applying Faltings’
p-adic Hodge Theory, our p-adic method also leads to the equiva-
lence of Hodge numbers – a result which was previously known by
using motivic integration.

1. Introduction

Mori’s minimal model theory has proven to be important in var-
ious geometric problems and is also important in our philosophical
view point of birational geometry. In order to understand the relation
between birational but not isomorphic minimal models in dimensions
bigger than two, the notion of K-equivalence was raised to serve as the
formal analogue, but with the advantage not to touch the existence
problem of minimal models at all. This includes the most interesting
case of birational Calabi-Yau manifolds which was vastly studied in the
last decade.

In dimension three, any birational map between minimal models can
be decomposed into composite of flops [8]. This gives very precise in-
formation needed in analyzing birational minimal threefolds. However,
the only known proof of this result relies on detail classification of
terminal singularities, hence is out of reach in higher dimensions. Be-
cause of this, new dimension-free approaches are needed for the study
of K-equivalent manifolds.

In [10], an integration formalism was formulated to compare nu-
merical invariants of K-equivalent manifolds. In particular, the p-adic
integral has been used to prove the equivalence of Betti numbers and
the motivic integral was used to prove the equivalence of Hodge num-
bers (c.f. [10], §5.5, [4], [1], [2]). More recently, by formally viewing
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the intersection theory as an integration theory, the author has shown
that the complex elliptic genera are the most general Chern numbers
invariant under K-equivalence [11].

The aim of this note is to present a proof of the equivalence of Hodge
numbers along the original line using p-adic integral and the Weil con-
jecture. This was announced with a sketched proof in [12]. The new
input needed here is the so-called p-adic Hodge Theory developed by
Fontaine and Messing [6] and completed by Faltings [5]. It turns out
that one may apply the existing theorems quite straightforwardly ex-
cept a few minor technicalities. One is related to the Cěbotarev density
theorem that the zeta functions determine only the semi-simplifications
of the p-adic étale cohomology as Galois representation. The other is
the reduction procedure from finitely generated fields over Q to num-
ber fields. Fortunately, these problems can all be handled by quite
standard tricks and the proof goes through.

In the Algebraic Geometry Conference for Iitaka’s 60 at Tokyo, Feb-
ruary 2002, T. Ito informed the author that he also obtained the same
proof independently [7].

The author is grateful to C.-L. Chai and J.-K. Yu for useful dis-
cussions on p-adic Hodge Theory. Thanks are also to I.-H. Tsai for
his criticism on the proof of [10], Theorem 1.4 and to J.-D. Yu for his
careful reading of an early draft.

2. K-partial Ordering in a Birational Class

For a birational map f : X 99K X ′ between two Q-Gorenstein (com-
plex projective) varieties, we say that X ≤K X ′ (resp. X <K X ′) if
there is a birational correspondence (φ, φ′) : Y → X × X ′ extending
f with Y smooth, such that φ∗KX ≤Q φ′∗KX′ (resp. <Q) as divi-
sors. These relations are easily seen to be independent of the choice
of Y . Notice that X ≤K X ′ and X ≥K X ′ imply X =K X ′, that is
φ∗KX =Q φ′∗KX′ . In this case, we say that X and X ′ are K-equivalent.

In this K-partial ordering, divisorial contractions and flips will de-
crease its K-level while flops induce K-equivalence. It is easy to see
that K-equivalent terminal varieties are isomorphic in codimension one.
In fact, more is true in general:

Theorem 2.1. Let f : X 99K X ′ be a birational map between two
varieties with canonical singularities. Suppose that the exceptional locus
Z ⊂ X is proper and that KX is nef along Z, then X ≤K X ′. Moreover,
If X ′ is terminal then codimXZ ≥ 2.
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(This is Theorem 1.4 in [10]; a better presentation of its proof is
included in the appendix.) In particular, birational minimal models
are K-equivalent.

Conjecture 2.2. For complex projective manifolds X and X ′ with
X ≤K X ′, the canonical morphism T : Hk(X, Q) → Hk(X ′, Q) in-
duced from the graph closure Γ̄f ⊂ X ×X ′ is a monomorphism which
preserves the rational Hodge structures. More generally, T induces a
monomorphism of motives, e.g. in the sense of Galois representations
or in the sense of Chow motives.

While it is of fundamental importance to study the cycle Γ̄f ⊂ X×X ′

directly, we instead restrict ourself to certain numerical version of it in
this note. Namely, we prove in §4 the main result of this note:

Theorem 2.3. Let X and X ′ be two K-equivalent complex projective
manifolds. Then hp,q(X) = hp,q(X ′) for all p, q. More precisely, if
X =K X ′ is defined over a finitely generated field F over Q, then for
any prime `,

Hj
et(XF̄ , Q`)

ss ∼= Hj
et(X

′
F̄ , Q`)

ss

as Gal(F̄ /F ) representations.

3. p-adic Integration and Étale Cohomology

We start by recalling the construction in [10]. We will assume that
X and X ′ are smooth projective and K-equivalent, though the con-
struction also works for log-terminal varieties. Take an integral model
of the K-equivalence diagram over Spec S with S a finitely generated
Z-algebra:
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For almost all maximal ideals P in S, in fact a Zariski open dense set
in the maximal spectrum of S, we have good reductions of X, X ′, Y ,
φ and φ′. In such cases, let R = ŜP be the completion of S at P
with residue field kP := R/P ∼= Fq, q = pr for some r. For ease of
notation, we use the same symbol to denote the corresponding object
over Spec R. Let Ui’s be a Zariski open cover of X such that KX |Ui

is trivial for each i with generator Ωi a regular n-form on Ui, where
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n = dim X. Then for a compact open subset A ⊂ Ui(R) ⊂ X(R), we
define its p-adic measure by

µX(A) ≡
∫

A

|Ωi|p.

This is independent of the choice of the generator Ωi. The p-adic
measure of X(R) and X ′(R) are the same by the change of variable
formula and X =K X ′. By a direct extension of Weil’s formula [13],
we see in [10] that (let X̄ be the special fiber over Spec Fq)

µX(X(R)) =
|X̄(Fq)|

qn
.

By applying this to finite extensions of Fq, we conclude that X and X ′

have the same local zeta functions Z(X̄, t) = Z(X̄ ′, t) with

Z(X̄, t) := exp

( ∑
k≥1
|X̄(Fqk)|t

k

k

)
.

Knowing this for one P already allows us to apply Grothendieck-
Deligne’s solution to the celebrated Weil conjecture [3] to conclude
that K-equivalent manifolds have the same Betti numbers. Indeed, let

Pj(t) = det
(
1− t Frq |Hj

et(X̄F̄q
, Q`)

)
be the characteristic polynomial of the Frobenius map Frq acting on the
`-adic étale cohomologies of X̄F̄q

for any fixed ` 6= p, then Grothendieck’s
Lefschetz trace formula implies that

Z(X̄, t) =
P1(t) · · ·P2n−1(t)

P0(t)P2(t) · · ·P2n(t)
.

Moreover, Deligne showed that Pj(t) ∈ Z[t] which is independent of the
choices of ` and all roots of Pj(t) have absolute value q−j/2 (Riemann
Hypothesis). This clearly implies that X̄ and X̄ ′ have the same `-adic
Betti numbers, hence by comparison theorem X and X ′ have the same
ordinary Betti numbers.

4. Global `-adic Representations

In this section we proved Theorem 2.3 using two technical devices
discussed in §5 and §6. The basic observation here is that in fact more
is true by putting together the information provided by all such P ’s.
Let us assume that X =K X ′ is defined over S such that the quotient
field F of S is a number field. The general case can be reduced to the
number field case by the standard trick in §6. Under this assumption
we then know that X and X ′ have good reductions and have the same
local zeta functions for all P ∈ Spec S\A with A a finite set.
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Consider the following two semi-simplifications of `-adic cohomolo-
gies

Hj
et(XF̄ , Q`)

ss and Hj
et(X

′
F̄ , Q`)

ss

as (global) `-adic representations of Gal(F̄ /F ), denoted by ρ and ρ′.
In the language of [9], these are integral representations, meaning that
the associate local representations are un-ramified and have integral
characteristic polynomial for the Frobenius generator of Gal(k̄P /kP )
for all but finite P ′s. This is indeed the case by Deligne’s result since
for P with good reduction, the local `-adic representation is exactly
Hj

et(X̄k̄P
, Q`)

ss with characteristic polynomial Pj(t) as before.
By the Cěbotarev density theorem ([9], Ch1, §2) that

⋃
P 6∈A Gal(k̄P /kP )

is dense in Gal(F̄ /F )/(ker ρ ∩ ker ρ′) and the fact that rational semi-
simple representations are characterized by their trace functions (char-
acters), this implies that

Hj
et(XF̄ , Q`)

ss ∼= Hj
et(X

′
F̄ , Q`)

ss

as Gal(F̄ /F ) representations.

Remark 4.1. From the point of view of motive theory, the above ar-
gument is simply the one showing that L function is equivalent to the
semi-simplification of the corresponding Galois representations. Also
there is a semi-simplicity conjecture stating that the cohomological `-
adic representations are always semi-simple.

Now we select a prime P ∈ Spec S with char kP = `. Let K be the
completion of F at P , then by base change theorem we also get

Hj
et(XK̄ , Q`)

ss ∼= Hj
et(X

′
K̄ , Q`)

ss

as Gal(K̄/K) representations (usually highly ramified!) – here we do
not even need to require X or X ′ to have good reductions at P . By
Faltings’ Hodge-Tate decomposition theorem in the next section, this
then implies the equivalence of Q` (and hence Q) Hodge numbers.

5. p-adic Hodge Theory

In this section we recall the p-adic Hodge Theory that we are going
to apply. Following usual convention, we will switch the prime number
` to p.

Let X a smooth projective manifold over a p-adic field K. Let
G = Gal(K̄/K) and Cp be the completion of K̄. Then there exists
a natural G-equivariant isomorphism [5], the so-called Hodge-Tate de-
composition:⊕

i

(
Cp ⊗K Hm−i(XK , Ωi)(−i)

) ∼= Cp ⊗Qp Hm
et (XK̄ , Qp),
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where G acts on Hm−i(XK , Ωi) trivially and on the right hand side
diagonally. Here (i) means the Tate twist by i-th power of cyclotomic
character (lim←−µpn)⊗i. Since CG

p = K and Cp(i)
G = 0 for i 6= 0, it is

clear that

hi,m−i = dimK

(
Cp ⊗Qp Hm

et (XK̄ , Qp)(i)
)G

.

Now the key observation is that the semi-simplification is already
enough to determine the Hodge numbers.

Proposition 5.1. In the notation as above, then

hi,m−i = dimK

(
Cp ⊗Qp Hm

et (XK̄ , Qp)
ss(i)

)G
.

Proof. Let Hm
et (XK̄ , Qp) =: V = V0 ⊃ V1 ⊃ · · · ⊃ Vk be a filtration

of G-submodules such that Vj/Vj+1’s are simple G-modules. Then by
definition V ss =

⊕
j Vj/Vj+1. Since Cp is a flat G-module and the

functor of taking G-invariants A 7→ AG is left exact, simple induction
shows that

dimK(Cp ⊗ V )G ≤ dimK(Cp ⊗ V ss)G.

The same inequality applies to V (i) as well for any i ∈ Z, hence∑
i

hi,m−i =
∑

i

dimK(Cp⊗V (i))G ≤
∑

i

dimK(Cp⊗V ss(i))G ≤ dimQp V ss,

where the last inequality is a general fact about G-modules. Now since
both ends are equal to dimQp V , all the inequalities are equalities. In
particular,

hi,m−i = dimK

(
Cp ⊗ V (i)

)G
= dimK

(
Cp ⊗ V ss(i)

)G
.

�

Remark 5.2. (Suggested by C.-L. Chai) Proposition 5.1 follows immedi-
ately from the fact that Hodge-Tate representations form a Tannakian
category, in particular it is stable under extensions.

6. Deformation to the Number Field Case

The aim of this section is to explain that given a finite number of
complex projective varieties and a finite number of morphisms between
them, denoted by X, one may always deform the system X a little bit
to make it defined over a number field F . Moreover, when the issue of
smoothness is imposed, one may find a Z-algebra S integral over Z with
F as its quotient field such that all the given objects are defined over
S and the imposed smoothness condition is preserved under reductions
over all but a finite number of primes.
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As we will only apply it to the K-equivalence diagram here, we
restrict ourself to this case for simplicity. We start with a model
X → Spec S with S a finitely generated Z-algebra. Namely, (φ, φ′) :
Y → X ×X ′ → Spec S with relation (E is a relative normal crossing
divisor over Spec S)

KY/S = φ∗KX/S + E = φ′
∗
KX′/S + E.

Consider a large enough number field F such that there exists an F -
valued point η : Spec F → Spec S in the regular values of X→ Spec S.
Then, by considering the resulting fiber diagram over η, we get a K-
equivalence diagram Xη over F by taking base change of the above
relation to the fiber over η. By selecting an integral model of Xη again
then we are done.

Notice that these algebraic (number field) points η are dense in
Spec S and the union of Galois groups Gal(F̄ /F ) among all η is dense
in Gal(F̄S/FS) for FS the quotient field of S. This allows us to deduce
that

Hj
et(XF̄S

, Q`)
ss ∼= Hj

et(X
′
F̄S

, Q`)
ss

as Gal(F̄S/FS) representations from the number field case.

Remark 6.1. For people not familiar with this procedure, the following
example provides a trivial illustration. Let e and π be any two alge-
braically independent numbers. Take say two plane conics X and X ′

defined by 2x2 +ey2 +z2 = 0 and πx2 +y2 +z2 = 0 with birational map
(in fact an isomorphism) given by (x, y, z) 7→ (

√
π
2
x, 1√

e
y, z). This sys-

tem is defined over the ring S = Z[e, π, 1√
e
,
√

π
2
] ∼= Z[u, v, w, s]/(uw2 −

1, v − 2s2). Take F = Q, an F -rational point of Spec S could be taken
to be η = (u, v, w, s) = (1, 2, 1, 1). Over this point η, both X and X ′

are deformed into 2x2 +y2 + z2 = 0 and the birational map is deformed
into the identity map.

7. Appendix: Proof of Theorem 2.1

Let us recall the proof briefly. Let (φ, φ′) : Y → X × X ′ be a
resolution of f so that the union of the exceptional set of φ and φ′ is a
normal crossing divisor of Y . Let KY =Q φ∗KX + E =Q φ′∗KX′ + E ′.
So

φ′
∗
KX′ =Q φ∗KX + F, with F := E − E ′.

It suffices to show that F ≥ 0. Let F =
∑n−1

j=0 Fj with dim φ′(Supp Fj) =
j. We will show that Fj ≥ 0 for j = n−1, n−2, · · · , 1, 0 inductively. As
E ′ is φ′-exceptional, Fn−1 ≥ 0 is clear. Suppose that we have already
shown that Fj ≥ 0 for j ≥ k + 1.
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Consider the surface Sk := Hn−2−k.φ′∗Lk on Y where H is very ample
on Y and L is very ample on X ′. We get a relations of divisors on Sk:

φ′
∗
KX′|Sk

=Q φ∗KX |Sk
+ a− b,

where Hn−2−k.φ′∗Lk.F = a− b with both a and b effective. Notice that
b can only come from Fk since

∑
j≥k+1 Fj ≥ 0 and Lk ∩ φ′(Fj) = ∅ for

j < k. Now we look at

b.φ′
∗
KX′ =Q b.φ∗KX + b.a− b2.

The left hand side is always zero since φ′(b) ⊂ Lk ∩ φ′(Fk) is zero
dimensional. Moreover, since φ′∗KX′ =Q φ∗KX on φ−1(X\Z), we must
have that φ(Supp F ) ⊂ Z. In particular, b.φ∗KX ≥ 0. It is also clear
that b.a ≥ 0. However, if b 6= 0 then it is a nontrivial combination of
φ′ exceptional curves in Sk. By the Hodge index theorem for surfaces
we then have that b2 < 0, a contradiction. So b = 0 and Fk ≥ 0. The
codimension statement is easy and we omit its proof.
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