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Abstract

For ordinary flops, the correspondence defined by the graph closure is shown
to give equivalence of Chow motives and to preserve the Poincaré pairing. In
the case of simple ordinary flops, this correspondence preserves the big quantum
cohomology ring after an analytic continuation over the extended Kähler moduli
space.

For Mukai flops, it is shown that the birational map for the local models is defor-
mation equivalent to isomorphisms. This implies that the birational map induces
isomorphisms on the full quantum theory and all the quantum corrections attached
to the extremal ray vanish.

0. Introduction

0.1. Statement of main results. Let X be a smooth complex projective mani-
fold and  WX ! xX a flopping contraction in the sense of minimal model theory,
with x WZ! S the restriction map on the exceptional loci. Assume that

(i) x equips Z with a Pr -bundle structure x WZ D PS .F /! S for some rank
r C 1 vector bundle F over a smooth base S ,

(ii) NZ=X jZs Š OPr .�1/
˚.rC1/ for each x -fiber Zs , s 2 S .

It is not hard to see that the corresponding ordinary Pr flop f W XÜ X 0 exists.
An ordinary flop is called simple if S is a point.

For a Pr flop f W XÜ X 0, the graph closure Œx�f � 2 A�.X �X 0/ identifies
the Chow motives yX of X and yX 0 of X 0. Indeed, let F WD Œx�f � then the transpose
F� is Œx�f �1 �. One has the following theorem.

THEOREM 0.1. For an ordinary Pr flop f W XÜ X 0, the graph closure
F WD Œx�f � induces yX Š yX 0 via F� ıFD�X and F ıF� D�X 0 . In particular, F

preserves the Poincaré pairing on cohomology groups.

While the ring structure is in general not preserved under F, the quantum
cohomology ring is, when the analytic continuation on the Novikov variables is
allowed.
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THEOREM 0.2. The big quantum cohomology ring is invariant under simple
ordinary flops, after an analytic continuation over the extended Kähler moduli
space.

A contraction . ; x / W .X;Z/! . xX;S/ is of Mukai type ifZDPS .F /!S is
a projective bundle under x and NZ=X D T �Z=S . The corresponding algebraic flop
f WXÜX 0 exists and its local model can be realized as a slice of an ordinary flop.
The following result is proved based upon our understanding of local geometry of
Mukai flops.

THEOREM 0.3. Let f WXÜX 0 be a Mukai flop. Then X and X 0 are diffeo-
morphic and have isomorphic Hodge structures and full Gromov-Witten theory. In
fact, any local Mukai flop is a limit of isomorphisms and all quantum corrections
attached to the extremal ray vanish.

0.2. Motivations. This paper is the first of our study of the relationship be-
tween birational geometry and Gromov-Witten theory. Our motivations come from
both fields.

K-equivalence in birational geometry. Two (Q-Gorenstein) varieties X and
X 0 areK-equivalent if there exist birational morphisms � WY !X and �0 WY !X 0

with Y smooth such that
��KX D �

0�KX 0 :

K-equivalent smooth varieties have the same Betti numbers ([1], [24]; see also [26]
for a survey on recent development). However, the cohomology ring structures are
in general different. Two natural questions arise here:

(1) Is there a canonical correspondence between the cohomology groups of
K-equivalent smooth varieties?

(2) Is there a modified ring structure which is invariant under the K-equivalence
relation?

The following conjecture was advanced by Y. Ruan [23] and the third au-
thor [26] in response to these questions.

CONJECTURE 0.4. K-equivalent smooth varieties have canonically isomor-
phic quantum cohomology rings over the extended Kähler moduli spaces.

The choice to start with ordinary flops is almost obvious. Ordinary flops are
not only the first examples of K-equivalent maps, but also crucial to the general
theory. In fact, one of the goals of this paper is to study some of their fundamental
properties.

Functoriality in Gromov-Witten theory. In the Gromov-Witten theory, one is
led to consider the problem of functoriality in quantum cohomology. Quantum
cohomology is not functorial with respect to the usual operations: pull-backs,
push-forwards, etc. Y. Ruan [22] has proposed studying the Quantum Naturality
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Problem: finding the “morphisms” in the “category” of symplectic manifolds for
which the quantum cohomology is “natural”.

The main reason for lack of functoriality comes from the dimension count of
the moduli of stable maps, where Gromov-Witten invariants are defined. (See �3.1
for the relevant definitions.) For example, given a birational morphism f W Y !X ,
there is an induced morphism from moduli of maps to Y to moduli of maps to
X . However, the (virtual) dimensions of the two moduli spaces are equal only if
Y and X are K-equivalent. When the virtual dimensions of moduli spaces are
different, the nonzero integral on moduli space of maps to X will be “pulled-back”
to a zero integral on moduli space of maps to Y . Therefore, K-equivalence appears
to be a necessary condition for this type of functoriality. Conjecture 0.4 suggests
that the K-equivalence is also sufficient. We note here that there is of course no
K-equivalent morphism between smooth varieties and a “flop-type” transformation
is needed.

Theorem 0.2 can therefore be considered as establishing some functoriality
of the genus zero Gromov-Witten theory in this direction. The higher genus case
will be discussed in a separate paper.

Crepant resolution conjecture. Conjecture 0.4 can also be interpreted as a
consistency check for the Crepant Resolution Conjecture [23], [3]. In general, there
are more than one possible crepant resolutions, but different crepant resolutions
are K-equivalent. The consistency check naturally leads to a special version of
Conjecture 0.4.

0.3. Contents of the paper. Section 1 presents the geometry of ordinary flops.
The existence of ordinary flops is proved and explicit descriptions of local models
are given. Section 2 is devoted to the correspondences and Chow motives of pro-
jective smooth varieties under an ordinary flop. The main result of this section is
Theorem 0.1 alluded to above. The ring structure is, however, not preserved. For
a simple Pr -flop, let h be the hyperplane class of Z D Pr and let ˛i 2H 2li .X/,
with li � r and l1C l2C l3 D dimX D 2r C 1.

PROPOSITION 0.5.

.F˛1:F˛2:F˛3/D .˛1:˛2:˛3/C .�1/
r.˛1:h

r�l1/.˛2:h
r�l2/.˛3:h

r�l3/:

For Calabi-Yau threefolds under a simple P1 flop, it is well known in the
context of string theory (see e.g. [27]) that the defect of the classical product is
exactly remedied by the quantum corrections attached to the extremal rays. This
picture also emerged as part of Morrison’s cone conjecture on birational Calabi-
Yau threefolds [21] where Conjecture 0.4 for Calabi-Yau threefolds was proposed.
For threefolds Conjecture 0.4 was proved by A. Li and Y. Ruan [14]. Their proof
has three ingredients:

(1) A symplectic deformation and decomposition of K-equivalent maps into a
composite of ordinary P1 flops;
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(2) The multiple cover formula for P1 Š C � X with NC=X Š O.�1/˚2, and
their main contribution:

(3) The theory of relative Gromov-Witten invariants and the degeneration for-
mula.

In Section 3 a higher-dimensional version of ingredient (2) is proved:

THEOREM 0.6. Let Z D Pr � X with NZ=X Š O.�1/rC1. Let ` be the line
class in Z. Then for all ˛i 2H 2li .X/ with 1� li � r ,

Pn
iD1 li D 2rC1C .n�3/

and d 2 N,˝
˛1; : : : ; ˛n

˛
0;n;d

�

Z
Œ SM0;n.X;d`/�virt

e�1˛1 : : : e
�
n˛n

D .�1/.d�1/.rC1/Nl1;:::;lnd
n�3.˛1:h

r�l1/ : : : .˛n:h
r�ln/;

where Nl1;:::;ln are recursively determined universal constants. Nl1;:::;ln are inde-
pendent of d and Nl1;:::;ln D 1 for nD 2 or 3. All other (primary) Gromov-Witten
invariants with degree in Z` vanish.

This formula, together with some algebraic manipulations, implies that for
simple Pr flops the quantum corrections attached to the extremal ray exactly rem-
edy the defect caused by the classical product for any r 2N and the big quantum
products restricted to exceptional curve classes are invariant under simple ordinary
flops. Note that there are Novikov variables q involved in these transformations
(cf. Remark 3.3), and

F.qˇ /D qFˇ :

The proof has two ingredients: Localization and the divisor relations. Local-
ization has been widely used in calculating Gromov-Witten invariants. For genus
zero one-pointed descendent invariants twisted by a direct sum of negative line
bundles, this was carried out in [16] and [7] in the context of the study of mirror
symmetry. The divisor relations studied in [13] give a reconstruction theorem,
which allows us to go from one-point invariants to multiple-point ones.

To achieve the invariance of big quantum products, nonextremal curve classes
need to be analyzed. The main purpose of Section 4 is to reduce the case of general
X to the local case. Briefly, the degeneration formula expresses h˛iX in terms of
relative invariants h˛1i.Y;E/ and h˛2i.

zE;E/, where Y !X is the blow-up of X over
Z and zE D PZ.NZ=X ˚ O/. Similarly for X 0, one has Y 0; zE 0; E 0. By definition
of ordinary flops, Y D Y 0 and E D E 0. It is possible to match all output on the
part of .Y;E/ from X and X 0. Thus, the problem is transformed to one for the
relative cases of . zE;E/ and . zE 0; E/. Following ideas in the work of D. Maulik
and R. Pandharipande [20], a further reduction from relative invariants to absolute
invariants is made. The problem is thus reduced to

X D zE D PPr .O.�1/
˚.rC1/

˚O/;

which is a semi-Fano projective bundle.
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Remark 0.7. For simple flops, we may and will consider only cohomology
insertions of real even degrees throughout all our discussions on GW invariants.
This is allowed since zE has only algebraic classes and any real odd degree insertion
must go to the Y side after degeneration.

The proof of the local case is carried out in Section 5 by exploring the com-
patibility of functional equations of n-point functions under the reconstruction pro-
cedure of genus zero invariants. It is easy to see that the Mori cone

NE.X/D ZC`˚ZC


with ` the line class in Z and 
 the fiber line class of X D zE!Z. The proof is
based on an induction on d2 and n with degree ˇ D d1`C d2
 . The case d2 D 0
is handled by Theorem 0.6. For d2 > 0, the starting case, namely the one-point
invariant, is again based on localization technique on semi-Fano toric manifolds
[7] and [17].

THEOREM 0.8 (Functional equations for local models). Consider an n-point
function on X D PPr .O.�1/

˚.rC1/˚O/,

h˛i D
X

ˇ2NE.X/

h˛1; : : : ; ˛niˇ q
ˇ

where ˛i lies in the span of cohomology classes in X and descendents of (push-
forwards of ) cohomology classes in E. For ˇ D d1`C d2
 , the summands are
nontrivial only for a fixed d2. If d2 ¤ 0 then

Fh˛iX Š hF˛iX
0

:

(Here Š stands for equality up to analytic continuations.) Combining all the
previous results we see that Theorem 0.2 is proved.

Remark 0.9. Concerning ingredient (1), it is very important to understand the
closure of ordinary flops. To the authors’ knowledge, no serious attempt was made
toward a higher dimensional version of (1) except some much weaker topological
results [25]. Even in dimension three, the only known proof of (1) relies on the
minimal model theory and classifications of terminal singularities. It is desirable
to have a direct proof in the symplectic category. Such a proof should shed im-
portant light toward the higher dimensional cases. Our main theorem applies to
K-equivalent maps that are composites of simple ordinary flops and their limits.

As an application of the construction of ordinary flops in Section 1, we discuss
(twisted) Mukai flops in Section 6. Some new understanding of the local geometry
of Mukai flops is presented and this leads to a proof of Theorem 0.3. Theorem
0.3 can also be interpreted as a generalization of a local version of Huybrechts’
results on hyper-Kähler manifolds [9], with the flexibility of allowing the base S
to be any smooth variety. As in the hyper-Kähler case, it also implies that the
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correspondence induced by the fiber product

ŒX � xX X
0�D Œx�f �C ŒZ �S Z

0� 2 A�.X �X 0/

is the one which gives an isomorphism of Chow motives.
Besides dimension three [14] and the hyper-Kähler case [9], our results pro-

vide the first known series of examples in all high dimensions which support Con-
jecture 0.4.

1. Ordinary flops

1.1. Ordinary Pr flops. Let  WX ! xX be a flopping contraction as defined
in Section 0.1. Our first task is to show that the corresponding algebraic ordinary
flop XÜX 0 exists. The construction of the desired flop is rather straightforward.
First blow up X along Z to get � W Y !X . The exceptional divisor E is a Pr �Pr -
bundle over S . The key point is that one may blow down E along another fiber
direction �0 W Y !X 0, with exceptional loci x 0 WZ0DPS .F

0/! S for F 0 another
rank r C 1 vector bundle over S and also NZ0=X 0 j x 0�fiber Š OPr .�1/

˚.rC1/. We
start with the following elementary lemma.

LEMMA 1.1. Let p W Z D PS .F /! S be a projective bundle over S and
V !Z a vector bundle such that V jp�1.s/ is trivial for every s 2S . Then V Šp�F 0

for some vector bundle F 0 over S .

Proof. Recall that H i .Pr ;O/ is zero for i ¤ 0 and H 0.Pr ;O/ Š C. By the
theorem on cohomology and base change we conclude immediately that p�O.V /

is locally free over S of the same rank as V . The natural map between locally free
sheaves p�p�O.V /! O.V / induces isomorphisms over each fiber and hence by
the Nakayama Lemma it is indeed an isomorphism. The desired F 0 is simply the
vector bundle associated to p�O.V /. �

Now we apply the lemma to V D OPS .F /.1/˝NZ=X , and conclude that

NZ=X Š OPS .F /.�1/˝
x �F 0:

Therefore, on the blow-up � W Y D BlZX !X ,

NE=Y D OPZ.NZ=X /.�1/:

From the Euler sequence which defines the universal sub-line bundle we see easily
that OPZ.L˝F /.�1/ D

x��L˝ OPZ.F /.�1/ for any line bundle L over Z. Since
the projectivization functor commutes with pull-backs, we have

E D PZ.NZ=X /Š PZ. x 
�F 0/D x �PS .F

0/D PS .F /�S PS .F
0/:

For future reference we denote the projection map Z0 WD PS .F
0/! S by x 0

and E! Z0 by x�0. The various sets and maps are summarized in the following



FLOPS, MOTIVES, AND INVARIANCE OF QUANTUM RINGS 249

commutative diagram:

E D PS .F /�S PS .F
0/� Y

x�

tt

x�0

**
Z D PS .F /�X

x **

Z0 D PS .F
0/ ;

x 0tt
S � xX

where the normal bundle of E in Y is

NE=Y D OPZ.NZ=X /.�1/D OPZ.OZ.�1/˝x �F 0/
.�1/

D x��OPS .F /.�1/˝OPZ. x �F 0/
.�1/

D x��OPS .F /.�1/˝
x�0�OPS .F 0/.�1/:

Remark 1.2. Notice that the bundles F and F 0 are uniquely determined up
to a twisting by a line bundle. Namely, the pair .F; F 0/ is equivalent to .F ˝L,
F 0˝L�/ for any line bundle L on S .

The next step is to show that there is a blow-down map �0 W Y ! X 0 which
contracts the left ruling of E and restricts to the projection map x�0 WE!Z0. The
existence of the contraction  W X ! xX is essential here. Let us denote a line in
the left ruling by CY such that �.CY /D C .

PROPOSITION 1.3. Ordinary Pr flops exist.

Proof. Firstly, we will show that CY is KY -negative. From the exact sequence
0! TC ! TX jC ! NC=X ! 0 and NC=X Š OC .1/

˚.r�1/˚ OC .�1/
˚.rC1/˚

OdimS
C , we find that

.KX :C /D 2g.C /� 2� ..r � 1/� .r C 1//D 0:

Together with KY D ��KX C rE, we get

.KY :CY /D .KX :C /C r.E:CY /D�r < 0:

Next we will show CY is extremal, i.e. it has supporting (big and nef) divisors.
Let H be a very ample divisor on X and L a supporting divisor for C (e.g. take
L D  � xH for an ample divisor xH on xX). Let c D .H:C /; then ��H C cE has
type .0;�c/ on each Pr �Pr fiber of E. The divisor

k��L� .��H C cE/

is clearly big and nef for large k and vanishes precisely on the class ŒCY �. Thus
CY is a KY -negative extremal ray and the contraction morphism �0 W Y !X 0 fits
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into

Y
�0 //

 ı� ��

X 0

 0~~
xX

by the cone theorem on Y ! xX (cf. [11]). XÜX 0 is then the desired flop. �

Remark 1.4. Notice that .KX :C /D 0, .KX 0 :C 0/D 0 (C 0 is a line in the fiber
of Z0! S ) and ��KX D �0�KX 0 (K-equivalence).

It is clear from the proof that for the existence of �0 one needs only the
(weaker) assumption that C is extremal instead of the existence of the contraction
 WX ! xX . However, since .KX :C /D 0 these two are indeed equivalent by the
cone theorem.

1.2. Local models. In general, without the assumption of the existence of  ,
(i) and (ii) are not sufficient to construct �0 in the projective category. This is well
known already in the case of Atiyah flop (r D 1 and S D fptg). In the analytic
category, results of Cornalba [4] do imply the contractibility of  , �0 and  0, hence
lead to the existence of analytic ordinary Pr flops under (i) and (ii). The situation
is particularly simple in the case of local models which we now describe.

Consider a complex manifold S and two holomorphic vector bundles F ! S

and F 0!S . Let x WZ WDPS .F /!S and x 0 WZ0 WDPS .F
0/!S be the induced

morphisms and let E D PS .F /�S PS .F
0/ with two projections x� W E! Z and

x�0 W E!Z0. Let Y be the total space of N WD x��OZ.�1/˝ x�
0�OZ0.�1/ with E

the zero section. It is clear that NE=Y DN . There is a contraction diagram

E

�1Dx�

~~
x�0D�2

!!

� � j // Y

�

}}
�0

!!
Z

x 
  

� � i // X

 

  

Z0

x 0

~~

� � i 0 // X 0

 0

}}
S

� � j 0 // xX

in the analytic category, with X (resp. X 0) being the total space of OPS .F /.�1/˝
x �F 0 (resp. OPS .F 0/.�1/˝

x 0�F ).
First of all, the discussion in Section 1.1 implies that � and �0 are simply the

blow-up maps along Z and Z0 respectively. For  and  0, when S reduces to
a point the existence of contraction morphism g W .Y;E/! . xX; pt/ is a classical
result of Grauert since NE=Y is a negative line bundle. From the universal prop-
erty, the induced maps  and  0 are then analytic. For S a small Stein open set,
g W .Y;E/! . xX;S/, as well as  and  0, also exists since the whole picture is a
trivial product with S . The general case follows from patching the local data over
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an open cover of S . In summary the local analytic model of an ordinary Pr flop is
a locally trivial family (over S ) of simple ordinary Pr flops.

It is convenient to consider compactified local models zX , zY etc. by adding
the common infinity divisor E1 ŠE to X , Y etc. respectively. Denote by

p W zX D PZ.NZ=X ˚OZ/!Z:

PROPOSITION 1.5. If S is projective, for any bundles F , F 0 of rank r C 1 the
compactified local models of Pr flops exist in the projective category.

Proof. zX is clearly projective and E1 is p-ample. By Remark 1.4 and Propo-
sition 1.3 we only need to construct a supporting divisor L for the fiber line of
x WZ! S . Let H be ample in S ; then x �H is a supporting divisor for the fiber
line in Z. Hence we may take L WD p� x �H CE1. �

The projective local models will be used extensively in Sections 4–6.

2. Correspondences and motives

2.1. Grothendieck’s category of Chow motives. General references on Chow
motives can be found in [19] and [6]. Let M be the category of Chow motives
(over C). For each smooth variety X , one associates an object yX in M. The
morphisms are given by correspondences

HomM. yX1; yX2/D A
�.X1 �X2/:

For U 2 A�.X1 �X2/, V 2 A�.X2 �X3/, let pij W X1 �X2 �X3! Xi �Xj be
the projection maps. The composition law is given by

V ıU D p13�.p
�
12U:p

�
23V /:

A correspondence U has associated maps on Chow groups:

U W A�.X1/! A�.X2/I a 7! p2�.U:p
�
1a/

as well as induced maps on T -valued points Hom. yT ; yXi /:

UT W A
�.T �X1/

Uı
�!A�.T �X2/:

Then we have Manin’s identity principle: Let U; V 2 Hom. yX; yX 0/. Then U D V
if and only if UT D VT for all T . (Since U D UX .�X /D VX .�X /D V .)

THEOREM 2.1. For an ordinary Pr flop f W XÜ X 0, the graph closure
F WD Œx�f � induces yX Š yX 0 via F� ıFD�X and F ıF� D�X 0 .

Proof. For any T , idT � f W T �XÜ T �X 0 is also an ordinary Pr flop.
Hence to prove that F� ıFD�X , by the identity principle, we only need to show
that F�FD id on A�.X/ for any ordinary Pr flop. From the definition of pull-back,

FW D p0�.x�f :p
�W /D �0��

�W:
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We also have the formulae for pull-back from the intersection theory (cf. [6, Th. 6.7,
Blow-up formula]):

��W D �W C j��c.E/:x��s.W \Z;W /�dimW ;

where �W is the proper transform of W in Y and E is the excess normal bundle
defined by

(2.1.1) 0!NE=Y ! ��NZ=X ! E! 0

and s.W \Z;W / is the relative Segre class. The key observation is that the error
term is lying over W \Z.

Let W 2Ak.X/. By Chow’s moving lemma we may assume that W intersects
Z transversally, so that

` WD dimW \Z D kC .r C dimS/� .r C r C dimS C 1/D k� r � 1:

Since dim��1.W \Z/D `Cr D k�1<k, the error term in the pull-back formula
must be zero and we get ��W D �W . Hence FW DW 0, the proper transform of
W in X 0. Notice that W 0 is almost never transversal to Z0.

Let B be an irreducible component of W \Z and xB D x .B/� S with dimen-
sion `B � `. Notice that W 0\Z0 has irreducible components fB 0 WD x 0�1. xB/gB 0
(different B with the same xB will give rise to the same B 0).

Let �0�W 0 D �W CPEB 0 , where EB 0 varies over irreducible components
lying over B 0; hence EB 0 � x�0�1 x 0�1. xB/, a Pr � Pr bundle over xB . For the
generic point s 2  .�.EB 0//� xB , we thus have

dimEB 0;s � k� `B D r C 1C .`� `B/ > r:

In particular, EB 0;s contains positive dimensional fibers of � (as well as �0). Hence
��.EB 0/D 0 and F�FW DW .

By the same argument we have also that F ıF� D �X 0 ; thus the proof is
completed. �

Remark 2.2. For a general ground field k, if the flop diagram under consider-
ation is defined over k then the theorem works for motives over k.

COROLLARY 2.3. Let f WXÜX 0 be a Pr flop. If dim˛1Cdim˛2D dimX ,
then

.F˛1:F˛2/D .˛1:˛2/:

That is, F is an isometry with respect to .�:�/.

Proof. We may assume that ˛1, ˛2 are transversal to Z. Then

.˛1:˛2/D .�
�˛1:�

�˛2/D ..�
0�F˛1� �/:�

�˛2/

D ..�0�F˛1/:�
�˛2/D .F˛1:.�

0
��
�˛2//D .F˛1:F˛2/:

Here we use the fact proved in the above theorem that � has positive fiber dimension
in the � direction. �
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Thus for ordinary flops, F�1 D F� both in the sense of correspondences and
Poincaré pairing.

Remark 2.4. It is an easy fact that if X and X 0 are K-equivalent, then X and
X 0 are isomorphic in codimension one, and, in particular, the graph closure gives
canonical isomorphisms F on A1.X/ŠA1.X 0/ and A1.X/ŠA1.X 0/ respectively.
In this more general setting, the above proof still implies that the Poincaré pairing
on A1 �A1 (and H 2 �H2) is preserved under F.

2.2. Triple product for simple flops. Let f W XÜ X 0 be a simple Pr flop
with S being a point. Let h be the hyperplane class of Z D Pr and h0 be the
hyperplane class of Z0. Let also x D x��h D Œh�Pr �, y D x�0�h0 D ŒPr � h0� in
E D Pr �Pr .

LEMMA 2.5. For classes inside Z,

��Œhl �D j�.x
lyr � xlC1yr�1C � � �C .�1/r�lxryl/:

Hence by symmetry, FŒhl �D .�1/r�l Œh0l �. In particular, FŒC �D�ŒC 0�.

Proof. Recall that

NE=Y D OPr�Pr .�1;�1/ WD x�
�OPr .�1/˝ x�

0�OPr .�1/

and NZ=X D OPr .�1/
˚.rC1/. From (2.1.1),

c.E/D .1� x/rC1.1� x�y/�1:

Taking degree r terms from both sides, we have

cr.E/D Œ.1� x/
rC1.1� .xCy//�1�.r/

D .xCy/r �C rC11 .xCy/r�1xC � � �C .�1/rC rC1r xr

D .xCy/�1
�
..xCy/� x/rC1� .�1/rC1xrC1

�
D .yrC1� .�1/rC1xrC1/=.yC x/

D yr �yr�1xCyr�2x2� � � �C .�1/rxr :

The basic pull-back formula ([6, Prop. 6.7]) then implies that

��Œhl �D j�.cr.E/:x�
�Œhl �/D j�.cr.E/:x

l/D j�
Xr

tD0
.�1/tyr�txtCl :

If t C l � r C 1 then yr�txtCl D 0. The result follows. �

LEMMA 2.6. For a class ˛ 2H 2l.X/ with l � r , let ˛0 D F˛ in X 0. Then

�0�˛0 D ��˛C .˛:hr�l/ j�
xl � .�y/l

xCy
:

Proof. Since the difference �0�˛0���˛ has support in E, we may write

�0�˛0 D ��˛C j�.a1x
l�1
C � � �C akx

l�kyk�1C � � �C aly
l�1/:
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By intersecting this equation with xr�lyr in X and noticing that E � �.xC y/
on E, we get by the projection formula

0D ��˛:xr�lyr � a1x
l�1.xCy/xr�lyr D .˛:hr�l/� a1:

Similarly by intersecting this with xr�lC1yr�1 we get

0D�a1x
l�1.xCy/xr�lC1yr�1� a2x

l�2y.xCy/xr�lC1yr�1 D�a1� a2:

Continuing in this way by intersecting xpyq with p C q D 2r � l we get
ak D .�1/

k�1.˛:hr�l/ for all k D 1; : : : ; l . This proves the lemma. �

These formulae allow us to compare the triple products of classes in X and X 0:

PROPOSITION 2.7. For a simple Pr -flop f WXÜX 0, let ˛i 2H 2li .X/, with
li � r , l1C l2C l3 D dimX D 2r C 1. Then

.F˛1:F˛2:F˛3/D .˛1:˛2:˛3/C .�1/
r.˛1:h

r�l1/.˛2:h
r�l2/.˛3:h

r�l3/:

Proof. The proof consists of straightforward computations.

.F˛1:F˛2:F˛3/D .�
0�F˛1:�

0�F˛2:�
0�F˛3/

D

 
��˛1C .˛1:h

r�l1/j�
xl1 � .�y/l1

xCy

! 
��˛2C .˛2:h

r�l2/j�
xl2 � .�y/l2

xCy

!

�

 
��˛3C .˛3:h

r�l3/j�
xl3 � .�y/l3

xCy

!
:

Among the resulting eight terms, the first term is clearly equal to ˛1:˛2:˛3.
For those three terms with two pull-backs like ��˛1:��˛2, the intersection

values are zero since the remaining part necessarily contains the � fiber (from the
formula the power in y is at most l3� 1).

The term with ��˛1 and two exceptional parts contributes

��˛1:j�
xl2 � .�y/l2

xCy
:j�
xl3 � .�y/l3

xCy

D���˛1:j�
�
.xl2 � .�y/l2/.xl3�1C xl3�2.�y/C � � �C .�y/l3�1/

�
times .˛2:hr�l2/.˛3:hr�l3/. The terms with nontrivial contribution must contain
yr ; hence there is only one such term, namely (notice that l1C l2C l3 D 2r C 1)

�.�y/l2 � xl3�1�.r�l2/.�y/r�l2 D�.�1/rxr�l1yr

and the contribution is .�1/r.˛1:hr�l1/.˛2:hr�l2/.˛3:hr�l3/. There are three such
terms.

It remains to consider the term of triple product of three exceptional parts. It
is .˛1:hr�l1/.˛2:hr�l2/.˛3:hr�l3/ times

.xl1 � .�y/l1/.xl2 � .�y/l2/.xl3�1C xl3�2.�y/C � � �C .�y/l3�1/:



FLOPS, MOTIVES, AND INVARIANCE OF QUANTUM RINGS 255

The terms with nontrivial values are precisely multiples of xryr . Since l1C l2 > r ,
there are two such terms

�xl1.�y/l2 � xr�l1.�y/l3�1�.r�l1/� xl2.�y/l1 � xr�l2.�y/l3�1�.r�l2/

which give �2.�1/r . Summing these together we then finish the proof. �

2.3. Motives and ordinary flips. Results in Sections 1 and 2 extend straight-
forwardly to the case of ordinary flips. Before we move to quantum corrections
for ordinary flops, we shall summarize here the classical aspects, especially the
motivic aspects, of ordinary flips. The proofs are identical to the flop case and are
thus omitted.

Consider . ; x / W .X;Z/! . xX;S/ a log-extremal contraction as before. Now,
 is an ordinary .r; r 0/ flipping contraction if

(i) Z D PS .F / for some rank r C 1 vector bundle F over S ,
(ii) NZ=X jZs Š OPr .�1/

˚.r 0C1/ for each x -fiber Zs , s 2 S .
Then the .r; r 0/ flip f WXÜX 0 exists with explicit local model as in Section 1.2.

In terms of the K-partial order within a birational class, X �K X 0 if and only
if r � r 0. For f an .r; r 0/ flip with r � r 0, the graph closure FD Œx�f �2A

�.X�X 0/

identifies the Chow motive yX of X as a sub-motive of yX 0 which preserves also the
Poincaré pairing on cohomology groups.

More precisely, a self-correspondence p 2A�.X�X/ is a projector if p2Dp.
There is a natural pseduo-abelian extension zM of M to include all pairs .X; p/ as its
objects. .X; p/ is regarded as the image of p. Moreover, yX D .X; p/˚ .X; 1�p/
in zM. With this notion, for an ordinary .r; r 0/ flip f W XÜ X 0 with r � r 0, the
graph closure F WD Œx�f � induces yX Š .X 0; p0/ via F�ıFD�X , where p0DFıF�

is a projector.
Since every geometric cohomology theory (a graded ring functor H� with

Poincaré duality, Künneth formula and a cycle map A�!H� etc.) factors through
zM, the result also holds on such a specialized theory.

For simple .r; r 0/ flips (i.e. S D pt) with l �minfr; r 0g,

��Œhr�l �D j�.x
r�lyr

0

� xr�lC1yr
0�1
C � � �C .�1/lxryr

0�l/:

In particular FŒhr�l �D .�1/l Œh0r
0�l �. For ˛ 2 Al.X/ with l �minfr; r 0g,

�0�F˛ D ��˛C .˛:hr�l/ j�
xl � .�y/l

xCy
:

Let ˛i 2 H 2li .X/, 1 � i � 3 with li � minfr; r 0g, l1C l2C l3 D dimX D

r C r 0C 1. The defect of the triple product is again given by

.F˛1:F˛2:F˛3/D .˛1:˛2:˛3/C .�1/
r 0.˛1:h

r�l1/.˛2:h
r�l2/.˛3:h

r�l3/:

3. Quantum corrections attached to extremal rays

Proposition 2.7 on triple products suggests that one needs to correct the prod-
uct structure by some contributions from the extremal ray. In this section we show
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that for simple ordinary flops the quantum corrections attached to the extremal ray
exactly remedy the defect of the ordinary product.

3.1. Quantum cohomology. We use [5] as our general reference on moduli
spaces of stable maps, Gromov-Witten theory and quantum cohomology. Let
ˇ 2 NE.X/, the Mori cone of numerical classes of effective one cycles. Let
SMg;n.X; ˇ/ be the moduli space of n-pointed stable maps f W .C I x1; : : : ; xn/!X

from a nodal curve C with arithmetic genus g.C /D g and with degree Œf .C /�D ˇ.
Let ei W SMg;n.X; ˇ/!X be the evaluation morphism f 7! f .xi /. The Gromov-
Witten invariant for classes ˛i 2H�.X/, 1� i � n, is given by˝

˛1; : : : ; ˛n
˛
g;n;ˇ

WD

Z
Œ xMg;n.X;ˇ/�virt

e�1˛1 : : : e
�
n˛n:

The genus zero three-point functions (as formal power series)˝
˛1; ˛2; ˛3

˛
WD

X
ˇ2NE.X/

˝
˛1; ˛2; ˛3

˛
0;3;ˇ

qˇ

together with the Poincaré pairing .�;�/ determine the small quantum product.
More precisely, let T D

P
tiTi with fTig a cohomology basis and ti being

formal variables. Let fT ig be the dual basis with .T i ; Tj /D ıij . The (genus zero)
pre-potential combines all n-point functions together:

ˆ.T /D
X1

nD0

X
ˇ2NE.X/

1

nŠ

˝
T n
˛
ˇ
qˇ ;

where
˝
T n
˛
ˇ
D
˝
T; : : : ; T

˛
0;n;ˇ

. The big quantum product is defined by

Ti �t Tj D
X

k
ˆijkT

k

where

ˆijk D
@3ˆ

@ti@tj @tk
D

X1

nD0

X
ˇ2NE.X/

1

nŠ

˝
Ti ; Tj ; Tk; T

n
˛
ˇ
qˇ :

The small quantum product is defined to be the restriction of �t to t D 0 (the nD 0
part ˆijk.0/).

In general, it is difficult to calculate ˆ.T / and the big quantum ring directly.
When X admits symmetries and H�.X/ is generated by divisors, it is usually
possible to use localization techniques to calculate one-point invariants with gravi-
tational descendents, or its generating function, the J -function, defined as follows:

JX .q; z
�1/ WD

X
ˇ2NE.X/

qˇJX .ˇ; z
�1/ 2H�.X/ŒŒz�1��ŒŒq��(3.1.1)

WD

X
ˇ2NE.X/

qˇeX1�

�
1

z.z� /
\ Œ SM0;1.X; ˇ/�

virt
�
:

Furthermore, the reconstruction theorem in [13] (also [2]) implies that the J -function
actually determines the entire generation function ˆ.T /.
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3.2. Analytic continuation. Let f WXÜX 0 be a simple Pr flop. Since X
and X 0 have the same Poincaré pairing under F, in order to compare their quan-
tum products we only need to compare their n-point functions. For three-point
functions, write˝
˛1; ˛2; ˛3

˛
D .˛1:˛2:˛3/C

X
d2N

˝
˛1; ˛2; ˛3

˛
d`
qd`C

X
ˇ 62Z`
h˛1; ˛2; ˛3iˇq

ˇ :

The difference .F˛1:F˛2:F˛3/� .˛1:˛2:˛3/ is as already determined in the last
section. The next step is to compute the middle term, namely quantum corrections
coming from the extremal ray `D ŒC �. The third term will be discussed in later
sections.

The virtual dimension of SMg;n.X; d`/ is given by

.c1.X/:d`/C .2r C 1/.1�g/C .3g� 3/Cn:

Since .KX :`/ D 0, for g D 0 we need only consider classes ˛i 2 H 2li .X/ withPn
iD1 li D 2r C 1C .n� 3/. For nD 3 this is 2r C 1D dimX .

THEOREM 3.1. For all ˛i 2H 2li .X/ with 1 � li � r ,
Pn
iD1 li D 2r C 1C

.n� 3/ and d 2 N,˝
˛1; : : : ; ˛n

˛
0;n;d

�

Z
Œ SM0;n.X;d`/�virt

e�1˛1 : : : e
�
n˛n

D .�1/.d�1/.rC1/Nl1;:::;lnd
n�3.˛1:h

r�l1/ : : : .˛n:h
r�ln/;

where Nl1;:::;ln are recursively determined universal constants. Nl1;:::;ln are inde-
pendent of d and Nl1;:::;ln D 1 for nD 2 or 3. All other (primary) Gromov-Witten
invariants with degree in Z` vanish.

COROLLARY 3.2. Both the small and big quantum products restricted to ex-
ceptional curve classes are invariant under simple ordinary flops. In fact the three-
point functions attached to the extremal ray exactly remedy the defect caused by
the classical product.

Proof. Since .F˛i :h0.r�li // D .�1/li .F˛i :Fhr�li / D .�1/li .˛i :hr�li /, for
three point functions we get˝

F˛1;F˛2;F˛3
˛
�
˝
˛1; ˛2; ˛3

˛
D .�1/r.˛1:h

r�l1/.˛2:h
r�l2/.˛3:h

r�l3/

C .˛1:h
r�l1/.˛2:h

r�l2/.˛3:h
r�l3/

 
.�1/2rC1q`

0

1� .�1/rC1q`
0
�

q`

1� .�1/rC1q`

!
:

Under the correspondence F, we shall identify q`
0

with q�`. Plugging this
into the last bracket we get 1 when r is odd and get �1 when r is even. In both
cases the right hand side cancels out and then

˝
F˛1;F˛2;F˛3

˛
D
˝
˛1; ˛2; ˛3

˛
. This

proves the statement on small quantum products.
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For general nD 3C k point invariants with k � 1, we get

˝
˛1; : : : ; ˛n

˛
DNl1;:::;ln.˛1:h

r�l1/ : : : .˛n:h
r�ln/

1X
dD1

.�1/.d�1/.rC1/dkqd`

DNl1;:::;ln.˛1:h
r�l1/ : : : .˛n:h

r�ln/

�
q`

d

dq`

�k .�1/rC1

1� .�1/rC1q`
:

Similarly, since .�1/
P
li D .�1/kC1,

˝
F˛1; : : : ;F˛n

˛
equals

.�1/kC1Nl1;:::;ln.˛1:h
r�l1/ : : : .˛n:h

r�ln/

�
q`
0 d

dq`
0

�k .�1/rC1

1� .�1/rC1q`
0
:

Taking into account

q�`
d

dq�`
D�q`

d

dq`
and

1

1� .�1/rC1q�`
D 1�

1

1� .�1/rC1q`

we get
˝
F˛1; : : : ;F˛n

˛
D
˝
˛1; : : : ; ˛n

˛
for all k � 1 (n � 4). The proof for the

statement on big quantum products is thus completed. �

To put the result into perspective, we interpret the change of variable `0 by �`
in terms of analytic continuation over the extended complexified Kähler moduli
space.

Without lose of generality we illustrate this by writing out the small quantum
part. This is simply a word by word adoption of the treatment in the r D 1 case
(cf. [27, �5.5], [21, �4]).

The quantum cohomology is parametrized by the complexified Kähler class
! D B C iH with qˇ D exp.2�i.!:ˇ//, where B 2 H 1;1

R .X/ and H 2 KX , the
Kähler cone of X . For a simple Pr flop XÜ X 0, F identifies H 1;1, A1 and
the Poincaré pairing .�;�/ on X and X 0. Then

˝
˛1; ˛2; ˛3

˛X restricted to Z`

converges in the region

H
1;1
C
D f! j .H:`/ > 0g �H

1;1
R � i KX

and equals

.˛1:˛2:˛3/C .˛1:h
r�l1/.˛2:h

r�l2/.˛3:h
r�l3/

e2�i.!:`/

1� .�1/rC1e2�i.!:`/
:

This is a well-defined analytic function of ! on the whole H 1;1, which defines the
analytic continuation of

˝
˛1; ˛2; ˛3

˛X from H
1;1
R � i KX to H 1;1.

Similarly,
˝
F˛1;F˛2;F˛3

˛X 0 restricted to Z`0 converges in the region

f! j .H:`0/ > 0g D f! j .H:`/ < 0g DH 1;1
� �H

1;1
R � i KX 0
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and equals

.F˛1:F˛2:F˛3/� .˛1:h
r�l1/.˛2:h

r�l2/.˛3:h
r�l3/

e�2�i.!:`/

1� .�1/rC1e�2�i.!:`/

which is the analytic continuation of the previous expression for X from H
1;1
C

to
H 1;1
� .

We introduce the notation AŠ B for the two series A and B when they can
be analytically continued to each other.

Remark 3.3. It was conjectured that the total series ˆX
ijk

converges for H 2
KX , at least for H large enough; hence the large radius limit goes back to the
classical cubic product. The Novikov variables fqˇ gˇ2NE.X/ are introduced to
avoid the convergence issue.

Since KX \KX 0 D∅ for nonisomorphic K-equivalent models, the collection
of Kähler cones among them forms a chamber structure. The conjectural canonical
isomorphism

F WH�.X/ŠH�.X 0/

assigns to each model X a coordinate system H�.X/ of the fixed H� and F serves
as the (linear) transition function. The conjecture asserts that ˆX

ijk
can be analyt-

ically continued from KX to KX 0 and agrees with ˆX
0

ijk
. Equivalently, ˆijk is

well-defined on KX [KX 0 which verifies the functional equation

Fˆijk.!; T /Šˆijk.!;FT /:

For simple ordinary flops, this is verified from Sections 3 to 5 for each given
cohomology insertion. The convergence has just been verified for extremal rays
and will be verified for local models in Section 5.

3.3. One-point functions with descendents. In order to prove Theorem 3.1,
we first reduce the problem to one for projective spaces. Let

Ud WDR
1f t�e

�
nC1N

be the obstruction bundle, where N DNZ=X and f t is the forgetting morphism in

SM0;nC1.P
r ; d /

enC1 //

f t

��

Pr

SM0;n.P
r ; d /

:

It is well known (see e.g. [5]) that

(3.3.1) Œ SM0;n.X; d`/�
virt
D e.Ud /\ Œ SM0;n.P

r ; d`/�:

Since Ud is functorial under f t�, we use the same notation for all n.
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As explained earlier, we will start with the calculation of the J -function
(3.1.1). In our case

JX .d`; z
�1/� ePr

1�

e.Ud /

z.z� /

has been calculated: Let Pd WD .�1/
.d�1/.rC1/ 1

.hC dz/rC1
.

LEMMA 3.4 ([16], also [7]).

JX .d`; z
�1/D Pd :

Remark 3.5. This calculation can be interpreted as a quantum Lefschetz hy-
perplane theorem for concave bundles over Pr . From this viewpoint, the “mirror
transformation” from JX .d`; z

�1/ to Pd is not needed since the rank of the bundle
O.�1/rC1 is greater than one. See e.g. [12].

COROLLARY 3.6. For l C k D 2r � 1, 1� l � r ,

˝
�kh

l
˛
d
D
.�1/d.rC1/Ck

dkC2
C kC1r

where C kr D kŠ=rŠ.k� r/Š. The invariant is zero if l C k ¤ 2r � 1 by dimensional
constraints.

Proof. We start with

A WD

Z
Pr
hl :Pd D

X
k�0

1

zkC2

˝
�kh

l
˛
d
:

By Lemma 3.4

AD .�1/.d�1/.rC1/
Z

Pr

hl

.hC dz/rC1
D

Z
Pr

hl

d rC1zrC1

�
1C

h

dz

��.rC1/
:

The result follows from the Taylor expansion and the elementary fact that

C
�.rC1/

r�l
D .�1/kC.rC1/C kC1r : �

3.4. Multiple-point functions via divisor relations. We recall the following
rational equivalence in A�. SM0;n.X; ˇ//˝Q from [13, Cor. 1]: For L 2 Pic.X/
and i ¤ j ,

e�i L\ Œ
SM0;n.X; ˇ/�

virt
D .e�j LC .ˇ; L/ j /\ Œ

SM0;n.X; ˇ/�
virt(3.4.1)

�

X
ˇ1Cˇ2Dˇ

.ˇ1; L/ŒDi;ˇ1jj;ˇ2 �
virt;

 i C j D ŒDi jj �
virt;(3.4.2)
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where ŒDi;ˇ1jj;ˇ2 �
virt 2 A�. SM0;n.X; ˇ// is the push-forward of the virtual classes

of the corresponding boundary divisor components

Di;ˇ1jj;ˇ2 D
X

i2A;j2BI A
`
BDf1;:::;ng

D.A;BIˇ1; ˇ2/

and
Di jj D

X
ˇ1Cˇ2Dˇ

Di;ˇ1jj;ˇ2 :

Here is a simple observation which will be repeatedly used in the sequel:

LEMMA 3.7 (Vanishing lemma). Let Pr�X withNPr=XD j̊O.�mj /,mj 2N.
Let ` be the line class in Pr . Then for degT > r and d ¤ 0, h: : : ; T id` D 0.

Proof. Since Œ SM0;n.X; d`/�
virt equals Œ SM0;n.P

r ; d /� cut out by e.Ud /, the
evaluation morphisms factor through Pr . But then e�n.T jZ/D 0. �

Here degT WD l if T 2H 2l.X/. As mentioned in the introduction, only real
even degree classes will be relevant throughout our discussions.

PROPOSITION 3.8. For k1C k2C l1C l2 D 2r , 1� li � r ,˝
�k1h

l1 ; �k2h
l2
˛
d
D
.�1/d.rC1/Cl1Ck2C1

dk1Ck2C1
C
2r�.l1Cl2/

r�l1
;

and other descendent invariants vanish. In particular, the only nontrivial two-point
function without descendents in degree d` is given by˝

hr ; hr
˛
d
D .�1/.d�1/.rC1/

1

d
:

Proof. We consider the invariant without descendents first. Since the virtual
dimension is 2r , only hhr ; hrid survives. Using the above equivalence relations,
we may decrease the powers of e�1h one by one. In each step only the second term
in the resulting three terms has nontrivial contribution. Indeed, for the first term
any addition to the power of e�2h

r leads to zero.
For the third boundary splitting terms, write Œ�.X/�D

P
i T

i ˝Ti . For each
i , since dimX D 2r C 1, one of T i or Ti must have degree strictly bigger than r .
If ˇ1 D d1`, ˇ2 D d2` with di ¤ 0 then one of the integral; hence the product,
must vanish by the vanishing lemma.

This is what happens now. We apply the divisor relation to i D 1 and j D 2.
Since nD 2, we find n1 D jAj D 1, n2 D jBj D 1 and in the splitting we have a
sum of products of two-point invariants. The degree on each side is nonzero since
there is no constant genus zero stable map with two marked points. So the splitting
terms vanish.

We apply the divisor relation repeatedly to compute

hhr ; hrid D d hh
r�1; �1h

r
id D � � � D d

r�1
hh; �r�1h

r
id D d

r
h�r�1h

r
i
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where the last equality is by the divisor axiom. Now we plug in Corollary 3.6 with
.k; l/D .r � 1; r/ and the statement follows.

For descendent invariants we proceed in the same manner. For simplicity we
abuse the notation by denoting

˝
: : : ;  s˛; : : :

˛
ˇ
D
˝
: : : ; �s˛; : : :

˛
ˇ

. Let s � 1,
l CmC s D 2r and consider˝

hl ;  shm
˛
d
D
˝
hl�1;  shmC1

˛
d
C .h; d`/

˝
hl�1;  sC1hm

˛
d

D
˝
hl�1; .hC d / shm

˛
d
D : : :

D
˝
h; .hC d /l�1 shm

˛
d
:

Notice that the splitting terms are all zero as before. Now the divisor axiom of
descendent invariants gives

d
˝
.hC d /l�1 shm

˛
d
C
˝
.hC d /l�1 s�1hmC1

˛
d
;

which leads to the reduction formula:˝
hl ;  shm

˛
d
D
˝
.hC d /l s�1hm

˛
d
:

Notice that this equals the constant term on z in�X
k�0

 k

zk
.hC dz/lzs�1hm

�
d

D zsC1e1�

�
e.Ud /

z.z� /
:e�1

�
.hC dz/l :hm

��
D .�1/.d�1/.rC1/zsC1.hC dz/l�.rC1/:hm

D .�1/.d�1/.rC1/
zr�m

d .rC1/�l

�
1C

h

dz

�l�.rC1/
:hm;

which is

.�1/d.rC1/CrC1

d rC1�lCr�m
C l�.rC1/r�m D

.�1/d.rC1/ClCsC1

d sC1
C 2r�.lCm/r�m :

In general, from  1 D� 2C ŒD1j2�
virt, we find˝

�k1h
l1 ; �k2h

l2
˛
d
D�

˝
�k1�1h

l1 ; �k2C1h
l2
˛
d
D � � � D .�1/k1

˝
hl1 ; �k1Ck2h

l2
˛
d

since the splitting terms all vanish. The result follows. �

For n� 3, it is known that for any three different markings i , j and k,  j D
ŒDikjj �

virt. By plugging this into (3.4.1), we get

e�i LD e
�
j LC

X
ˇ1Cˇ2Dˇ

..ˇ2:L/ŒDik;ˇ1jj;ˇ2 �
virt
� .ˇ1:L/ŒDi;ˇ1jjk;ˇ2 �

virt/:

In our special case this reads as

e�i hD e
�
j hC

X
d1Cd2Dd

.d2ŒDik;d1jj;d2 �
virt
� d1ŒDi;d1jjk;d2 �

virt/:

Notice that now di is allowed to be zero.
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LEMMA 3.9. For n� 3,˝
hl1C1; hl2 ; hl3 ; : : :

˛
n;d
D
˝
hl1 ; hl2C1; hl3 ; : : :

˛
n;d

C d
˝
hl1Cl3 ; hl2 ; : : :

˛
n�1;d

� d
˝
hl1 ; hl2Cl3 ; : : :

˛
n�1;d

:

For l1 D 0 this recovers the divisor axiom.

Proof. As in the previous theorem, the boundary terms with nontrivial de-
gree must vanish. For degree zero, the only nontrivial invariants are three-point
functions; hence we are left with˝
hl1C1; hl2 ; hl3 ; : : :

˛
n;d
D
˝
hl1 ; hl2C1; hl3 ; : : :

˛
n;d

C

X
i

d
˝
hl1 ; hl3 ; Ti

˛
0

˝
T i ; hl2 ; : : :

˛
d
�

X
i

d
˝
T i ; hl1 ; : : :

˛
d

˝
hl2 ; hl3 ; Ti

˛
0
:

For the first boundary sum, in the diagonal decomposition Œ�.X/�D
P
Ti ˝ T

i

we may choose a basis so that hl1Cl3 appears in fT ig. Then the above degree zero
invariants survive only in one term which is equal to 1. The same argument applies
to the second sum too. So the above expression equals˝

hl1 ; hl2C1; hl3 ; : : :
˛
d
C d

˝
hl1Cl3 ; hl2 ; : : :

˛
d
� d

˝
hl1 ; hl2Cl3 ; : : :

˛
d

as expected. �

In light of (3.3.1) and results above, Theorem 3.1 can be reformulated as the
following equation

(3.4.3)
˝
hl1 ; hl2 ; : : : ; hln

˛
d
D .�1/.d�1/.rC1/Nl1;:::;lnd

n�3;

which we will now prove.

Proof (of (3.4.3), or equivalently Theorem 3.1). We will prove the theorem by
induction on n 2 N. The cases n� 2 were proved before. We treat the case nD 3
first.

Consider hhl1 ; hl2 ; hl3id with l1C l2C l3D 2rC1 and l1 � l2 � l3. If l1D 1
then l2 D l3 D r and so˝

h; hr ; hr
˛
d
D d

˝
hr ; hr

˛
d
D .�1/.d�1/.rC1/:

If l1 � 2, then l2 � r � 1 and˝
hl1 ; hl2 ; hl3

˛
d
D
˝
hl1�1; hl2C1; hl3

˛
d
C d

˝
hl1Cl3�1; hl2

˛
d
� d

˝
hl1�1; hl2Cl3

˛
d
:

But then both l1C l3� 1 and l2C l3 are larger than r C 1 and the boundary terms
vanish individually. By reordering l2, l3 if necessary, and repeating this procedure
we are reduced to the case l1 D 1; proof for nD 3 is completed.
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Suppose the theorem holds up to n� 1 (with n � 4). The above lemma and
the induction hypothesis imply that˝
hl1 ; hl2 ; hl3 ; : : :

˛
d

D
˝
hl1�1; hl2C1; hl3 ; : : :

˛
d
C d

˝
hl1Cl3�1; hl2 ; : : :

˛
d
� d

˝
hl1�1; hl2Cl3 ; : : :

˛
d

D
˝
hl1�1; hl2C1; hl3 ; : : :

˛
d
C .Nl1Cl3�1;l2;:::�Nl1�1;l2Cl3;:::/d

n�3:

By repetition of this procedure, l1 is decreased to one and we get˝
hl1 ; hl2 ; : : : ; hln

˛
d
D .�1/.d�1/.rC1/Nl1;:::;lnd

n�3;

where Nl1;:::;ln is given by N�’s in one lower level. The proof is complete. �
Similar methods apply to descendent invariants:

PROPOSITION 3.10. The only three-point descendent invariants of extremal
classes d`, up to permutations of insertions, are given by˝

hl1 ; hl2 ; �k3h
l3
˛
d
D
.�1/d.rC1/Cl3C1

dk3
C
k3C1
r�.l1Cl2/

;

where l1C l2C l3C k3 D 2r C 1 and by convention Cmn D 0 if n < 0.
More generally, an n-point descendent invariant h

Qn
iD1 �kih

li id with n� 3 is
nonzero only if there are at least two insertions free of descendents, say k1D k2D 0.
In such cases, there are universal constants Nk;l 2 Z such that˝

hl1 ; hl2 ; �k3h
l3 ; : : : ; �knh

ln
˛
d
DNk;l d

n�3�
P
ki :

Proof. Let n� 3 and assume that 0� k1 � k2 � � � � � kn. If k2 � 1 then using
 2 D ŒD2j13�

virt we get˝
�k1h

l1 ; : : : ; �knh
ln
˛
d
D

X
i Id1Cd2Dd

˝
�k2�1h

l2 ; : : : ; Ti
˛
d1

˝
T i ; �k1h

l1 ; �k3h
l3 ; : : :

˛
d2
:

We separate two cases. If the first factor is a two-point function then it is nonzero
only if Ti D hj for some j � r . But then degT i > r and the right factor vanishes
since it contains  classes. For other cases, both factors contain  classes; hence
the factor with degTi > r (or degT i > r) must vanish.

For three-point invariants, from  3 D ŒD3j12�
virt we get as before that˝

hl1 ; hl2 ; �k3h
l3
˛
d
D

X
i Id1Cd2Dd

˝
�k3�1h

l3 ; Ti
˛
d1

˝
T i ; hl1 ; hl2

˛
d2

D
˝
�k3�1h

l3 ; hl1Cl2
˛
d

and the formula follows from the two-point case.
Similarly, for n� 4, if ki ¤ 0 then from  i D ŒDi j12�

virt we get˝
hl1 ; hl2 ; : : : ; �kih

li ; : : :
˛
d
D
˝
�ki�1h

li ; hl1Cl2 ; : : :
˛
d
:

The result follows from an induction on n. �
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4. Degeneration analysis

Our next task is to compare the genus zero Gromov-Witten invariants of X
and X 0 for curve classes other than the flopped curve. Naively, one may wish
to “decompose” the varieties into the neighborhoods of exceptional loci and their
complements. As the latter are obviously isomorphic, one is reduced to study-
ing the local case. The degeneration formula [14], [15], [10] provides a rigorous
formulation of the above naive picture.

4.1. The degeneration formula. Our presentation of the degeneration formula
below mostly follows that of [15] and [18]. We have, however, chosen to use the
“numerical form” rather than the “cycle form” in the exposition.

Given a relative pair .Y;E/ with E ,! Y a smooth divisor, the relative
Gromov-Witten invariants are defined in the following way. Let � D .g; n; ˇ; �; �/
with �D .�1; : : : ; ��/ 2N� a partition of the intersection number .ˇ:E/D j�j WDP�
iD1 �i . For A 2 H�.Y /˝n and " 2 H�.E/˝�, the relative invariant of stable

maps with topological type � (i.e. with contact order �i in E at the i-th contact
point) is

hA j "; �i
.Y;E/
� WD

Z
Œ SM�.Y;E/�virt

e�YA[ e
�
E"

where eY W SM�.Y;E/! Y n, eE W SM�.Y;E/!E� are evaluation maps on marked
points and contact points respectively.

If � D
`
� �

� , the relative invariants (with disconnected domain curves)

hA j "; �i
�.Y;E/
� WD

Y
�
hA j "; �i

.Y;E/
��

are defined to be the product of the connected components.
We apply the degeneration formula to the following situation. Let X be a

smooth variety and Z �X be a smooth subvariety. Let ˆ WW ! X be its degen-
eration to the normal cone, the blow-up of X �A1 along Z � f0g. Denote t 2 A1

the deformation parameter. Then Wt ŠX for all t ¤ 0 and W0 D Y1[Y2 with

� DˆjY1 W Y1!X

the blow-up along Z and

p DˆjY2 W Y2 WD PZ.NZ=X ˚O/!Z �X

the projective completion of the normal bundle. Y1\Y2 DWE D PZ.NZ=X / is the
�-exceptional divisor which consists of “the infinity part” of the projective bundle
PZ.NZ=X ˚O/.

Since the family W !A1 is a degeneration of a trivial family, all cohomology
classes ˛ 2 H�.X;Z/˚n have global liftings and the restriction ˛.t/ on Wt is
defined for all t . Let ji W Yi ,! W0 be the inclusion maps for i D 1; 2. Let feig
be a basis of H�.E/ with feig its dual basis. Now, feI g forms a basis of H�.E�/
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with dual basis feI g where jI j D �, eI D ei1˝� � �˝ei� . The degeneration formula
expresses the absolute invariants of X in terms of the relative invariants of the two
smooth pairs .Y1; E/ and .Y2; E/:

h˛iXg;n;ˇ D
X
I

X
�2�ˇ

C�

D
j �1 ˛.0/

ˇ̌̌
eI ; �

E�.Y1;E/
�1

D
j �2 ˛.0/

ˇ̌̌
eI ; �

E�.Y2;E/
�2

:

Here �D .�1; �2; I�/ is an admissible triple which consists of (possibly discon-
nected) topological types

�i D
aj�i j

�D1
��i

with the same partition � of contact order under the identification I� of contact
points. The gluing �1CI� �2 has type .g; n; ˇ/ and is connected. In particular,
� D 0 if and only if one of the �i is empty. The total genus gi , total number of
marked points ni and the total degree ˇi 2NE.Yi / satisfy the splitting relations

g D g1Cg2C �C 1� j�1j � j�2j;

nD n1Cn2;

ˇ D ��ˇ1Cp�ˇ2:

The constants C� Dm.�/=jAut �j, where m.�/D
Q
�i and

Aut �D f � 2 S� j �� D � g:

(When a map is decomposed into two parts, an (extra) ordering to the contact points
is assigned. The automorphism of the decomposed curves will also introduce an
extra factor. These contribute to Aut �.) We denote by � the set of equivalence
classes of all admissible triples; by each of �ˇ and �� we denote the subset with
fixed degree ˇ and fixed contact order � respectively.

Given an ordinary flop f W XÜ X 0, we apply degeneration to the normal
cone to both X and X 0 (cf. Figure 1). Then Y1 Š Y 01 and E DE 0, by the definition
of ordinary flops. The following notation will be used

Y WD BlZX Š Y1 Š Y 01; zE WD PZ.NZ=X ˚O/; zE 0 WD PZ0.NZ0=X 0 ˚O/:

Remark 4.1. For simple Pr flops, Y2 Š PPr .O.�1/
˚.rC1/˚O/Š Y 02. How-

ever the gluing maps of Y1 and Y2 along E for X and X 0 differ by a twist which
interchanges the order of factors in EDPr�Pr . ThusW0 6ŠW 00 and it is necessary
to study the details of the degenerations. In general, f induces an ordinary flop
Qf W Y2Ü Y 02 of the same type which is the local model of f .

4.2. Liftings of cohomology insertions. Next we discuss the presentation of
˛.0/. Denote by �1 � j W E ,! Y1 D Y and �2 W E ,! Y2 D zE the natural
inclusions. The class ˛.0/ can be represented by .j �1 ˛.0/; j

�
2 ˛.0// D .˛1; ˛2/

with ˛i 2H�.Yi / such that

(4.2.1) ��1˛1 D �
�
2˛2 and ��˛1Cp�˛2 D ˛:
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Y Y

Ẽ Ẽ ′

Z ′Z

Ẽ

Y

E E ′

Ẽ ′

Y

•
0

•
0

flop

E ∼= E ′

W0 Wt
∼= X W ′

0 W ′
t
∼= X ′

Figure 1. Degeneration to the normal cone for ordinary flops.

Such representatives are called liftings which are by no means unique. The flexi-
bility on different choices will be useful.

One choice of the lifting is

(4.2.2) ˛1 D �
�˛ and ˛2 D p

�.˛jZ/;

since they satisfy the conditions (4.2.1): .˛1; ˛2/ restrict to the same class in E
and push forward to ˛ and 0 in X respectively. More generally:

LEMMA 4.2. Let ˛.0/D .˛1; ˛2/ be a choice of lifting. Then

˛.0/D .˛1� �1�e; ˛2C �2�e/

is also a lifting for any class e in E of the same dimension as ˛. Moreover, any two
liftings are related in this manner. In particular, ˛1 and ˛2 are uniquely determined
by each other.

Proof. The first statement follows from the facts that

��1�1�e D .e:c1.NE=Y //E D�.e:c1.NE= zE //E D��
�
2�2�e

and ����1�eCp��2�e D 0 (since � ı �1 D p ı �2 D x� WE!Z).
For the second statement, let .˛1; ˛2/ and .a1; a2/ be two liftings. From

��.˛1� a1/D�p�.˛2� a2/ 2H
�.Z/;
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we have that ����.˛1�a1/ is a class inE. Hence ˛1�a1D �1�e for e 2H�.E/. It
remains to show that if .a1; a2/ and .a1; Qa2/ are two liftings then a2 D Qa2. Indeed
by (4.2.1), ��2.a2� Qa2/D 0. Hence by Lemma 4.3 below z WD a2� Qa2 2 i�H

�.Z/.
By (4.2.1), again, z D p�z D p�.a2� Qa2/D 0. �

For an ordinary flop f WXÜX 0, we compare the degeneration expressions
of X and X 0. For a given admissible triple �D .�1; �2; I�/ on the degeneration
of X , one may pick the corresponding �0 D .� 01; �

0
2; I
0
�/ on the degeneration of X 0

such that �1 D � 01. Since

��˛��0�F˛ 2 �1�H
�.E/�H�.Y /;

Lemma 4.2 implies that one can choose ˛1 D ˛01. This can be done, for example,
by modifying the choice of (4.2.2) j �1 ˛.0/ D ��˛ and j 0�1 F˛.0/ D �0�F˛ by
adding suitable classes in E to make them equal. The above procedures identify
relative invariants on the Y1 D Y D Y 01 from both sides, term by term, and we are
left with the comparison of the corresponding relative invariants on zE and zE 0. The
following simple lemma is useful.

LEMMA 4.3. Let zE DPZ.N ˚O/ be a projective bundle with base i WZ ,! zE
and infinity divisor �2 WE D PZ.N / ,! zE. Then the kernel of the restriction map
��2 WH

�. zE/!H�.E/ is i�H�.Z/.

Proof. i�H�.Z/ obviously lies in the kernel of ��2 . The fact it is the entire
kernel can be seen, for example, by a dimension count. �

The ordinary flop f induces an ordinary flop

Qf W zEÜ zE 0

on the local model. Moreover Qf may be considered as a family of simple ordinary
flops Qft W zEtÜ zE 0t over the base S , where t 2S and zEt is the fiber of zE!Z!S

etc. Denote again by F the cohomology correspondence induced by the graph
closure. Then

PROPOSITION 4.4 (Cohomology reduction to local models). Let f WXÜX 0

be a Pr flop over base S . Let ˛ 2 H�.X/ with liftings ˛.0/ D .˛1; ˛2/ and
F˛.0/D .˛01; ˛

0
2/. Then

˛1 D ˛
0
1 ” F˛2 D ˛

0
2:

Proof. ()) Let ˛ 2 H�.X/. By Lemma 4.2 and the fact that Qf is an iso-
morphism outside Z, F is the identity map on H�.E/ and it is enough to prove
the statement for any choice of ˛1, say ˛1 D ��˛ D ˛01. From the compatibility
condition ��2˛2 D �

�
1˛1 D �

0�
1 ˛
0
1 D �

0�
2 ˛
0
2, we get

�0�2 .F˛2�˛
0
2/D F��2˛2� �

0�
2 ˛
0
2 D �

�
2˛2� �

0�
2 ˛
0
2 D 0:

Thus F˛2�˛
0
2 D i

0
�z
0 for some z0 2H�.Z0/ (where i 0 WZ0 ,! QE 0) by Lemma 4.3.
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By applying (4.2.1) to F˛, we find p0�˛
0
2 D F˛��0��

�˛ D 0. Hence

z0 D p0�i
0
�z
0
D p0�.F˛2�˛

0
2/D p

0
�Fp�.˛jZ/D 0:

Here for the last equality we use the fact that F transforms p fibers into classes
containing p0 fiber lines (since Qf is an isomorphism outside Z).

(() For ease of notation we omit the embedding maps of E into Y , zE and
zE 0. By (4.2.2) and Lemma 4.2 we have ˛1 D ��˛� e1 and ˛01 D �

0�F˛� e01 for
some classes e1, e01 in E. Thus ˛01D˛1�e for some class e in E. By Lemma 4.2
again, ˛.0/ has a lifting .˛1 � e; ˛2C e/ D .˛01; ˛2C e/ and by the first part of
this proposition we must have F.˛2C e/D ˛

0
2. By assumption, F˛2 D ˛

0
2, hence

Fe D 0 and then e D 0. �

Remark 4.5. Proposition 4.4 (with cohomology groups being replaced by
Chow groups) leads to an alternative proof of equivalence of Chow motives under
ordinary flops. Indeed the equivalence of Chow groups for simple flops is easy to
establish. The degeneration to a normal cone then allows us to reduce the general
case to the local case and then to the local simple case.

4.3. Reduction to relative local models. First notice that A1. zE/D �2�A1.E/
since both are projective bundles over Z. We then have

��ˇ D ˇ1Cˇ2

by regarding ˇ2 as a class in E � Y . Indeed ��.ˇ1C ˇ2/ D ��ˇ1Cp�ˇ2 D ˇ
and

..ˇ1Cˇ2/:E/Y D .ˇ1:E/Y � .ˇ2:E/ zE D j�j � j�j D 0

(where N
E= zE
ŠN �

E=Y
is used). These characterize the class ��ˇ.

We consider only the case g D 0. Define the generating series

hA j "; �i.
zE;E/
WD

X
ˇ22NE. zE/

1

jAut�j
hA j "; �i

. zE;E/

ˇ2
qˇ2

and the similar one with possibly disconnected domain curves

hA j "; �i�.
zE;E/
WD

X
�I��D�

1

jAut�j
hA j "; �i

�. zE;E/
� qˇ

�

:

PROPOSITION 4.6. To prove Fh˛iX Š hF˛iX
0

(for all ˛), it is enough to
show that

(4.3.1) FhA j "; �i.
zE;E/
Š hFA j "; �i.

zE 0;E/

for all A; "; �.
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Proof. For the n-point function h˛iX D
P
ˇ2NE.X/h˛i

X
ˇ
qˇ , the degeneration

formula gives

h˛iX D
X

ˇ2NE.X/

X
�2�ˇ

X
I

C�h˛1 j eI ; �i
�.Y1;E/
�1

h˛2 j e
I ; �i

�.Y2;E/
�2

q�
�ˇ

D

X
�

X
I

X
�2��

C�

�
h˛1 j eI ; �i

�.Y1;E/
�1

qˇ1
� �
h˛2 j e

I ; �i
�.Y2;E/
�2

qˇ2
�
:

To simplify the generating series, we consider also absolute invariants h˛i�X

with possibly disconnected domain curves as before. Then by comparing the order
of automorphisms, we obtain

h˛i�X D
X
�

m.�/
X
I

h˛1 j eI ; �i
�.Y1;E/h˛2 j e

I ; �i�.Y2;E/:

To compare Fh˛i�X and hF˛i�X
0

, by Proposition 4.4 we may assume that
˛1 D ˛

0
1 and ˛02 D F˛2. This choice of cohomology liftings identifies the relative

invariants of .Y1; E/ and those of .Y 01; E
0/ with the same topological types. It

remains to compare

h˛2 j e
I ; �i�.

zE;E/ and hF˛2 j e
I ; �i�.

zE 0;E/:

We further split the sum into connected invariants. Let �� be a connected part
with the contact order �� induced from �. Denote P W �D

P
�2P �

� a partition
of � and P.�/ the set of all such partitions. Then

hA j "; �i�.
zE;E/
D

X
P2P.�/

Y
�2P

X
��

1

jAut�� j
hA� j "� ; ��i

. zE;E/
�� qˇ

��

:

If one fixes the above data in the summation of (4.3.1), then the only index to
be summed over is ˇ�

�

on zE. This reduces the problem to hA� j "� ; ��i. zE;E/. �

Remark 4.7. Here is a brief comment on the term

Fh˛2 j e
I ; �i.

zE;E/
D

X
ˇ22NE. zE/

1

jAut�j
h˛2 j e

I ; �i
. zE;E/

ˇ2
qFˇ2 :

Since zE is a projective bundle, NE. zE/D i�NE.Z/˚ZC
 with 
 the fiber line
class of zE! Z. The point is that, for ˇ2 2 NE. zE/, it is in general not true that
Fˇ2 � ˇ2 (in E) is effective in zE 0.

Indeed, for simple ordinary flops, let 
 D ı0, ı D 
 0 be the two line classes
in E Š Pr � Pr . It is easily checked that ` � ı � 
 in zE. Hence ` D �`0 and

 D 
 0C `0 and

ˇ2 D d1`C d2
 D .d2� d1/`
0
C d2


0:
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Now, Fˇ2 2NE. zE
0/ if and only if d2 � d1. Therefore,

h˛2 j e
I ; �i.

zE;E/
D hF˛2 j e

I ; �i.
zE 0;E/

cannot possibly hold term by term. Analytic continuations are in general needed.

4.4. Relative to absolute. Recall that we are now in the local relative case,
with X D zE. We shall combine a method of Maulik and Pandharipande ([20,
Lemma 4]) to further reduce the relative cases to the absolute cases with at most
descendent insertions along E. Following [20], we call the pair

."; �/D f."1; �1/; : : : ; ."�; ��/g

with "i 2 H�.E/, �i 2 N a weighted partition, a partition of contact orders
weighted by cohomology classes in E.

PROPOSITION 4.8. For a simple ordinary flop zEÜ zE 0, to prove

FhA j "; �i Š hFA j "; �i

for any A and ."; �/, it is enough to show that

FhA; �k1"1; : : : ; �k�"�i
zE
Š hFA; �k1"1; : : : ; �k�"�i

zE 0

for any possible insertions A 2H�. zE/˚n, kj 2 N[ f0g and "j 2H�.E/. (Here
we abuse the notation and denote �2� " 2H�. zE/ by the same symbol ".)

The rest of this subsection is devoted to the proof of this proposition which
proceeds inductively on the triple (j�j, n, �) in the lexicographical order with � in
the reverse order. Given h˛1; : : : ; ˛n j "; �i, since � � j�j, it is clear that there are
only finitely many triples of lower order. The proposition holds for those cases by
the induction hypothesis.

We apply degeneration to the normal cone for Z ,! zE to get W ! A1. Then
W0 D Y1[Y2 with � W Y1 Š PE .OE .�1;�1/˚O/!E a P1 bundle and Y2 Š zE.
Denote by E0 D E D Y1 \ Y2 and E1 Š E the zero and infinity divisors of Y1
respectively (cf. Figure 2). The idea is to analyze the degeneration formula for
h˛1; : : : ; ˛n; ��1�1"1; : : : ; ����1"�i

zE . We follow the procedure used in the proof

α2

α1

Ẽ Ẽ ′

E ∼= E ′

Y1
∼= Y ′

1

α′
2

α′
1

Z Z ′

Figure 2. Degeneration to a normal cone for local models.
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of Proposition 4.6 to split the generating series of invariants with possibly discon-
nected domain curves, according to the contact order. For ˇD d1`Cd2
 2NE. zE/,
.c1. QE/:ˇ/D d2.c1. QE/:
/. Hence by the virtual dimension counting d2 is uniquely
determined for a given generating series with fixed cohomology insertions.

We observe that during the splitting of ˇ’s, the “main terms” with the highest
total contact order only occur when the curve classes in Y1 are fiber classes. Indeed,
let .ˇ1; ˇ2/ be a splitting of ˇ. Since

NE.Y1/D ZCıCZCx
 CZC
 and NE.Y2/D ZC`CZC


(x
 is the fiber class of Y1), we have

.ˇ1; ˇ2/D .aıC b
 C cx
; d`C e
/

subject to

a; b; c; d; e � 0; aC d D d1; c D d2

and the total contact order condition

e D .ˇ2:E/ zE D .ˇ1:E/Y1 D�a� bC c:

In particular, e � d2 with e D d2 if and only if aD b D 0. In this case ˇ1 D d2x

and the invariants on .Y1; E/ are fiber class integrals.

It is sufficient to consider ."1; : : : ; "�/DeID.ei1 ; : : : ; ei�/. Since "i jZD0, one
may choose the cohomology lifting "i .0/D .�1� "i ; 0/. This ensures that insertions
of the form �k " must go to the Y1 side in the degeneration formula.

LEMMA 4.9. For a general cohomology insertion ˛ 2H�. zE/, the lifting can
be chosen to be ˛.0/D .a; ˛/ for some a.

Proof. ˛.0/ may be chosen as .��˛; p�.˛jZ//. Since .˛�p�.˛jZ//:Z D 0,
the class e WD ˛�p�.˛jZ/ can be taken to be supported in E. Then Lemma 4.2
implies that ˛.0/ can be modified to be .��˛� e; ˛/. �

From ˛.0/D .a; ˛/ and F˛.0/D .a0;F˛/, Lemma 4.3 implies that a D a0.
As before the relative invariants on .Y1; E/ can be regarded as constants under F.
Then˝
˛1; : : : ; ˛n; ��1�1ei1 ; : : : ; ����1ei�

˛� zE
D

X
�0

m.�0/

�

X
I 0

˝
��1�1ei1 ; : : : ; ����1ei� j e

I 0 ; �0
˛�.Y1;E/˝˛1; : : : ; ˛n j eI 0 ; �0˛. zE;E/CR;

where R denotes the remaining terms which either have total contact order smaller
than d2 or have a number of insertions fewer than n on the . zE;E/ side or the
invariants on . zE;E/ are disconnected ones.
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For the main terms, we claim that the total contact order d2 D j�0j equals
j�j D

P�
iD1 �i . This follows from the dimension counting on zE and . zE;E/.

Indeed let D D .c1. QE/:ˇ/C dim zE � 3. For the absolute invariant on zE,Xn

jD1
deg j̨ Cj�j � �C

X�

jD1
.deg eij C 1/DDCnC �;

while on . zE;E/ (notice that now .c1. QE/:ˇ2/D d2.c1. QE/:
/D .c1. QE/:ˇ/),Xn

jD1
deg j̨ C

X�0

jD1
deg ei 0

j
DDCnC �0� j�0j:

Hence .eI ; �/ appears as one of the .eI 0 ; �0/’s and j�j D j�0j D d2.
In particular, R is F-invariant by induction. Moreover,

deg eI � deg eI 0 D �� �0:

We will show that the highest order term in the sum consists of the single term

C.�/h˛1; : : : ; ˛n j eI ; �i
. zE;E/

where C.�/¤ 0.
For any .eI 0 ; �0/ in the highest order term, consider the splitting of weighted

partitions

.eI ; �/D
a�0

kD1
.eIk ; �

k/

according to the connected components of the relative moduli of .Y1; E/, which
are indexed by the contact points of �0 by the genus zero assumption and the fact
that the invariants on . zE;E/ are connected invariants.

Since fiber class invariants on P1 bundles can be computed by pairing coho-
mology classes in E with GW invariants in the fiber P1 (cf. [20, �1.2]), we must
have deg eIk C deg ei

0
k � dimE to get a nontrivial invariants. That is

deg eIk D
X

j
deg eik

j
� dimE � deg ei

0
k � deg ei 0

k

for each k. In particular, deg eI � deg eI 0 , hence also � � �0.
The case � < �0 is handled by the induction hypothesis, so we assume that

�D �0 and then deg eIk D deg ei 0
k

for each k D 1; : : : ; �0. In particular I k ¤∅ for
each k. This implies that I k consists of a single element. By reordering we may
assume that I k D fikg and .eIk ; �

k/D f.eik ; �k/g.
Since the relative invariants on Y1 are fiber integrals, the virtual dimension

for each k (connected component of the relative virtual moduli) is

2�0kC dimY1� 3C 1C .1��
0
k/

D .�k � 1/C .deg eik C 1/C .dimE � deg ei 0
k
/:
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Together with deg eik D deg ei 0
k

this implies that

�0k D �k; k D 1; : : : ; �:

From the fiber class invariants consideration and

deg eik C deg ei
0
k D dimE;

eik and ei
0
k must be Poincaré dual to get a nontrivial integral over E. That is,

ei 0
k
D eik for all k and .eI 0 ; �0/D .eI ; �/. This gives the term we expect for C.�/

a nontrivial fiber class invariant. The proof of Proposition 4.8 is complete.

The functional equations for these special absolute invariants with descen-
dents will be handled in Section 5.

4.5. Examples. We consider simple Pr flops for r � 2 in general and for r � 3
under nefness constraint on KX .

If ˇ D d`, the invariant depends only on Z, ˛jZ and NZ=X . In particular˝
˛
˛X
g;n;d`

D
˝
p�.˛jZ/

˛ zE
g;n;d`

:

Thus we consider ˇ ¤ d`. Let ˛i 2 H 2li .X/. By the divisor axiom, we may
assume that li � 2 for all i .

For �D .�1; �2; I�/ associated to .g; n; ˇ/, let d , d�1 and d�2 be the virtual
dimension (without marked points) of stable morphisms into X and relative stable
morphisms into .Y1; E/, .Y2; E/ respectively. We have l1 C � � � C ln D d C n.
Moreover, since dimE D 2r , the degeneration formula implies that d D d�1 C
d�2 � 2r�.

We assume that the summand given by � is not zero. Since ˇ¤d` and A1.Y2/
is spanned by ` and a fiber line 
 , we see that ˇ1 ¤ 0 and �1 ¤∅.

If �D 0 then �2 D∅ by connectedness, and this gives the blow-up term˝
Q̨
˛Y
g;n;��ˇ

:

So we assume that �¤ 0. By reordering, we may assume that in the degeneration
expression ˛i appears in the Y1 part for 1� i �m and ˛i appears in the Y2 part for
mC 1� i � n. By transversality, the corresponding relative invariant is nontrivial
only if 2� li � r for mC1� i � n. If r D 1 this simply means that all ˛i ’s appear
in Y1. In the following we abuse the notation by writing j�j as �.

THEOREM 4.10 (Li-Ruan [14]). For simple P1 flops of threefolds with ˇ ¤
d`, ˝

˛
˛X
g;n;ˇ

D
˝
Q̨
˛Y
g;n;��ˇ

D
˝
F˛
˛X 0
g;n;Fˇ

:

That is, there are no degenerate terms and hence no analytic continuations are
needed for nonexceptional curve classes.
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Proof. If r D 1, then .KX :p�ˇ2/D 0, d D�.KX :ˇ/ and

.KY :ˇ1/D .�
�KX :ˇ1/C .E:ˇ1/D .KX :��ˇ1/C�

D .KX :.ˇ�p�ˇ2//C�D .KX :ˇ/C�:

So
d�1 D�.KY :ˇ1/C ���D d C .�� 2�/:

If �¤ 0 then d�1 < d . Since li � 2, we may assume that the ˛i ’s are disjoint
from Z, hence they must all contribute to the Y1 part. This forces �D 0 and the
result follows. �

For simple P2 flops, nontrivial degenerate terms do occur even for n� 3 and
g D 0. Let vi WD j�i j be the number of connected components.

LEMMA 4.11. For zE D PZ.N ˚O/ of a pair Z �X ,

c1. zE/D .rkN C 1/ECp�c1.X/jZ :

Proof. Indeed, from 0 ! O ! O.1/˝ p�.N ˚ O/ ! T zE=Z ! 0 we get

c1.T zE=Z/ D .rkN C 1/E C p�c1.N /, so the formula follows from c1. zE/ D

c1.T zE=Z/Cp
�c1.Z/. �

PROPOSITION 4.12. For simple P2 flops, let n � 3 and ˛i 2 H 2li .X/ with
li � 2 for i D 1; : : : ; n. Consider ˇ ¤ d` and an admissible triple � with � ¤ 0.
Then v1 D �D �, v2 D 1 and li D 2 for all i .

Proof. Since c1.Y2/D 4E (by Lemma 4.11), we find that

d�2 D 4.E:ˇ2/C 2v2C ���

D 3�C �C 2v2:

So d�2 � 4�D 3.�� �/C 2v2 � 2.
For one-point invariants, l1 D d C 1D d�1 C 3.�� �/C 2v2C 1� d�1 C 3.

This forces that ˛1 contributes to Y2, hence l1 D 2 and d D 1. But d�1 � 0 implies
that d � 2, a contradiction.

For two-point invariants, from l1C l2D d C2D d�1C3.���/C2v2C2�

d�1 C 4 and the fact that ˛i contributes to the Y2 part in the degeneration formula
only if li D 2, a similar argument shows that the only nontrivial case is l1 D l2 D 2
and both ˛1 and ˛2 contribute to Y2. Moreover the equality holds; hence �D �,
v2 D 1 and d�1 D 0.

We now consider three-point invariants. From

l1C l2C l3 D d C 3D d�1 C .d�2 � 4�/C 3� d�1 C 5;

if only ˛3 contributes to Y2 then l1Cl2�d�1C3>d�1C2 leads to trivial invariant.
If ˛2 and ˛3 contribute to Y2, then l1 � d�1C1. This leads to a nontrivial invariant
only if equality holds. That is, �D � and v2 D 1.
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The remaining case is li D 2, ˛i contributes to Y2 for all i D 1; 2; 3. We have
�D �, v2 D 1, d D 3, d�1 D 1, d�2 D 4�C 2. �

To summarize, notice that the weighted partitions associated to the relative
invariants on the Y2 D zE part are of the form .�1; : : : ; �n/ D .1; : : : ; 1/ and
deg˛i D 2 for all i ; thus they are of the lowest order with fixed j�j. They can
be reduced to absolute invariants readily.

For ˇ2 D d1`C d2
 , we see that d2 D �D � and so

d�2 D 4d2C 2

is independent of d1. Also d2 is uniquely determined by the cohomology insertions.
The presence of degenerate terms with degree ˇ2 for all large d1 indicates the
necessity of analytic continuations (cf. Example 5.7).

The same conclusion holds for r � 3 if we impose the nefness of KX . We
state the result in a slightly more general form:

PROPOSITION 4.13. Let � W Y ! X be the blow-up of X along a smooth
center Z of dimension r and codimension r 0C 1 with KX nef and r � r 0C 1. Then
C� ¤ 0 only if g1 D 0, v1 D �D �¤ 0 and �1 � 1, v2 D 1.

The proof is very similar and we omit it.

5. Analytic continuations on local models

The basic strategy in calculating GW invariants on local models is similar
to that in Section 3. Here we start with one point invariants on toric varieties.
The compatibility of functional equations under the reconstruction procedure is
proved with help from operators ıH which generalize q`d=dq`, the one used in
Corollary 3.2.

5.1. One-point functions on local models. In this section X is the local model

X D PPr .O.�1/
˚.rC1/

˚O/:

The cohomology (Chow ring) is given by

H�.X/D A�.X/D ZŒh; ��=.hrC1; .� � h/rC1�/:

Since c1.X/D .r C 2/� is semi-positive, X is a semi-Fano toric variety.
The toric fan 4.X/ of X is given by one dimensional edges

w0; : : : ; wrC1; v0; : : : ; vr 2 ZrC.rC1/

such that

w0Cw1C � � �CwrC1 D 0; v0C � � �C vr D w0C � � �Cwr D�wrC1:

Let feigiD0;:::;r�1 and fe0igiD0;:::;r be the basis of Zr �ZrC1. Then we may pick

wi D e
0
i ; 0� i � r I wrC1 D�e

0
0� � � � � e

0
r I
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vi D ei C e
0
i ; 0� i � r � 1I vr D�e0� � � � � er�1C e

0
r :

This implies the following linear equivalence of toric divisors:

Dv0 DDv1 D � � � DDvr DW hI � WDDwrC1 DDwi CDvi ; i D 0; : : : ; r:

Thus Dwi D � � h for all i D 0; : : : ; r .

Remark 5.1. In terms of the homogeneous coordinate rings, X is defined by
an embedding of .C�/2 ,! .C�/2rC1, which is defined by the 2� .2r C 1/ matrix
M W Lie.C�/2rC1! Lie.C�/2

M D

�
1 : : : 1 �1 : : : �1 0

0 : : : 0 1 : : : 1 1

�
;

where on the first row, there are r 1’s, r .�1/’s. The Kähler cone is spanned by h
and � on H 2.X/Š C2.

We start with one-point descendent invariants. The toric data allow us to apply
the known results of [7], [17] directly. Let

Pˇ WD

Y
�241.X/

Y0

mD�1
.D�Cmz/Y

�241.X/

Y.ˇ:D�/

mD�1
.D�Cmz/

:

LEMMA 5.2. For an effective curve class ˇ D d1`C d2
 ,

JX .ˇ; z
�1/D

0Y
mD�1

.� � hCmz/rC1

d1Y
mD1

.hCmz/rC1
d2�d1Y
mD�1

.� � hCmz/rC1
d2Y
mD1

.�Cmz/

:

Proof. Since .ˇ:h/D d1 and .ˇ:�/D d2, the right hand side is precisely Pˇ .
JX .ˇ; z

�1/ is equal to Pˇ without change of variables (“mirror transformation”)
due to the uniqueness theorem and the fact that Pˇ DO.1=z2/ in the 1=z power
series expansion. Indeed if d1 � d2,

Pˇ D
1

.d1Š/rC1..d2� d1/Š/rC1d2Š

1

zd2.rC2/
C : : : ;

while if d1 > d2 (the key observation),

Pˇ D .� � h/
rC1

�..d1� d2� 1/Š/rC1
.d1Š/rC1d2Š

.�1/d1�d2�1
1

zd2.rC2/CrC1
C : : :

�
:

For more details see [7], [17]. �
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It also follows that a presentation of the small quantum cohomology ring is
given by Batyrev’s quantum ring (cf. [5, proof of Prop. 11.2.17]). Namely for
q1 D q

` and q2 D q
 ,

QH�.X/D CŒh; ��Œq1; q2�=.h
rC1
� q1.� � h/

rC1; .� � h/rC1� � q2/:

Though the presentation does not provide enough information for our purpose, it
does give a first test of the invariance property.

PROPOSITION 5.3. The map FX WQH
�.X/Œq�11 �!QH�.X 0/Œq0�11 � defined

by FXh D �
0 � h0, FX� D �

0, FXq1 D q
0�1
1 and FXq2 D q

0
1q
0
2 extends to a ring

isomorphism.

Proof. Since FX 0 ıFX D IdX , it is enough to check that the generators of the
ideal are mapped into the corresponding ideal in the X 0 side:

FX .h
rC1
� q1.� � h/

rC1/D .� 0� h0/rC1� q0�11 h0rC1

D�q0�11 .h0rC1� q01.�
0
� h0/rC1/I

FX ..� � h/
rC1� � q2/D h

0rC1� 0� q01q
0
2

D .h0rC1� q01.�
0
� h0/rC1/� 0C q01..�

0
� h0/rC1� 0� q02/:

�

Note that the virtual dimension of an n-point invariant in degree ˇDd1`Cd2

is given by Dn;ˇ D .r C 2/d2 C 2r C n � 2, so for a fixed set of cohomology
insertions there could be at most one d2 supporting nontrivial invariant and for the
corresponding n-point function the summation over d2 is unnecessary.

LEMMA 5.4 (Quasi-linearity). Let JX WD JX .q; z�1/. For any ˛ 2 H�.X/,
the one point function

˝
�k�˛

˛X satisfies the functional equation (without analytic
continuation):

F
˝
�k�:˛

˛X
D
˝
�kF.�:˛/

˛X 0
D
˝
�k�
0:F˛

˛X 0
:

Equivalently, F is linear in J �:

F.JX�:˛/D JX 0F.�:˛/D JX 0�
0:F˛:

Proof. The key observation on Pˇ is that if d2�d1<0 then the middle factor in
the denominator of Pˇ goes to the numerator instead which has a factor .��h/rC1.
Thus it vanishes after multiplication by � . Notice that the condition d2 � d1 simply
corresponds to the effectivity of Fˇ D�d1`

0C d2.

0C `0/D .d2� d1/`

0C d2

0.

Since JX D
P
ˇ2NE.X/ q

ˇPˇ , by the above observation JX�:˛ can be writ-
ten as

JX�:˛ D
X
d2

1

d2Y
mD1

.�Cmz/

d2X
d1D0

qd2
qd1`:�:˛

d1Y
mD1

.hCmz/rC1
d2�d1Y
mD1

.� � hCmz/rC1

:
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Notice that since the flop is an isomorphism outsideZDPr �X , the cohomol-
ogy correspondence F is the “identity” one on classes �:˛. Namely Fhi D .� 0�h0/i

for i � r and F.�:˛/D F�:F˛ D � 0:F˛ for any ˛ 2H�.X/, Thus

F.JX�:˛/D
X
d2

1

d2Y
mD1

.� 0Cmz/

d2X
d1D0

qd2.

0C`0/q�d1`

0

:� 0:F˛

d1Y
mD1

.� 0� h0Cmz/rC1
d2�d1Y
mD1

.h0Cmz/rC1

:

By rewriting the inner summation to be on d 01 D d2� d1 2 f0; : : : ; d2g we arrive
at the corresponding expression of JX 0� 0:F˛.

Since for given insertion(s) there could be at most one d2 supporting nontrivial
invariants, we find that

˝
�k�˛

˛
is a finite sum and F

˝
�k�:˛

˛
D
˝
�k�
0:F˛

˛
holds

without the need of analytic continuation. �

5.2. The functional equations in general. Write ˇ D d1`C d2
 . If d2 D 0,
the whole setting on Gromov-Witten invariants goes back to quantum corrections
attached to the extremal ray Z`. In Section 3 we saw that while n-point functions
with n� 3 satisfy the functional equation under F up to analytic continuation, it
is not the case for nD 2 or descendent invariants with n� 3� k < 0.

The results in Section 2 and the quasi-linearity lemma are the induction basis
of our discussion on functional equations up to analytic continuation.

For a power series f D
P
ˇ aˇ q

ˇ and a divisor H , we define the operator

ıHf WD
X
ˇ

.H:ˇ/aˇ q
ˇ
D

�
.H:`/q`

@

@q`
C .H:
/q


@

@q


�
f:

The following lemma formalizes the argument in the proof of Corollary 3.2:

LEMMA 5.5. The differential operator ıH is F equivariant. That is,

F ı ıH D ıFH ıF:

In particular, if Fh˛i Š hF˛i then FıH h˛i Š ıFH hF˛i too.

Proof. This follows from the fact that F preserves the Poincaré pairing. In
explicit terms, denote .x; y/D .q`; q
 / and .x0; y0/D .q`

0

; q

0

/ respectively. The
transformation law x0 D x�1, y0 D xy leads to

x
@

@x
D�x0

@

@x0
Cy0

@

@y0
I y

@

@y
D y0

@

@y0
:

Hence

F ı ıH D .FH:F`/
�
� x0

@

@x0
Cy0

@

@y0

�
C .FH:F
/y0

@

@y0

D .FH:`0/x0
@

@x0
C .FH:F.
 C `//y0

@

@y0
D ıFH ıF:
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If Fh˛i Š hF˛i then FıH h˛i D ıFHFh˛i Š ıFH hF˛i. �

THEOREM 5.6. Let h˛i D h˛1; : : : ; ˛ni with ˛i 2 H�.X/ [ ��H�.E/. If
d2 ¤ 0, then Fh˛i Š hF˛i.

Proof. We will prove the theorem by induction on d2 and then n. This is
based on the following observations: (1) By the virtual dimension count, each set
of insertions can support at most one d2. (2) Under divisor relations the degree ˇ
is either preserved or split into effective classes ˇ D ˇ1C ˇ2, so that d2 is split
accordingly as d2 D dL2 C d

R
2 . (3) When summing over ˇ 2NE.X/, the splitting

terms can usually be written as the product of two generating series with no more
marked points in a manner which will be clear in each context during the proof.

For d2 D 0, since �jZ D 0 we get a trivial invariant if one of the insertions
involves �. Hence by Section 3 the statement in the theorem holds for d2 D 0
except for the unique case hhr ; hri. In this case, by the divisor axiom

ıhhh
r ; hri D

X
d�1

hh; hr ; hrid q
d ;

which satisfies the functional equation up to analytic continuation only after it is
incorporated with the classical defect. Thus we may base our induction on d2 D 0
with special care to avoid this case.

Let d2 � 1. The case nD 1 is contained in Lemma 5.4, and so n� 2. We may
and will make one more assumption that � appears in some ˛i . If not, then there
will be no descendent insertions and we may write

h˛1; : : : ; ˛ni D h˛1; : : : ; ˛n; �i=d2

by the divisor axiom. In the following reduction steps, each term will either have
smaller d2 or this condition will be preserved.

By reordering we may assume that ˛nD �s�a, s � 0. Write ˛1D �khl�j . The
induction procedure is to move divisors in ˛1 into ˛n in the order of  , h and �.
That is we use induction on the following five numbers in the alphabetical order:

.d2; n; k; l; j /:

For  we use equation  1D� nC ŒD1jn�virt. If k � 1 then j ¤ 0 and we get

h�kh
l�j ; : : : ; �s�ai D �h�k�1h

l�j ; : : : ; �sC1�ai

C

X
i

h�k�1h
l�j ; : : : ; Ti ihT

i ; : : : ; �s�ai:

For each i , if one of dL2 and dR2 is zero then since both terms contain � classes
the splitting term must vanish. So we may assume that dL2 < d2 and dR2 < d2
where these terms are obtained by the induction hypothesis. By performing this
procedure to ˛1; : : : ; ˛n�1 we may assume that the only descendent insertion is ˛n.
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For h, if l � 2 or l D 1 but j ¤ 0 we use (3.4.1) to get

hhl�j ; : : : ; �s�ai D hh
l�1�j ; : : : ; �s�ahiC ıhhh

l�1�j ; : : : ; �sC1�ai

�

X
i

ıhhh
l�1�j ; : : : ; Ti ihT

i ; : : : ; �s�ai:

The only case for the splitting term to have one factor having the same d2 and
n is of the form

ıhhh
l�1�j ; Ti ihT

i ; ˛2; : : : ; ˛n�1; �s�ai;

where the two-point invariant has dL2 D 0. But then l � 1 < r forces it to vanish.
We remark here that the case dL2 D 0 may still support nontrivial invariants with
three or more points if j D 0.

By induction (and Lemma 5.5) we are left with the case ˛1 D h. The divisor
axiom implies that

hh; : : : ; �s�ai D ıhh: : : ; �s�aiC h: : : ; �s�1�ahi:

Since both terms have one fewer marked points, they are handled by induction.
For � , the argument is entirely similar. For j � 2, the divisor relation says that

h�j ; : : : ; �s�ai D h�
j�1; : : : ; �s�

2aiC ı�h�
j�1; : : : ; �sC1�ai

�

X
i

ı�h�
j�1; : : : ; Ti ihT

i ; : : : ; �s�ai:

We then have dL2 < d2 and dR2 < d2 as before. If j D 1 we get

h�; : : : ; �s�ai D ı�h: : : ; �s�aiC h: : : ; �s�1�
2ai

and both terms have fewer marked points. The proof is complete. �

Practically the above inductive procedure leads to explicit determination of
GW invariants, though the computations are somewhat tedious. For the interested
readers, we list the results for the two typical series of examples of the local model
of simple P2 flop.

Example 5.7. Simple P2 flop with d2 D 1, nD 3. The virtual dimension is 9.
Then on X (q1 D q`, q2 D q
 ),

hh2; h2; h2�3i D
q21

1C q1
q2; h�

2; �2; h2�3i D .1C q1/q2;

hh�; h�; h2�3i D hh�; �2; h2�3i D hh�; h2; h2�3i D h�2; h2; h2�3i D q1q2:



282 YUAN-PIN LEE, HUI-WEN LIN, and CHIN-LUNG WANG

Similar formulae hold on X 0. We compute (q01 D q
`0 , q02 D q


 0)

Fhh2; h2; h2�3i D
q0�21

1C q0�11
q01q
0
2 D

1

1C q01
q02I

hFh2;Fh2;Fh2�3i D h.� 0� h0/2; .� 0� h0/2;FŒpt �i

D h� 02; � 02; Œpt �iC 4h� 0h0; � 0h0; Œpt �iC hh02; h02; Œpt �i

� 4h� 0h0; h02; Œpt �i � 4h� 0h0; � 02; Œpt �iC 2h� 02; h02; Œpt �i

D

�
.1C q01/C 4q

0
1C

q021
1C q01

� 4q01� 4q
0
1C 2q

0
1

�
q02

D

�
1� q01C

q021
1C q01

�
q02 D

1

1C q01
q02:

Thus Fhh2; h2; h2�3i Š hFh2;Fh2;Fh2�3i. We leave the simpler verifications
on the other five cases to the readers.

Example 5.8. Descendent invariants for simple P2 flop with d2D 1 and nD 3.

hh2; h2; �4�i D 3q1q2� 6
q1q2

1C q1
; h�2; �2; �4�i D 9q2C 9q1q2;

hh�; h�; �4�i D hh
2; �2; �4�i D 3q2;

hh�; h2; �4�i D 0; hh�; �
2; �4�i D 6q2C 3q1q2:

We omit the elementary verifications on functional equations.

6. Mukai flops

6.1. Twisted Mukai flops. Consider a flopping contraction of twisted Mukai
type, namely  W .X;Z/! . xX;S/ with Z D PS .F /! S , rankF D r C 1 and
NZ=X D T

�
Z=S
˝ x �L for some twisting line bundle L 2 Pic.S/. To construct

the flop, as in the case of ordinary flops, it is natural to consider the blow-up
� W Y D BlZX ! X and try to contract the exceptional set E in another fiber
direction. We assume that codimXZ D r � 2 excludes trivial cases.

PROPOSITION 6.1. Twisted Mukai flops exist.

Proof. It is well known from the case of simple Mukai flops that the fiber Es
of E! S is the degree .1; 1/ hypersurface H1;1 � Pr �Pr defined by

rX
iD0

xiyi D 0

with NE=Y jEs D OPr�Pr .�1;�1/jH1;1 (cf. [9] or the constructions given below).
With this, the same proof as in Proposition 1.3 works here. Indeed, under the same
notations, we take CY to be a line in the Pr�1 fiber of any Es ŠH1;1! Pr in the
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second projection. It is clear that .KX :C /D 0 and then .KY :CY /D�.r � 1/ < 0.
To see that CY is extremal, for c D .H:C /,

OY .�
�H C cE/jEs Š OPr�Pr .0;�c/jH1;1

and k��L� .��H C cE/ is a supporting divisor for ŒCY � when k is large. �

The proof suggests studying twisted Mukai flops via ordinary flops. Indeed,
we will construct the local model of it as a slice of the ordinary flop with F 0 D
F �˝L. This is fundamental throughout our later discussions.

We start with an arbitrary pair .F; F 0/ of vector bundles of rank r C 1 and
denote the corresponding maps in the ordinary Pr flop by ˆ WY! X, ˆ0 WY! X0,
‰ W X! xX and ‰0 W X0! xX. Also let g D‰ ıˆD‰0 ıˆ0. The restriction maps
on the exceptional sets are denoted by x�, x�0, x , x 0 and Ng respectively.

ED PS .F /�S PS .F
0/� Y

ˆ

tt

ˆ0

**
g

��

Z D PS .F /� X

‰
**

Z0 D PS .F
0/� X0 :

‰0
tt

S � xX

First suppose that there exists a nondegenerate bilinear map

F �S F
0
! �S

with �S 2 Pic.S/. (This happens precisely when F 0 Š F � ˝ �S for some line
bundle �S .) The map OP.F /.�1/! x 

�F pulls back to x��OP.F /.�1/! Ng
�F ,

hence leads to a natural map

OE.�1;�1/ WD x�
�OZ.�1/˝E x�

0�OZ0.�1/! Ng
�.F ˝S F

0/! Ng��S :

Notice that the normal bundle NE=Y equals OE.�1;�1/. That is, Y is the total
space of OE.�1;�1/. Let p WNE=Y! E be the projection map.

We describe two equivalent ways to construct the space Y . The above linear
map between line bundles induces a surjective map of invertible sheaves which fits
into an exact sequence of the form

0!NE=Y.�E/!NE=Y! Ng
��S ! 0

for an effective divisor E � E. We then take Y D p�1.E/�Y to be the collection
of lines with origins in E. Alternatively Y is simply the irreducible component of
the inverse image of the zero section of Ng��S in Y other than the zero section E.

Let X Dˆ.Y /�Z, X 0 Dˆ0.Y /�Z0, xX D g.Y /� S with restriction maps
�, �0,  ,  0. By tensoring the Euler sequence

0! OZ.�1/! x 
�F ! Q! 0
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with S� D OZ.1/ and noticing that S�˝QŠ TZ=S , we get by duality

0! T �Z=S ! OZ.�1/˝ x 
�F �! OZ! 0:

The inclusion maps Z ,!X ,! X lead to

0!NZ=X !NZ=X!NX=XjZ! 0:

Here NX=XjZ D O.X/jZ D x 
�O. xX/jS . Denote O. xX/jS by L. Recall that NZ=XŠ

OPS .F /.�1/˝
x �F 0. By tensoring this with x �L�, we get

0!NZ=X ˝ x 
�L�! OPS .F /.�1/˝

x �.F 0˝L�/! OZ! 0:

So F 0 D F �˝L if and only if NZ=X Š T �Z=S ˝ x 
�L.

This is the case for twisted Mukai flops. We have then �S Š L.

6.2. Mukai flops as limits of isomorphisms. For Mukai flops, namely LŠ OS ,
we have F 0 D F � with duality pairing F �S F �! OS .

Consider � W Y! C via

Y! Ng�OS D OE Š E�C
�2
�!C:

We get a fibration with Yt WD �
�1.t/, which is smooth for t ¤ 0 and Y0 D Y [E.

The intersection E D Y \E restricts to the degree .1; 1/ hypersurface over each
fiber of E! S . Indeed in each fiber the equation for � in coordinates reads as

t D

rX
iD0

xiyi :

From this, we also have that Yt Š EnE for all t ¤ 0 under the projection p.
Let Xt , X0t and xXt be the proper transforms of Yt in X, X0 and xX. For t ¤ 0,

all maps in the diagram
Yt

~~   
Xt

  

X0t

~~
xXt

are isomorphisms. For t D 0 this is the Mukai flop. Thus local Mukai flops are
limits of isomorphisms. More precisely, we have

THEOREM 6.2. There is a projective compactification bY! P1 which deforms
the projectivized local model of Mukai flopbX0 D PZ.T

�
Z=S ˚O/Ü PZ0.T

�
Z0=S ˚O/DbX00

into isomorphismsbXt ŠbX0t Š E for all t ¤ 0.
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Moreover, bY! P1 is the blow-up of E�P1 along E � f0g, the degeneration-
to-normal cone of the pair .E; E/ with E being the relative .1; 1/ divisor of

ED PS .F /�S PS .F
�/

over S . Now,bX0,bX00 andbxX0 are the contractions of E�bY0 along the two rulings
and the double ruling respectively.

Proof. We first consider the compactified normal bundle

xYD PE.O.�1;�1/˚O/Ü P1

which extends the map � by sending the infinity divisor E1 Š E to12 P1.
It is clear that E1 WD xY \E1 is the “axis” where � is not defined. Indeed

E1 is the boundary divisor of every Yt . Thus the blow-up

bY WD BlE1 xY

��

y�

%%
xY

� //_____ P1

resolves the indeterminacy to get a morphism y� W bY! P1. Note that bYt is the
compactification of Yt by adding E at infinity; hence bYt Š E for all t ¤ 0.

We then have a compactified diagram as expected:

bYt
��   bXt

��

bX0t :
��bxXt

For t D 0, by the very construction of Mukai flops from the ordinary flops, we
have PZ.T

�
Z=X

/ŠE. So the compactification bX0 coincides with PZ.T
�
Z=S
˚O/.

Similarly bX00 Š PZ0.T
�
Z0=S
˚O/.

For the second statement, again by our construction, bY0 D E[bY with bY the
total space of the P1 bundle,

PE .OE .�1;�1/˚O/Š PE .O˚OE .1; 1//:

This is precisely the exceptional divisor coming from the blow-upeYD BlE�f0gE�P1:

The theorem follows from an easy comparison of eY with bY. �
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In particular all interesting invariants which are continuous under deforma-
tions are preserved: For example, the diffeomorphism type, Hodge type and quan-
tum cohomology rings etc. To be more precise, since the fiber product satisfies
the base change property, and for ordinary flops the fiber product equals the graph
closure, the canonical isomorphism of Chow motives of projective local models of
Mukai flops f W XÜ X 0 is clearly induced by the correspondence ŒX � xX X

0�,
which is the t D 0 fiber of the graph of XÜ X0:

F WD ŒX � xX X
0�D Œx�f �C ŒE� 2 A

�.X �X 0/

where Œx�f � � Y WD BlZX D BlZ0X 0. For global (twisted) Mukai flops we also
consider the fiber product as the proposed correspondence F.

The quantum cohomologies are not just isomorphic, in fact all quantum correc-
tions attached to the extremal ray are zero: If not, then the deformation invariance
of Gromov-Witten invariants implies that some extremal curve class d` 2NE.X/
survives as an effective curve in a nearby fiber as Ct � Xt Š X0t ; then the class

ŒC 0t �D Ft ŒCt �� Fd`D�d`0

is both effective and anti-effective on X0, which is a contradiction. (For simple
Mukai flops, the invariants on d` are zero. This has also been proved by Hu and
Zhang [8] by direct computation via localizations.)

For a global Mukai flop, the local deformation equivalence may fail to extend
to a global deformation equivalence since there are in general obstructions to extend
deformations from local to global. (For hyper-Kähler manifolds or more generally
Calabi-Yau manifolds such global deformations do exist.) Nevertheless, together
with the degeneration analysis, the local deformation equivalences do lead to global
results:

THEOREM 6.3. For any Mukai flop f WXÜX 0 (not necessarily being sim-
ple), X is diffeomorphic to X 0 and both have isomorphic Chow motives, Hodge
structures and full Gromov-Witten theory (in all genera) under the correspondence F.
Moreover, all quantum corrections attached to the extremal ray vanish.

Proof. The diffeomorphism is obtained by patching the local deformation
equivalence and the identity map on XnZ ŠX 0nZ0.

For Chow motives, we investigate the induced mapping on Chow groups as
in Section 2. For any T , idT � f W T �XÜ T �X 0 is also a Mukai flop, with
base S being replaced by T �S . Since the correspondence F is compatible with
base change, to prove that F� ıFD�X , by the identity principle, we only need
to show that F�FD id on A�.X/ for any Mukai flop. Let p W X �X 0! X and
p0 WX �X 0!X 0 be the projections. From

FW D p0�..Œx�f �C ŒE�/:p
�W /
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and the property of intersection product we see that the F�ıFD�X is really a local
statement which depends only on the normal bundles NZ=X and NZ0=X 0 . Thus the
identity follows from the case of local models. Similarly F ıF� D �X 0 . So F

induces an isomorphism on Chow motives of X and X 0. The Hodge realizations
lead to equivalence of Hodge structures.

Now we treat the Gromov-Witten invariants. As in the case of ordinary flops,
we consider degeneration to a normal cone W ! A1 of X and W 0! A1 of X 0

respectively. W0D Y [Xloc with Y DBlZX and XlocDPZ.T
�
Z=S
˚O/. Similarly

W 00 D Y 0 [X 0loc with Y 0 D BlZ0X 0 and X 0loc D PZ0.T
�
Z0=S

˚ O/. By definition
Y D Y 0 and we have the induced Mukai flop for local models f WXlocÜX 0loc.

By the degeneration formula, any Gromov-Witten invariant h˛iX
g;n;ˇ

splits
into sums of products of relative invariants of .Y;E/ and .Xloc; E/. Now we
compare this with the similar splitting of hF˛iX

g;n;ˇ
into .Y;E/ and .X 0loc; E/.

Notice that most of the setting on degeneration analysis in Section 4 is still
valid in the Mukai case. In particular, the cohomology reduction (Proposition 4.4)
and a higher genus version of Proposition 4.6 work in the Mukai case too.

In fact, the situation now is very simple. We match the relative invariants
on .Y;E/ from both sides and then we need to compare only the cases .Xloc; E/

and .X 0loc; E/. But they are deformation equivalent while the deformations leave
the boundary divisor E unchanged. By the deformation invariance of (relative)
Gromov-Witten theory and the fact that F is induced from this deformation, we
find that the relative invariants are also the same in this part. Hence we have proved

h˛iXg;n;ˇ D hF˛i
X 0

g;n;Fˇ

for any g; n; ˇ including descendent invariants. Namely the full GW theory for X
and X 0 are equivalent.

The statement on vanishing of GW invariants of extremal rays follows from
the previous discussion. The proof is now complete. �

Remark 6.4. Instead of using deformation invariance of relative GW theory,
we may also proceed in the same way as in the case of ordinary flops, at least for
simple Mukai flops. By Proposition 4.6, the equivalence problem is reduced to
the case of absolute invariants and then we may use the deformation invariance of
absolute GW theory to conclude our argument. Indeed the deformation invariance
of relative GW theory can be deduced from the absolute case and the result in [20].

Remark 6.5. For twisted Mukai flops we take F 0DF �˝L and �S WDL. The
pairing F �S F 0! �S is simply F �S .F �˝L/! L. Since

x�0�OP.F �˝L/.�1/D x�
0�.OP.F �/.�1/˝ x 

0�L/D x�0�OP.F �/.�1/˝ Ng
�L;

the linear map Y! Ng�L is obtained by tensoring the corresponding map for Mukai
flops with Ng�L. The inverse image of the zero section gives Y [ E. Again the
proper transforms of Y in various spaces give rise to the twisted Mukai flop. The



288 YUAN-PIN LEE, HUI-WEN LIN, and CHIN-LUNG WANG

difference is that since Ng�L is not a trivial bundle, we do not have a fibration
structure Y! C as before. But we still get the equivalence of Chow motives via
the fiber product.

Example 6.6. To see how the extra component corrects the graph closure, we
shall carry out the detailed computations for the case of simple Mukai flops. So
Z Š Pr , NZ=X D T �Z and E � Pr �Pr is the universal family of lines in Pr from
both sides; namely, it is the hypersurface of bi-degree .1; 1/. By weak Lefschetz,
H 2.E/ D PicE D ZxjE ˚ ZyjE with x and y the generators of Pic Pr � Pr

as pull backs of h and h0. As in the ordinary case, NE=Y D OE .�1;�1/ WD
x��OZ.�1/˝ x�

0�OZ0.�1/.
Let F0 D Œx�f �. The argument to compute F0 as in the ordinary case fails

precisely when ˛ 2 Ar.X/, so we would like to find F0ŒZ�. Since ��ŒZ� D
j�.cr�1.E//, with E defined by 0!NE=Y ! x�

�NZ=X ! E! 0, we get

cr�1.E/D
�
.1� x/rC1.1� .xCy//�1jE

�
.r�1/

D
�
.xCy/r�1�C rC11 x.xCy/r�2C � � �C .�1/r�1C rC1r�1 x

r�1
�ˇ̌
E

D .yr�1� 2yr�2xC 3yr�3x2C � � �C .�1/r�1rxr�1/jE :

Thus,
F0ŒZ�D �

0
��
�ŒZ�D .�1/r�1rŒZ0�;

which implies that F0 induces isomorphism on cohomologies over Q, but not
over Z.

For 0 < s � r , since E � xCy,

��hs D j�.cr�1.E/:x�
�hs/

D .yr�1� 2yr�2xC 3yr�3x2C � � �C .�1/r�1rxr�1/jE :x
s

D .yr �yr�1xC � � �C .�1/r�1yxr�1C .�1/r.1� r/xr/xs

D xsyr � xsC1yr�1C � � �C .�1/r�sxrys:

By symmetry this implies that F0.h
s/D .�1/r�sh0s when s ¤ 0.

Let FD ŒX � xX X
0�D F0CF1 with F1 DZ �S Z

0 D ŒPr �Pr �. We claim
that F1ŒZ�D .�1/

r.r C 1/ŒZ0� and F1h
s D 0 for s ¤ 0. Indeed,

F1ŒZ�D p
0
�.p
�1ŒZ�:ŒZ �Z0�/

with p (resp. p0) the projection of X �X 0 to X (resp. X 0). Then

Z2 D cr.NZ=X /D cr.T
�
Z/D .�1/

r�.Pr/D .�1/r.r C 1/:

So F1ŒZ�D p
0
�.ŒZ�X

0�:ŒZ�Z0�/D .�1/r.rC1/ŒZ0�. For F1h
s , notice that we

may choose W �Z with W \hs D∅. Hence F1h
s Dp0�.Œh

s�X 0�:ŒW �Z0�/D 0.
Thus F.hs/D .�1/r�sh0s for 0� s � r and F induces integral isomorphisms.
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