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ABSTRACT. The mean field equations on flat tori is analyzed purely in
terms of the theory of elliptic functions. Some results which were known
previously through PDE techniques are reproved here using more el-
ementary methods. Also a general method to construct explicit solu-
tions is developed when the topological degree is known to be non-zero.
Hopefully our method will lead to all solutions. This article is a supple-
mentary reading to our recent work [7].

1. INTRODUCTION

1.1. A brief historical review. The mean field equation on a flat torus T =
C/Zω1 + Zω2 takes the form

(1.1) 4u + ρeu = ρδ0, ρ ∈ R+.

It is originated from the prescribed curvature problem in geometry. It also
comes from statistical physics as the mean field limits of the Euler flow.
Recently it was shown to be related to the self dual condensation of Chern-
Simons-Higgs model. We refer to [2], [3], [4], [5], [8] and [9] for the recent
development of this subject.

When ρ 6= 8mπ for m ∈ Z, it has been recently proved in [3], [4], [5]
that the Leray-Schauder degree is non-zero, so the equation always has
solutions, regardless on the actual shape of T.

For the first dangerous value ρ = 8π where the degree theory fails, the
following results were recently obtained by the authors.

Theorem 1.1 ([7]). For ρ = 8π, the mean field equation on a flat torus has solu-
tions if and only if the Green function G(z) has critical points other than the three
half period points. Moreover, each extra pair ±z0 of critical points corresponds to
an one parameter scaling family of solutions.

It is known that for rectangular tori G(z) has precisely the three obvious
critical points, namely the half periods 1

2 ωi, hence for ρ = 8π equation (1.1)
has no solutions. However for ω1 = 1 and τ = ω2 = eπi/3, it is shown in
[7] that there are five critical points and solutions of (1.1) exist. (The two
others are ± 1

3 (ω1 + ω2).)
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Theorem 1.2 ([7]). The Green function has at most five critical points. Equiva-
lently, for ρ = 8π, the mean field equation on a flat torus has at most one solution
up to scaling.

In fact no direct proof of the first statement is known. Instead, the unique-
ness theorem was proved using PDE methods first, and then Theorem 1.1
implies that there are at most 5 critical points.

The critical point equation for z0 = tω1 + sω2 is a very simple equation
in elliptic functions (c.f. Lemma 2.3):

(1.2) ζ(tω1 + sω2) = tη1 + sη2.

However, it remains a challenge to analyze it within function theory.
The proof of Theorem 1.2 in [7] is based on the continuity method ap-

plied to the one parameter family of mean field equations

4u + ρeu = ρδ0, ρ ∈ [4π, 8π]

on T within even solutions, where for the starting point ρ = 4π the so-
lution is uniquely constructed through integration of Weierstrass elliptic
functions.

1.2. The content of the paper. As the title suggests, this paper concerns the
function theoretic aspect of the mean field equations and Green functions
on tori without appealing to the techniques of partial differential equations.

Specifically, we give a proof of Theorem 1.1 following the same line in
[7] with one technical difference: For the proof in [7] we used the fact:

Theorem 1.3. For ρ = 8π, the blow-up points of solutions to the mean field
equation 4u + ρeu = ρδ0 on a torus T are precisely those non half-period critical
points of the Green function G.

This now follows as a consequence (c.f. Corollary 5.1) of our proof.
Secondly we explore the construction of solutions for ρ = 4π and ρ = 8π

in a more systematic manner aiming at investigating the general situations
for ρ = 4πl, l ∈ N. As in [7], we use the classical Liouville theory to find
local developing maps f ’s of a solution u:

(1.3) u = c1 + log
| f ′|2

(1 + | f |2)2 ,

and glue them to a global meromorphic function on C (c.f. Lemma 3.1).
The developing maps are locally unique up to a PSU(1) action. By com-

paring f (z + ωi) with f (z) for i = 1, 2, we achieve two types of solutions.
To describe them, it is convenient to consider the logarithmic derivative

(1.4) g = (log f )′ =
f ′

f

in our discussions. Then we have (see §3)
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Type I: Topological solutions, where g is elliptic on T′ = C/Zω1 + Z2ω2:

f (z + ω1) = − f (z),

f (z + ω2) = − q̄2

f (z)
.

(1.5)

Type II: Blow-up solutions, where g is elliptic on T:

f (z + ω1) = e2iθ1 f (z),

f (z + ω2) = e2iθ2 f (z).
(1.6)

The type I solutions are called topological since a Leray-Schauder degree
counting formula is known when ρ 6= 8mπ [3], [4], [5]. The answer is 1 for
ρ = 4π and 2 for ρ = 12π.

To warm up, we repeat in §5 the proof in [7] showing that there is a
unique solution for ρ = 4π and no solutions for ρ = 8π of Type I.

In §6 we proceed to construct two explicit solutions for ρ = 12π by in-
vestigating in details the properties satisfied by g and f . It is reasonable
to believe that solutions constructed from the holomorphic data will con-
tribute a positive degree in the degree counting. Thus the two solutions
constructed should then be all the solutions.

The type II solutions are called blow-up solutions since if f is a develop-
ing map of u then eλ f , λ ∈ R will also be a developing map for another
solution

(1.7) uλ(z) := c1 + log
e2λ| f ′(z)|2

(1 + e2λ| f (z)|2)2 .

Moreover any zero of f will be a blow-up point for the sequence uλ.
The following result is well-known. Here we give a purely elementary

proof of it through elliptic functions (c.f. Theorem 4.4).

Theorem 1.4. For ρ = 4πl with l being odd, there are no type II, i.e. blow-up,
solutions to the mean field equation

4u + ρeu = ρδ0 in T.

We hope that the strategy developed here from §4 to §6 will be useful
for later studies on the mean field equations on tori with ρ = 4πl, l ≥ 3,
especially on the explicit constructions of solutions.

2. GREEN FUNCTIONS VIA ELLIPTIC FUNCTIONS

2.1. Green functions via theta functions. Let T = C/Zω1 + Zω2 be a flat
torus. As usual we let ω3 = ω1 + ω2. The Green function G(z, w) is the
unique function on T which satisfies

(2.1) −4zG(z, w) = δw(z)− 1
|T|
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and
∫

T G(z, w) dA = 0. It has the property that G(z, w) = G(w, z) and it is
smooth in (z, w) except along the diagonal z = w, where

(2.2) G(z, w) = − 1
2π

log |z− w|+ O(|z− w|2) + C

for a constant C which is independent of z and w. Moreover, due to the
translation invariance of T we have that G(z, w) = G(z − w, 0). Hence it
is also customary to call G(z) := G(z, 0) the Green function. It is an even
function with the only singularity at 0.

The Green function can be explicitly solved in terms of elliptic functions.
It takes a simple form using theta functions.

Consider a torus T = C/Λ with Λ = Z + Zτ, a lattice with ω1 = 1 and
ω2 = τ = a + bi, b > 0. Let q = eπiτ with |q| = e−πb < 1. The theta function
ϑ1(z; τ) is the exponentially convergent series

ϑ1(z; τ) = −i
∞

∑
n=−∞

(−1)nq(n+ 1
2 )2

e(2n+1)πiz

= 2
∞

∑
n=0

(−1)nq(n+ 1
2 )2

sin(2n + 1)πz.
(2.3)

For simplicity we also write it as ϑ1(z). It is entire with

ϑ1(z + 1) = −ϑ1(z),

ϑ1(z + τ) = −q−1e−2πizϑ1(z),
(2.4)

which has simple zeros at the lattice points (and no others).
As usual we denote z = x + iy.

Lemma 2.1. Up to a constant C(τ), the Green function G(z, w) for the Laplace
operator 4 on T is given by

(2.5) G(z, w) = − 1
2π

log |ϑ1(z− w)|+ 1
2b

(Im(z− w))2 + C(τ).

Proof. Let R(z, w) be the right hand side. Clearly for z 6= w we have
4zR(z, w) = 1/b which integrated over T gives 1. Near z = w, R(z, w) has
the correct behavior. So it remains to show that R(z, w) is indeed a function
on T. From the quasi-periodicity, R(z + 1, w) = R(z, w) is obvious. Also

R(z + τ, w)− R(z, w) = − 1
2π

log eπb+2πy +
1
2b

((y + b)2 − y2) = 0.

These properties characterize the Green’s function up to a constant. �

By the translation invariance of G, it is enough to consider w = 0. Let

G(z) = G(z, 0) = − 1
2π

log |ϑ1(z)|+ 1
2b

y2 + C(τ).

If we represent the torus T as centered at 0, then the symmetry z 7→ −z
shows that G(z) = G(−z). By differentiation, we get ∇G(z) = −∇G(−z).
If −z0 = z0 in T, that is 2z0 = 0 (mod Λ), then we get ∇G(z0) = 0. Hence
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we obtain the half periods 1
2 , 1

2 τ and 1
2 (1 + τ) as three obvious critical points

of G(z) for any T.
By computing ∂G/∂z = 1

2 (Gx − iGy) we find

Corollary 2.2. The equation of critical points z = x + iy of G(z) is given by

(2.6)
∂G
∂z

≡ −1
4π

(
(log ϑ1)z + 2πi

y
b

)
= 0.

2.2. Weierstrass elliptic functions and periods integrals. Now we trans-
late these to Weierstrass’ elliptic functions. Recall that ζ = −

∫
℘ = z−1 +

· · · and σ = exp
∫

ζ = z + · · · . From

(log σ(z))′ = ζ(z),

it is known that σ(z) is entire, odd with a simple zero on lattice points.
Moreover,

(2.7) σ(z±ωi) = −e±ηi(z± 1
2 ωi)σ(z).

This is similar to the theta function transformation law, indeed

(2.8) σ(z) = eη1z2/2 ϑ1(z)
ϑ′1(0)

.

Hence

(2.9) ζ(z)− η1z =
[

log
ϑ1(z)
ϑ′1(0)

]
z
= (log ϑ1(z))z.

It is extremely important to understand the geometric meaning of

Fi(z) := ωiζ(z)− ηiz, i = 1, 2,

due to the following

Proposition 2.3. Write z = tω1 + sω2, then

(2.10) Gz = − 1
4π

(ζ(z)− η1t− η2s).

In particular, z is a critical point of G if and only if

(2.11) ζ(tω1 + sω2) = tη1 + sη2.

Moreover, it is also equivalent to that

(2.12) Fi(z) ∈ iR, i = 1, 2.

Proof. Since z = x + yi = tω1 + sω2 = t + sa + sbi, we have

(log ϑ1)z + 2πi
y
b

= ζ − η1(t + sω2) + 2πis = ζ − tη1 − sη2,

where the Legendre relation η1ω2 − η2ω1 = 2πi is used.
The calculation indeed shows that

ω1ζ − η1z = (ζ − tη1 − sη2)ω1 − 2πis.
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And similarly

ω2ζ − η2z = (ζ − tη1 − sη2)ω2 + 2πit.

If z is a critical point then it is clear that both Fi(z)’s are purely imaginary.
Conversely if both Fi(z)’s are imaginary, then the above equalities implies
that (ζ − tη1 − sη2)ωi’s are linearly dependent. This is possible only if ζ −
tω1 − sω2 = 0. The lemma is proved. �

Finally, Fi(z) can be interpreted as certain period integrals of the mero-
morphic one form

Ω(z, ξ) dξ :=
℘′(z)

℘(ξ)− ℘(z)
dξ.

Lemma 2.4. Up to 2πiN, 2Fi(z) is the period integral∫
Li

Ω dξ

along the i-th fundamental cycle Li (the i-th complete period).

Proof. Recall the addition law (c.f. [1])

(2.13) ℘(z)− ℘(y) = −σ(z + y)σ(z− y)
σ2(z)σ2(y)

.

Then

Ω =
d
dz

log(℘(z)− ℘(ξ)) = 2ζ(z)− ζ(z + ξ)− ζ(z− ξ).

Hence∫
Li

Ω dξ = 2ωiζ(z) + log
σ(ξ − z)
σ(ξ + z)

∣∣∣∣a+ωi

a
= 2ωiξ(z)− 2ηiz + 2πim

for some m ∈ {−1, 0, 1}, where the last equality uses (2.7). �

3. LIOUVILLE THEORY WITH SINGULAR DATA

3.1. Theorem of Liouville. We start with a quick review of the Liouville
theory. A classical theorem of Liouville says that any solution u of

4u + ρeu = 0

in a simply connected domain D ⊂ C can be represented by

(3.1) u = c1 + log
| f ′|2

(1 + | f |2)2 ,

where f is a meromorphic function in D and c1 = log 4/ρ. Such an f is
called a developing map of u and can be selected to be holomorphic.

Developing maps are not unique, different developing maps are related
by Möbius transformations. Indeed it is easily checked that u and f satisfy

(3.2) uzz −
1
2

u2
z =

f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.
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The right hand side of (3.2) is the Schwartz derivative of f . Thus for any

two developing maps f and f̃ of u, there exists S =
(

p −q̄
q p̄

)
∈ PSU(1)

(i.e. p, q ∈ C and |p|2 + |q|2 = 1) such that

(3.3) f̃ = S f :=
p f − q̄
q f + p̄

.

Here is a useful observation: By conjugating a matrix U ∈ PSU(1) to f̃

and f with USU−1 =
(

eiθ 0
0 e−iθ

)
for some θ ∈ R, we may achieve that

(3.4) U f̃ = e2iθU f .

3.2. Liouville theory on tori with isolated singular data. It is a challeng-
ing problem to extend the Liouville theory to Riemann surfaces and with
singular source. Here we consider the simplest genus one case with iso-
lated singularities, namely the mean field equation

(3.5) 4u + ρeu = ρδ0, ρ ∈ R+

in a flat torus T, with δ0 being the Dirac measure at 0 and the volume of T
is normalized to be 1.

Lemma 3.1. For T = C/Zω1 + Zω2 and ρ = 4πl, l ∈ N, by gluing the
f ’s among simply connected domains, (3.1) holds on the whole C with f being a
meromorphic function.

Proof. This is stated and proved in [5] for rectangular tori with l = 2, but
the proof works for the general case which is included below.

It is sufficient to prove the lemma for any chosen f . Let z = e2πiw be
the universal covering map H → ∆× from the upper half plane to the
punctured disk (of some small radius which is assumed to be 1 to save
notations) and let F(w) = f (z) = f (e2πiw). Then

F(w + 1) = SF(w)

for some S ∈ PSU(1). By the above observation, up to a conjugation, we
may start with another f so that F(w + 1) = e−2iθ F(w) for some θ ∈ [0, π).

Now let Ψ(w) = e−2iθwF(w). Then

Ψ(w + 1) = e−2iθ(w+1)F(w + 1) = e−2iθwF(w) = Ψ(w).

Hence Ψ(w) comes from a meromorphic function ψ(z) on ∆×.
By [6], §2, Lemma 4, if ψ has essential singularity at z = 0 then f = zθ/πψ

takes any value in C infinitely many times except at most one value.
In our case

∞ >
∫

∆×
eu dA =

∫
∆×

| f ′|2
(1 + | f |2)2 dA
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with the RHS being the spherical area, under the inverse stereographic pro-
jections, covered by f (∆×). This implies that ψ extends to a meromorphic
function on the whole disk ∆.

Let n = ordz=0 ψ ∈ Z and ψ = zng. Then f = zag with a = n + θ/π and

(3.6) u = c1 + 2 log
|z|a−1|ag + zg′|

1 + |zag|2 .

If a = 0 then n = 0 and θ = 0 (since 0 ≤ θ < π). In this case f = g = ψ
is holomorphic at 0. So we may assume that a 6= 0.

For ρ = 4πl with l ∈ N, the asymptotic of u at z = 0 is given by

u(z) ∼ 2l log |z|.
On the other hand, by (3.6) the asymptotic is given by

(3.7) u(z) ∼ 2(|a| − 1) log |z|.
In particular, |a| = l + 1 ∈ N, which forces θ = 0 because 0 ≤ θ < π.

Moreover f = z±(l+1)g is meromorphic at z = 0. �

Now we look for the constraints. The first type of constraints are im-
posed by the double periodicity of the equation. By applying (3.3) to f (z +
ω1) and f (z + ω2), we find S1 and S2 in PSU(1) with

f (z + ω1) = S1 f ,

f (z + ω2) = S2 f .
(3.8)

These relations also force that S1S2 = ±S2S1 since A ≡ −A in PSU(1).
After conjugating a matrix in PSU(1), we may and will assume that S1 =(

eiθ 0
0 e−iθ

)
for some θ ∈ R. Let S2 =

(
p −q̄
q p̄

)
then (3.8) becomes

f (z + ω1) = e2iθ f (z),

f (z + ω2) = S2 f (z).
(3.9)

Since S1S2 = ±S2S1, a direct computation shows that there are three
possibilities:

(1) p = 0 and eiθ = ±i;
(2) q = 0; and
(3) eiθ = ±1.

In case (3) we get that S1 is the identity. So by another conjugation we
may assume that S2 is diagonal and it is reduced to case (2).

Explicitly the two cases read as

Type I:

f (z + ω1) = − f (z),

f (z + ω2) = − q̄2

f (z)
.

(3.10)
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Type II:

f (z + ω1) = e2iθ1 f (z),

f (z + ω2) = e2iθ2 f (z).
(3.11)

The second type of constraints are imposed by the Dirac singularity of
(3.5) at 0. By the argument from (3.6) to (3.7), we have

Lemma 3.2. (1) If f (z) has a pole at z0 ≡ 0 (mod ω1, ω2), then the order
k = l + 1.

(2) If f (z) = a0 + akzk + · · · is regular at z0 ≡ 0 (mod ω1, ω2) with ak 6=
0 then k = l + 1.

(3) If f (z) has a pole at z0 6≡ 0 (mod ω1, ω2), then the order is 1.
(4) If f (z) = a0 + ak(z − z0)k + · · · is regular at z0 6≡ 0 (mod ω1, ω2)

with ak 6= 0 then k = 1.

In particular, modulo ω1, ω2, f has only simple zeros and poles outside
0.

4. THE GENERAL STRUCTURE OF SOLUTIONS

In the study of mean field equations with ρ = 4πl, l ∈ N, the over-
all important object to be considered is the logarithmic derivative g of the
developing map f :

g := (log f )′ =
f ′

f
.

It is clear that any zero or pole of f contributes a simple pole of g and the
order k ∈ Z is simply the residue.

Thus the zeros of g must occur at a regular point z0 of f with f (z0) 6= 0.
By Lemma 3.2, if z0 6≡ 0 then f ′(z0) 6= 0 and z0 is not a zero of g. Hence we
must have z0 ≡ 0 and it contributes a zero of g of order l.

4.1. Type I: Topological solutions. In Type I, we have

g(z + ω1) = g(z),

g(z + ω2) = −g(z).
(4.1)

Hence g is an elliptic function on T′ = C/Zω1 + Z2ω2 of the form

(4.2) g(z) = A
σl(z)σl(z−ω2)

∏l
i=1 σ(z− pi) ∏l

i=1 σ(z− qi)

for some constant A. The location of poles pi’s and qi’s are 2l distinct points
in T′ by Lemma 3.2. They are those (simple) zeros and poles of f which are
constrained by

(4.3) ∑ pi + ∑ qi = lω2.

The function g is determined by pi, qi (mod ω1, 2ω2) and (4.3).
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Since g(z + ω2) = −g(z), after some reordering we may assume that

(4.4) qi ≡ pi + ω2 (mod ω1, 2ω2).

(This gives a correspondences between zeros and poles of f .)
Combining with (4.3) we find

(4.5) p1 + · · ·+ pl ≡
m
2

ω1 + nω2 (mod ω1, 2ω2)

for m, n ∈ {0, 1}. This gives rise to the first equation of pi’s.

Lemma 4.1. We may assume that p1 + · · ·+ pl = 1
2 ω1.

Proof. By modifying pi’s and qi’s by elements in Zω1 + Z2ω2, there are
only four cases of (m, n) in (4.5) needs to be considered. Namely

(m, n) = (i) (0, 0), (ii) (1, 0), (iii) (0, 1) and (iv) (1, 1).

During the proof we may assume that qi = pi + ω2 for i = 1, . . . , l − 1.
For (i), we may further set ql = pl + ω2. Then

(4.6) g(z + ω2) = A
σl(z + ω2)σl(z)

∏l
i=1 σ(z + ω2 − pi) ∏l

i=1 σ(z + ω2 − qi)

By transforming g(z + ω2) into g(z) using the periodicity property (2.7) on
T′, we get an automorphic factor

(−1)l exp lη2z
(−1)l exp η2 ∑l

i=1(z− pi)
= 1.

That is g(z + ω2) = g(z), which is the not the case we want.
For (ii), we may set

ql = pl + ω2 −ω1

to match the sum constraint (4.3). Again by transforming g(z + ω2) as in
(4.6) into g(z) in (4.2) we get the automorphic factor

(−1)l exp lη2z
(−1)l+1 exp η2 ∑l−1

i=1(z− pi) + (η2 − η1)(z− pl − 1
2 ω1) + η1(z− pl − 1

2 ω1)

which is −1 since ∑ pi = 1
2 ω1. Hence g(z + ω2) = −g(z) as desired.

For (iii), we may set
ql = pl −ω2.

By changing the role of pl and ql this is reduced to case (i).
Similarly for (iv) we may set

ql = pl −ω2 −ω1.

By changing the role of pl and ql this is reduced to case (iii). �
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Remark 4.2. For convenience sometimes we would like to assume that pi’s
are simple zeros of f while qi’s are simple poles of f . In doing so we may
also need to consider the possibility that

p1 + · · ·+ pl =
ω1

2
+ ω2.

Alternatively we may switch the role of pl and ql and still use

p1 + · · ·+ pl =
ω1

2
.

Other equations come from the residue consideration. Let

(4.7) rj =
σl(pj)σl(pj −ω2)

∏l
i=1, 6=j σ(pj − pi) ∏l

i=1 σ(pj − qi)
.

Then the residue of g at z = pj is Arj and we must have, under the arrange-
ment that pi’s are (simple) zeros of f except perhaps pl , that

(4.8) r1 = r2 = · · · = rl−1 = ±rl .

There are (at most) two sets of l − 1 independent equations from it. To-
gether with (4.3) we obtain two systems of non-linear system of l equations
in l variables.

Since this system is holomorphic in the variables pi ∈ T′. The solution set
actually defines an analytic subvariety V ∈ (T′)n (which is in fact algebraic
by Chow’s theorem). It is expected that V consists of a finite number of
points.

Naively the solution structure in this case is topological because the in-
tersection number N of the l hypersurfaces defined by the l equations is
independent of the shape of the torus T.

However more care needs to be taken since some of the solutions may
lead to pi = pj for some i 6= j and need to be excluded. Futhermore we
need to integrate

f = exp
∫

g

to check whether (3.10) is satisfied. In fact f (z + ω1) = − f (z) corresponds
to the statement that

(4.9)
∫

L1

g(z) dz ≡ πi (mod 2πi).

Later we will check these technical issues through explicit determina-
tions for small values of l up to l = 3. In all the solutions we found, there
must be some pi = 1

2 ω1 and the function g is odd. This will lead to (4.9)
(c.f. §5.1) and so the solution is topological (independent of the shape of
T). For general odd l we expect this to be true but we do not know how to
prove it in the full generality.
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4.2. Type II: Scaling families and blow-up solutions. In Type II, it follows
from (3.11) that g is an elliptic function on T. And by the discussion at the
beginning of this section g must take the form

(4.10) g(z) =
f ′(z)
f (z)

= A
σl(z)

∏l
i=1 σ(z− pi)

with ∑ pi = 0.
As in Type I, there are other l − 1 equations arising from the residues.

Let

(4.11) rj =
σl(pj)

∏l
i=1, 6=j σ(pj − pi)

so that the residue of g at z = pj is given by Arj. Since f has only simple
zeros and poles outside 0, we have Arj = ±1 and this leads to equations

(4.12) r1 = ±rj, j = 2, . . . , l.

At this point the solutions seem to be topological. But in fact they are
not. Recall that

f (z) = f (0) exp
∫ z

0
g(w) dw.

Lemma 4.3. In order for f to verify (3.11), it is equivalent to require that the
periods integrals are purely imaginary:

(4.13)
∫

Li

g(z) dz ∈ i R, i = 1, 2.

Later we will see how this lemma for ρ = 8π links to the critical points of
Green functions via Lemma 2.4. It is known [7] that the structure (or even
the number) of critical points depends heavily on the geometry of T.

Another characteristic feature for Type II is that any solution must exist
in an one parameter scaling family of solutions.

To see this, notice that if f is a developing map of solution u then eλ f also
satisfies (3.11) for any λ ∈ R. In fact eλ f is a developing map of uλ defined
by

(4.14) uλ(z) = c1 + log
e2λ| f ′(z)|2

(1 + e2λ| f (z)|2)2

and it is clear that uλ is a scaling family of solutions of (3.5).
To understand the quantitative behavior of uλ as λ varies, we notice

also that f must have zero in T. For otherwise (3.11) implies that 1/ f is
a bounded entire function on C which by Liouville’s elementary theorem f
reduces to a constant, which is absurd.

Let z0 be a zero of f . We know that z0 6≡ 0 and f ′(z0) 6= 0. Thus

(4.15) uλ(z0) ∼ 2λ → ∞ as λ → ∞
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while if f (z) 6= 0 then

(4.16) uλ(z) ∼ −2λ → −∞ as λ → −∞.

It is customary to call points like z0 blow-up points.
We close this section by noticing an elementary consequence.

Theorem 4.4 (= Theorem 1.4). For ρ = 4πl with l being odd, there are no type
II, i.e. blow-up, solutions to the mean field equation

4u + ρeu = ρδ0 in T.

Proof. If there is a solution u with developing map f , then g = f ′/ f is
elliptic on T with residues at pi, i = 1, . . . , l, to be ±1. Since l is odd, the
sum of residues is non-zero which is a contradiction. �

5. RESULTS IN [7] REVISITED: ρ = 4π OR 8π

To illustrate how the general principle outlined in the last section works
in practice, we will work out in this section solutions of the mean field
equations for ρ = 4π and ρ = 8π. These results are contained in [7], but
here we will treat the 8π case slightly differently without using the knowl-
edge that blow-up points are critical points of Green functions. In fact this
will follow from our current treatment.

5.1. The case ρ = 4π. In Type II, g is elliptic on T. Since l = 1, g has a
simple zero at z = 0, hence also a simple pole at z = p1. However there is
no such elliptic functions (or using p1 = 0 to get a contradiction).

In Type I, g is elliptic on T′ and

(5.1) g(z) = A
σ(z)σ(z−ω2)

σ(z− p1)σ(z− q1)

with p1 + q1 = ω2. By Lemma 4.1, there is a unique solution of (p1, q1) up
to order modulo ω1, 2ω2 given by

(5.2) p1 =
ω1

2
; q1 = −ω1

2
+ ω2.

It is easily checked, using (2.7), that g(z + ω1) = g(z), g(z + ω2) = −g(z)
and

(5.3) g(−z) = −g(z).

The residues of g at p1 and q1 are equal to Ar and −Ar respectively,
where

r =
σ( 1

2 ω1)σ( 1
2 ω1 −ω2)

σ(ω1 −ω2)
.

Let A = 1/r, then f (z) is uniquely defined up to a factor f (0). There is an
unique choice of f (0) up to a norm one factor such that c := f (ω2) f (0) has
|c| = 1. Thus by integrating g(z + ω2) = −g(z) we get f (z + ω2) = c/ f (z).
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By integrating g(z + ω1) = g(z) we get f (z + ω1) = c′ f (z) where

c′ =
f (ω1)
f (0)

= exp
∫ ω1

0
g(z) dz.

To evaluate the period integral, notice that the following anti-symmetric
property at ω1/2 holds:

g
(ω1

2
+ u

)
= g

(
− ω1

2
− u

)
= −g

(ω1

2
− u

)
.

By using the Cauchy principal value integral and the fact that the residue
of g at 1

2 ω1 is ±1, we get

(5.4)
∫ ω1

0
g(z) dz = 0± 1

2
× 2πi = ±πi

and so c′ = −1.
Thus f gives rise to a topological solution of (3.5) for ρ = 4π. The de-

veloping map for the other choice A = −1/r is 1/ f (z) which leads to the
same solution. Since equation (3.5) is invariant under z 7→ −z, the unique
solution is necessarily even. This can also be seen directly from our con-
struction.

5.2. The case ρ = 8π. In Type I, let ℘(z), ζ(z) and σ(z) be the Weierstrass
elliptic functions on T′. Recall that for ω̃1 = ω1, ω̃2 = 2ω2 and ω̃3 =
ω1 + 2ω2,

(5.5) σ(z± ω̃i) = −e±ηi(z± 1
2 ω̃i)σ(z).

Now l = 2 and (4.10) reads as

(5.6) g(z) = A
σ2(z)σ2(z−ω2)

σ(z− a)σ(z− b)σ(z− c)σ(z− d)
with four distinct simple poles such that a + b + c + d = 2ω2. We will show
that such a function g(z) does not exist.

By Lemma 4.1, we have (a, b, c, d) = (a,−a + 1
2 ω1, a + ω2,−a − 1

2 ω1 +
ω2).

The residues of g at a, b, c and d are equal to −Ar, Ar′, Ar and −Ar′
respectively, where

r =
σ2(a + ω2)σ2(a)

σ(ω2)σ(2a− 1
2 ω1 + ω2)σ(2a + 1

2 ω1)

and

r′ =
σ2(a− 1

2 ω1)σ2(a− 1
2 ω1 + ω2)

σ(2a− 1
2 ω1)σ(2a− 1

2 ω1 + ω2)σ(ω1 −ω2)
.

We must have r = ±r′. Using (5.5), this is equivalent to

(5.7)
σ2(a + ω2)σ2(a)

σ2(a + 1
2 ω1)σ2(a− 1

2 ω1 + ω2)
= ∓eη1(− 1

2 ω1+ω2).
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To solve a from this equation, by substituting y = 1
2 ω̃i into the addition

formula (2.13) and using (5.5), we get

(5.8) ℘(z)− ei =
σ2(z + 1

2 ω̃i)
σ2(z)σ2( 1

2 ω̃i)
e−ηiz.

With (5.8), the “+” case in equation (5.7) simplifies to

℘
(

a− ω1

2
+ ω2

)
− e1 = ℘(a)− e1.

That is, 2a ≡ 1
2 ω1 −ω2. But this implies that b ≡ c, a contradiction.

Similarly, the “−” case in (5.7) simplifies to (using the Legendre relation)

℘
(

a +
ω1

2

)
− e3 = ℘(a)− e3.

That is, 2a + 1
2 ω1 ≡ 0. This leads to c ≡ d, which is again a contradiction.

In Type II, g is elliptic on T and we have

(5.9) g(z) = A
σ2(z)

σ(z− z0)σ(z + z0)
where f has a zero at z0 and a pole at −z0. In particular z0 6= −z0 in T and
we conclude that z0 6= ωk/2 for any k ∈ {1, 2, 3}.

Now the residue of g at z0 is 1, hence

(5.10) A
σ2(z0)
σ(2z0)

= 1 =⇒ A =
σ(2z0)
σ2(z0)

.

Then we may transform g into Weierstrass functions as

g(z) =
σ(2z0)
σ2(z0)

σ2(z)
σ(z− z0)σ(z + z0)

=
σ(2z0)
σ4(z0)

σ2(z)σ2(z0)
σ(z− z0)σ(z + z0)

=
℘′(z0)

℘(z)− ℘(z0)

(5.11)

where the addition law (2.13) and the duplication formula

℘′(z) = −σ(2z)/σ4(z)

are used.
Then

f (z) = f (0)
∫ z

0
g(ξ) dξ = f (0)

∫ z

0

℘′(z0)
℘(ξ)− ℘(z0)

dξ

is a developing map for a solution precisely when∫
Li

℘′(z0)
℘(ξ)− ℘(z0)

dξ ∈ i R, i = 1, 2.

By Proposition 2.3 and Lemma 2.4, this is equivalent to that z0 is a critical
point of the Green function G(z) on T.

Together with §4.2, we have recovered the following known result which
was first proved in [2] using PDE methods.
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Corollary 5.1. For ρ = 8π, the blow-up points of solutions to the mean field
equation 4u + ρeu = ρδ0 on a torus T are precisely those non-half period critical
points of the Green function G.

6. THE CASE ρ = 4πl WITH l = 3

By Theorem 4.4, there are no Type II solutions.

6.1. Constructing g. For Type I solutions, g(z) = (log f (z))′ = f ′(z)/ f (z)
is elliptic on T′ = C/Zω1 + Z2ω2 and we may write

g(z) = A
σ3(z)σ3(z−ω2)

σ(z− a)σ(z− b)σ(z− c)σ(z− d)σ(z− e)σ(z− f )
where a, b, c are simple zeros and d, e, f are simple poles of f (z).

From
g(z + ω2) = −g(z),

Lemma 4.1 gives rise to two possibilities: Let a, b be free variables. Then

d = a + ω2, e = b + ω2

and either

(6.1) c = −a− b +
ω1

2
, f = −a− b− ω1

2
+ ω2

or

(6.2) c = −a− b +
ω1

2
+ ω2, f = −a− b− ω1

2
.

The second case can be included into the first one if we change the role of c
and f , namely to require that c is a pole and f is a zero of f (z).

We fist consider the former case (6.1). Denote the residues of g(z) at a, b, c
by Ar1, Ar2 and Ar3 respectively. Then Ar1 = Ar2 = Ar3 = 1. Here

r1 = − σ3(a)σ3(a−ω2)
σ(a− b)σ(2a + b− ω1

2 )σ(ω2)σ(a− b−ω2)σ(2a + b + ω1
2 −ω2)

,

r2 = − σ3(b)σ3(b−ω2)
σ(b− a)σ(2b + a− ω1

2 )σ(ω2)σ(b− a−ω2)σ(2b + a + ω1
2 −ω2)

and r3 =

σ3(a + b− ω1
2 )σ3(a + b− ω1

2 + ω2)e−η1(
ω1
2 −ω2)

σ(2a + b− ω1
2 )σ(2b + a− ω1

2 )σ(2a + b− ω1
2 + ω2)σ(2a + b− ω1

2 + ω2)σ(ω2)
.

We consider the equation r1 = r2, which simplifies to

σ3(a)σ3(a−ω2)
σ(2a + b− ω1

2 )σ(2a + b + ω1
2 −ω2)

= −eη2(a−b) σ3(b)σ3(b−ω2)
σ(2b + a− ω1

2 )σ(2b + a + ω1
2 −ω2)

.
(6.3)

The obvious candidate of solutions would be those coming from equat-
ing the triple powers of sigma functions, namely to force that b = ±a or
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b = ±(a−ω2). By our assumption b 6= a and also b 6= a−ω2 (otherwise r1
is not defined). So the candidates are b = −a and b = −a + ω2.

Indeed at most one choice will do since g(z + ω2) = −g(z). It is easily
checked, using (5.5), that for b = −a the LHS = RHS in (6.3) while (hence)
for b = −a + ω2 the LHS = −RHS.

Thus b = −a and c = 1
2 ω1. Then g(z) =

A
σ3(z)σ3(z−ω2)

σ(z− a)σ(z + a)σ(z− ω1
2 )σ(z− a−ω2)σ(z + a−ω2)σ(z + ω1

2 −ω2)
.

It is very important to notice, and easy to verify, that

(6.4) g(−z) = −g(z).

Indeed the transformation factor from g(−z) to g(z) is

(−1)3 exp 3η2z
exp(η1z + η2(z + a) + η2(z− a) + (−η1 + η2)z)

= −1.

We proceed to solve r1 = r3 under b = −a, c = 1
2 ω1. (Another possibility

that r1 = −r3 will be treated later.) The equation r1 = r3 reads as

(6.5)
σ3(a)σ3(a−ω2)
σ(2a)σ(2a−ω2)

= −e−η1(
ω1
2 −ω2)+(η1−η2)a σ3(ω1

2 )σ3(ω1
2 −ω2)

σ(a + ω1
2 )σ(a + ω1

2 −ω2)
.

Recall the duplication formula

(6.6)
σ(2a)σ(w1)σ(w2)σ(w3)

2σ(a)σ(a + w1)σ(a + w2)σ(a + w3)
= 1

for any three half periods wi with w1 + w2 + w3 = 0 (c.f. [10]).
With this in mind, we may rewrite (6.5) as

σ2(a)σ2(a−ω2)
σ(2a−ω2)σ(ω2)

= −e−η1(
ω1
2 −ω2)+(η1−η2)a×

σ(2a)σ(ω1
2 )σ(ω1

2 −ω2)σ(ω2)
σ(a)σ(a−ω2)σ(a + ω1

2 )σ(a + ω1
2 −ω2)

.
σ2(ω1

2 )σ2(ω1
2 −ω2)

σ2(ω2)
.

(6.7)

Using the addition law (2.13) and its consequence (5.8)

℘(z)− ei =
σ2(z + ω̃i

2 )
σ2(z)σ2( ω̃i

2 )
e−ηiz,

together with (6.6), we simplify (6.7) to
−1

℘(a)− ℘(a−ω2)
= −2

1
℘(ω2 − ω1

2 )− ℘(ω1
2 )

.

That is

(6.8) ℘(a)− ℘(a−ω2) =
1
2
(e3 − e1).

The LHS has 2 poles at a = 0 and a = ω2 with total order 4, hence the
equation have 4 zeros a = ±p and a = ±p′. Notice that a is not a half
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period. To see that p 6= p′, i.e. they are simple zeros, we use the half period
formula (c.f. [10]):

(6.9) ℘
(

a +
ω̃2

2

)
= e2 +

(e1 − e2)(e3 − e2)
℘(a)− e2

.

By substituting this into (6.8), a simple calculation gives

(6.10) ℘(a) = e2 +
e3 − e1

4
± 1

4

√
(e3 − e1)2 + 16(e1 − e2)(e3 − e2).

It is then clear that there are 4 in-equivalent solutions. Since b = −a, these
solutions give rise to 2 independent solutions of g.

To complete our discussion we still needs to consider the case r1 = −r3.
In exactly the same calculation with sign changed, we arrive at the equation

(6.11) ℘(a)− ℘(a−ω2) = −1
2
(e3 − e1).

The important observation is that a 7→ a + ω2 exchanges equations (6.8)
and (6.11). Hence the solutions of (6.11) is given by

±p + ω2 and ± p′ + ω2.

By our general discussion of the structure of solutions in §4.1, this shows
that in fact r1 = −r3 gives rise to the same set of solutions as r1 = r3.

To be concrete, if in r1 = r3 there is a solution of (a, b, c, d, e, f ) to be

(6.12) (p,−p,
ω1

2
, p + ω2,−p + ω2, ω2),

then a corresponding solution (a′, b′, c′, d′, e′, f ′) in r1 = −r3 is

(6.13) (p + ω2,−(p−ω2),
ω1

2
, p + 2ω2,−p, ω2).

These two sets are equivalent modulo ω1, 2ω2 hence they determine the
same function g up to the choice of constants A and A′ in both cases. By
definition of the constant the choice is only up to a sign.

Indeed, in (6.12) a, b, c are viewed as simple zeros of f . They correspond
to d′, e′, c′ which according to Remark 4.2 are viewed as simple poles of,
perhaps another, f̃ . A closer look shows that A′ = −A and hence that

f̃ =
1
f

.

Clearly f̃ gives rise to the same u as f .

6.2. Constructing f and hence the solution u. This step is similar to the
case ρ = 4π in §5.1. Let A = 1/ri, then

f (z) := f (0) exp
∫ z

0
g(w) dw

is uniquely defined up to a factor f (0). There is an unique choice of f (0)
up to a norm one factor such that c := f (ω2) f (0) has |c| = 1. Thus by
integrating g(z + ω2) = −g(z) we get f (z + ω2) = c/ f (z).
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By integrating g(z + ω1) = g(z) we get f (z + ω1) = c′ f (z) where

c′ = exp
∫

L1

g(z) dz.

We would like to show that c′ = −1. Notice that since g is odd (c.f. 6.4),
the following anti-symmetric property at 1

2 ω1 still holds:

g
(ω1

2
+ u

)
= g

(
− ω1

2
− u

)
= −g

(ω1

2
− u

)
.

By using the Cauchy principal value integral and the fact that the residue
of g at 1

2 ω1 is ±1, we get

(6.14)
∫

L1

g(z) dz = 0± 1
2
× 2πi = ±πi

and so c′ = −1. In fact it follows that the integral of g along any line a + L1
is congruent to πi modulo 2πi since the residue at each pole is ±1.

Thus f gives rise to a topological solution of the mean field equation
(3.5) for ρ = 12π. The solutions as constructed, though not unique, are
again even functions. Indeed g(−z) = −g(z) implies that f (−z) = f (z)
and then u(−z) = u(z).

It becomes clear that the key property is the oddness of g. Whether or
not this is generally true for ρ = 4πl with l = 2k + 1 is a guiding problem
for future studies.

We end this paper by raising the following

Conjecture 6.1. For ρ = 4πl with odd l, any type I solution constructed by solv-
ing the (holomorphic) residue equations contribute positively in the degree count-
ing. Moreover all solutions are obtained in the way.

Since the Leray-Schauder degree is 2 for ρ = 12π. The validity of this
conjecture would imply that the two solutions constructed in this section
are all the solutions.
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