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ABSTRACT. A pre-modular form Zn(σ; τ) of weight 1
2 n(n + 1) is intro-

duced for each n ∈ N, where (σ, τ) ∈ C ×H, such that for Eτ =
C/(Z + Zτ), every non-trivial zero of Zn(σ; τ), i.e. σ is not a 2-torsion
of Eτ , corresponds to a (scaling family of) solution to the equation

(MFE) 4u + eu = ρ δ0,

on the flat torus Eτ with singular strength ρ = 8πn.
In Part I [1], a hyperelliptic curve X̄n(τ) ⊂ SymnEτ , the Lamé curve,

associated to the MFE was constructed. Our construction of Zn(σ; τ) re-
lies on a detailed study of the correspondence P1(C) ← X̄n(τ) → Eτ

induced from the hyperelliptic projection and the addition map.
As an application of the explicit form of the weight 10 pre-modular

form Z4(σ; τ), a counting formula for Lamé equations of degree n = 4
with finite monodromy is given in the appendix (by Y.-C. Chou).
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0. INTRODUCTION

Let E = Eτ = C/Λτ be a flat torus, where τ ∈ H = { τ ∈ C | Im τ > 0 }
and Λ = Λτ = Zω1 + Zω2 with ω1 = 1 and ω2 = τ. Also ω3 := ω1 + ω2.

Convention: For z ∈ C we denote [z] := z (mod Λ) ∈ E. For a point [z]
in E we often write z instead of [z] to simplify notations when no confusion
should arise. For N ∈ N, E[N] := { [z] ∈ E | Nz ∈ Λ } is the group of
N-torsion points in E. Also E× := E \ {[0]}.
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We will use the Weierstrass elliptic function ℘(z) = ℘(z; Λ) and its asso-
ciated functions ζ(z; Λ) and σ(z; Λ) extensively. We often write τ instead
of Λ and even omit it in the notation when no confusion should arise. We
take [14] as our general reference on elliptic functions.

In this paper, we continue our study, initiated in [9] and developed in
Part I [1], on the singular Liouville (mean field) equation:

(0.1) 4u + eu = 8πn δ0 on E,

under the flat metric. Here 4 = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator
on E induced from C, n ∈N, and δ0 is the Dirac measure at [0] ∈ E.

The solvability of equation (0.1) depends on the moduli τ in a sophisti-
cated manner. For n = 1, this was only recently settled in [9, 11, 2]. The aim
of this paper is to develop a theory via modular forms to investigate such
a dependence for all n ∈ N and to lay the foundation towards a complete
resolution to equation (0.1).

We review briefly in §0.1 what had been done in earlier works (mainly in
Part I) to reformulate the problem using Lamé equations and Green func-
tions. More technical statements will be recalled in later sections whenever
needed. In §0.2 we describe new results proved in this paper.

0.1. Reduction to a Green function equation over the Lamé curve.

0.1.1. The Liouville curve. It was shown in [1, Theorem 0.3 and Theorem 0.6]
that if there is a solution u to equation (0.1) then it lies in a scaling family of
solutions uλ through the Liouville formula:

(0.2) uλ(z) = log
8e2λ| f ′(z)|2

(1 + e2λ| f (z)|2)2 , λ ∈ R,

where f is a meromorphic function on C, known as a developing map, which
can be normalized to satisfy the type II constraints:

(0.3) f (z + ωj) = e2iθj f (z), θj ∈ R, j = 1, 2.

(i) There is a unique λ so that uλ is even. Moreover, the normalized de-
veloping map f has precisely n simple zeros [a1], . . . , [an] in E× := E \ {[0]}
and n simple poles [−a1], . . . , [−an]. They are characterized by

(ii) The non-degenerate constraints: [ai] 6∈ E[2] for all i, [ai] 6= ±[aj] for i 6= j.
(iii) The following n− 1 algebraic equations:

(0.4)
n

∑
i=1

℘′(ai)℘
r(ai) = 0, r = 0, . . . , n− 2.

(iv) The transcendental equation on the Green function: 1

(0.5)
n

∑
i=1
∇G(ai) = 0.

1The Green function G(z) on E is defined by −4G = δ0 − 1/|E| and
∫

E G = 0 where |E|
is the area of E. Also G(z, w) = G(z− w, 0) = G(z− w) by the translation invariance.
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The affine algebraic curve Xn ⊂ SymnE defined by equations (0.4) and
the non-degenerate constraints is called the (n-th) Liouville curve.

0.1.2. The Lamé curve. The Liouville curve Xn has the important hyperelliptic
structure arising from its connection with the integral Lamé equations on E:

(0.6) w′′ = (n(n + 1)℘+ B)w,

where B ∈ C is usually known as the auxiliary or spectral parameter. For
a = (a1, . . . , an) ∈ Cn, let wa(z) be the classical Hermite–Halphen ansatz:

(0.7) wa(z) := ez ∑ ζ(ai ;τ)
n

∏
i=1

σ(z− ai; τ)

σ(z; τ)
.

Then the following statements were proved in [1, Theorem 0.7].
(i) The point [a] := a (mod Λ) lies in Xn if and only if wa and w−a are in-

dependent solutions to equation (0.6). In that case, the parameter B equals

(0.8) Ba := (2n− 1)
n

∑
i=1

℘(ai).

(ii) The compactified curve

X̄n ⊂ SymnE

is a hyperelliptic curve, known as the Lamé curve, with the added points
X̄n \ Xn being the branch points of the hyperelliptic projection

B : X̄n → P1(C).

(iii) A point [a] ∈ X̄n is a branched point if and only if [−a] = [a]. In fact

{[−ai]} ∩ {[ai]} 6= ∅ =⇒ [−a] = [a].

Also [0] ∈ {[ai]} =⇒ [a] = 0n.
(iv) The unique point at infinity [0]n ∈ X̄n is a non-singular point.
(v) The finite branch points satisfy [a] ∈ (E×)n, [ai] 6= [aj] for i 6= j, and

[a] = [−a]; wa = w−a is still a solution to equation (0.6) with B = Ba. These
solutions are known as the Lamé functions.

(vi) Let Yn = B−1(C) be the finite part of X̄n. Then Yn is parametrized by

Yn ∼= { (B, C) | C2 = `n(B) }
where `n(B) is the Lamé polynomial in B of degree 2n + 1, and X̄n coincides
with the projective hyperelliptic model of Yn. In particular, the Lamé curve X̄n
is irreducible and is smooth if and only if `n(B) has no multiple roots.

Under this description, for [a] ∈ Xn, the ratio

f = fa :=
wa

w−a
= e2 ∑n

i=1 ζ(ai)z
n

∏
i=1

σ(z− ai; τ)

σ(z + ai; τ)

gives the candidate of a developing map in (0.2). The original singular
Liouville equation (0.1) is then equivalent to the Green function equation
(0.5) over the unramified (Liouville) loci Xn of the map B : X̄n → P1(C).
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0.2. Main results: a theory of pre-modular forms.
Recall the Weierstrass equation ℘′2 = 4℘3 − g2℘ − g3 = ∏3

i=1(℘ − ei),
where ei(τ) = ℘( 1

2 ωi; τ), i = 1, 2, 3. We will also use the quasi-periods
ηi(τ) := ζ(z + ωi; τ)− ζ(z; τ) = 2ζ( 1

2 ωi; τ), i = 1, 2, extensively.

0.2.1. The Hecke function and pre-modular forms. For z = x + iy = rω1 + sω2,
r, s ∈ R, it was shown in [9, Lemma 2.3, Lemma 7.1] that

(0.9) −4π
∂G
∂z

(z; τ) = ζ(z; τ)− rη1(τ)− sη2(τ).

For [z] ∈ Eτ[N] \ {[0]}, the right-hand side of equation (0.9) first ap-
peared in [6], where Hecke showed that it is a modular form of weight one
with respect to Γ(N) = { A ∈ SL(2, Z) | A ≡ I2 (mod N) }. Thus we call
the following function

(0.10) Z(z; τ) = Zr,s(τ) := ζ(rω1 + sω2; τ)− rη1(τ)− sη2(τ),

(z, τ) ∈ C×H, the Hecke function. Notice that it is holomorphic only in τ,
and for fixed τ it depends only on [z] = z (mod Λτ) ∈ Eτ. In this paper,
functions of this sort are called pre-modular forms.

Definition 0.1. An analytic function h in (z, τ) ∈ C ×H is pre-modular of
weight k ∈N if it satisfies

(1) For any fixed τ, the function h(z) is analytic in z and z̄ and it de-
pends only on z (mod Λτ) ∈ Eτ.

(2) For any fixed torsion type z (mod Λτ) ∈ Eτ[N], the function h(τ) is
modular of weight k with respect to Γ(N).

We write h(z; τ) for a pre-modular form h.

By writing z = r + sτ with r, s ∈ R, it is easy to see that condition (1)
is equivalent to saying that h(z) is analytic and periodic in r, s with period
1. A torsion type in condition (2) is simply a choice of r, s,∈ ( 1

N Z)/Z. In
particular, the Hecke function Z is pre-modular of weight one.

We may regard pre-modular forms as the restriction of holomorphic func-
tions in three complex variables (r, s, τ) ∈ C2 ×H to the R-linear slice L
defined by r, s,∈ R. Although L ∼= C×H, the embedding is not C-linear.

The notion of pre-modular forms allows us to study deformations in z to
relate different modular forms corresponding to different torsion points.

Recently this idea was applied in [2] to achieve a complete solution to
equation (0.1) for n = 1 and for all τ. 2 In that case equations (0.4) are
vacuous and the problem is equivalent to solving non-trivial zeros of Z(z; τ),
i.e. z 6∈ Eτ[2]. Thus, a key step towards the general cases is to generalize
the pre-modular form Z1 = Z to certain “Zn” for all n ≥ 2.

2It was stated in Part I [1, p.141–142] that such a complete solution for n = 1 will appear
in Part II (this paper), and it was included in the first arXiv version arXiv:1502.03295v1.
Later on we found its deep connection with Painlevé VI equations. Therefore we extracted
that part and published it separately in [2].
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0.2.2. The main constructions. By the anti-symmetry of ∇G, equation (0.5)
holds automatically on the branch points of Yn, hence they are referred to as
trivial solutions. Nevertheless further investigations on the local structures
of the branch points are indispensable. This is done in §1.

We proceed to construct a pre-modular form Zn(σ; τ), with σ ∈ Eτ, as-
sociated to the family of Lamé curves X̄n(τ), τ ∈ H. 3 It should have the
property that every non-trivial solution [a] = {[a1], . . . , [an]} ∈ Xn(τ) to
equation (0.5) comes from a zero of Zn(σ; τ) with σ = ∑n

i=1[ai] 6∈ Eτ[2], and
vice versa. The construction is stated in (0.15). Its justification consists of
three steps corresponding to Theorem 0.2, 0.3 and 0.4 in the following.

Consider the meromorphic function

(0.11) zn(a) := ζ
( n

∑
i=1

ai

)
−

n

∑
i=1

ζ(ai)

on En. Write ai = riω1 + siω2. If ∑n
i=1[ai] 6= 0 then from equation (0.9)

−4π
n

∑
i=1

∂G
∂z

(ai) =
n

∑
i=1

(
ζ(riω1 + siω2)− riη1 − siη2

)
= Z

( n

∑
i=1

ai

)
− zn(a).

Hence the Green function equation (0.5) is equivalent to

(0.12) zn(a) = Z
( n

∑
i=1

ai

)
.

This motivates us to study the map

(0.13) σn : X̄n → E, [a] 7→ σn([a]) :=
n

∑
i=1

[ai]

induced from the addition map En → E. Since the algebraic curve X̄n is
irreducible, σn is a finite morphism and deg σn is defined.

Theorem 0.2 (= Theorem 2.4). The map σn : X̄n → E has degree 1
2 n(n + 1).

From Theorem 0.2, there is a polynomial

Wn(z) ∈ Q[g2, g3,℘(σ),℘′(σ)][z]

of degree 1
2 n(n + 1) in z which defines the (branched) covering map σn.

The next task is to find a natural primitive element of this covering map,
namely a rational function on X̄n which has Wn as its minimal polynomial.
This is achieved by the following fundamental theorem.

Theorem 0.3 (= Theorem 3.2). The rational function zn ∈ K(X̄n) is a primitive
generator for the field extension K(X̄n) over K(E) which is integral over the affine
curve E×.

3In this paper, we often use σ as the coordinate on E whenever the map σn : Xn → E
defined in (0.13) is involved. This should not be confused with the Weierstrass σ function.
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This means that Wn(zn) = 0, and conversely for generic choices of σ =
σ0 ∈ Eτ, the roots of Wn(z)(σ0; τ) = 0 are precisely those 1

2 n(n + 1) values
z = zn(a) with σn(a) = σ0. The proof is contained in §3. Here we give a
brief sketch of the idea used in the proof.

A major tool used is the tensor product of two Lamé equations w′′ = I1w
and w′′ = I2w, where I = n(n + 1)℘(z), I1 = I + Ba and I2 = I + Bb.

For a general point σ0 ∈ E, we need to show that the 1
2 n(n + 1) points on

the fiber of X̄n → E above σ0 has distinct zn values. From (0.11), it suffices
to show that for σn(a) = σn(b) = σ0,

n

∑
i=1

ζ(ai) =
n

∑
i=1

ζ(bi) =⇒ Ba = Bb.

Indeed, then we conclude [a] = [b] if σ0 6∈ E[2].
If w′′1 = I1w1 and w′′2 = I2w2, then the product q = w1w2 satisfies the

fourth order ODE

(0.14) q′′′′ − 2(I1 + I2)q′′ − 6I′q′ + ((Ba − Bb)
2 − 2I′′)q = 0.

We remark that if Ba = Bb, then I1 = I2 and q actually satisfies a third order
ODE as the second symmetric product of a Lamé equation, which is a useful
tool used in Part I in the study of the Lamé curve.

If however Ba 6= Bb, by the definition of wa in (0.7) and the addition law,

q = waw−b + w−awb

is an even elliptic function solution to equation (0.14), hence a polynomial in
x = ℘(z). This leads to strong constraints on equation (0.14) in the variable
x and eventually leads to a contradiction for generic choices of σ0.

Now we set

(0.15) Zn(σ; τ) := Wn(Z)(σ; τ).

Then Zn(σ; τ) is pre-modular of weight 1
2 n(n + 1). From the construction

and equation (0.12) it is readily seen that Zn(σ; τ) is the generalization of
the Hecke function we are looking for. In fact, for n ≥ 1, we have

Theorem 0.4. To every scaling family {uλ} of solutions to the singular Liouville
equation (0.1) on Eτ, the zero set a ∈ Xn of its normalized developing map f
satisfies Zn(σn(a); τ) = 0 with σn(a) 6∈ Eτ[2]. Conversely, given σ0 ∈ Eτ \ Eτ[2]
with Zn(σ0; τ) = 0, there is a unique a ∈ Xn with σn(a) = σ0 and it determines
a developing map f = wa/w−a of a scaling family of solutions to equation (0.1).

The proof is given in §4, where we also present a version of it in terms of
monodromy groups of Lamé equations in Theorem 4.5.

For σ ∈ Eτ[N], the N-torsion points, the modular form Z2(σ; τ) and
Z3(σ; τ) were first constructed by Dahmen [3] in his study on integral Lamé
equations (0.6) with algebraic solutions (i.e. with finite monodromy group).
For n ≥ 4, the existence of a modular form Zn(σ; τ) of weight 1

2 n(n+ 1) was
also conjectured in [3]. This is now settled by our results.
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0.2.3. Relation with finite gap theory. It remains to find effective and explicit
constructions of Zn. Since σn is defined by the addition map, which is
purely algebraic, in principle this allows us to compute the polynomial
Wn(z) for any n ∈ N by eliminating variables B and C. In practice the
needed calculations are very demanding and time consuming.

In a different direction, the Lamé curve had also been studied extensively
in the finite band integration theory. In the complex case this theory concerns
the eigenvalue problem on a second order ODE

Lw := w′′ − Iw = Bw

with eigenvalue B. The potential I = I(z) is called a finite-gap (band) poten-
tial if the ODE has only logarithmic free solutions except for finitely many
B ∈ C. The integral Lamé equations (with I(z) = n(n + 1)℘(z)) provide
the first non-trivial examples of them. Using this theory, Maier [12] had re-
cently written down an explicit map πn : X̄n → E in terms of the coordinates
(B, C) on X̄n (cf. Theorem 5.3). It turns out we can prove

Theorem 0.5. The map πn agrees with σn : X̄n → E.

This is part of Theorem 5.6 where another presentation of zn in this con-
text is also given. The main idea in the proof is to compare the Hermite–
Halphen ansatz (0.7) with the Hermite–Krichever ansatz (given in (5.1)) of
solutions to the Lamé equations (0.6).

This provides an alternative way to compute Wn(z) by eliminating B, C.
In particular the weight 10 pre-modular form Z4(σ; τ) is explicitly written
down in Example 5.10. The existence and effective construction of Zn(σ; τ)
opens the door to extend our complete results on equation (0.1) for n = 1
to general n ∈N.

As a related application, the explicit expression of Z4 is used to solve
Dahmen’s conjecture on a counting formula for Lamé equations (0.6) with
finite monodromy in the n = 4 case. The method works for general n once
Zn is shown to have expected asymptotic behavior at cusps. The details are
given in the appendix, written by Y.-C. Chou.

Acknowledgement. The second named author would like to express his
gratitude to the anonymous referee for his/her valuable suggestions.

1. GEOMETRY OF B : X̄n → P1(C)

In this section we investigate the local structure of the branch points of
the hyperelliptic projection B : X̄n → P1(C).

1.1. Some useful formulas from Part I.
We give quantitative descriptions on those results recalled in §0.1 which

will be used in this paper.
Let f be a normalized developing map of a solution u to equation (0.1)

with simple zeros {[a1], . . . , [an]} and simple poles {[b1], . . . , [bn]} in E. One
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of the crucial properties proved in Part I (cf. §0.1.1 (i)) is the equality

{[b1], . . . , [bn]} = {[−a1], . . . , [−an]}.
With this being established, the logarithmic derivative g := (log f )′ = f ′/ f
is readily seen to be an even elliptic function on E of the form

g(z) =
n

∑
i=1

℘′(ai)

℘(z)− ℘(ai)
.(1.1)

It has simple poles at ±[ai] and only one zero at [0]. Hence ordz=0 g(z) =
2n. It leads to the n− 1 equations in [a1], . . . , [an] given in equations (0.4):
under the algebraic coordinates (w, xi, yi) = (℘(z),℘(ai),℘′(ai)),

g(z) =
n

∑
i=1

1
w

yi

1− xi/w

=
n

∑
i=1

yi

w
+

n

∑
i=1

yixi

w2 + . . . +
n

∑
i=1

yixr
i

wr+1 + . . . .

Since ordz=0 g(z) = 2n and 1/w has a zero at z = 0 of order two, we get
xi 6= xj for i 6= j and

(1.2)
n

∑
i=1

yixr
i = 0, r = 0, . . . , n− 2.

Equations (1.2), together with the Weierstrass equation y2
i = 4x3

i − g2xi− g3
for all i = 1, . . . , n, give the algebraic form of equations (0.4).

The Green function equation (0.5) is equivalent to the type II constraints
(0.3) ([10, Lemma 2.4]). Indeed, by the addition law,

f = exp
∫

g dz = exp
∫ n

∑
i=1

(2ζ(ai)− ζ(ai − z)− ζ(ai + z)) dz

= e2 ∑n
i=1 ζ(ai)z

n

∏
i=1

σ(z− ai)

σ(z + ai)
.

(1.3)

The monodromy effect on f is then calculated from the standard formula

(1.4) σ(z + ωj) = −eηj(z+ 1
2 ωj)σ(z), j = 1, 2.

Let ai = riω1 + siω2 for i = 1, . . . , n. By way of the Legendre relation
η1ω2 − η2ω1 = 2πi we compute easily that

f (z + ω1) = e−4πi ∑i si+2ω1(∑ ζ(ai)−∑ riη1−∑ siη2) f (z),

f (z + ω2) = e4πi ∑i ri+2ω2(∑ ζ(ai)−∑ riη1−∑ siη2) f (z).
(1.5)

By equation (0.9) and the linear independence of ω1 and ω2, the equiva-
lence of equation (0.5) and (0.3) follows immediately.

In §0.1.2 we have reviewed the hyperelliptic structure B : X̄n → P1(C)
on the Lamé curve induced by a 7→ Ba = (2n− 1)∑℘(ai). Also X̄n contains
the Liouville curve Xn as the unramified loci. By way of Lamé equation
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(0.6) with B = Ba and by setting f = wa/w−a, where wa is the ansatz
solution (0.7), we see that solving equation (0.1) is equivalent to solving the
integral Lamé equation (0.6) with unitary projective monodromy groups.

The finite part Yn of X̄n is defined by equation C2 = `n(B) where the
Lamé polynomial `n(B) is of degree 2n+ 1 and can be effectively computed
(cf. [1, Theorem 7.4]). Later we will discuss factorization properties of `n(B)
in Proposition 2.2. Here we focus on formulas which lead to parametriza-
tion of the Lamé curve near branched points, i.e. a ∈ X̄n with a = −a.

Proposition 1.1. [1, (7.5.3) and Proposition 7.5]
(1) Let a ∈ Yn, then (B, C) can be parameterized by B(a) = Ba and

(1.6) C(a) = ℘′(ai)∏
j 6=i

(℘(ai)− ℘(aj)).

Here formula (1.6) is valid for any i ∈ {1, . . . , n}.
(2) The limiting equations of equations (1.2) at a = 0n ∈ X̄n are given by

(1.7)
n

∑
i=1

t2r+1
i = 0, r = 1, . . . , n− 1,

subject to the non-degenerate constraints ti 6= 0, ti 6= −tj for i 6= j.
Equations (1.7) have a unique non-degenerate solution in Pn−1(C) up

to permutations. It gives rise to the unique tangent direction

[t] = [t1 : · · · : tn] ∈ P(T0n(X̄n)) ⊂ P(T0n(SymnE)).

Remark 1.2. Notice that (1.6) arises from (1.1) and ordz=0 ga(z) = 2n in

ga(z) :=
n

∑
i=1

℘′(ai)

℘(z)− ℘(ai)
=

∑n
i=1 ℘

′(ai)∏j 6=i(℘(z)− ℘(aj))

∏n
i=1(℘(z)− ℘(ai))

,

where the numerator reduces to the constant C(a).

1.2. Local structures on finite and infinite branch points.
By working on formula (1.6), we may relate various local parameters of

Yn as follows:

Lemma 1.3. Let a = {a1, . . . , an} ∈ Yn \ Xn be a finite branched point and
b = {b1, . . . , bn} ∈ Xn be a point near a.

(i) Let i be an index with ai ∈ E[2], then C can be used as a parameter for
bi − ai with b′i(0) 6= 0, ∞.

(ii) Let i be an index with ai 6∈ E[2], and let i′ be the corresponding index
with ai′ = −ai. Then C can be used as a parameter for bi + bi′ with
(bi + bi′)

′(0) 6= 0, ∞.

Proof. (i) For ai = −ai (2-torsion) in E, we have ℘′(ai) = 0 and ℘′(bi) =
℘′′(ai)(bi − ai) + o(|bi − ai|). Formula (1.6) then implies that

C(b) =
[
℘′′(ai)∏

j 6=i
(℘(ai)− ℘(aj))

]
(bi − ai) + o(|bi − ai|).
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We get the inverse map C 7→ bi(C)− ai since ℘′′(ai) 6= 0 for ai ∈ E[2].
(ii) Similarly, for ai 6∈ E[2] with ai′ = −ai, we have ℘(bi) − ℘(bi′) =

℘′(−bi′)(bi + bi′) + o(|bi + bi′ |). Since −bi′ is close to −ai′ = ai, we get

C(b) =
[
℘′(ai)

2 ∏
j 6=i,i′

(℘(ai)− ℘(aj))
]
(bi + bi′) + o(|bi + bi′ |).

Then we get the inverse map C 7→ (bi + bi′)(C) since ℘′(ai) 6= 0. �

Remark 1.4. From formula (1.6) (with a being substituted by b) we have
bi′(C) = −bi(−C), hence b′i′(C) = b′i(−C). If b′i(0) and b′i′(0) are finite then
they are equal and non-vanishing. If this holds for all i then C 7→ b(C) is
a holomorphic map in each local branch of Yn at a and we conclude that
a ∈ Yn is either a smooth point or a nodal singularity (y2 = x2). We will see
in Remark 5.14 that this is indeed the case. At this point we conclude only
the finiteness of (bi + bi′)

′(0) as stated in Lemma 1.3 (ii).

Now we give a precise description of the unique tangent direction at 0n ∈
X̄n. Denote by [t] = [t1, . . . , tn] the homogeneous coordinates satisfying the
limiting equations (1.7) with non-degenerate constraints.

Let pj = ∑n
i=1 tj

i be the j-th Newton symmetric polynomial and λj be the
j-th elementary symmetric polynomial of t1, . . . , tn. We use the convention
that p0 = 0, λ0 = 1 and λj = 0 for j > n. By a Vandermonde determinant
argument we have λ1 = p1 6= 0.

Proposition 1.5. The point [t] ∈ P(T0n(X̄n)) is characterized by the recursions

λk+1 = 2
(k− n)

(k− 2n)(k + 1)
λkλ1, 1 ≤ k ≤ n− 1.(1.8)

Proof. By Proposition 1.1 (2), namely the uniqueness of non-degenerate so-
lutions to (1.7), we only need to verify that that the point defined by (1.8)
satisfies p3 = p5 = · · · = p2n−1 = 0.

Since λ1 6= 0, without loss of generality we assume that λ1 = 1. The re-
cursions in (1.8), with λ1 = 1, are equivalent to saying that the polynomial

Q(t) :=
n

∏
i=1

(1 + tit) =
n

∑
k=0

λk tk

coincides with the hypergeometric function F(−n;−2n | 2t). That is, f (t) :=
Q( 1

2 t) satisfies the hypergeometric equation(
δ(δ− (2n + 1))− t(δ− n)

)
f = t

(
t f ′′ − (t + 2n) f ′ + n f

)
= 0,(1.9)

where δ = td/dt. Then g := (log f )′ = f ′/ f satisfies

(1.10) g′ + g2 −
(

1 +
2n
t

)
g +

n
t
= 0.
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Write g = ∑∞
k=0 gk tk. From

g =
f ′

f
=

n

∑
i=1

1
2 ti

1 + 1
2 tit

=
∞

∑
k=0

pk+1

2k+1 tk,

we have gk = pk+1/2k+1 and it suffices to show g2 = g4 = · · · = g2n−2 = 0.
From the series expansions

g′ = g1 +
∞

∑
k=1

(k + 1)gk+1tk,

g2 = 1
4 +

∞

∑
k=1

( k

∑
j=0

gjgk−j

)
tk,

(
1 +

2n
t

)
g =

n
t
+

∞

∑
k=0

(gk + 2ngk+1) tk,

we get by equation (1.10) that

− n
t
+

n
t
+
(

g1 +
1
4 − ( 1

2 + 2ng1)
)

+
∞

∑
k=1

(
(k + 1)gk+1 +

k

∑
j=0

gjgk−j − (gk + 2ngk+1)
)

tk = 0.

Hence g1 = −1/(4(2n− 1)) and for all k ≥ 1 we have recursions

(1.11) (2n− (k + 1))gk+1 =
k−1

∑
j=1

gjgk−j.

(We have used the fact g0 = 1
2 to remove one gk.)

For k = 1, the sum is empty and we get g2 = 0. Now we conclude the
proof by induction. Suppose that g2 = g4 = . . . = g2m = 0 with m < n− 1.
Then for k = 2m + 1 we have 2n− (k + 1) = 2(n− (m + 1)) > 0, and the
recursions (1.11) show that g2(m+1) is a sum of gjgk−j with either j or k− j
being an even number no bigger than 2m. Hence g2(m+1) = 0, and this
completes the induction. �

2. GEOMETRY OF σn : X̄n → E

The aim of this section is to prove Theorem 0.2.

2.1. Lamé functions. [cf. §0.1.2 (v)]

Definition 2.1. The type of a point a ∈ Yn \ Xn is defined to be the number of
half periods contained in a = {ai}. Hence there are four types O, I, II, III. For
n = 2k, a must be of type O or II. For n = 2k + 1, a must be of type I or III.

The type of a Lame functions wa (with [a] = [−a] ∈ Yn \ Xn) is defined
to be the type of its zero set a accordingly.

There are factorizations of the polynomial `n(B) according to the types:
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Proposition 2.2. [5, 14] We may decompose `n(B; g2, g3) as

`n(B; g2, g3) = c2
nl0(B)l1(B)l2(B)l3(B),

where cn ∈ Q>0 is a constant, li(B)’s are monic polynomials in B whose coeffi-
cients are polynomials in e1, e2, e3 such that

(1) For n = 2k, l0(B) = ∏(B− Ba) with a being of type O, and deg l0(B) =
1
2 n + 1 = k + 1. For i = 1, 2, 3, li(B) = ∏(B− Ba) with a being of type
II which does not contain 1

2 ωi, also deg li(B) = 1
2 n = k.

(2) For n = 2k + 1, l0(B) = ∏(B − Ba) with a being of type III, and
deg l0(B) = 1

2 (n− 1) = k. For i = 1, 2, 3, li(B) = ∏(B− Ba) with a
being of type I which contains 1

2 ωi, also deg li(B) = 1
2 (n + 1) = k + 1.

We remark that Proposition 2.2, together with Proposition 1.1 and Lemma
1.3, will be used in the proof of Theorem 0.2. Here are some examples to
illustrate Proposition 2.2:

Example 2.3. Decompositions of `n(B) for 1 ≤ n ≤ 5.
(1) n = 1, k = 0, X̄1

∼= E,

C2 = `1(B) = 4B3 − g2B− g3 = 4
3

∏
i=1

(B− ei).

(2) n = 2, k = 1, (notice that e1 + e2 + e3 = 0)

C2 = `2(B) = 4
81 B5 − 7

27 g2B3 + 1
3 g3B2 + 1

3 g2
2B− g2g3

=
22

34 (B2 − 3g2)
3

∏
i=1

(B + 3ei).

(3) n = 3, k = 1, deg li(B) = 2 for i = 1, 2, 3,

C2 = `3(B) =
1

223454 B(16B6 − 504g2B4 + 2376g3B3

+ 4185g2
2B2 − 36450g2g3B + 91125g2

3 − 3375g3
2)

=
22

3454 B
3

∏
i=1

(B2 − 6eiB + 15(3e2
i − g2)).

(4) n = 4, k = 2, deg l0(B) = 3,

C2 = `4(B) =
1

385474 (B3 − 52g2B + 560g3)
3

∏
i=1

(B2 + 10eiB− 7(5e2
i + g2)).

(5) n = 5, k = 2, deg li(B) = 3 for i = 1, 2, 3,

C2 = `5(B) =
1

3125474112 (B2 − 27g2)

×
3

∏
i=1

(B3 − 15eiB2 + (315e2
i − 132g2)B + ei(2835e2

i − 540g2)).
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2.2. The degree of the addition map σn.
We are now ready to study the addition map σn : X̄n → E, a 7→ σn(a) =

∑n
i=1 ai defined in (0.13) and determine its degree deg σn.
For a finite morphism of irreducible curves f : X → Y, the function field

K(X) is a finite extension of K(Y) and deg f = [K(X) : K(Y)]. Geomet-
rically, deg f is the number of points for a general fiber f−1(p), p ∈ Y. If
the image curve Y is smooth, the degree is equal to the length of the scheme-
theoretic fiber f−1(p) for any p ∈ Y. A standard reference is [7].

Theorem 2.4 (= Theorem 0.2). The map σn : X̄n → E has degree 1
2 n(n + 1).

Proof. The idea is to apply Theorem of the Cube [13, p.58, Corollary 2] for mor-
phisms from an arbitrary variety V (not necessarily smooth) into abelian
varieties (here the torus E). For any three morphisms f , g, h : V → E and a
line bundle L ∈ Pic E, we have

( f + g + h)∗L ∼= ( f + g)∗L⊗ (g + h)∗L⊗ (h + f )∗L

⊗ f ∗L−1 ⊗ g∗L−1 ⊗ h∗L−1.
(2.1)

We will apply it to the algebraic curve V = Vn ⊂ En which consists of the
ordered n-tuples a’s so that Vn/Sn = X̄n. (Here Sn is the permutation group
on n letters.)

For any line bundle L and any finite morphism f : V → E, we have
deg f ∗L = deg f deg L. In the following we fix an L with deg L = 1.

We prove inductively that for j = 1, . . . , n the morphism f j : Vn → E
defined by

f j(a) := a1 + · · ·+ aj

has deg f ∗j L = 1
2 j(j + 1)n!. The case j = n then gives the result since fn is a

finite morphism which descends to σn under the Sn action. (Notice that for
j < n the map f j does not descend to a map on X̄n.)

Assuming first that it has been proved for j = 1, 2. To go from j to j + 1,
we let f (a) = f j−1(a), g(a) = aj, and h(a) = aj+1. Then by (2.1), f ∗j+1L has
degree n! times

1
2 j(j + 1) + 3 + 1

2 j(j + 1)− 1
2 (j− 1)j− 1− 1 = 1

2 (j + 1)(j + 2)

as expected.
It remains to investigate the case j = 1 and j = 2.
For j = 1, by §0.1.2 (iii)-(iv), the inverse image of 0 ∈ E under f1 : Vn → E

consists of a single point 0n. By Proposition 1.1 (2), the limiting system
of equations (1.7) has a unique non-degenerate solution in Pn−1(C) up to
permutations. From this, we conclude that there are precisely n! branches
of Vn → E near 0n. For a point b ∈ E× close to 0, each branch will contribute
a point a with a1 = b. In particular, f1 is a finite morphism and deg f ∗1 L =
deg f1 = n!.

For j = 2, we consider the (scheme-theoretic) inverse image of 0 ∈ E
under f2 : Vn → E. Namely Vn 3 a 7→ a1 + a2 = 0.
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The point a = 0 again contributes degree n! by a similar branch argu-
ment. Indeed, over each branch near 0n we may represent a = (ai(z)) by
an analytic curve in z. Then condition ti + tj 6= 0 in Proposition 1.1 (2) im-
plies that z 7→ a1(z) + a2(z) ∈ E is still locally biholomorphic for z close
to 0. As a byproduct, since every irreducible component contains a branch
near 0n, f2 is necessarily a finite morphism and deg f ∗2 L = deg f2.

For those points a 6= 0 with f2(a) = 0, we have a1 = −a2 and thus a =
−a by §0.1.2 (iii), i.e. a corresponds to a branch point for the hyperelliptic
projection Yn → C. Let b = (b1, · · · , bn) ∈ Vn be a point near a. By Lemma
1.3, we see that C 7→ (b1 + b2)(C) is bi-holomorphic near C = 0. If a ∈ Vn is
a non-singular point then C is a local parameter and f2 is unramified at a.
In that case the degree contribution at a is one. We first treat the case that
all branch points are non-singular points:

If n = 2k, by Proposition 2.2 (1) the degree contribution from type O
points a = {±a1, · · · ,±ak} is given by

(k + 1)× (k× 2× (n− 2)!),

while the degree from the type II points {±a1, · · · ,±ak−1, 1
2 ωi, 1

2 ωj} is

3× k× ((k− 1)× 2× (n− 2)!).

The sum is 2(4k2 − 2k)(n− 2)! = 2n!.
If n = 2k + 1, by Proposition 2.2 (2), the degree contribution from type

III points {±a1, · · · ,±ak−1, 1
2 ω1, 1

2 ω2, 1
2 ω3} is

k× ((k− 1)× 2× (n− 2)!),

while the type I points {±a1, · · · ,±ak, 1
2 ωi} contribute

3× (k + 1)× (k× 2× (n− 2)!).

The sum is again 2(4k2 + 2k)(n− 2)! = 2n!.
Thus in both cases we get the total degree n! + 2n! = 3n! as expected.
If Yn = Yn(τ0) is singular, let a ∈ Yn \ Xn be a singular (branch) point

with C2 = h(B)(B− Ba)m, m ≥ 2 and h(Ba) 6= 0. The curve Yn arises from
flat degenerations of smooth curves Yn(τ) where m linear factors become
the same. By Lemma 1.3, f2 leads to an analytic equivalence between C
and b1 + b2 near a. That is, the equation b1 + b2 = 0 is simply C = 0. Let
B̃ = B− Ba. Then the analytic structure sheaf of f−1

2 (0) at a is given by

C[[B̃, C]]/〈C2 − h(Ba + B̃)B̃m, C〉 ∼= C[[B̃]]/〈B̃m〉,

which also has length m. This shows that f2 is compatible with the degen-
eration and the degree counting then follows from the smooth case. �

3. THE PRIMITIVE GENERATOR zn

We prove Theorem 0.3, in a more precise form, in Theorem 3.2.
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3.1. Setup of the proof.

Definition 3.1 (The fundamental rational function zn on X̄n). The function

zn(a1, . . . , an) := ζ
( n

∑
i=1

ai

)
−

n

∑
i=1

ζ(ai), ai ∈ C,

is meromorphic and periodic in each ai, hence it defines a rational function
on En. By symmetry, it descends to a rational function on SymnE. We
denote the restriction zn|X̄n

also by zn, which is a rational function on X̄n

with poles along the fiber σ−1
n (0).

The importance of zn is readily seen from investigation on the Green
function equation (0.5): Let ai = riω1 + siω2. Then by (0.9),

−4π ∑
∂G
∂z

(ai) = ∑(ζ(riω1 + siω2)− riη1 − siη2)

= Z(∑ ai)− zn(a).
(3.1)

Hence ∑n
i=1∇G(ai) = 0⇐⇒ zn(a) = Z(σn(a)). This links σn(a) with zn.

Theorem 3.2 (= Theorem 0.3). There is a weighted homogeneous polynomial

Wn(z) ∈ Q[g2, g3,℘(σ),℘′(σ)][z]

of z-degree dn = deg σn such that for σ = σn(a) = ∑ ai, we have

Wn(zn)(a) = 0.

Here the weights of z, ℘(σ), ℘′(σ), g2, g3 are 1, 2, 3, 4, 6 respectively.
Indeed, zn(a) is a primitive generator of the finite extension of rational function

field K(X̄n) over K(E) with Wn(z) being its minimal polynomial. 4

Moreover, the extension is integral over the affine curve E×.

Proof. There is nothing to prove for n = 1, so we assume that n ≥ 2.
Since zn ∈ K(X̄n), which is algebraic over K(E) with degree dn, its mini-

mal polynomial Wn(z) ∈ K(E)[z] exists with d := deg Wn | dn.
Notice that for σ0 ∈ E being outside the branch loci of σn : X̄n → E, there

are precisely dn different points a = {a1, · · · , an} ∈ X̄n with σn(a) = ∑ ai =
σ0. Thus for the rational function zn = ζ(∑ ai)− ∑ ζ(ai) ∈ K(X̄n) to be a
primitive generator, it is sufficient to show that zn has exactly dn branches
over K(E). That is, ∑ ζ(ai) gives different values for different choices of
those a above σ0. Indeed, for any given σ = σ0, the polynomial Wn(z) = 0
has at most d roots. But now zn(a) with σn(a) = σ0 gives dn distinct roots
of Wn(z), hence we must conclude d = dn and zn is a primitive generator.

Hence it is sufficient to show the following more precise result:

4The fact that the coefficients lie in Q, instead of just in C, follows from standard elimi-
nation theory and two facts (i) The equations of X̄n are defined over Q[g2, g3] (cf. equations
(1.2)), and (ii) the addition map En → E is defined over Q. In §5, we carry out the elimina-
tion procedure using the resultant for another explicit presentation πn of σn.
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Theorem 3.3. Let a, b ∈ Yn and (a1, · · · , an), (b1, · · · , bn) ∈ Cn be representa-
tives of a, b such that

(3.2)
n

∑
i=1

ai =
n

∑
i=1

bi,
n

∑
i=1

ζ(ai) =
n

∑
i=1

ζ(bi).

Suppose that ∑℘(ai) 6= ∑℘(bi). Then a, b are branch points of Yn → C which
contains the same number of half periods. Equivalently, the Lamé functions wa and
wb are of the same type.

We emphasize that X̄n is not required to be smooth.
Theorem 3.2 follows immediately by choosing σ0 outside the branch loci

of X̄n → E and σ0 6∈ E[2]. Indeed, let a, b ∈ Yn with σn(a) = σn(b) = σ0
and zn(a) = zn(b), or more precisely with conditions in (3.2) satisfied. By
Theorem 3.3 we are left with the case ∑℘(ai) = ∑℘(bi) but a 6= b. Then
a = −b by Proposition 1.1 (1), and in particular σn(a) = −σn(b). Together
with σn(a) = σn(b) we conclude that σ0 = σn(a) = σn(b) ∈ E[2]. This
contradicts to the assumption σ0 6∈ E[2]. Hence we must have a = b.

Since zn has no poles over E×, it is indeed integral over the affine Weier-
strass model of E× with coordinate ring (let x0 = ℘(σ), y0 = ℘′(σ))

R(E×) = C[x0, y0]/(y2
0 − 4x3

0 − g2x0 − g3).

The homogeneity of Wn(z) also follows from this. �

Remark 3.4. By Theorem 0.2 we have dn = 1
2 n(n + 1). We do not use this

result in the formulation nor in the proof of Theorem 3.2.

We will give two proofs to Theorem 3.3 in §3.2 and §3.3. The first proof
is longer but contains more information. Both proofs are based on the fol-
lowing basic lemma.

Lemma 3.5 (Tensor product). Let I = n(n + 1)℘(z), I1 = I + Ba and I2 =
I + Bb. Suppose that w′′1 = I1w1 and w′′2 = I2w2. Then the product q := w1w2
satisfies the following fourth order ODE:

(3.3) q′′′′ − 2(I1 + I2)q′′ − 6I′q′ + ((Ba − Bb)
2 − 2I′′)q = 0.

Proof. This follows from a straightforward computation. Indeed,

q′ = w′1w2 + w1w′2,

q′′ = (I1 + I2)q + 2w′1w′2,

q′′′ = 2I′q + (I1 + I2)q′ + 2(I1w1w′2 + I2w′1w2).

Notice that if a = b (or just Ba = Bb) then I1 = I2 and we stop here to get
the third order ODE as the symmetric product of the Lamé equation.

In general, we take one more differentiation to get

q′′′′ = 2I′′q + 4I′q′ + (I1 + I2)q′′ + 2I′q′ + 2(I1 + I2)w′1w′2 + 4I1 I2q

= 2(I1 + I2)q′′ + 6I′q′ + (2I′′ − (I1 − I2)
2)q.

This proves the lemma. �
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Recall from the Hermite–Halphen ansatz in (0.7) that

w±a(z) = e±z ∑ ζ(ai)
n

∏
i=1

σ(z∓ ai)

σ(z)

are solutions to w′′ = (n(n + 1)℘(z) + Ba)w =: I1w, and

w±b(z) = e±z ∑ ζ(bi)
n

∏
i=1

σ(z∓ bi)

σ(z)

are solutions to w′′ = (n(n + 1)℘(z) + Bb)w =: I2w. Then qa,−b := waw−b
and q−a,b := w−awb are solutions to equation (3.3).

3.2. The proof to Theorem 3.3.
By assumption we have ∑ ai = ∑ bi, hence

(3.4) qa,−b(z) =
n

∏
i=1

σ(z− ai)σ(z + bi)

σ2(z)

is an elliptic function. Similarly q−a,b(z) = qa,−b(−z) is elliptic. In particu-
lar there exists an even elliptic function solution to equation (3.3), namely

(3.5) Q := 1
2 (qa,−b + q−a,b) = (−1)n ∏n

i=1 σ(ai)σ(bi)

z2n (1 + O(|z|)).

Let q be an even elliptic solution to equation (3.3). Then we may investigate
it in variable x = ℘(z). To avoid confusion, we denote

ḟ = ∂ f /∂x and f ′ = ∂ f /∂z.

Let y2 = p(x) = 4x3 − g2x − g3. Then ℘′ = y, ℘′′ = 6℘2 − 1
2 g2 = 1

2 ṗ(x).
℘′′′ = 12℘℘′ = 12xy, ℘′′′′ = 12℘′2 + 12℘℘′′ = 12p(x) + 6xṗ(x). Also

q′ = q̇℘′ = yq̇,

q′′ = q̈℘′2 + q̇℘′′ = p(x)q̈ + 1
2 ṗ(x)q̇,

q′′′ =
...
q℘′3 + 3q̈℘′℘′′ + q̇℘′′′,

q′′′′ =
....
q ℘′4 + 6

...
q℘′2℘′′ + 3q̈(℘′′)2 + 4q̈℘′℘′′′ + q̇℘′′′′

= p(x)2....
q + 3p(x) ṗ(x)

...
q +

( 3
4 ṗ(x)2 + 48xp(x)

)
q̈ +

(
12p(x) + 6xṗ(x)

)
q̇.

By substituting these into equation (3.3) we get the ODE in x:

L4 q := p2....
q + 3pṗ

...
q +

( 3
4 ṗ2 − 2(2(n2 + n− 12)x + β)p

)
q̈

−
(
(2(n2 + n− 3)x + β) ṗ + 6(n2 + n− 2)p

)
q̇

+
(
α2 − n(n + 1) ṗ

)
q = 0,

(3.6)

where

(3.7) α := Ba − Bb and β := Ba + Bb.

We would like to find constraints for equation L4 q = 0 with α 6= 0 to
have a polynomial solution q(x). Here g2 and g3 could be arbitrary, not
necessarily satisfying the non-degeneracy condition g3

2 − 27g2
3 6= 0.



18 CHANG-SHOU LIN AND CHIN-LUNG WANG

Suppose that q(x) is a polynomial in x of degree m ≥ 1:

q(x) = xm − s1xm−1 + s2xm−2 − · · ·+ (−1)msm,(3.8)

which satisfies

(3.9) degx L4 q(x) ≤ 1.

Then we can solve sj recursively in terms of α2, β and g2, g3.
Indeed, the top degree term xm+2 in equation (3.6) has coefficient

16m(m− 1)(m− 2)(m− 3) + 144m(m− 1)(m− 2) + 108m(m− 1)

− 16(n2 + n− 12)m(m− 1)− 24(n2 + n− 3)m

− 24(n2 + n− 2)m− 12n(n + 1)

= (m− n)
(

4m3 + (4n + 68)m2 + (8n− 101)m + 3(n + 1)
)

,

which vanishes precisely when m = n. Thus we may assume m = n.
The next order term xn+1 without the s1 factor has coefficient

−8n(n− 1)β− 12nβ = −4n(2n + 1)β,

and the coefficient of −s1xn+1 is given by

16(n− 1)(n− 2)(n− 3)(n− 4) + 144(n− 1)(n− 2)(n− 3)

+ 108(n− 1)(n− 2)− 16(n2 + n− 12)(n− 1)(n− 2)

− 24(n2 + n− 3)(n− 1)− 24(n2 + n− 2)(n− 1)− 12n(n + 1)

= −8n(2n− 1)(2n + 1).

Hence

(3.10) s1 =
β

2(2n− 1)
.

Inductively the coefficients of xn+2−i in equation (3.6) for i = 1, . . . , n
give rise to recursions to solve si in terms of β, α2 and g2, g3. Hence we get

Lemma 3.6. For i = 1, . . . , n, there is a polynomial expression

si = si(α
2, β, g2, g3) = Ciβ

i + · · ·
which is homogeneous of degree i with deg α = deg β = 1 and deg g2 = 2,
deg g3 = 3. 5 Moreover, Ci is a non-zero rational number.

There are still two remaining terms in (3.9). That is,

(3.11) L4 q = F1(α, β, g2, g3)x + F0(α, β, g2, g3).

The basic structure on the consistency equations is described by the fol-
lowing two lemmas:

5Notice that the weight, as assigned in Theorem 3.2, is twice the degree.
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Lemma 3.7. We have

F1(α, β, g2, g3) = α2G1(α, β, g2, g3) = α2((−1)n−1sn−1(α
2, β, g2, g3) + · · · ),

F0(α, β, g2, g3) = α2G0(α, β, g2, g3) = α2((−1)nsn(α
2, β, g2, g3) + · · · ).

For the remaining terms, each term of them has either g2 or g3 as a factor, hence it
has lower degree in α, β.

Proof. Equation (3.11) gives

F1(α, β, g2, g3) = (−1)n−1α2sn−1 + terms in s1, · · · , sn−2,

F0(α, β, g2, g3) = (−1)nα2sn + terms in s1, · · · , sn−1.

If α = 0 then for any β ∈ C there is an a ∈ Yn with Ba = β/2 and a
polynomial solution qa(x) = waw−a = ∏n

i=1(x − ℘(ai)) to the symmetric
product of the Lamé equation, hence a polynomial solution to L4(q) = 0.

Thus F1(0, β, g2, g3) = 0 = F0(0, β, g2, g3). Since Fi depends on α2, we
have Fi = α2Gi, i = 0, 1, for some homogeneous polynomials G0, G1 in α2,
β, g2, g3 of degree n and n− 1 respectively, and Gi’s can be written as

G1 = (−1)n−1sn−1 + · · · ,

G0 = (−1)nsn + · · · .

To see the dependence of the remaining terms on g2 and g3, we let g2 =
0 = g3, and then L4(q) ≡ α2((−1)n−1sn−1x + (−1)nsn) (mod x2) because
both p(x) = 4x3 and ṗ(x) = 12x2 vanish modulo x2. Thus we have
F1(α, β) = (−1)n−1α2sn−1 and F0(α, β) = (−1)nα2sn whenever g2 = 0 = g3.
This proves the lemma. �

Lemma 3.8. The polynomials G1 and G0 have no common factors for any g2, g3.

Proof. We consider first the special case g2 = g3 = 0. Then (3.9) becomes

16x6....
q + 144x5...

q +
(
108x4 − 8x3(2(n2 + n− 12)x + β)

)
q̈

−
(
12x2(2(n2 + n− 3)x + β) + 24x3(n2 + n− 2)

)
q̇

+
(
α2 − 12n(n + 1)x2)q ≡ 0 (mod C⊕Cx).

(3.12)

The coefficients of xn−k, k = 0, . . . , n− 2, lead to recursive equations

(3.13) (−1)k(mk sk+2 + nkβ sk+1 + α2sk) = 0,
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where the constants mk and nk are given by

mk = 16(n− (k + 2))(n− (k + 3))(n− (k + 4))(n− (k + 5))

+ 144(n− (k + 2))(n− (k + 3))(n− (k + 4))

+ (108− 16(n2 + n− 12))(n− (k + 2))(n− (k + 3))

− 24(2n2 + 2n− 5)(n− (k + 2))− 12n(n + 1)

= −4(k + 2)(2n− (k + 1))(2n− (2k + 1))(2n− (2k + 3)),

nk = (8(n− (k + 1))(n− (k + 2)) + 12(n− (k + 1)))

= 4(n− (k− 1))(n− (k + 1)).

Since k ≤ n− 2, we have mk 6= 0 and nk 6= 0.
Let γ be a non-trivial common factor of G1 and G0. Under the assump-

tion g2 = g3 = 0 we have G1 = (−1)n−1sn−1 and G0 = (−1)nsn. Then
γ and α are co-prime, because if α = 0 then sn−1(0, β) = cn−1βn−1 and
sn(0, β) = cnβn for some non-zero constants cn−1 and cn. By the recursive
equation (3.13) for k = n− 2, we have γ | sn−2(α2, β, 0, 0) too. By induction
on k for k = n− 3, . . . , 0 in decreasing order we conclude that γ | s0 = 1,
which leads to a contradiction.

For g2, g3 ∈ C, we see by Lemma 3.7 that the leading terms of G1, G0, as
polynomials in α and β, are (−1)n−1sn−1(α

2, β, 0, 0) and (−1)nsn(α2, β, 0, 0)
respectively. Since sn−1(α

2, β, 0, 0) and sn(α2, β, 0, 0) are co-prime, as we
have just seen, we conclude that G1(α, β, g2, g3) and G0(α, β, g2, g3) are also
co-prime. The proof is complete. �

Proposition 3.9. The common zeros of G1 = 0 and G0 = 0 consist of pairs of
branch points (a, b) corresponding to Lame functions of the same type. If X̄n is
non-singular, there are exactly n(n− 1) such ordered pairs (a, b)’s.

Proof. It suffices to prove the (generic) case that X̄n is non-singular, namely
the case that all the Lamé functions are distinct. The general case follows
from the non-singular case by a limiting argument.

For any two Lamé functions wa, wb of the same type (cf. §2.1), it is easy
to see that we may arrange the representatives of a and b so that equations
(3.2) holds. It follows that q := qa,−b = q−a,b (cf. (3.4)) is an even elliptic
function solution to equation (3.3), or equivalently q(x) is a polynomial
solution to L4 q(x) = 0 in variable x = ℘(z).

From the above discussion, (α, β) must be a common root of G1 and G0
(where α = Ba− Bb, β = Ba + Bb). By Lemma 3.6 and 3.7, we have deg G1 =
n− 1 and deg G0 = n and G1, G0 are co-prime to each other by Lemma 3.8.
Hence by Bezout theorem there are at most n(n− 1) common zeros.

On the other hand, the number of such ordered pairs can be determined
by Proposition 2.2. Indeed, if n = 2k then we have

(k + 1)k + 3k(k− 1) = 4k2 − 2k = n(n− 1)
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such pairs. If n = 2k + 1, the number of pairs is given by

k(k− 1) + 3(k + 1)k = 4k2 + 2k = n(n− 1).

Hence in all cases the number of ordered pairs coming from the Lamé func-
tions of the same type agrees with the Bezout degree of the polynomial sys-
tem defined by G1 = 0 = G0. Thus these n(n− 1) pairs form the zero locus
as expected (and there is no infinity contribution). �

The above discussions from Lemma 3.5 to Proposition 3.9 constitute a
complete proof to Theorem 3.3. Here is a summary: we already know that
Q in (3.5) is an even elliptic function with singularity only at 0 ∈ E. Thus

Q(x) = c
n

∏
i=1

(℘(z)− ℘(ci)) =: c
n

∏
i=1

(x− xi)

is a polynomial solution to the ODE (3.6) with α = Ba − Bb, β = Ba + Bb.
Since α = Ba − Bb 6= 0, by Lemma 3.7 (α, β) must be a common root of

G1(α, β) = 0 = G0(α, β). Then Proposition 3.9 says that (α, β) is pair of
Lamé functions of the same type. This proves Theorem 3.3.

For future reference, we summarize the results into the following state-
ment on a fourth order ODE which arises from the tensor product of two
different Lamé equations with the same parameter n ∈N.

Theorem 3.10. Let I(z) = n(n + 1)℘(z). The fourth order ODE

(3.14) q′′′′(z)− 2(I + β)q′′(z)− 6I′q′(z) + (α2 − 2I′′)q(z) = 0

with α 6= 0 has an elliptic function solution q if and only if (α, β) is common zero
to G0(α, β) = 0 and G1(α, β) = 0. Moreover, this solution q must be even.

Example 3.11. For n = 2, β = Ba + Bb, α = Ba − Bb, we have

s1 = 1
6 β, s2 = 1

36 β2 + 1
72 α2 − 1

4 g2.

The first compatibility equation from x1 is

s1(α
2 + 36g2)− 6βg2 = 0.

After substituting s1 we get

(3.15) 1
6 α2β = 0.

The second compatibility equation from x0 is

s2(α
2 + 6g2)− s1(βg2 + 24g3) + 4βg3 +

3
2 g2

2 = 0.

By substituting s1, s2 and noticing the (expected) cancellations we get

(3.16) α2( 1
36 β2 + 1

72 α2 − 1
6 g2) = 0.

If Ba 6= Bb then (3.15) implies that Bb = −Ba and then (3.16) leads to

B2
a = 3g2 =⇒ ℘(a1) + ℘(a2) = ±

√
g2/3.
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By Example 2.3 (2), such a ∈ X̄2 lies in the branch loci of the Lamé curve.
In particular, a, b ∈ σ−1

2 (0). Denote by ℘(±q±) = ±
√

g2/12. Then a :=
{q+,−q+} 6= b := {q−,−q−} unless g2 = 0. When g2 6= 0, z2 fails to
distinguish the two points a and b. When g2 = 0 (equivalently τ = eπi/3),
a = b becomes a singular branch point for σ2 : X̄2 → Eτ.

Example 3.12. For n = 3, β = Ba + Bb, α = Ba − Bb. Then

s1 = 1
10 β,

s2 = 1
600 (4β2 + α2 − 150g2),

s3 = 1
3600 (2β3 + 3α2β− 120βg2 + 900g3).

The two compatibility equations from x1 and x0 are

0 = 1
600 α2(4β2 + α2 + 60g2),

0 = 1
3600 α2(2β3 + 3α2β− 90βg2 + 540g3).

If α 6= 0 then α2 = −4β2 − 60g2 and the second equation becomes

β3 + 27g2β− 54g3 = 0.

It is clear that there are only finite solutions (Ba, Bb)’s to this, though it may
not be so straightforward to see that these 6 solution pairs (for generic tori)
come from the branch loci as proved in Proposition 3.9.

3.3. Second proof to Theorem 3.3.

Proof. Following the definition of qa,−b(z) in (3.4), we now consider the odd
elliptic solution to equation (3.3) (= equation (3.14)) instead:

q(z) := 1
2 (qa,−b(z)− q−a,b(z)).

The function q(z) has a pole of order 3 + 2l at 0 ∈ E with l ≤ n− 2. Thus
q(z)/℘′(z) is an even elliptic function with the only pole at 0 since q( 1

2 ωi) =
0 for 1 ≤ i ≤ 3. If q(z) does not vanish completely, then

q(z) = c℘′(z)
l

∏
i=1

(℘(z)− ℘(ci)) =: c℘′(z) f (℘(z)),

where f (x) = ∏l
i=1(x− ℘(ci)) = xl − s1xl−1 + · · ·+ (−1)lsl .

Equation (3.14) now reads as

q′′′′(z)− 2(β + 2n(n + 1)℘(z))q′′(z)

− 6n(n + 1)℘′(z)q′(z) + (α2 − 2n(n + 1)℘′′(z))q(z) = 0.
(3.17)

By straightforward calculations, we get derivatives of q in terms of deriva-
tives of ℘(z) and f ′(x). For example,

q′(z) = ℘′′(z) f (x) + ℘′(z)2 f ′(x),

q′′(z) = ℘′′′(z) f (x) + 3℘′′(z)℘′(z) f ′(x) + ℘′(z)3 f ′′(x), etc.
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Then (3.17) is equivalent to

f (x)
(
(360− 96n(n + 1))x2 − 24βx + (4n(n + 1)− 18)g2 + α2

)
+ f ′(x)

(
(1320− 96n(n + 1))x3 − 36βx2

+ (12n(n + 1)− 150)g2x + (6n(n + 1)− 60)g3 + 3βg2

)
+ f ′′(x)

(
(1020− 16n(n + 1))x4 − 8βx3 + (4n(n + 1)− 210)g2x2

+ (2βg2 + (4n(n + 1)− 120)g3)x + 2βg3 +
15
4 g2

2

)
+ f ′′′(x)(60x2 − 30g2)(4x3 − g2x− g3)

+ f ′′′′(x)(4x3 − g2x− g3)
2 = 0.

By comparing the coefficients of xl+2, we obtain

(360− 96n(n + 1)) + l(1320− 96n(n + 1)) + l(l − 1)(1020− 16n(n + 1))

+ 240l(l − 1)(l − 2) + 16l(l − 1)(l − 2)(l − 3) = 0.

After simplification, this is reduced to

4n(n + 1) = (2l + 3)(2l + 5),

which obviously leads to a contradiction since the number in the right-
hand side is odd while the number in the left-hand side is even. Therefore
we must have q ≡ 0 from the beginning. That is, {ai,−bi} = {−ai, bi}.

If one of a, b does not correspond to a Lamé function, say a ∈ Xn, then
{ai} ∩ {−ai} = ∅ by §0.1.2 (iii) and we conclude that {ai} = {bi}. Other-
wise a and b correspond to Lamé functions of the same type. �

3.4. The degree of the rational function zn.

Theorem 3.13. The structure of the map zn : X̄n → P1(C) over ∞ ∈ P1(C) is
analytically equivalent to σn : X̄n → E over 0. In particular it has the same degree
as the one for σn, namely deg zn = deg σn = 1

2 n(n + 1).

Proof. By definition, z−1
n (∞) = σ−1

n (0) as sets. So the crucial point is to
compare the ramification structures of X̄n → E at 0 ∈ E and X̄n → P1(C)
at ∞ ∈ P1(C). Let a ∈ X̄n with σn(a) = 0. Then for b = {bi}n

i=1 ∈ X̄n in a
small analytic neighborhood of a we have bi 6= 0 all i.

If a 6= 0n, then every bi is away from 0 and

(zn(b))−1 =
(

ζ(σn(b))−
n

∑
i=1

ζ(bi)
)−1

= σn(b) + o(σn(b)).

In terms of the coordinate of P1(C) at ∞, the map zn near a 6= 0n is seen to
be analytically equivalent to σn.
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At a = 0n, we compute the expansion of (zn(b))−1 as

σn(b)
σn(b)ζ(σn(b))− σn(b)∑n

i=1 ζ(bi)
= σn(b)

(
1 + σn(b)

n

∑
i=1

ζ(bi) + O(σ4
n(b))

)
.

The tangent direction (ti) at 0n is related to (bi) through the asymptotic

ti|B|1/2 ∼ −1/bi

(cf. [1, Proposition 7.5] and the proof therein). Hence

lim
b→0

σn(b)
n

∑
i=1

ζ(bi) =
n

∑
i=1

t−1
i

n

∑
i=1

ti =: Λn.

The precise value of Λn follows from Proposition 1.5:

Λn =
en−1e1

en
= 1

2 n(n + 1) 6= −1.

Hence (zn(b))−1 = (1 + Λn)σn(b) + o(σn(b)) and we again have the ana-
lytic equivalence (up to a constant multiple).

In particular, deg zn = deg σn = 1
2 n(n + 1) by Theorem 0.2. �

4. PRE-MODULAR FORMS Zn(σ; τ)

Pre-modular forms are defined in Definition 0.1. Since the Hecke func-
tion is pre-modular of weight one, Theorem 3.2 then implies

Corollary 4.1. Zn(σ; τ) := Wn(Z)(σ; τ) is pre-modular of weight 1
2 n(n + 1),

with Z, ℘(σ), ℘′(σ), g2, g3 being of weight 1, 2, 3, 4, 6 respectively.

4.1. The completion of the proof to Theorem 0.4.
We call the 2n + 1 branch points a ∈ Yn \ Xn trivial critical points since

a = −a and the Green equation (0.5) holds trivially. They satisfy a nice
compatibility condition with the case n = 1 under the addition map:

Lemma 4.2. Let a = {a1, · · · , an} ∈ Yn be a solution to the Green equation
∑n

i=1∇G(ai) = 0. Then a is trivial, i.e. a = −a, if and only if σn(a) ∈ E[2].

Proof. If a is trivial, then σn(a) ∈ E[2] clearly. If a is non-trivial, i.e. a ∈ Xn,
by equations (1.5), it gives rise to a type II developing map f with

f (z + ω1) = e−4πi ∑i si f (z), f (z + ω2) = e4πi ∑i ri f (z).

Here ai = riω1 + siω2 for i = 1, . . . , n.
If σn(a) ∈ E[2], then both exponential factors reduce to one and we con-

clude that f (z) is an elliptic function on E. Notice that the only zero of f ′(z)
is at z = 0 which has order 2n, and the only poles of f ′(z) are at−ai of order
2, i = 1, . . . , n. This forces that σn(a) = 0 and

f ′(z) = ∑n
j=1 Ej℘(z + aj) + C1
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for some constants E1, . . . , En and C1, since f ′ is residue free. Then

f (z) = −∑n
j=1 Ejζ(z + ai) + C1z + C2

for some constant C2. But f (z) is elliptic, which implies that C1 = 0 and
∑n

j=1 Ej = 0. Now f 2k−1(0) = 0 for k = 1, . . . , n leads to a system of linear
equations in Ej’s (c.f. [1, Lemma 2.3.1]):

∑n
j=1 ℘

k(aj)Ej = 0, k = 1, . . . , n.

Then ℘(ai) 6= ℘(aj) for i 6= j forces that Ej = 0 for all j. This is a contradic-
tion and we conclude that σn(a) 6∈ E[2]. �

The following theorem completes the proof to Theorem 0.4:

Theorem 4.3 (Extra critical points versus non-trivial zeros of Zn(σ; τ)).
(i) Given σ0 ∈ Eτ \ Eτ[2] with Zn(σ0; τ) = 0, there is a unique a ∈ Xn such

that σn(a) = σ0 and zn(a) = Z(σ0).
(ii) Conversely, if a ∈ Xn and zn(a) = Z(σ(a)) then Zn(σ(a); τ) = 0 and

σn(a) 6∈ Eτ[2].

Proof. (i) For any given σ0, by substituting σ with σ0 in Wn(z), we get a
polynomial Wn,σ0(z) of degree 1

2 n(n + 1). Since Wn(z) is the minimal poly-
nomial of the rational function zn ∈ K(X̄n) over K(E), those zn(a) with
a ∈ X̄n and σn(a) = σ0 give rise to all the roots, counted with multiplicities,
of Wn,σ0(a) = 0.

Now Z(σ0) is a root of Wn,σ0(z) = 0 with σ0 6∈ E[2], hence there is a point
a ∈ Xn which corresponds to it. That is, Z(σ0) = zn(a) with σn(a) = σ0,
and a is unique by Theorem 3.3. Notice that if a ∈ X̄n \Xn then a = −a and
then σn(a) ∈ E[2]. So we must have a ∈ Xn.

(ii) It is clear that Zn(σ(a)) = Wn(Z(σ(a)) = Wn(zn(a)) = 0. Since
a ∈ Xn, by equation (3.1) we have ∑n

i=1∇G(ai) = 0. But since a is non-
trivial, Lemma 4.2 implies that σn(a) 6∈ E[2]. �

4.2. Monodromy aspects.
We present below an extended version of Theorem 0.4 in terms of mon-

odromy groups of Lamé equations. The original case of mean field equations
corresponds to the case with unitary monodromy.

Let a = {a1, · · · , an} ∈ Xn, Ba = (2n− 1)∑n
i=1 ℘(ai) and wa, w−a be the

independent ansatz solutions (0.7) to w′′ = (n(n + 1)℘(z) + Ba)w. From
equations (1.4), one calculates that the monodromy matrices are given by(

wa
w−a

)
(z + ω1) =

(
e−2πis 0

0 e2πis

)(
wa

w−a

)
(z),(

wa
w−a

)
(z + ω2) =

(
e2πir 0

0 e−2πir

)(
wa

w−a

)
(z),

(4.1)
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where the two numbers r, s ∈ C (mod Z) are uniquely determined by

(4.2) rω1 + sω2 = σ(a) =
n

∑
i=1

ai, rη1 + sη2 =
n

∑
i=1

ζ(ai).

The system is non-singular by the Legendre relation ω1η2 −ω2η1 = −2πi .
The next lemma extends Lemma 4.2:

Lemma 4.4. Let a ∈ Xn with (r, s) given by (4.2). Then (r, s) 6∈ 1
2 Z2.

Proof. If (r, s) ∈ 1
2 Z2 then f := wa/w−a is elliptic by equations (4.1). Since

f ′ =
w′aw−a − waw′−a

w2
−a

=
C

w2
−a

,

we find that z = 0 is the only zero of f ′(z) in E, which has order 2n. The
proof of Lemma 4.2 for this f goes through and leads to a contradiction. �

Now we consider Zr,s(τ) in (0.10) but with r, s,∈ C, and define

(4.3) Zn; r,s(τ) := Wn(Zr,s)(r + sτ; τ), r, s ∈ C.

It reduces to Zn(σ; τ) for σ = r + sτ when r, s ∈ R (see [2] for its role in the
isomonodromy problems and Painleve VI equations).

By substituting Zn(σ; τ) with Zn;,r,s(τ) and using Lemma 4.4 in place of
Lemma 4.2, the proof of Theorem 4.3 also leads to:

Theorem 4.5. Let r, s ∈ C. Then any non-trivial solution τ to Zn; r,s(τ) = 0,
i.e. with r + sτ (mod Λτ) 6∈ Eτ[2], corresponds to an a = (a1, . . . , an) ∈ Cn

such that a (mod Λτ) ∈ Xn(τ) and
n

∑
i=1

ai = r + sτ,
n

∑
i=1

ζ(ai; τ) = rη1(τ) + sη2(τ).

Equivalently, by equations (4.2), the Lame equation w′′ = (n(n + 1)℘(z; Λτ) +
Ba)w has its monodromy representation given by equations (4.1).

We leave the straightforward justifications to the interested readers.

5. AN EXPLICIT DETERMINATION OF Zn

From the equations of X̄n ⊂ SymnE (cf. (1.2)) and the recursively defined
algebraic formula for the addition map En → E, in principle it is possible to
compute Wn and hence Zn by elimination theory (cf. [8]). However we shall
present a more direct approach on this to reveal more structures inside it.

5.1. Comparisons with the Hermite–Krichever ansatz.
Besides the Hermite–Halphen ansatz (0.7), there is another ansatz, the

Hermite–Krichever ansatz, which can also be used to construct solutions to
the integral Lamé equation (0.6). It takes the form

(5.1) ψ(z) :=
(

U(℘(z)) + V(℘(z))
℘′(z) + ℘′(a0)

℘(z)− ℘(a0)

)σ(z− a0)

σ(z)
e(ζ(a0)+κ)z,
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where U(x) and V(x) are polynomials in x, the point a0 ∈ C \ Λ, and
κ ∈ C is a constant. As usual, we set (x, y) = (℘(z),℘′(z)) and (x0, y0) =
(℘(a0),℘′(a0)) to be the corresponding algebraic coordinates.

The ansatz (5.1) makes sense since ψ only has poles at z = 0. The two
poles at z = ±a0 from (℘(z)−℘(a0))−1 cancel with the zeros from σ(z− a0)
and ℘′(z) + ℘′(a0). In order for ordz=0 ψ(z) = −n, we must have

Lemma 5.1 (Degree constraints).

(i) If n = 2m with m ∈N then deg U ≤ m− 1 and deg V = m− 1.
(ii) If n = 2m + 1 with m ∈N∪ {0} then deg U = m and deg V ≤ m− 1.

By an obvious normalization, in case (i) we may assume that

U(x) =
m−1

∑
i=0

uixi, V(x) =
m−1

∑
i=0

vixi with vm−1 = 1,

and in case (ii) we assume that U(x) = ∑m
i=0 uixi with um = 1 and V(x) =

∑m−1
i=0 vixi. In both cases, the requirement that ψ(z) satisfies equation (0.6)

leads to recursions on ui’s and vi’s. It turns out to be convenient to work
with coordinates (B, κ, x0, y0) to parametrize ui’s and vi’s, and this was car-
ried out by Maier in [12, §4]. The following is a summary:

In case (i) the recursion determines vi (vm−1 = 1) and then ui for i =
m− 1, m− 2, . . . in descending order. In case (ii) it starts with um = 1 and
determines vi and then ui for i = m− 1, m− 2, . . . also in descending order.

There are two compatibility equations coming from

u−1(B, κ, x0, y0) = 0 and v−1(B, κ, x0, y0) = 0.

The two parameters x0, y0 satisfy y2
0 = 4x3

0− g2x0− g3. Hence there are four
variables (B, κ, x0, y0) ∈ C4 which are subject to three polynomial equa-
tions. By taking into account the limiting cases with (x0, y0) = (∞, ∞), this
recovers the Lame curve Ȳn (which is denoted by Γ` in [12] with ` = n).

There are four natural coordinate projections (rational functions) Ȳn →
P1(C), namely B, κ, x0 and y0 respectively. The first one B : Ȳn → P1(C) is
simply the hyperelliptic structure map. The main result in [12] is an explicit
description of the other 3 maps in terms of the coordinates (B, C) on Ȳn. To
state it we need to first recall some variants of Lamé polynomials.

Definition 5.2. [12, Definition 3.2, 3.4, 3.6]

(1) The twisted Lamé polynomials ltj(B), j = 0, 1, 2, 3 are monic poly-
nomials whose zeros correspond to solutions to (0.6) given by the
Hermite–Krichever ansatz with κ 6= 0 and a0 = 0, 1

2 ω1, 1
2 ω2, 1

2 ω3
respectively, i.e. (x0, y0) = (∞, ∞), (e1, 0), (e2, 0), (e3, 0) respectively.

(2) The theta-twisted polynomial lθ(B) is the monic polynomial whose
roots correspond to the case κ = 0 and a0 6∈ E[2]. (For κ = 0 and
a0 ∈ E[2] they correspond to the ordinary Lamé polynomials li(B)’s.)
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Theorem 5.3 ([12, Theorem 4.1]). For all n ∈N and i ∈ {1, 2, 3},

x0(B) = ei +
4

n2(n + 1)2
li(B)lti(B)2

l0(B)lt0(B)2 ,

y0(B, C) =
16

n3(n + 1)3
C
cn

lt1(B)lt2(B)lt3(B)
l0(B)2lt0(B)3 ,

κ(B, C) = − (n− 1)(n + 2)
n(n + 1)

C
cn

lθ(B)
l0(B)lt0(B)

.

(5.2)

The formula for x0(B) is valid for all three choices of i.
All the factors lie in Q[e1, e2, e3, g2, g3, B] and are monic in B. They are homo-

geneous with degrees of B, ei, g2, g3 being 1, 1, 2, 3 respectively.

As a simple consistency check, we have C2 = `n(B) by Proposition 2.2.

Remark 5.4. In [12] ν = C/cn is used instead.
The polynomials l0(B), li(B) (i = 1, 2, 3) are written there as LI

`(B; g2, g3),
LI I
` (B; ei, g2, g3), called the Lamé spectral polynomials, where ` = n.
The polynomials lt0(B), lti(B) (i = 1, 2, 3) are written there as LtI

`(B; g2, g3),
LtI I

` (B; ei, g2, g3), called the twisted Lamé polynomials.
Also lθ(B) is written there as Lθ`(B; g2, g3).

The compatibility equations from the recursive formulas for these special
cases give rise to explicit formulas for ltj(B)’s and lθ(B)’s. Tables for lt0(B),
lθ(B) up to n = 8, and for lti(B) up to n = 6, are given in [12, Table 5, 6].

Example 5.5. We recall Maier’s formulas for ltj(B) and lθ(B) for n ≤ 4.
(1) First of all, lθ(B) = 1 for n ≤ 3. For n = 4,

lθ(B) = B2 − 193
3 g2.

Also for n = 1, ltj(B) = 1 for all j.
(2) n = 2: lt0(B) = 1, lti(B) = B− 6ei for i = 1, 2, 3.
(3) n = 3: lt0(B) = B2 − 75

4 g2, and for i = 1, 2, 3,

lti(B) = B2 − 15eiB + 75
4 g2 − 225e2

i .

(4) n = 4: lt0(B) = B3 − 343
4 g2B− 1715

2 g3. For i = 1, 2, 3,

lti(B) = B4 − 55eiB3 + ( 539
4 g2 − 945e2

i )B2

+ (1960eig2 + 2450g3)B + 61740e2
i g2 − 68600eig3 − 9261g2

2.

To apply Theorem 5.2, we need to compare the projection map

(5.3) πn : Ȳn → E, a 7→ πn(a) := a0.

with the addition map σn : Ȳn → E. They turn out to be the same!

Theorem 5.6. πn(a) = σn(a). Moreover, κ(a) = −zn(a).
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Proof. During the proof we view ai ∈ C instead of its image [ai] ∈ E.
Let a ∈ Yn. The two expressions (0.7) and (5.1), which correspond to

the same solution to the Lamé equation (0.6), must be proportional to each
other by a constant. Hence we get

κ(a) =
n

∑
i=1

ζ(ai)− ζ(a0).

Recall that zn(a) = ζ(σn(a))−∑n
i=1 ζ(ai). Then

(5.4) zn(a) + κ(a) = ζ(σn(a))− ζ(a0).

As a well-defined meromorphic function on Ȳn, we conclude that

a0(a) = σn(a) + c

for some constant c ∈ C. Consider a point a ∈ Yn \ Xn with σn(a) = 1
2 ω1,

i.e. l1(Ba) = 0. Such an a exists by Proposition 2.2. Then zn(a) = 0 trivially.
We also have κ(a) = 0 by Theorem 5.2 since

C2
a = c2

nl0(Ba)l1(Ba)l2(Ba)l3(Ba) = 0

(again by Proposition 2.2). So equation (5.4) implies 0 = 1
2 η1 − ζ( 1

2 ω1 + c),
and hence c = 0. This proves σn(a) = a0, which represents πn(a) in E, and
also κ(a) = −zn(a). The proof is complete. �

5.2. Effective construction and explicit formulas for Zn, n ≤ 4.
Now we describe an explicit construction, based on Theorem 5.3, of the

polynomial Wn(z) in Theorem 3.2. It is an application of elimination theory
using resultants.

By Theorem 5.3 and Theorem 5.6, we may eliminate C to get

(5.5)
y0

zn
=

16
n2(n + 1)2(n− 1)(n + 2)

lt1(B)lt2(B)lt3(B)
l0(B)lt0(B)2lθ(B)

,

which leads to a polynomial equation g = 0 for

(5.6) g := z
3

∏
i=1

lti(B)− y0
n2(n + 1)2(n− 1)(n + 2)

16
l0(B)lt0(B)2lθ(B).

On the other hand, the three rational expressions of x0 lead to f = 0 for

f :=
1
3

3

∑
i=1

li(B)lti(B)2 − x0
n2(n + 1)2

4
l0(B)lt0(B)2

= li(B)lti(B)2 − (x0 − ei)
n2(n + 1)2

4
l0(B)lt0(B)2, i ∈ {1, 2, 3}.

(5.7)

Notice that f , g are polynomials in g2, g3 (and B, x0, y0) instead of in ei’s.
Let R( f , g; B) be the resultant of the two polynomials f and g arising from

the elimination of the variable B. Standard elimination theory (see e.g [8,
Chapter 5]) implies that R( f , g; B) gives the equation defining the branched
covering map σn : Ȳn → E outside the loci C = 0:
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Proposition 5.7. R( f , g; B)(z) = λnWn(z) ∈ Q[g2, g3, x0, y0][z], where λn =
λn(g2, g3, x0, y0) is independent of z.

In particular, the pre-modular form Zn(σ; τ) = Wn(Z)(σ; τ) can be ex-
plicitly computed for any n ∈N by way of R( f , g; B).

In practice, such a computation is time consuming even using computer.
In the following, we apply it to the initial cases up to n = 4. As before we
denote x0 = ℘(σ) =: ℘ and y0 = ℘′(σ) =: ℘′.

Example 5.8. For n = 2, it is easy to see that

f = B3 − 9℘B2 + 27(g2℘+ g3),

g = zB3 − 9℘′B2 − 9zg2B + 27(g2℘
′ − 2zg3).

The resultant R( f , g; B) is calculated by the 6× 6 Sylvester determinant:∣∣∣∣∣∣∣∣∣∣∣∣

1 −9℘ 0 27(g2℘+ g3) 0 0
0 1 −9℘ 0 27(g2℘+ g3) 0
0 0 1 −9℘ 0 27(g2℘+ g3)
z −9℘′ −9zg2 27(g2℘

′ − 2zg3) 0 0
0 z −9℘′ −9zg2 27(g2℘

′ − 2zg3) 0
0 0 z −9℘′ −9zg2 27(g2℘

′ − 2zg3)

∣∣∣∣∣∣∣∣∣∣∣∣
.

A direct evaluation gives

R( f , g; B)(z) = −39∆(℘′)2(z3 − 3℘z− ℘′).

Here ∆ = g3
2 − 27g2

3 is the discriminant. This gives W2(z) = z3 − 3℘z− ℘′

and Z2(σ; τ) = W2(Z) = Z3 − 3℘Z− ℘′.

Example 5.9. For n = 3, we have

f = 16B6 − 576B5℘+ 360B4g2 + 5400B3(5g3 + 4g2℘)

− 3375B2g2
2 − 84375∆− 101250Bg2(3g3 + 2g2℘),

g = 16B6z− 1440B5℘′ − 1800B4g2z + 54000B3(g2℘
′ − g3z)

− 16875B2g2
2z− 506250Bg2

2℘
′ + 421875∆z.

It takes a couple seconds to evaluate the corresponding 12× 12 Sylvester
determinant (in Mathematica) to get

R( f , g; B)(z) = 236327530∆5(℘′)4W3(z),

where W3(z) is given by

W3(z) = z6 − 15℘z4 − 20℘′z3 + ( 27
4 g2 − 45℘2)z2 − 12℘℘′z− 5

4℘
′2.

It seems impractical to compute this resultant by hand.

Both Z2 and Z3 are known to Dahmen [3]. Here is a new example:

Example 5.10. For n = 4, the expansions of the polynomials f and g, as
given in (5.7) and (5.6) by a direct substitution, are already too long to put
here. Nevertheless, a couple hours Mathematica calculation gives

R( f , g; B)(z) = −280363560763∆18(℘′)8W4(z),
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where W4(z) is the degree 10 polynomial:

W4(z) = z10 − 45℘z8 − 120℘′z7 + ( 399
4 g2 − 630℘2)z6 − 504℘℘′z5

− 15
4 (280℘3 − 49g2℘− 115g3)z4 + 15(11g2 − 24℘2)℘′z3

− 9
4 (140℘4 − 245g2℘

2 + 190g3℘+ 21g2
2)z

2

− (40℘3 − 163g2℘+ 125g3)℘
′z + 3

4 (25g2 − 3℘2)(℘′)2.

(5.8)

The weight 10 pre-modular form Z4(σ; τ) is then obtained.

5.3. Remarks on rationality and singularities of the Lamé curve.
We have constructed two affine curves from X̄n. One is the hyperelliptic

model Yn = {(B, C) | C2 = `n(B)}, another one is Y′n := {(x0, y0, z) | y2
0 =

4x2
0 − g2x0 − g3, Wn(x0, y0; z) = 0} which is a degree 1

2 n(n + 1) branched
cover of the original curve E = {(x0, y0) | y2

0 = 4x3
0 − g2x0 − g3} under the

projection σ′n : Y′n → E with defining equation Wn(z) = 0.
The curve Yn is birational to Y′n over E, namely the addition map σn :

Yn → E is compatible with σ′n : Y′n → E. Notice that both `n and Wn have
coefficients in Q[g2, g3]. The explicit birational map φ : (B, C) 99K (x0, y0, z)
(given in Theorem 5.3 and 5.6 via zn = −κ) also has coefficients in Q[g2, g3].
This implies that φ is defined over Q. Moreover φ extends to a birational
morphism

Ȳn ∼= X̄n
φ

//

σn

##

Ȳ′n
σ′n

��
E

by identifying σ−1
n (0E) with z−1

n (∞). The morphism φ is an isomorphism
outside those branch points for Yn → P1(C) (i.e. C = 0). In particular, the
non-isomorphic loci lie in zn = 0 by formulas (5.2) and Theorem 5.6.

Remark 5.11. In contrast to the smoothness of Yn(τ) for general τ, for all
n ≥ 3 the model Y′n(τ) is singular at points z = 0 = y0 (and hence x0 = ei
for some i). Indeed from (5.2) this is equivalent to C = 0 and li(B)lti(B)2 =
0 for some 1 ≤ i ≤ 3. For n = 2, there is only one solution B for each
fixed i (cf. Example 5.5). However, for n ≥ 3 there are more than one
such solutions B. These points (B, 0) ∈ Yn are collapsed to the same point
(x0, y0, z) = (ei, 0, 0) ∈ Y′n under φ, thus (ei, 0, 0) is a singular point of Y′n.

For n = 3, 4 this is easily seen from the equation Wn(z) = 0 given above
since it contains a quadratic polynomial in (z,℘′) as its lowest degree terms.

In particular, the birational map φ−1 is also represented by rational func-
tions B = B(x0, y0, z) and C = C(x0, y0, z) with coefficients in Q[g2, g3] and
with at most poles along z = 0. In principle such an explicit inverse can
be obtained by a Groebner basis calculation associated to the ideal of the
graph Γφ. The following statement is clear from the above description:
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Proposition 5.12. Let E be defined over Q, i.e. g2, g3 ∈ Q. Then the Lamé curve
Ȳn is also defined over Q for all n ∈ N. Moreover, Ȳ′n and all the morphisms
σn, σ′n, φ are also defined over Q.

A rational point (B, C) ∈ Ȳn is mapped to a rational point (x0, y0, z) ∈ Ȳ′n
by φ. For the converse, given (x0, y0) ∈ E(Q), a point (x0, y0, z) in the σ′n-fiber
gives a unique (B, C) ∈ Ȳn(Q) if z ∈ Q and (x0, y0, z) 6= (ei, 0, 0) for any i.

Remark 5.13. It is well known that there are only few (i.e. at most finite) ra-
tional points on a non-elliptic hyperelliptic curve. This phenomenon is con-
sistent with the irreducibility of the polynomial Wn(z) over K(E) in light of
Hilbert’s irreducibility theorem that there is an infinite (Zariski dense) set
of (g2, g3, x0, y0) ∈ Q4 so that the specialization of Wn(z) over there are all
irreducible. Nevertheless, it might be interesting to see if zn plays any role
in the study of rational points.

Remark 5.14. It was proved in [12, Proposition 3.2] that a Lamé curve is either
smooth or nodal, and there is at most one node. The proof relies on the degree
formula deg πn = 1

2 n(n + 1) = deg κ which was quoted as a significant
formula from finite-band integration theory without explicit references in [12,
p.1139] . While this might be well-known to experts in this field, we want
to point out that it also follows from Theorem 5.6 and our degree formula
deg σn = 1

2 n(n + 1) = deg zn in Theorem 2.4 and Theorem 3.13.

APPENDIX A. A COUNTING FORMULA FOR LAMÉ EQUATIONS

By You-Cheng Chou 6

Using the pre-modular forms constructed in §4 and §5, we verify the
n = 4 case of Dahmen’s conjectural counting formula [3, Conjecture 73] for
integral Lamé equations with finite monodromy. It is known that the finite
monodromy group is necessarily a dihedral group.

For N ∈ N we denote by φ(N) := #{k ∈ Z | gcd(k, N) = 1, 0 ≤ k < N}
the Euler function and we set φ(N) = 0 if N 6∈ N. Similarly we define
Ψ(N) := #{(k1, k2) | gcd(k1, k2, N) = 1, 0 ≤ ki < N}.

A.1. Dahmen’s conjecture.
Let Ln(N) be the number of Lamé equations w′′ = (n(n + 1)℘(z) + B)w,

up to linear equivalence, which has finite monodromy group isomorphic
to the dihedral group DN . Using the Hermite–Halphen ansatz (0.7) and the
theory in §4, the problem is reduced to the zero counting of the following
SL(2, Z) modular form

Mn(N) := ∏
0≤k1,k2<N

gcd(k1,k2,N)=1

Zn

( k1 + k2τ

N
; τ
)

.

6Taida Institute for Mathematical Sciences (TIMS), National Taiwan University, Taipei,
Taiwan. Email: b99201040@ntu.edu.tw
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Using this, by repeating Dahmen’s argument in [3, Lemma 65, 74], we get

Proposition A.1. Suppose that for all N ∈ Z≥3 and n ∈N we have that

ν∞(Mn(N)) = anφ(N) + bnφ
(N

2

)
,

where a2m = a2m+1 = m(m + 1)/2, b2m = b2m−1 = m2. Then

Ln(N) = 1
2

(
n(n + 1)Ψ(N)

24
−
(

anφ(N) + bnφ
(N

2

)))
+ 2

3 εn(N),

where εn(N) = 1 if N = 3 and n ≡ 1 (mod 3), and εn(N) = 0 otherwise.
Furthermore, Zn(σ; τ) with σ a torsion point has only simple zeros in τ ∈H.

Proof. Recall the formula for SL(2, Z) modular forms of weight k:

∑
P 6=∞, i, ρ

νP( f ) + ν∞( f ) +
νi( f )

2
+

νρ( f )
3

=
k

12
.

The modular form f = Mn(N) has weight k = 1
2 n(n + 1)Ψ(N). Notice

that the counting is always doubled under the symmetry (k1, k2) → (N −
k1, N − k2), thus by [3, Lemma 65] an upper bound for Ln(N) is given by

Un(N) := 1
2

(
n(n + 1)Ψ(N)

24
−
(

anφ(N) + bnφ
(N

2

)))
+ 2

3 εn(N).

That is, Ln(N) ≤ Un(N). Moreover, the equality holds if and only if each
factor Zn((k1 + k2τ)/N; τ) has only simple zeros.

We will show the equality holds by comparing it with the counting for-
mula for the projective monodormy group PLn(N) (cf. [3, Lemma 74]).

We recall the relation between Ln(N) and PLn(N):

PLn(N) =

{
Ln(N) + Ln(2N) if N is odd,
Ln(2N) if N is even.

If n is even and N is odd, we have
PLn(N) = Ln(N) + Ln(2N)

≤ 1
2

(
n(n + 1)Ψ(N)

24
−
( n

2 (
n
2 + 1)
2

φ(N) +
n2

4
φ
(N

2

)))
+ 2

3 εn(N)

+ 1
2

(
n(n + 1)Ψ(2N)

24
−
( n

2 (
n
2 + 1)
2

φ(2N) +
n2

4
φ(N)

))
+ 2

3 εn(2N)

=
n(n + 1)

12
(Ψ(N)− 3φ(N)) + 2

3 εn(N)

For the last equality, we use εn(2N) = 0, Ψ(2N) = 3Ψ(N) and φ(2N) =
φ(N). (If N is even, the relations are εn(N) = 0, Ψ(2N) = 4Ψ(N) and
φ(2N) = φ(N).) For the other three cases with (n, N) being (even, even),
(odd, odd) or (odd, even), the computations are similar. They lead to

PLn(N) ≤ n(n + 1)
12

(Ψ(N)− 3φ(N)) + 2
3 εn(N).
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On the other hand, using the method of dessin d’enfants, Dahmen showed
directly that the equality holds [4]. Thus all the intermediate inequalities
are indeed equalities, and in particular Ln(N) = Un(N) holds. �

A.2. q-expansions for some modular forms.
Recall that

∑
m∈Z

1
(m + z)k =

1
(k− 1)!

(−2πi)k
∞

∑
n=1

nk−1e2πinz,

∑
n∈Z

1
(x + n)2 = π2 cot2(πx) + π2,

∑
n∈Z

1
(x + n)3 = π3 cot3(πx) + π3 cot(πx).

We compute the q-expansions for g2, g3,℘,℘′, Z, where q = e2πiτ:

g2 = 60 ∑
(n,m) 6=(0,0)

1
(n + mτ)4 = 60

(
2ζ(4) + 2

(−2πi)4

3!

∞

∑
n=1

σ3(n)qn
)

,

where σk(n) := ∑d|n dk. Similarly,

g3 = 140 ∑
(n,m) 6=(0,0)

1
(n + mτ)6 = 140

(
2ζ(6) + 2

(−2πi)6

5!

∞

∑
n=1

σ5(n)qn
)

.

Let z = r + sτ. For s = 0, we have

℘′(r; τ) = −2 ∑
n,m∈Z

1
(r + n + mτ)3

= −2 ∑
n∈Z

1
(r + n)3 − 2

∞

∑
m=1

∑
n∈Z

(
1

(mτ + n + r)3 −
1

(mτ + n− r)3

)
= −2 ∑

n∈Z

1
(r + n)3 − 2

∞

∑
m=1

(−2πi)3

2!

∞

∑
n=1

n2
(

e2πin(mτ+r) − e2πin(mτ−r)
)

= −2π3 cot(πr)− 2π3 cot3(πr) + 16π3
∞

∑
n,m=1

n2 sin(2πnr) qnm.

℘(r; τ) =
1
r2 + ∑

(n,m) 6=(0,0)

(
1

(r + n + mτ)2 −
1

(n + mτ)2

)

= ∑
n∈Z

1
(r + n)2 −

∞

∑
n=1

2
n2 +

∞

∑
m=1

∑
n∈Z

(
1

(mτ + r + n)2 +
1

(mτ − r + n)2 −
2

(mτ + n)2

)
= π2 cot2(πr) + 2

3 π2 +
∞

∑
m=1

(−2πi)2
∞

∑
n=1

(
e2πin(mτ+r) + e2πin(mτ−r) − 2e2πinmτ

)
= π2 cot2(πr) + 2

3 π2 + 8π2
∞

∑
n,m=1

(1− cos 2nπr)qnm.
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Also, for the Hecke function Z (cf. (0.10)) we have

Z(r; τ) = π cot(πr) + 4π
∞

∑
n,m=1

(sin 2nπr)qnm.

For s = 1
2 , we have

℘′(r + 1
2 τ; τ) = −2 ∑

(n,m) 6=(0,0)

1
(r + n + ( 1

2 + m)τ)3

= −2
∞

∑
m=1

(
∑

m∈Z

1
(n + r + (m− 1

2 )τ)
3
− ∑

n∈Z

1
(n− r + (m− 1

2 )τ)
3

)

= −2
(−2πi)3

2!

∞

∑
n,m=1

n2
(

e2πin(r+(m− 1
2 )τ) − e2πin(−r)+(m− 1

2 )τ
)

= 16π3
∞

∑
n,m=1

n2(sin 2πnr)qn(m− 1
2 ).

Similarly,

℘(r + 1
2 τ; τ) = − 1

3 π2 + 8π2
∞

∑
n,m=1

nqnm − 8π2
∞

∑
n,m=1

n(cos 2πnr)qn(m− 1
2 ),

and Z(r + 1
2 τ; τ) = 4π ∑∞

n,m=1(sin 2πnr)qn(m− 1
2 ).

A.3. The counting formula for n = 4.
Now we give the computations for n = 4 and prove the formula L4(N) =

U4(N) from Proposition A.1.

Theorem A.2. For n = 4 and N ∈ Z≥3, we have

L4(N) = 1
2

(
5
6 Ψ(N)−

(
3φ(N) + 4φ

(N
2

)))
.

Moreover, Z4(σ; τ) with σ ∈ Eτ[N] has only simple zeros in τ ∈H.

Proof. For n = 4, the pre-modular form Z4 = W4(Z) is given in (5.8):

W4(Z) = Z10 − 45℘Z8 − 120℘′Z7 + ( 399
4 g2 − 630℘2)Z6 − (504℘℘′)Z5

− 15
4 (280℘3 − 49g2℘− 115g3)Z4 + 15(11g2 − 24℘2)℘′Z3

− 9
4 (140℘4 − 245g2℘

2 + 190g3℘+ 21g2
2)Z2

− (40℘3 − 163g2℘+ 125g3)℘Z + 3
4 (25g2 − 3℘2)℘′2,

where Z is the Hecke function. We compute the asymptotic behavior of
W4(Z) when τ → ∞. Let z = r + sτ. We divide the problem into two cases

(1) s ≡ 0 (mod 1): according to the q-expansion given in §A.2, we have

g2 → 3
4 π4, g3 → 8

27 π6, Z(z)→ π cot(πr),

℘′(z)→ −2π3 cot(πr)− 2π3 cot3(πr), ℘(z)→ π2 cot2(πr) + 2
3 π2.

A direct computation shows that W4(Z) has a zero at ∞ when s = 0.
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By replacing all the modular forms g2, g3,℘,℘′ and Z appeared in W4(Z)
with their q-expansions, we have (e.g. using Mathematica)

W4(Z) = 21433527 π10 cos2(πr) sin2(πr)q3 + O(q4)

(2) s 6≡ 0 (mod 1): in this case we have

Z → 2πi
(
s− 1

2

)
, ℘(z)→ − 1

3 π2,

℘′(z)→ 0, g2 → 4
3 π4, g3 → 8

27 π6.
Hence the constant term of W4(Z) is given by

W4(z) = −64π10(−2 + s)(−1 + s)2s2(1 + s)

× (−3 + 2s)(−1 + 2s)2(1 + 2s) + O(q).

If s 6≡ 0 (mod 1) then W4(Z) has a zero at τ = ∞⇐⇒ s ≡ 1
2 (mod 1).

Now we fix s = 1
2 and replace the modular forms g2, g3,℘,℘′ and Z

appeared in W4(Z) with their q-expansions. We get

W4(Z) = 21033527 π10 cos2(πr) sin2(πr)q2 + O(q3).

These computations for the q-expansions imply that

ν∞(M4(N)) = 3 # { 1 ≤ k1 ≤ N | gcd(N, k1) = 1 }
+ 2 # { 0 ≤ k1 ≤ N | gcd(N/2, k1) = 1 }

= 3φ(N) + 4φ(N/2).

Since the value of ν∞(M4(N)) coincides with the assumption in Proposition
A.1 for n = 4, the theorem follows from it accordingly. �
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