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ABSTRACT. For ordinary flops over a smooth base, we determine the de-
fect of the cup product under the canonical correspondence and show
that it is corrected by the small quantum product attached to the extremal
ray. If the flop is of splitting type, the big quantum cohomology ring is
also shown to be invariant after an analytic continuation in the Kähler
moduli space.

Viewed from the context of the K-equivalence (crepant transforma-
tion) conjecture, there are two new features of our results. First, there is
no semipositivity assumption on the varieties. Second, the local struc-
ture of the exceptional loci can not be deformed to any explicit (e.g. toric)
geometry and the analytic continuation is nontrivial. This excludes the
possibility of an ad hoc comparison by explicit computation of both sides.

To achieve that, we have to clear a few technical hurdles. One techni-
cal breakthrough is a quantum Leray–Hirsch theorem for the local models (a
certain toric bundle) which extends the quantum D modules of Dubrovin
connection on the base by a Picard–Fuchs system of the toric fibers.

Nonsplit flops as well as further applications of the quantum Leray–
Hirsch theorem will be discussed in subsequent papers.
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0. INTRODUCTION

0.1. Background review. Two complex manifolds X and X′ are K-equivalent,
denoted by X =K X′, if there are proper birational morphisms (φ, φ′) : Y →
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X×X′ such that φ∗KX = φ′∗KX′ . Major examples come from birational mini-
mal models in Mori theory and especially from birational Calabi–Yau manifolds
in the mathematical study of string theory. K-equivalent projective mani-
folds share the same Betti and Hodge numbers. It has been conjectured
that a canonical correspondence T ∈ A(X× X′) exists which induces isomor-
phisms of cohomology groups and preserves the Poincaré pairing. For a
survey, see [22].

However, simple examples shows that the classical cup product is gen-
erally not preserved under F , and this leads to new directions of study
in higher dimensional birational geometry. On the other hand, according
to the philosophy of crepant transformation conjecture and string theory, the
quantum product should be more natural and display certain functoriality
not available to the cup product among K-equivalent manifolds.

Flops are typical examples of K-equivalent birational maps:

X
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ψ′
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~~

X̄

In fact they form the building blocks to connect birational minimal models
[8]. The simplest flop is the simple P1 flop (Atiyah flop) in dimension 3.
It is known that up to deformations it generates, locally or symplectically,
all K-equivalent maps for threefolds. The quantum corrections by extremal
ray invariants to the cup product in the local 3 dimensional case was first
noticed by Aspinwall–Morrison and Witten [26] and later globalized by Li–
Ruan through the degeneration formula [17].

The higher dimensional generalizations are known as ordinary Pr flops
(also abbreviated as “ordinary flops” or “Pr flops”). The local geometry is
encoded in a triple (S, F, F′) where S is a smooth variety and F, F′ are two
rank r + 1 vector bundles over S. If Z ⊂ X is the f -exceptional loci, then
ψ̄ : Z ∼= P(F) → S ⊂ X̄ with fibers spanned by the flopped curves C ∼= P1

and NZ/X = ψ̄∗F′ ⊗ OZ(−1). Similar structure holds for Z′ ⊂ X′, with
F and F′ exchanged. See Section 1.1 for details. (We note that the Atiyah
flop corresponds to S = pt and r = 1.) Thus it is reasonable to expect
that ordinary flops will also play vital roles in the study of K-equivalent
maps. For example, up to complex cobordism, any K-equivalent map can
be decomposed into P1 flops [23].

The study of invariance of quantum product under ordinary flops in
higher dimensions was started in [11]. The canonical correspondence is
given by the graph closure [Γ̄ f ] and the quantum invariance under F =
[Γ̄ f ]∗ : QH(X) → QH(X′) is proved for all simple Pr flops, i.e. with S = pt.
The crucial idea is to interpret F -invariance in terms of analytic continuations
in Gromov–Witten theory.
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Let us explain this point in a little more details. We use [3] as our gen-
eral reference for early developments in Gromov–Witten invariants. Let
Mg,n(X, β) be the moduli space of stable maps from genus g nodal curves
with n marked points to X, and let ei : Mg,n(X, β) → X be the evaluation
maps. The Gromov–Witten potential

FX
g (t) = ∑

n,β

qβ

n!
〈tn〉Xg,n,β = ∑

n≥0, β∈NE(X)

qβ

n!

∫
[Mg,n(X,β)]vir

n

∏
i=1

e∗i t

is a formal function in t ∈ H(X) and Novikov variables qβ, with β ∈
NE(X), the Mori cone of effective classes of one cycles. Modulo conver-
gence issues, it is a function on the complexified Kähler cone ω ∈ KC

X :=
H1,1

R + iKX via

qβ = e2πi(β.ω).

Under the canonical correspondence F , FX
g and FX′

g share the same variable
t ∈ H ∼= H(X, C) ∼= H(X′, C). However, F does not identify NE(X) with
NE(X′). Indeed, for the flopped curve classes ` = [C] (resp. `′ = [C′]), we
have

F ` = −`′ /∈ NE(X′).

By duality this implies that KC
X ∩ KC

X′ = ∅ in H2
C. Hence FX

g and FX′
g have

different domains and comparison can only make sense after analytic con-
tinuations over a certain compactification of KC

X ∪KC
X′ ⊂ H2

C. (Thus the
naive Kähler moduli K is usually regarded as the closure of the union of all
KC

X′ ’s with X′ =K X.) In other words, we set F qβ = qF β. Then F FX
g can

not be a formal GW potential of X′.
In this paper, we will focus on genus zero theory, which carries a quan-

tum product structure, or equivalently a Frobenius structure [19]. Let {Tµ}
be a basis of H and {Tµ := ∑ gµνTν} the dual basis with respect to the
Poincaré pairing, where gµν = (Tµ.Tν) and (gµν) = (gµν)−1 is the inverse
matrix. Denote t = ∑ tµTµ a general element in H. The big quantum ring
(QH(X), ∗) uses only the genus zero potential with 3 or more marked
points:

Tµ ∗t Tν = ∑
κ

∂3FX
0

∂tµ∂tν∂tκ
(t)Tκ = ∑

κ, n≥0, β∈NE(X)

qβ

n!
〈Tµ, Tν, Tκ, tn〉X0,n+3,βTκ.

The Witten–Dijkgraff–Verlinde–Verlinde equation (WDVV) guarantees that ∗t
is a family of associative products on H parameterized by t ∈ H. Equiv-
alently, for, it equips H a structure of formal Frobenius manifold HX with a
family (in z ∈ C×) of integrable (= flat) Dubrovin connections

∇z = d− z−1 ∑
µ

dtµ ⊗ Tµ∗t

on the tangent bundle TH = H × H.
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There is a natural embedding of KC
X in H. With suitable choice of co-

ordinates we have q` = e2πit` with the Kähler constraint Im t` > 0. Since
now F q` = q−`′ , {q`, q`′} serve as an atlas for P1, the compactification of
C/Z ∼= C×. This gives the formal H an analytic P1 direction. In [11], for
simple flops the structural constants ∂3

µνκ FX
0 (t) for big quantum product

are shown to be analytic (in fact algebraic) in q`. Moreover, F identifies HX
and HX′ through analytic continuations over this P1. Based on this, in [9]
the Frobenius structure is further exploited to conclude analytic continua-
tions from FX

g to FX′
g for all simple flops and for all g ≥ 0.

0.2. Introduction to the main results. This paper studies Gromov–Witten
theory, mostly in g = 0, under flops over a non-trivial base. The first three
sections inherit the basic structure developed in [11] for the simple-flop
case, with various theoretical and technical improvements to handle the
complexity arising from the geometry of (S, F, F′). The last four sections
contain a number of new techniques which could be useful for later de-
velopments. They enable us to give the first result on the K-equivalence
(crepant transformation) conjecture where the local structure of the excep-
tional loci can not be deformed to any explicit (e.g. toric) geometry and
the analytic continuation is nontrivial. As far as we know, this is also the
first result for which the analytic continuation is established for nontrivial
Birkhoff factorization.

Since the proof is quite technical and involves many aspects of GW the-
ory, it might be helpful to outline the major steps below. Roughly, each step
below corresponds to a section in the main text.

Conventions. Throughout this paper, we work on the even cohomology
H = Heven to avoid the complications on signs. In particular, the degree
always means the Chow degree. Nevertheless all our discussions and re-
sults work for the full cohomology spaces.

0.2.1. Defect of cup product under the canonical correspondence. Let {T̄i} be a
basis of H(S) with dual basis { ˇ̄Ti}. Let h = c1(OZ(1)) and Hk = ck(QF)
where QF → Z = P(F) is the universal quotient bundle. Similarly we
define h′ and H′k on the X′ side. The Hk’s are of fundamental importance
since

F Hk = (−1)r−k H′k
and the dual basis of {T̄ihj} in H(Z) is given by { ˇ̄Ti Hr−j}.

Theorem 0.1 (Topological defect). Let a1, a2, a3 ∈ H(X) with ∑ deg ai =
dim X. Then

(F a1.F a2.F a3)X′ − (a1.a2.a3)X

= (−1)r ×∑i∗,j∗
(a1. ˇ̄Ti1 Hr−j1)

X(a2. ˇ̄Ti2 Hr−j2)
X(a3. ˇ̄Ti3 Hr−j3)

X

× (sj1+j2+j3−(2r+1)(F + F′∗)T̄i1 T̄i2 T̄i3)
S,
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where si is the i-th Segre class.

0.2.2. Quantum corrections attached to the flopping extremal rays. We then pro-
ceed to calculate the quantum corrections attached to the flopping extremal
ray N`. Using the calculation, we demonstrate that the “quantum corrected
product”, combining the classical product and the quantum deformation
attached to the extremal ray, is F -invariant after the analytic continuation.

The stable map moduli for the extremal ray has a bundle structure over
S:

M0,n(Pr, d`) // M0,n(Z, d`)
ei //

Ψn

��

Z

ψ̄
zztttttttttttt

S

In this case, the GW invariants on X are reduced to twisted invariants on Z
by certain obstruction bundles. We define the fiber integral〈

∏n
i=1 hji

〉/S

d
:= Ψn∗

(
∏n

i=1 e∗i hji
)
∈ Aν(S)

as a ψ̄-relative invariant over S, a cycle of codimension ν := ∑ ji − (2r +
1 + n − 3). The absolute invariant is obtained by the pairing on S: For
t̄i ∈ H(S),

〈t̄1hj1 , · · · , t̄nhjn〉Xd =
(
〈hj1 , · · · , hjn〉/S

d . ∏n
i=1 t̄i

)S
.

If ν = 0 then the invariant reduces to the simple case. This happens for
n = 2 since then j1 = j2 = r. Thus we may calculate extremal functions
based on the 2-point case by (divisorial) reconstruction. To state the result,
let

f(q) :=
q

1− (−1)r+1q

which satisfies the functional equation f(q) + f(q−1) = (−1)r.
For 3-point functions, we show that Wν := ∑d∈N〈hj1 , hj2 , hj3〉/S

d qd with
1 ≤ ji ≤ r lies in Aν(S)[f] and is independent of the choices of ji’s.

Theorem 0.2 (Quantum corrections). The function Wν is the action on f by a
Chern classes valued polynomial in the operator δ = qd/dq. It satisfies

Wν − (−1)ν+1W ′ν = (−1)rsν(F + F′∗).

This implies that the topological defect is corrected by the 3-point ex-
tremal functions. The analytic continuation for n ≥ 4 points follows by
reconstruction.
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0.2.3. Degeneration analysis. The next step is to prove that the big quantum
ring, involving all curve classes, are F -invariant. As a first step, this state-
ment is reduced to a corresponding one on f -special descendent invariants
on the projective local models

Xloc := Ẽ = P(NZ/X ⊕O)
p→ S

and
X′loc := Ẽ′ = P(NZ′/X′ ⊕O)

p′→ S
by degeneration analysis.

To compare GW invariants of non-extremal classes, the application of
degeneration formula and deformation to the normal cone are well suited for
ordinary flops with base S. It reduces the problem to local models with in-
duced flop f : Ẽ 99K Ẽ′. The reduction has two steps. The first reduces the
problem to relative local invariants 〈A | ε, µ〉(Ẽ,E) where E ⊂ Ẽ is the infinity
divisor. The second is a further reduction back to absolute local invariants,
with possibly descendent insertions coupled to E, called f -special type.

The local model p̄ := ψ̄ ◦ p : Ẽ → S and the flop f are all over S, with
simple case as fibers. In particular, the kernel of p̄∗ : N1(Ẽ) → N1(S) is
spanned by the p-fiber line class γ and ψ̄-fiber line class `. F is compatible
with p̄. Namely

N1(Ẽ) F //

p̄∗⊕d2 %%LLLLLLLLLL
N1(Ẽ′)

p̄′∗⊕d′2xxrrrrrrrrrr

N1(S)⊕Z

is commutative. Here we write a class β in N1(Ẽ) as βS + d` + d2γ with
some βS in N1(S) and d, d2 ∈ Z. Thus the functional equation of a gener-
ating series 〈A〉 is equivalent to those of its various subseries (fiber series)
〈A〉βS,d2 labeled by NE(S)⊕Z.

Theorem 0.3 (Degeneration reduction). To prove F 〈α〉Xg ∼= 〈F α〉X′g for all
α ∈ H(X)⊕n, g ≤ g0, it is enough to prove the local case f : Ẽ → Ẽ′ for
descendent invariants of f -special type:

F 〈A, τk1 ε1, . . . , τkρ
ερ〉Ẽg,βS,d2

∼= 〈F A, τk1 ε1, . . . , τkρ
ερ〉Ẽ

′
g,βS,d2

for any A ∈ H(Ẽ)⊕n, k j ∈ N ∪ {0}, ε j ∈ H(E) ⊂ H(Ẽ), g ≤ g0, βS ∈ NE(S)
and d2 ≥ 0.

0.2.4. Further reduction to the big quantum ring/quasi-linearity on the local mod-
els. While the degeneration reduction works for higher genera, for g = 0
more can be said. Using the topological recursion relation (TRR) and the divi-
sor axiom (for descendent invariants), the F -invariance for f -special invari-
ants can be completely reduced to the F -invariance of big quantum rings
for local models.
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We then employ the divisorial reconstruction [13] and the WDVV equation
to make a further reduction to an F -invariance statement about elementary
f -special invariants with at most one special insertion.

To state the result, we assume now X = Xloc = Ẽ. Since X → S is
a double projective bundle, H(X) is generated by H(S) and the relative
hyperplane classes h for Z → S and ξ for X → Z. This leads to another
useful reduction: By moving all the classes h, ξ and ψ into the last insertion
(divisorial reconstruction), the problem is reduced to the case

〈t̄1, . . . , t̄n−1, t̄nτkhjξ i〉XβS,d2

with t̄l ∈ H(S), d2 ∈ Z, where k 6= 0 only if i 6= 0.
By a further application of WDVV equations, the F -invariance can al-

ways be reduced to the case i 6= 0 even if k = 0. Since ξ is the class of
infinity divisor which is within the isomorphism loci of the flop, such an
F -invariance statement is intuitively plausible. We call it the type I quasi-
linearity property (c.f. Theorem 4.5).

The above steps furnish a complete reduction to projective local models
Xloc, which works for any F and F′.

To proceed, notice that these descendent invariants are encoded by their
generating function, i.e. the so called (big) J function: For τ ∈ H(X),

JX(τ, z−1) := 1 +
τ

z
+ ∑

β,n,µ

qβ

n!
Tµ

〈
Tµ

z(z− ψ)
, τ, · · · , τ

〉X

0,n+1,β
.

The determination of J usually relies on the existence of C× actions. Certain
localization data Iβ coming from the stable map moduli are of hypergeo-
metric type. For “good” cases, say c1(X) is semipositive and H(X) is gen-
erated by H2, I(t) = ∑ Iβ qβ determines J(τ) on the small parameter space
H0 ⊕ H2 through the “classical” mirror transform τ = τ(t). For a simple
flop, X = Xloc is indeed semi-Fano toric and the classical Mirror Theorem
(of Lian–Liu–Yau and Givental) is sufficient [11]. (It turns out that τ = t
and I = J on H0 ⊕ H2.)

For general base S with given QH(S), the determination of QH(P) for a
projective bundle P→ S is far more involved. To allow fiberwise localization
to determine the structure of GW invariants of Xloc, the bundles F and F′
are then assumed to be split bundles.

0.2.5. Birkhoff factorization and generalized mirror transformation. The second
half of this paper considers ordinary flops of splitting type, namely F ∼=⊕r

i=0 Li and F′ ∼=
⊕r

i=0 L′i for some line bundles Li and L′i on S. The splitting
assumption allows us to apply the C× localizations along the fibers of the
toric bundle X → S. Using this and other sophisticated technical tools,
J. Brown (and A. Givental) [1] proved that the hypergeometric modification

IX(D, t̄, z, z−1) := ∑
β

qβe
D
z +(D.β) IX/S

β (z, z−1)ψ̄∗ JS
βS

(t̄, z−1)
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lies in Givental’s Lagrangian cone generated by JX(τ, z−1). Here D = t1h +
t2ξ, t̄ ∈ H(S), βS = ψ̄∗β, and the explicit form of IX/S

β is given in Section 6.2.
Based on Brown’s theorem, we prove the following. (See § 5 for notations

on higher derivatives ∂ze’s.)

Theorem 0.4 (BF/GMT). There is an unique matrix factorization

∂ze I(z, z−1) = z∇J(z−1)B(z),

called the Birkhoff factorization (BF) of I, valid along τ = τ(D, t̄, q).

BF can be stated in another way. There is a recursively defined polyno-
mial differential operator P(z, q; ∂) = 1 + O(z) in t1, t2 and t̄ such that

J(z−1) = P(z, q; ∂)I(z, z−1).

In other words, P removes the z-polynomial part of I in the NE(X)-adic
topology. In this form, the generalized mirror transform (GMT)

τ(D, t̄, q) = D + t̄ + ∑
β 6=0

qβτβ(D, t̄)

is the coefficient of z−1 in J = PI.

0.2.6. Hypergeometric modification and D modules. In principle, knowing BF,
GMT and GW invariants on S allows us to calculate all g = 0 invariants
on X and X′ by reconstruction. These data are in turn encoded in the I-
functions. One might be tempted to prove the F -invariance by comparing
IX and IX′ . While they are rather symmetric-looking, the defect of cup
product implies F IX 6= IX′ and the comparison via tracking the defects of
ring isomorphism becomes hopelessly complicated. This can be overcome
by studying a more “intrinsic” object: the cyclic D module MJ = D J, where
D denotes the ring of differential operators on H with suitable coefficients.

It is well known (by TRR) that (z∂µ J) forms a fundamental solution ma-
trix of the Dubrovin connection: Namely we have the quantum differential
equations (QDE)

z∂µz∂ν J = ∑
κ

C̃κ
µν(t) z∂κ J,

where C̃κ
µν(t) = ∑ι gκι∂3

µνιF0(t) are the structural constants of ∗t. This im-
plies that M is a holonomic D module of length N = dim H. For I we
consider a similar D module MI = D I. The BF/GMT theorem furnishes a
change of basis which implies that MI is also holonomic of length N.

The idea is to go backward: To find MI first and then transform it to MJ .
We do not have similar QDE since I does not have enough variables. In-
stead we construct higher order Picard–Fuchs equations�` I = 0,�γ I = 0 in
divisor variables, with the nice property that “up to analytic continuations”
they generate F -invariant ideals:

F 〈�X
` ,�X

γ 〉 ∼= 〈�X′
`′ ,�X′

γ′ 〉.
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0.2.7. Quantum Leray–Hirsch and the conclusion of the proof. Now we want
to determine MI . While the derivatives along the fiber directions are de-
termined by the Picard–Fuchs equations, we need to find the derivatives
along the base direction. Write t̄ = ∑ t̄iT̄i. This is achieved by lifting the
QDE on QH(S), namely

z∂iz∂j JS = ∑
k

C̄k
ij(t̄) z∂k JS,

to a differential system on H(X). A key concept needed for such a lifting is
the I-minimal lift of a curve class βS ∈ NE(S) to βI

S ∈ NE(X). Various lifts
of curve classes are discussed in Section 6. See in particular Definition 6.7.

Using Picard–Fuchs and the lifted QDE, we show that FMIX ∼= MIX′ .

Theorem 0.5 (Quantum Leray–Hirsch).
(1) (I-Lifting) The quantum differential equation on QH(S) can be lifted to

H(X) as

z∂i z∂j I = ∑
k,βS

qβI
S e(D.βI

S)C̄k
ij,βS

(t̄) z∂kDβI
S
(z)I,

where DβI
S
(z) is an operator depending only on βI

S. Any other lifting is
related to it modulo the Picard–Fuchs system.

(2) Together with the Picard–Fuchs �` and �γ, they determine a first order
matrix system under the naive quantization ∂ze (Definition 7.7) of canon-
ical basis (Notations 7.1) Te’s of H(X):

z∂a(∂ze I) = (∂ze I)Ca(z, q), where ta = t1, t2 or t̄i.

(3) The system has the property that for any fixed βS ∈ NE(S), the coeffi-
cients are formal functions in t̄ and polynomial functions in qγet2

, q`et1

and f(q`et1).
(4) The system is F -invariant.

The final step is to go from MI to MJ . From the perspective of D mod-
ules, the BF can be considered as a gauge transformation. The defining prop-
erty (∂ze I) = (z∇J)B of B can be rephrased as

z∂a(z∇J) = (z∇J)C̃a

such that

(0.1) C̃a = (−z∂aB + BCa)B−1

is independent of z.
This formulation has the advantage that all objects in (0.1) are F -invariant

(while I and J are not). It is therefore easier to first establish the F -invariance
of Ca’s and use it to derive the F -invariance of BF and GMT.

Theorem 0.6 (Quantum invariance). For ordinary flops of splitting type, the
big quantum cohomology ring is invariant up to analytic continuations.
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By the reduction above, this is equivalent to the quasi-linearity property
of the local models. This completes the outline.

Results in this paper had been announced, in increasing degree of gener-
alities, by the authors in various conferences during 2008-2010; see e.g. [18,
24, 12] where more example-studies can be found.

In a subsequent work, we will apply ideas in algebraic cobordism of bun-
dles on varieties [14] to remove the splitting assumption.

0.3. Acknowledgements. Y.-P. L. is partially supported by the NSF; H.-
W. L. is partially supported by the NSC; C.-L. W. is partially supported
by the NSC and the Ministry of Education. We are particularly grateful
to Taida Institute of Mathematical Sciences (TIMS) for its steady support
which makes this long-term collaborative project possible.

1. DEFECT OF THE CLASSICAL PRODUCT

1.1. Cohomology correspondence for Pr flops. We recall the construction
of ordinary flops in [11] to fix notations.

Let X be a smooth complex projective manifold and ψ : X → X̄ a flop-
ping contraction in the sense of minimal model theory, with ψ̄ : Z → S the
restriction map on the exceptional loci. Assume that

(i) ψ̄ equips Z with a Pr-bundle structure ψ̄ : Z = P(F) → S for some
rank r + 1 vector bundle F over a smooth base S,

(ii) NZ/X|Zs
∼= OPr(−1)⊕(r+1) for each ψ̄-fiber Zs, s ∈ S.

Then there is another rank r + 1 vector bundle F′ over S such that

NZ/X
∼= OP(F)(−1)⊗ ψ̄∗F′.

We may blow up X along Z to get φ : Y → X. The exceptional divisor

E = P(NZ/X) ∼= P(ψ̄∗F′) = ψ̄∗P(F′) = P(F)×S P(F′)

is a Pr × Pr-bundle over S. We may then blow down E along another fiber
direction φ′ : Y → X′ to get another contraction ψ′ : X′ → X̄, with excep-
tional loci ψ̄′ : Z′ = P(F′)→ S and NZ′/X′ |ψ̄′−fiber

∼= OPr(−1)⊕(r+1).
We call the f : X 99K X′ an ordinary Pr flop. The various sets and maps

are summarized in the following commutative diagram.

E

φ̄

~~}}
}}

}}
}} BB

B
φ̄′

!!B
BB

� � j // Y

φ

}}||
||

||
||

φ′

!!C
CC

CC
CC

C

Z

ψ̄
  @

@@
@@

@@
@
� � i // X

ψ

  A
AA

AA
AA

A Z′

}}
}
ψ̄′

~~}}
}

� � i′ // X′

ψ′}}||
||

||
||

S � � j′ // X

where the normal bundle of E in Y is

NE/Y = φ̄∗OP(F)(−1)⊗ φ̄′∗OP(F′)(−1).
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First of all, we have found a canonical correspondence between the coho-
mology groups of X and X′.

Theorem 1.1. [11] For an ordinary Pr flop f : X 99K X′, the graph closure T :=
[Γ̄ f ] ∈ A(X × X′) identifies the Chow motives X̂ of X and X̂′ of X′, i.e. X̂ ∼= X̂′

via Tt ◦ T = ∆X and T ◦ Tt = ∆X′ . In particular, F := T∗ : H(X) → H(X′)
preserves the Poincaré pairing on cohomology groups.

In practice, the correspondence T associates a map on Chow groups:

F : A(X)→ A(X′); W 7→ p′∗(Γ̄ f .p∗W) = φ′∗φ
∗W

where p (resp. p′) is the projection map from X× X′ to X (resp. X′).
Secondly, parallel to the procedure in [11], we need to determine the

explicit formulae for the associated map F restricted to A(Z). The Leray–
Hirsch theorem says that

A(Z) = ψ̄∗A(S)[h]/ fF(h)

where fF(λ) = λr+1 + ψ̄∗c1(F)λr + · · · + ψ̄∗cr+1(F) is the Chern polyno-
mial of F and h = c1(OP(F)(1)). Thus a class α ∈ A(Z) has the form
α = ∑r

i=0 hiψ̄∗ai for some ai ∈ A(S).
By the formulae for pull-back from the intersection theory, it is easy to

see that if a ∈ Ak(Z) then

φ∗(i∗a) = j∗
(

cr(E ).φ̄∗a
)

in Ak(Y) where E is the excess normal bundle defined by

0→ NE/Y → φ∗NZ/X → E → 0.

By the functoriality of pull-back and push-forward together with the
above formula, we can conclude from F (i∗(∑ hiψ̄∗ai)) = ∑ F (i∗(hi))i′∗ψ̄′∗ai
that F restricted to A(Z) is A(S)-linear. Here we identify the ring A(S)
with its isomorphic images in A(Z) and A(Z′) via ψ̄∗ and ψ̄′∗ respectively.

Under such an identification, we will abuse notations to denote ci(F),
ψ̄∗ci(F) and ψ̄′∗ci(F) by the same symbol ci. Similarly we denote ci(F′),
ψ̄∗ci(F′) and ψ̄′∗ci(F′) by c′i. We use this abbreviation for any class in A(S).
And for α ∈ A(Z) we often omit i∗ from i∗α when α is regarded as a class
in A(X), unless possible confusion should arise. Similarly, we do these for
α′ ∈ A(Z′) ↪→ A(X′).

The A(S)-linearity of F restricted to A(Z) allows us to focus on the
study of a basis for A(Z) over A(S). Recall that for a simple Pr flop we
have the basic transformation formula F (hk) = (−1)r−kh′k. Unfortunately,
for a general Pr flop, this does not hold any more, so a better candidate has
to be sought out.

Note that the key ingredient in the pull-back formula is cr(E ). From the
Euler sequence

0→ OZ′(−1)→ ψ̄′∗F′ → QF′ → 0
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and the short exact sequence defining the excess normal bundle E , we get
E = φ̄∗OP(F)(−1)⊗ φ̄′∗QF′ . A simple computation leads to

cr(E ) = (−1)r(φ̄∗hr − φ̄′∗H′1φ̄∗hr−1 + φ̄′∗H′2φ̄∗hr−2 + · · ·+ (−1)rφ̄′∗H′r),

where H′k = ck(QF′). Explicitly,

H′k = h′k + c′1h′k−1 + · · ·+ c′k
where h′ = c1(OP(F′)(1)). Similarly, we denote

Hk = ck(QF) = hk + c1hk−1 + · · ·+ ck.

Notice that Hk = 0 = H′k for k > r. Finally, we find that Hk, H′k turn out to
be the correct choice.

Proposition 1.2. For all positive integers k ≤ r,

F (Hk) = (−1)r−k H′k.

Proof. First of all, we have the basic identities: hr+1 + c1hr + · · ·+ cr+1 = 0,
φ̄′∗φ̄

∗hi = 0 for all i < r and φ̄′∗φ̄
∗hr = [Z′]. The latter two follow from the

definitions and dimension consideration.
In order to determine F (Hk) = φ̄′∗(cr(E).φ̄∗Hk), we need to take care of

the class φ̄′∗(φ̄′∗H′r−iφ̄
∗hi.φ̄∗Hk) with 0 ≤ i ≤ r, here H′0 := 1.

If i > r− k, then

φ̄′∗(φ̄′∗H′r−iφ̄
∗hi.φ̄∗Hk) = φ̄′∗(φ̄′∗H′r−iφ̄

∗(hk+i + c1hk+i−1 + · · ·+ ckhi))

= −φ̄′∗(φ̄′∗H′r−iφ̄
∗(ck+1hi−1 + ck+2hi−2 + · · ·+ cr+1hi+k−r−1)) = 0

since the power in h is at most i− 1 < r.
If i < r− k, then again φ̄′∗(φ̄′∗H′r−iφ̄

∗hi.φ̄∗Hk) = 0 since the power in h is
at most i + k < r.

For the remaining case i = r− k,

φ̄′∗(φ̄′∗H′r−iφ̄
∗hi.φ̄∗Hk) = φ̄′∗(φ̄′∗H′r−iφ̄

∗hr) = H′r−i = H′k.

We conclude that

F (Hk) = (−1)r
r

∑
i=0

(−1)r−iφ̄′∗(φ̄′∗H′r−iφ̄
∗hi.φ̄∗Hk) = (−1)r−k H′k.

�

Remark 1.3. Unlike simple Pr flops, here the image class of hk under F looks
more complicated. As a simple corollary of the above proposition, we may
show, by induction on k, that for all k ∈N,

F (hk) = (−1)r−k(a0h′k + a1h′k−1 + · · ·+ ak) ∈ A(Z′)

where a0 = 1 and ak ∈ A(S) are determined by the recursive relations:

c′k = ak − c1ak−1 + c2ak−2 + · · ·+ (−1)kck.
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And symmetrically

F ∗(h′k) = (−1)r−k(a′0hk + a′1hk−1 + · · ·+ a′k) ∈ A(Z)

with a′0 = 1, a′k = c′1a′k−1 − c′2a′k−2 + · · ·+ (−1)k−1c′k + ck.
To put these formulae into perspective, we consider the virtual bundles

A := F′ − F∗; A′ := F− F′∗.

Then ak = ck(A) and a′k = ck(A′). Notice that since ak and a′k are Chern
classes of virtual bundles, they may survive even for k ≥ r + 1.

It is also interesting to notice that the explicit formula reduces to

F (hk) = (−1)r−kh′k

without lower order terms precisely when F′ = F∗, the dual of F.

1.2. Triple product. Let {T̄k
i } be a basis of H2k(S) and { ˇ̄Tk

i } ⊂ H2(s−k)(S)
be its dual basis where s = dim S. It is an easy but quite crucial discovery
that the dual basis of the canonical basis {T̄k

i hj} in H(Z) can be expressed
in terms of {Hk}k≥0.

Lemma 1.4. The dual basis of {T̄k−j
i hj}j≤min{k,r} in H2k(Z) is { ˇ̄Tk−j

i Hr−j}j≤min{k,r}
in H2(r+s−k)(Z).

Proof. We have to check that (T̄k−j
i hj. ˇ̄Tk−j

i Hr−j) = 1 and (T̄k−j
i hj. ˇ̄Tk−j′

i Hr−j′) =
0 for any j 6= j′. Indeed,

(T̄k−j
i hj. ˇ̄Tk−j

i Hr−j) = T̄s(hr + c1hr−1 + · · · ) = T̄shr = 1

since T̄sci = 0 for all i ≥ 1 by degree consideration.

Notations 1.5. When X is a bundle over S, classes in H(S) may be consid-
ered as classes in H(X) by the obvious pullback, which we often omit. To
avoid confusion, we consistently employ the notation ˇ̄Ti as the dual class
of T̄i ∈ H(S) with respect to the Poincaré pairing in S. The “raised” index
form, e.g. Tµ as the dual of Tµ ∈ H(X), is reserved for duality with respect
to Poincaré pairing in X.

Now if j′ > j then

k− j + (s− (k− j′)) = s + (j′ − j) > s,

which implies that T̄k−j
i

ˇ̄Tk−j′

i = 0. Conversely, if j′ < j then T̄k−j
i

ˇ̄Tk−j′

i ∈
H2(s−(j−j′))(S) and

hjHr−j′ = hr+(j−j′) + c1hr+(j−j′)−1 + · · ·+ cr−j′hj

= −cr−j′+1hj−1 − · · · − cr+1hj−j′−1.

Again since

(s− (j− j′)) + (r− j′ + z) = s + (r + z− j) > s

for z ≥ 1, we have T̄k−j
i

ˇ̄Tk−j′

i cr−j′+zhj−z−1 = 0. The result follows. �
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Now we can determine the difference of the pullback classes of a and F a
as follows.

Proposition 1.6. For a class a ∈ H2k(X), let a′ = F a in X′. Then

φ′∗a′ = φ∗a + j∗∑
i

∑
1≤j≤min{k,r}

(a. ˇ̄Tk−j
i Hr−j)T̄k−j

i
xj − (−y)j

x + y

where x = φ̄∗h, y = φ̄′∗h′.

Proof. Recall that

NE/Y = φ̄∗OZ(−1)⊗ φ̄′∗OZ′(−1)

and hence c1(NE/Y) = −(x + y). Since the difference φ′∗a′ − φ∗a has sup-
port in E, we may write φ′∗a′ − φ∗a = j∗λ for some λ ∈ H2(k−1)(E). Then

(φ′∗a′ − φ∗a)|E = j∗ j∗λ = c1(NE/Y)λ = −(x + y)λ.

Notice that while the inclusion-restriction map j∗ j∗ on H(E) may have
non-trivial kernel, elements in the kernel never occur in φ′∗a′ − φ∗a by the
Chow moving lemma. Indeed if j∗ j∗λ ≡ j∗λ|E = 0 then j∗λ is rationally
equivalent to a cycle λ′ disjoint from E. Applying φ′∗ to the equation

φ′∗a′ − φ∗a = j∗λ ∼ λ′

gives rise to
φ′∗λ

′ ∼ φ′∗φ
′∗a′ − φ′∗φ

∗a = a′ − a′ = 0.
This leads to λ′ ∼ 0 on Y.

Hence

λ = − 1
x + y

((φ′∗a′)|E − (φ∗a)|E) = − 1
x + y

(φ̄′∗(a′|Z′)− φ̄∗(a|Z)).

By the above lemma, we get

φ̄∗(a|Z) = φ̄∗(∑
i

∑
j≤min{k,r}

(a. ˇ̄Tk−j
i Hr−j)T̄k−j

i hj)

= ∑
i

∑
j≤min{k,r}

(a. ˇ̄Tk−j
i Hr−j)T̄k−j

i xj.

Similarly, we have

φ̄′∗(a′|Z′) = ∑
i

∑
j≤min{k,r}

(a′. ˇ̄Tk−j
i H′r−j)T̄k−j

i yj.

Since F preserves the Poincaré pairing,

(a′. ˇ̄Tk−j
i H′r−j) = (F a.F ((−1)r−(r−j) ˇ̄Tk−j

i Hr−j)) = (−1)j(a. ˇ̄Tk−j
i Hr−j).

Putting these together, we obtain

λ = ∑
i

∑
1≤j≤min{k,r}

(a. ˇ̄Tk−j
i Hr−j)T̄k−j

i
xj − (−y)j

x + y
.

�
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Remark 1.7. Notice that since the power in x (and in y) is at most r − 1,
the class λ clearly contains non-trivial φ̄ and φ̄′ fiber directions. Thus this
proposition in particular gives rise to an alternative proof of equivalence of
Chow motives under ordinary flops (Theorem 0.2). Indeed this is precisely
the quantitative version of the original proof in [11].

Now we may compare the triple products of classes in X and X′.

Theorem 1.8 (= Theorem 0.1). Let ai ∈ H2ki(X) for i = 1, 2, 3 with k1 + k2 +
k3 = dim X = s + 2r + 1. Then

(F a1.F a2.F a3) = (a1.a2.a3) + (−1)r×

∑(a1. ˇ̄Tk1−j1
i1

Hr−j1)(a2. ˇ̄Tk2−j2
i2

Hr−j2)(a3. ˇ̄Tk3−j3
i3

Hr−j3)×

(s̃j1+j2+j3−2r−1T̄k1−j1
i1

T̄k2−j2
i2

T̄k3−j3
i3

),

where the sum is over all possible i1, i2, i3 and j1, j2, j3 subject to constraint: 1 ≤
jp ≤ min{r, kp} for p = 1, 2, 3 and j1 + j2 + j3 ≥ 2r + 1. Here

s̃i := si(F + F′∗)

is the ith Segre class of F + F′∗.

Proof. First of all, φ′∗F ai = φ∗ai + j∗λi for some λi ∈ H2(ki−1)(E) which
contains both fiber directions of φ̄ and φ̄′. Hence

(F a1.F a2.F a3) = (φ′∗F a1.φ′∗F a2.(φ∗a3 + j∗λ3))

= (φ′∗F a1.φ′∗F a2.φ∗a3) = ((φ∗a1 + j∗λ1).(φ∗a2 + j∗λ2).φ∗a3).

Among the resulting terms, the first term is clearly equal to (a1.a2.a3).
For those terms with two pull-backs like φ∗a1.φ∗a2, the intersection val-

ues are zero since the remaining part necessarily contains nontrivial φ̄ fiber
direction.

The terms with φ∗a3 and two exceptional parts contribute

φ∗a3.j∗T̄
k1−j1
i1

(
xj1 − (−y)j1

x + y

)
.j∗T̄

k2−j2
i2

(
xj2 − (−y)j2

x + y

)
= −φ∗a3.j∗

(
T̄k1−j1

i1
T̄k2−j2

i2
(xj1 − (−y)j1)(xj2−1 + xj2−2(−y) + · · ·+ (−y)j2−1)

)
times (a1. ˇ̄Tk1−j1

i1
Hr−j1)(a2. ˇ̄Tk2−j2

i2
Hr−j2). The terms with non-trivial contribu-

tion must contain yq with q ≥ r which implies j1 + j2 − 1 ≥ r, hence such
terms are

−(−y)j1(xj2−1−(r−j1)(−y)r−j1 + xj2−1−(r−j1)−1(−y)r−j1+1 + · · ·+ (−y)j2−1)

and the contribution after taking φ∗ is

(−1)r+1(hj1+j2−r−1 − hj1+j2−r−2s′1 + · · ·+ (−1)j1+j2−r−1s′j1+j2−r−1)

where s′i := si(F′) is the ith Segre class of F′. Here we use the property of
Segre classes to obtain φ∗yq = s′q−r for q ≥ r + 1.
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In terms of bundle-theoretic formulation,

hj1+j2−r−1 − hj1+j2−r−2s′1 + · · ·+ (−1)j1+j2−r−1s′j1+j2−r−1

=
(
(1− s′1 + s′2 + · · · )(1 + h + h2 + · · · )

)
j1+j2−r−1

=
(

s(F′∗)
1

(1− h)

)
j1+j2−r−1

=
(

c(F)
(1− h)

s(F)s(F′∗)
)

j1+j2−r−1

=
(
c(QF).s(F + F′∗)

)
j1+j2−r−1

= Hj1+j2−r−1 + Hj1+j2−r−2s̃1 + · · ·+ s̃j1+j2−r−1.

With respect to the basis { ˇ̄Tk
i }, s̃pT̄k1−j1

i1
T̄k2−j2

i2
is of the form

∑
i3

(
s̃pT̄k1−j1

i1
T̄k2−j2

i2
T̄k3−(2r+1+p−j1−j2)

i3

) ˇ̄Tk3−(2r+1+p−j1−j2)
i3

.

We define the new index j3 = 2r + 1 + p− j1 − j2 and thus j1 + j2 + j3 ≥
2r + 1, also p = j1 + j2 + j3 − 2r− 1.

By summing all together, we get the result. �

There is a particularly simple case where no Hi or Segre classes s̃i are
needed in the defect formula, namely the P1 flops.

Corollary 1.9. For P1 flops over any smooth base S of dimension s, let ai ∈
H2ki(X) for i = 1, 2, 3 with k1 + k2 + k3 = dim X = s + 3. Then

(F a1.F a2.F a3) = (a1.a2.a3)−∑(a1. ˇ̄T1)(a2. ˇ̄T2)(a3. ˇ̄T3)(T̄1T̄2T̄3)

with T̄i running over all basis classes in H2(ki−1)(S).

There is a trivial but useful observation on when the product is pre-
served:

Corollary 1.10. For a Pr flop f : X 99K X′, a1 ∈ H2k1(X), a2 ∈ H2k2(X) with
k1 + k2 ≤ r, then F (a1.a2) = F a1.F a2.

This follows from Theorem 1.8 since all the correction terms vanish for
any a3. In fact it is a consequence of dimension count.

2. QUANTUM CORRECTIONS ATTACHED TO THE EXTREMAL RAY

2.1. The set-up with nontrivial base. Let ai ∈ H2ki(X), i = 1, . . . , n, with
n

∑
i=1

ki = 2r + 1 + s + (n− 3).

Since
ai|Z = ∑

si

∑
ji≤min{ki ,r}

(ai. ˇ̄Tki−ji
si Hr−ji)T̄ki−ji

si hji ,



INVARIANCE OF QUANTUM RINGS 17

we compute

〈a1, . . . , an〉X0,n,d`

= ∑
~s,~j

∫
M0,n(Z,d`)

n

∏
i=1

(
(ai. ˇ̄Tki−ji

si Hr−ji) e∗i (ψ̄∗T̄ki−ji
si .hji)

)
.e(R1 f t∗e∗n+1N)

= ∑
~s,~j

n

∏
i=1

(ai. ˇ̄Tki−ji
si Hr−ji)

[
n

∏
i=1

T̄ki−ji
si .Ψn∗

( n

∏
i=1

e∗i hji .e(R1 f t∗e∗n+1N)
)]S

,

with the sum over all~s = (s1. . . . , sn) and admissible~j = (j1, . . . , jn). By the
fundamental class axiom, we must have ji ≥ 1 for all i.

Here we make use of

[M0,n(X, d`)]virt = [M0,n(Z, d`)] ∩ e(R1 f t∗e∗n+1N)

and the fiber bundle diagram over S

M0,n+1(Z, d`)
en+1

''PPPPPPPPPPPPPP

f t
��

N = NZ/X

��
M0,n(Pr, d`) // M0,n(Z, d`)

ei //

Ψn

��

Z

ψ̄
vvnnnnnnnnnnnnnnnnn

S

as well as the fact that classes in S are constants among bundle morphisms
(by the projection formula applying to Ψn = ψ̄ ◦ ei for each i).

We must have ∑(ki − ji) ≤ s to get nontrivial invariants. That is,
n

∑
i=1

ji ≥ 2r + 1 + n− 3.

If the equality holds, then ∏n
i=1 T̄ki−ji

si is a zero dimensional cycle in S and
the invariant readily reduces to the corresponding one on any fiber, namely
the simple case, which is completely determined in [11]:

(T̄k1−j1
s1 · · · T̄kn−jn

sn )S〈hj1 , . . . , hjn〉simple
0,n,d` = (∏ T̄si)

SN~j dn−3.

On the contrary, if the strict inequality holds, by the dimension counting
in the simple case, the restriction of the fiber integral Ψn∗(·) to points in S
vanishes. In fact the fiber integral is represented by a cycle S~j ⊂ S with
codimension

ν := ∑ ji − (2r + 1 + n− 3).

The structure of S~j necessarily depends on the bundles F and F′.
One would expect the end formula for Ψn∗(·) to be

sν(F + F′∗) N~j dn−3
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with N~j = 1 for n ≤ 3 so that the difference of the corresponding generating
functions on X and X′ cancels out with the classical defect on cup product.
Unfortunately the actual behavior of these Gromov–Witten invariants with
base dimension s > 0 is more delicate than this.

Notice that the new phenomenon does not occur for n = 2. In that case,
k1 + k2 = 2r + s, j1 = j2 = r and we may assume that T̄s2 is running through
the dual basis of T̄s1 . Since then the nontrivial terms only appear when T̄s1

and T̄s2 are dual to each other, we get

〈a1, a2〉X0,2,d` = ∑
s

(a1.T̄s)(a2. ˇ̄Ts)〈hr, hr〉simple
d

= (−1)(d−1)(r+1) 1
d ∑

s
(a1.T̄s)(a2. ˇ̄Ts).

It is also clear that the new phenomenon does not occur for P1 flops over
an arbitrary smooth base S. Thus before dealing with the general cases,
we will work out the first (simplest) new case to demonstrate the general
picture that will occur.

2.2. Twisted relative invariants for ν = 1. Consider Pr flops with n = 3
and j1 + j2 + j3 = (2r + 1) + 1 = 2r + 2, namely with one more degree (i.e.
ν = 1) than the old case. We start with (j1, j2, j3) = (2, r, r). Since classes
from S can be merged into any marked point, the invariant to be taken care
is

〈h2, hr, t̄hr〉Xd
for some t̄ ∈ H2(s−1)(S). Equivalently we define the fiber integral〈 n

∏
i=1

hji
〉/S

d
:= Ψn∗

( n

∏
i=1

e∗i hji
)
∈ A(S)

to be a ψ̄-relative invariant over S and we are computing

〈h2, hr, t̄hr〉Xd = (〈h2, hr, hr〉/S
d .t̄)S

now. Notice that for r = 2, 6 ≥ j1 + j2 + j3 > 5 hence (2, 2, 2) is precisely
the only new case to compute.

The basic idea is to use the divisor relation [13] (for n ≥ 3 points invari-
ants)

(2.1) e∗i h = e∗j h + ∑
d′+d′′=d

(d′′[Dik,d′|j,d′′ ]
virt − d′[Di,d′|jk,d′′ ]

virt)

to move various h’s into the same marked point. This type of process is
also referred as divisorial reconstruction in this paper. Once the power ex-
ceeds r, the Chern polynomial relation reduces hr+1 into lower degree ones
coupled with (Chern) classes from the base S. This will eventually reduce
the new invariants to old cases. While this procedure is well known as the
reconstruction principle in Gromov–Witten theory, the moral here is to show
that this reconstruction transforms perfectly under flops.
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Let ∆(X) = ∑µ Tµ ⊗ Tµ be a diagonal splitting of ∆(X) ⊂ X × X. That
is, {Tµ} is a cohomology basis of H(X) with dual basis {Tµ}. Apply the
divisor relation (2.1)we get

〈h2, hr, t̄hr〉d = 〈h, hr+1, t̄hr〉d
+ ∑

d′+d′′=d
∑
µ

d′′〈h, t̄hr, Tµ〉d′〈Tµ, hr〉d′′ − d′〈h, Tµ〉d′〈Tµ, hr, t̄hr〉d′′ .

The last terms vanish since there are no (non-trivial) two point invariants
of the form 〈h, Tµ〉d′ .

Since hr+1 = −c1hr − c2hr−1 − · · · − cr+1, the first term clearly equals

−(c1.t̄)S〈h, hr, hr〉simple
d = −(−1)(d−1)(r+1)(c1.t̄)S.

For the second terms, notice that the only degree zero invariant is given
by 3-point classical cup product. Hence if d′ = 0 then we may select {Tµ}
in the way that h.t̄hr appears as one of the basis elements, say T0 = t̄hr+1

(this is not part of the canonical basis). Thus d′′ = d and the term equals

d〈h, t̄hr, T0〉0〈t̄hr+1, hr〉d
= −d(c1.t̄)S〈hr, hr〉simple

d = −(−1)(d−1)(r+1)(c1.t̄)S.

It remains to consider 1 ≤ d′′ ≤ d− 1. In this case we may assume that
T0 = ˇ̄thr since no lower power in h is allowed. To compute T0 explicitly,
since we are considering extremal rays, we may work on the projective
local model Xloc = P(NZ/X ⊕O) of X along Z.

By applying Lemma 1.4 to H(Xloc), we get

Lemma 2.1. Let {zi} be a basis of H(Z) and ξ = c1(OP(N⊕O)(1)) be the class of
the infinity divisor E. The dual basis for {ziξ

r+1−j}j≤r+1 is given by {žiΘj}j≤r+1
where

Θj := cj(QN) = ξ j + c1(N)ξ j−1 + · · ·+ cj(N).
In particular, Θj|Z = cj(N). Moreover, since N = ψ̄∗F′ ⊗O(−1), we have

cr+1(N) = (−1)r+1(hr+1 − c′1hr + · · ·+ (−1)r+1c′r+1).

Now if z0 = ˇ̄thr and T0 = z0ξ0 = ˇ̄thr, then T0 = t̄Θr+1 and the invariants
become

d”〈h, t̄hr, ˇ̄thr〉d′〈t̄cr+1(N), hr〉d”

= −(−1)(d′−1)(r+1)(−1)r+1d”(t̄.(c1 + c′1))
S〈hr, hr〉simple

d”

= −(−1)(d′−1+d”−1+1)(r+1)((c1 + c′1).t̄)S

= −(−1)(d−1)(r+1)((c1 + c′1).t̄)S.

Summing together, we get

〈h2, hr, t̄hr〉d = (−1)(d−1)(r+1)
(
((−c1 + c′1).t̄)S − d((c1 + c′1).t̄)S

)
.



20 Y.-P. LEE, H.-W. LIN, AND C.-L. WANG

By exactly the same procedure, as long as j2 < r or j3 < r, the boundary
terms in the divisor relation necessarily vanish by the exact knowledge on
2-point invariants, hence

〈hj1 , hj2 , t̄hj3〉d = 〈hj1−1, hj2+1, t̄hj3〉d.

In particular, any invariant with j1 + j2 + j3 = 2r + 2 may be inductively
switched into 〈h2, hr, t̄hr〉d. Hence we have shown

Proposition 2.2 (n = 3, ν = 1). For ∑3
i=1 ji = 2r + 2 and t̄ ∈ H2(s−1)(S),

〈hj1 , hj2 , t̄hj3〉d = (−1)(d−1)(r+1)
(
(s̃1.t̄)S − d(c1(F + F′).t̄)S

)
.

As in [11], this implies that the 3-point extremal quantum corrections for X
and X′ remedy the defect of classical cup product for the cases ν = 1.

To see this, it is convenient to consider the basic rational function

(2.2) f(q) :=
q

1− (−1)r+1q
= ∑

d≥1
(−1)(d−1)(r+1)qd,

which is the 3-point extremal correction for the case ν = 0. It is clear that

f(q) + f(q−1) = (−1)r.

Since F (t̄hj) = (−1)j t̄h′j for j ≤ r, the geometric series on X

∑
d≥1

(−1)(d−1)(r+1)(s̃1.t̄)S qd` = (s̃1.t̄)Sf(q`)

together with its counterpart on X′ exactly correct the classical term via

(s̃1.t̄)Sf(q`)− (−1)j1+j2+j3(s̃′1.t̄)Sf(q`′)

= (s̃1.t̄)S(f(q`) + f(q−`)) = (−1)r(s̃1.t̄)S.

The new feature for ν = 1 is that we also have contributions involving
the differential operator δh = q` d/dq`, namely

−(c1(F + F′).t̄)S ∑
d≥1

(−1)(d−1)(r+1)dqd` = −(c1(F + F′).t̄)S δhf(q`).

This higher order series does not occur as corrections to the classical de-
fect, though it is still derived from the ν = 0 information together with the
classical (bundle-theoretic) data. Of course it is invariant under Pr flops in
terms of analytic continuation.

Remark 2.3. It is helpful to comment on t̄hj and F (t̄hj) to avoid confusion.
Since the Gromov–Witten theory of extremal curve classes localizes to Z,
t̄hj is regarded as a|Z for some a ∈ H(X). If j ≤ r, the familiar formula
F a|Z′ = (−1)j t̄h′j follows from Lemma 1.2, Lemma 1.4 and the invari-
ance of Poincaré pairing. However this formula is not true for j > r.
Instead, by the Segre relation ψ̄∗hr+ν = sν, we find that hr+ν = sνhr +
(lower order terms). This observation will be useful later.
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2.3. Twisted relative invariants for general ν. We will show that when
∑3

i=1 ji = 2r + 1 + ν (ν ≤ r − 1), there is a degree ν cohomology val-
ued polynomial WF,F′

ν (d) = ∑ν
i=0 wν,i(F, F′) di with coefficients wν,i(F, F′) ∈

H2ν(S, Q) such that for any class t̄ ∈ H2(r−ν)(S),

〈hj1 , hj2 , t̄hj3〉d = (−1)(d−1)(r+1)(WF,F′
ν .t̄)S(d)

:= (−1)(d−1)(r+1)
ν

∑
i=0

(wν,i(F, F′).t̄)S di.

Hence the 3-point extremal correction is given by

〈hj1 , hj2 , t̄hj3〉+ := ∑
d≥1
〈hj1 , hj2 , t̄hj3〉d qd` = (WF,F′

ν .t̄)S(δh)f(q`).

and the corresponding ψ̄-relative invariant is equal to

〈hj1 , hj2 , hj3〉/S
+ = WF,F′

ν (δh)f(q`).

The constant term of WF,F′
ν is the νth Segre class of F + F′∗. This is what

we need because (as in the ν = 1 case)

s̃νf(q`)− (−1)j1+j2+j3 s̃′νf(q`′) = (−1)r s̃ν.

That is, the classical defect is corrected.
Similarly, for the di component with i ≥ 1,

wν,i δi
hf(q`) = wν,i (−δh′)i((−1)r − f(q`′)) = (−1)i+1wν,i δi

h′f(q`′).

This is expected to agree with (−1)j1+j2+j3 w′ν,i δi
h′f(q`′). Hence we require

the alternating nature of W:

wν,i(F′, F) = (−1)ν+iwν,i(F, F′).

Remark 2.4. We ignore the degree zero (classical) invariants in the formula-
tion since they depends on the global geometry of X and X′ and could not
be expressed by local universal formula (only their difference could be).

Recall that for 1 ≤ ν ≤ r − 1, any 3-point invariant 〈t̄1hj1 , t̄2hj2 , t̄3hj3〉d
with 1 ≤ ji ≤ r and ∑ ji = (2r + 1) + ν is equal to the standard form
〈hν+1, hr, t̄hr〉d where t̄ = t̄1 t̄2 t̄3 ∈ H2(s−ν)(S). The study of it is based on
the recursive formula on extremal corrections Wν := 〈hν+1, hr, hr〉/S

+ :

Proposition 2.5.

Wν = sνf +
ν

∑
j=1

Wν−j
(
(−1)rcjf− (−1)r+jc′jf− cj

)
.

Proof. As in [11], by using the operator δh, the divisor relation can be used
to obtain splitting relation of generating series

〈hν+1, hr, t̄hr〉+ = 〈hν, hr+1, t̄hr〉+ + ∑
i
〈hν, t̄hr, Tµ〉+δh〈Tµ, hr〉+ + (sν.t̄)Sf.
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The last term is coming from the case with d1 = 0:

∑
µ

〈hν, t̄hr, Tµ〉0δh〈Tµ, hr〉+ = δh〈t̄hν+r, hr〉+ = (sν.t̄)Sf.

Here the Segre relation hr+ν = sνhr + (lower order terms) and the complete
knowledge of 2-point invariants is used.

By the Chern polynomial relation, the first term equals

−
ν

∑
j=1
〈hν, cjhr+1−j, t̄hr〉+ = −

ν

∑
j=1
〈hν−j+1, hr, cj t̄hr〉+ = −

ν

∑
j=1

(Wν−j.cj t̄)S.

For the second sum, we take the degree r + 1 part of Tµ’s being of the
form {t̄jhr+1−j}ν

j=1 with t̄j ∈ H2j(S) to be determined later. Then as in the
previous calculation, using local models, the corresponding dual basis Tµ’s
are given by { ˇ̄tjHj−1Θr+1}ν

j=1. We need the hr part of

Hj−1Θr+1

= (−1)r+1(hj−1 + c1hj−2 + · · ·+ cj−1)(hr+1 − c′1hr + · · ·+ (−1)r+1c′r+1)

in the standard presentation of H(Z). By c̃ := c(F + F′∗) = c(F)c(F′∗), it is
(−1)r+1 times the hr part of

hr(c̃j − cj) + hr+1c̃j−1 + hr+2c̃j−2 + · · ·+ hr+j.

By the Segre relation and c(F′∗) = s(F)c(F + F′∗), the term is

hr(c̃j + s1c̃j−1 + s2c̃j−2 + · · ·+ sj−1c̃1 + sj − cj) = hr((−1)jc′j − cj).

Now we let t̄j = (−1)jc′j − cj, and then the sum becomes

(−1)r+1
ν

∑
j=1
〈hν, t̄hr, t̄jhr+1−j〉+f = (−1)r+1

ν

∑
j=1

(Wν−j((−1)jc′j − cj)f.t̄)S.

The result follows by putting the three parts together. �

Theorem 2.6 (= Theorem 0.2). The ψ̄-relative invariant over S

Wν = 〈hj1 , hj2 , hj3〉/S
+

with 1 ≤ ji ≤ r, ν = ∑ ji − (2r + 1) ≤ r− 1 is the action on f by a universal (in
c(F) and c(F′)) rational cohomology valued polynomial of degree ν in δh, which is
independent of the choices of ji’s and satisfies the functional equation

Wν − (−1)ν+1W ′ν = (−1)r s̃ν

for 0 ≤ ν ≤ r− 1.

Proof. Since W0 = f, by Proposition 2.5, it is clear that Wν is recursively
and uniquely determined, which is a degree ν + 1 polynomial in f with
coefficients being universal polynomial in c(F) and c(F′) of pure degree ν.
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Denote by δ = δh = qd/dq. In order to rewrite Wν as a degree ν polyno-
mial in δf, we start with the basic relation

δf = f + (−1)r+1f2.

Since δ( f g) = (δ f )g + f δg, it follows inductively that δmf can be expressed
as Pm(f) = f + · · ·+ (−1)m(r+1)m!fm+1 with Pm being an integral universal
polynomial of degree m + 1. Solving the upper triangular system between
δmf’s and fm+1’s gives fν+1 = (−1)m(r+1)δνf/ν! + · · · = Qν(δ)f with Qν be-
ing a rational polynomial. Clearly Wν then admits a corresponding rational
cohomology valued expression as expected.

It remains to check that Wν satisfies the required functional equation

Wν − (−1)ν+1W ′ν = (−1)r s̃ν.

We will prove it by induction. The case ν = 0 goes back to f + f′ = (−1)r

where f := f(q`) and f′ := f(q`′) ≡ f(q−`) under the correspondence F .
Assume the functional equation holds for all j < ν. Then

Wν = sνf +
ν

∑
j=1

Wν−j
(
(−1)rcjf− (−1)r+jc′jf− cj

)
,

W ′ν = s′νf′ +
ν

∑
j=1

W ′ν−j
(
(−1)rc′jf

′ − (−1)r+jcjf′ − c′j
)
.

By substituting

W ′ν−j = (−1)ν−j+1Wν−j + (−1)r+ν−j s̃ν−j

into W ′ν, we compute, after cancellations,

Wν − (−1)ν+1W ′ν

= sνf + (−1)νs′νf′ +
ν

∑
j=1

(
(−1)j s̃ν−jc′jf

′ − s̃ν−jcjf′ − (−1)r−j s̃ν−jc′j
)

= sνf + (−1)νs′νf′ + (sν − s̃ν)f′ − ((−1)νs′ν − s̃ν)f′ − (−1)r(sν − s̃ν)

= sν(f + f′)− (−1)rsν + (−1)r s̃ν

= (−1)r s̃ν,

where both directions of the Whitney sum relations

s(F) = s(F + F′∗)c(F′∗); s(F′∗) = s(F + F′∗)c(F)

are used. The proof is completed. �

Corollary 2.7. For any ordinary flop over a smooth base, we have

F 〈a1, a2, a3〉X ∼= 〈F a1, F a2, F a3〉X
′

modulo non-extremal curve classes.
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2.4. Functional equations for n ≥ 3 point extremal functions. For ordi-
nary flops over any smooth base, we will show that Corollary 2.7 extends
to all n ≥ 4. Namely

F 〈a1, · · · , an〉X ∼= 〈F a1, · · · , F an〉X
′

modulo non-extremal curve classes.
By restricting to Z and Z′, it is equivalent to the nice looking formula

F 〈hj1 , · · · , t̄hjn〉 ∼= (−1)∑ ji〈h′j1 , · · · , t̄h′jn〉
for all 1 ≤ jl ≤ r, where for notational simplicity the n-point functions in
this section refer to extremal functions, that is, the sum is only over Z+`.

Notices that F (t̄hj) = (−1)j t̄h′j only for j ≤ r and it fails in general for
j > r if the base S is non-trivial. In fact, we have

Lemma 2.8.
F (hr+1)− (F h)r+1 = (−1)r+1F Θr+1

along Z′

Proof. This is simply a reformulation of Lemma 2.1. �

It is easy to see that F 〈hj1 , · · · , t̄hjn〉 6∼= (−1)∑ ji〈h′j1 , · · · , t̄h′jn〉 if some
jl > r. This appears as the subtle point in proving the functional equations
for n ≥ 4 points. The above lemma plays a crucial role in analyzing this.

Theorem 2.9. Let f : X 99K X′ be an ordinary Pr flop with exceptional loci
Z = P(F)→ S and Z′ = P(F′)→ S. Then for n ≥ 3,

F 〈hj1 , · · · , t̄hjn〉X ∼= 〈F hj1 , · · · , F t̄hjn〉X′

for all jl’s and t̄ ∈ H2(s−ν)(S) with ν = ∑n
l=1 jl − (2r + 1 + n− 3).

Proof. This holds for n = 3 by Corollary 2.7. Suppose this has been proven
up to some n ≥ 3. The basic idea is that an iterated application of the
divisor relation using the operator δh should allow us to reduce an n + 1
point extremal function to ones with fewer marked points. The technical
details however should be traced carefully.

The first point to make is on the diagonal splitting ∆(X) = ∑ Tµ ⊗ Tµ.
Since the Poincaré pairing is preserved, F Tµ is still the dual basis of F Tµ

in H(X′). Thus we may take the diagonal splitting on the X′ side to be
∆(X′) = ∑ F Tµ ⊗F Tµ.

We only need to prove the case that all jl ≤ r. The P1 flops always have
ν = 0 and the proof is reduced to the simple case. So we assume that r ≥ 2.

We will prove the functional equation by further induction on j1. The
case j1 = 1 holds by the divisor axiom and induction, so we assume that
j1 ≥ 2. By applying the divisor relation to (i, j, k) = (1, 2, 3), we get

〈hj1 , hj2 , hj3 , · · · 〉 = 〈hj1−1, hj2+1, hj3 , · · · 〉
+ ∑

µ

〈hj1−1, hj3 , · · · , Tµ〉δh〈hj2 , · · · , Tµ〉 − δh〈hj1−1, · · · , Tµ〉〈hj2 , hj3 , · · · , Tµ〉.
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Since j1 − 1 < r, 〈hj1−1, · · · , Tµ〉 can not be a 2-point invariant unless it is
trivial. Hence we may assume that 〈hj2 , hj3 , · · · , Tµ〉 has fewer points.

The term 〈hj1−1, hj2+1, hj3 , · · · 〉 is also handled by induction since j1− 1 <
j1. Thus we may apply F to the equation and apply induction to get

F 〈hj1 , hj2 , hj3 , · · · 〉 = 〈F hj1−1, F hj2+1, F hj3 , · · · 〉
+ ∑

µ

〈F hj1−1, F hj3 , · · · , F Tµ〉δF hF 〈hj2 , · · · , Tµ〉

− δF h〈F hj1−1, · · · , F Tµ〉〈F hj2 , F hj3 , · · · , F Tµ〉,

where F ◦ δh = δF h ◦F by [11], Lemma 5.5.
Notice that in the first summand,

F 〈hj2 , · · · , Tµ〉 = 〈F hj2 , · · · , F Tµ〉
if it is not a 2-point invariant. Also the 2-point case survives precisely when
j2 = r and Tµ = pt.hr. In that case, by the invariance of 3-point extremal
functions in the ν = 0 (simple) case, the corresponding term becomes

F δh〈hr, Tµ〉 = F 〈h, hr, Tµ〉+
= 〈F h, F hr, F Tµ〉+ + (−1)r = δF h〈F hr, F Tµ〉+ (−1)r.

Also Tµ|Z = Θr+1|Z. Hence by Lemma 2.8 the extra (−1)r contributes

−〈F hj1−1, F hj3 , · · · , F hr+1〉 − 〈F hj1−1, F hj3 , · · · , (F h)r+1〉.
Since j2 = r, the LHS cancels with the first term in the divisor relation and
we end up with the RHS as the main term.

Now we compare it with the similar divisor relation for

〈F hj1 , F hj2 , F hj3 , · · · 〉 = 〈F h.F hj1−1, F hj2 , F hj3 , · · · 〉
under the diagonal splitting ∆(X′) = ∑µ F Tµ ⊗F Tµ. Namely

〈F hj1 , F hj2 , F hj3 , · · · 〉
= 〈F hj1−1, F h.F hj2 , F hj3 , · · · 〉

+ ∑
µ

〈F hj1−1, F hj3 , · · · , F Tµ〉δF h〈F hj2 , · · · , F Tµ〉

− δF h〈F hj1−1, · · · , F Tµ〉〈F hj2 , F hj3 , · · · , F Tµ〉.

If j2 < r then there is no 2-point splitting and F h.F hj2 = F hj2+1, hence
the functional equation holds. If j2 = r then F h.F hr = (F h)r+1. This
again agrees with the main term obtained above. Hence the proof of func-
tional equations is complete by induction. �

Formula for W~j := 〈hj1 , · · · , hjn〉/S can be achieved by a similar process
as in Lemma 2.5, whose exact form would not be pursued here. In general
it depends on the vector~j instead of ∑ ji.
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Remark 2.10. Theorem 0.2 and 2.9 (for the special case F′ = F∗) have been
applied in [4] to study stratified Mukai flops. In particular they provide
non-trivial quantum corrections to flops of type An,2, D5 and E6,I .

3. DEGENERATION ANALYSIS REVISITED

Our next task is to compare the Gromov–Witten invariants of X and X′
for all genera and for curve classes other than the flopped curve. As in [11],
we use the degeneration formula [17, 16] to reduce the problem to local
models. This has been achieved for simple ordinary flops in [11] for genus
zero invariants. In this section we extend the argument to the general case
and establish Theorem 0.3 (= Proposition 3.3 + 3.7) in the introduction.

3.1. The degeneration formula. We start by reviewing the basic setup. De-
tails can be found in the above references.

Consider a pair (Y, E) with E ↪→ Y a smooth divisor. Let Γ = (g, n, β, ρ, µ)
with µ = (µ1, . . . , µρ) ∈ Nρ a partition of the intersection number (β.E) =
|µ| := ∑

ρ
i=1 µi. For A ∈ H(Y)⊗n and ε ∈ H(E)⊗ρ, the relative invariant of

stable maps with topological type Γ (i.e. with contact order µi in E at the
i-th contact point) is

〈A | ε, µ〉(Y,E)
Γ :=

∫
[MΓ(Y,E)]virt

e∗Y A ∪ e∗Eε

where eY : MΓ(Y, E) → Yn, eE : MΓ(Y, E) → Eρ are evaluation maps on
marked points and contact points respectively. If Γ = äπ Γπ, the relative
invariant with disconnected domain curve is defined by the product rule:

〈A | ε, µ〉•(Y,E)
Γ := ∏

π

〈A | ε, µ〉(Y,E)
Γπ .

We apply the degeneration formula to the following situation. Let X be
a smooth variety and Z ⊂ X be a smooth subvariety. Let Φ : W → X be
its degeneration to the normal cone, the blow-up of X×A1 along Z×{0}. Let
t ∈ A1. Then Wt ∼= X for all t 6= 0 and W0 = Y1 ∪Y2 with

φ = Φ|Y1 : Y1 → X

the blow-up along Z and

p = Φ|Y2 : Y2 := P(NZ/X ⊕O)→ Z ⊂ X

the projective completion of the normal bundle. Y1 ∩Y2 =: E = P(NZ/X) is
the φ-exceptional divisor which consists of the infinity part.

The family W → A1 is a degeneration of a trivial family, so all cohomol-
ogy classes α ∈ H(X, Z)⊕n have global liftings and the restriction α(t) on
Wt is defined for all t. Let ji : Yi ↪→ W0 be the inclusion maps for i = 1, 2.
Let {ei} be a basis of H(E) with {ei} its dual basis. {eI} forms a basis of
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H(Eρ) with dual basis {eI} where |I| = ρ, eI = ei1 ⊗ · · · ⊗ eiρ
. The degener-

ation formula expresses the absolute invariants of X in terms of the relative
invariants of the two smooth pairs (Y1, E) and (Y2, E):

〈α〉Xg,n,β = ∑
I

∑
η∈Ωβ

Cη

〈
j∗1 α(0)

∣∣∣ eI , µ
〉•(Y1,E)

Γ1

〈
j∗2 α(0)

∣∣∣ eI , µ
〉•(Y2,E)

Γ2

.

Here η = (Γ1, Γ2, Iρ) is an admissible triple which consists of (possibly dis-
connected) topological types

Γi = ä|Γi |
π=1 Γπ

i

with the same partition µ of contact order under the identification Iρ of
contact points. The gluing Γ1 +Iρ Γ2 has type (g, n, β) and is connected. In
particular, ρ = 0 if and only if that one of the Γi is empty. The total genus gi,
total number of marked points ni and the total degree βi ∈ NE(Yi) satisfy
the splitting relations

g− 1 = ∑|Γ1|
π=1(g1(π)− 1) + ∑|Γ2|

π=1(g2(π)− 1) + ρ

= g1 + g2 − |Γ1| − |Γ2|+ ρ,
n = n1 + n2,
β = φ∗β1 + p∗β2.

(The first one is the arithmetic genus relation for nodal curves.)
The constants Cη = m(µ)/|Aut η|, where m(µ) = ∏ µi and Aut η =

{ σ ∈ Sρ | ησ = η }. We denote by Ω the set of equivalence classes of all
admissible triples; by Ωβ and Ωµ the subset with fixed degree β and fixed
contact order µ respectively.

Given an ordinary flop f : X 99K X′, we apply degeneration to the nor-
mal cone to both X and X′. Then Y1

∼= Y′1 and E = E′ by the definition of
ordinary flops. The following notations will be used

Y := BlZX ∼= Y1
∼= Y′1, Ẽ := P(NZ/X ⊕O), Ẽ′ := P(NZ′/X′ ⊕O).

Next we discuss the presentation of α(0). Denote by ι1 ≡ j : E ↪→ Y1 =
Y and ι2 : E ↪→ Y2 = Ẽ the natural inclusions. The class α(0) can be
represented by (j∗1 α(0), j∗2 α(0)) = (α1, α2) with αi ∈ H(Yi) such that

ι∗1α1 = ι∗2α2 and φ∗α1 + p∗α2 = α.

Such representatives are called liftings, which are not unique.
The standard choice of lifting is

α1 = φ∗α and α2 = p∗(α|Z).

Other liftings can be obtained from the standard one by the following way.

Lemma 3.1 ([11]). Let α(0) = (α1, α2) be a choice of lifting. Then

α(0) = (α1 − ι1∗e, α2 + ι2∗e)
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is also a lifting for any class e in E of the same dimension as α. Moreover, any two
liftings are related in this manner.

For an ordinary flop f : X 99K X′, we compare the degeneration ex-
pressions of X and X′. For a given admissible triple η = (Γ1, Γ2, Iρ) on the
degeneration of X, one may pick the corresponding η′ = (Γ′1, Γ′2, I′ρ) on the
degeneration of X′ such that Γ1 = Γ′1. Since

φ∗α− φ′∗F α ∈ ι1∗H(E) ⊂ H(Y),

Lemma 3.1 implies that one can choose α1 = α′1. This procedure identifies
relative invariants on the Y1 = Y = Y′1 from both sides, and we are left with
the comparison of the corresponding relative invariants on Ẽ and Ẽ′.

The ordinary flop f induces an ordinary flop

f̃ : Ẽ 99K Ẽ′

on the local model. Denote again by F the cohomology correspondence
induced by the graph closure. Then

Lemma 3.2 ([11]). Let f : X 99K X′ be an ordinary flop. Let α ∈ H(X) with
liftings α(0) = (α1, α2) and F α(0) = (α′1, α′2). Then

α1 = α′1 ⇐⇒ F α2 = α′2.

Now we are in a position to apply the degeneration formula to reduce
the problem to relative invariants of local models.

Notice that A1(Ẽ) = ι2∗A1(E) since both are projective bundles over Z.
We then have

φ∗β = β1 + β2

by regarding β2 as a class in E ⊂ Y (c.f. [11]).
Define the generating series for genus g (connected) invariants

〈A | ε, µ〉(Ẽ,E)
g := ∑

β2∈NE(Ẽ)

1
|Aut µ| 〈A | ε, µ〉(Ẽ,E)

g,β2
qβ2 .

and the similar one with possibly disconnected domain curves

〈A | ε, µ〉•(Ẽ,E) := ∑
Γ; µΓ=µ

1
|Aut Γ| 〈A | ε, µ〉•(Ẽ,E)

Γ qβΓ
κgΓ−|Γ|.

For connected invariants of genus g we assign the κ-weight κg−1, while
for disconnected ones we simply assign the product weights.

Proposition 3.3. To prove F 〈α〉Xg ∼= 〈F α〉X′g for all α up to genus g ≤ g0, it is
enough to show that

F 〈A | ε, µ〉(Ẽ,E)
g
∼= 〈F A | ε, µ〉(Ẽ′,E)

g

for all A, ε, µ and g ≤ g0.
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Proof. For the n-point function

〈α〉X = ∑
g
〈α〉Xg κg−1 = ∑

g; β∈NE(X)
〈α〉Xg,β qβ κg−1,

the degeneration formula gives

〈α〉X = ∑
g;β∈NE(X)

∑
η∈Ωβ

∑
I

Cη〈α1 | eI , µ〉•(Y1,E)
Γ1

〈α2 | eI , µ〉•(Y2,E)
Γ2

qφ∗β κg−1

= ∑
µ

∑
I

∑
η∈Ωµ

Cη×(
〈α1 | eI , µ〉•(Y1,E)

Γ1
qβ1 κgΓ1−|Γ1|

) (
〈α2 | eI , µ〉•(Y2,E)

Γ2
qβ2 κgΓ2−|Γ2|

)
κρ.

(Notice that ρ is determined by µ.) In this formula, the variable qβ1 on Y1
(resp. qβ2 on Y2) is identified with qφ∗β1 (resp. qp∗β2) on X.

To simplify the generating series, we consider also absolute invariants
〈α〉•X with possibly disconnected domain curves as in the relative case
(with product weights in κ). Then by comparing the order of automor-
phisms,

〈α〉•X = ∑
µ

m(µ) ∑
I
〈α1 | eI , µ〉•(Y1,E)〈α2 | eI , µ〉•(Y2,E) κρ.

To compare F 〈α〉•X and 〈F α〉•X′ , by Lemma 3.2 we may assume that
α1 = α′1 and α′2 = F α2. This choice of cohomology liftings identifies the
relative invariants of (Y1, E) and those of (Y′1, E) with the same topological
types. It remains to compare (c.f. Remark 3.4 below)

〈α2 | eI , µ〉•(Ẽ,E) and 〈F α2 | eI , µ〉•(Ẽ′,E).

We further split the sum into connected invariants. Let Γπ be a connected
part with the contact order µπ induced from µ. Denote P : µ = ∑π∈P µπ a
partition of µ and P(µ) the set of all such partitions. Then

〈A | ε, µ〉•(Ẽ,E) = ∑
P∈P(µ)

∏
π∈P

∑
Γπ

1
|Aut µπ| 〈A

π | επ, µπ〉(Ẽ,E)
Γπ qβΓπ

κgΓπ−1.

In the summation over Γπ, the only index to be summed over is βΓπ
on

Ẽ and the genus. This reduces the problem to 〈Aπ | επ, µπ〉(Ẽ,E)
g .

Instead of working with all genera, the proposition follows from the
same argument by reduction modulo κg0 . �

Remark 3.4. Notice that there is natural compatibility on our identifications
of the curve classes which keeps track on the contact weight |µ|. Namely,
the identity 〈α1 | eI , µ〉•(Y1,E) = 〈α1 | eI , µ〉•(Y′1,E) leads to

F φ∗〈α1 | eI , µ〉•(Y1,E) = q|µ|`
′
φ′∗〈α1 | eI , µ〉•(Y′1,E),

while F 〈α2 | eI , µ〉•(Ẽ,E) ∼= 〈F α2 | eI , µ〉•(Ẽ′,E) leads to

F p∗〈α2 | eI , µ〉•(Ẽ,E) ∼= q−|µ|`
′
p′∗〈F α2 | eI , µ〉•(Ẽ′,E).
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Thus we may ignore the issue of contact weights in our discussion.

3.2. Relative local back to absolute local. Now let X = Ẽ. We shall fur-
ther reduce the relative cases to the absolute cases with at most descendent
insertions along E. This has been done in [11] for genus zero invariants un-
der simple flops. Here we extend the argument to ordinary flops over any
smooth base S and to all genera.

The local model
p̄ := ψ̄ ◦ p : Ẽ

p→ Z
ψ̄→ S

as well as the flop f : Ẽ 99K Ẽ′ are all over S, with each fiber isomorphic to
the simple case. Thus the map on numerical one cycles

p̄∗ : N1(Ẽ)→ N1(S)

has kernel spanned by the p-fiber line class γ and ψ̄-fiber line class `, which
is the flopping log-extremal ray.

Notice that for general S the structure of NE(Z) could be complicated
and NE(Ẽ) is in general larger than i∗NE(Z)⊕Z+γ. For β = βZ + d2(β)γ ∈
NE(Ẽ), while βZ = p∗β is necessarily effective, d2(β) could possibly be
negative if (and only if) βZ 6= 0. Nevertheless we have the following:

Lemma 3.5. The correspondence F is compatible with N1(S). Namely

N1(Ẽ) F //

p̄∗⊕d2 %%LLLLLLLLLL
N1(Ẽ′)

p̄′∗⊕d′2xxrrrrrrrrrr

N1(S)⊕Z

is commutative.

Proof. Since N1(Ẽ) = i∗N1(Z) ⊕Zγ and F γ = γ′ + `′, we see that d2 =
d′2 ◦F and it is enough to consider β ∈ N1(Z). Also F ` = −`′, so the
remaining cases are of the form β = ψ̄∗βS.Hr for βS ∈ N1(S). Then F β =
ψ̄′∗βS.H′r and it is clear that both β and F β project to βS. �

This leads to the following key observation, which applies to both abso-
lute and relative invariants:

Proposition 3.6. Functional equation of a generating series 〈A〉 over Mori cone
on local models f : Ẽ 99K Ẽ′ is equivalent to functional equations of its various
subseries (fiber series) 〈A〉βS,d2 labeled by NE(S)⊕Z. The fiber series is a sum
over the affine ray β ∈ (d2γ + ψ̄∗βS.Hr + Z`) ∩ NE(Ẽ).

To analyze these fiber series 〈A〉βS,d2 with (βS, d2) ∈ NE(S)⊕Z, we con-
sider the partial order of effectivity (weight) of the quotient Mori cone

W := NE(Ẽ)/ ∼, a ∼ b if and only if a− b ∈ Z`.

Notice that a > b and b > a lead to a ∼ b since ` is an extremal ray. Under
the natural identification, W can be regarded as a subset of NE(S)⊕Z. This
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partial order is equivalent to the alphabetical partial order of NE(S)⊕Z.
For the ease of notations we also use

[β] ≡ (βS, d2) := ( p̄∗(β), d2(β)) ∈W

to denote the class of β modulo extremal rays.
Given insertions

A = (a1, . . . , an) ∈ H(Ẽ)⊕n

and weighted partition

(ε, µ) = {(ε1, µ1), . . . , (ερ, µρ)},

the genus g relative invariant 〈A | ε, µ〉g is summing over classes β = βZ +
d2γ ∈ NE(Ẽ) with

n

∑
j=1

deg aj +
ρ

∑
j=1

deg ε j = (c1(Ẽ).β) + (dim Ẽ− 3)(1− g) + n + ρ− |µ|.

In this case, d2 = (E.β) = |µ| is already fixed and non-negative.

Proposition 3.7. For an ordinary flop Ẽ 99K Ẽ′, to prove

F 〈A | ε, µ〉g,βS
∼= 〈F A | ε, µ〉g,βS

for any A ∈ H(Ẽ)⊕n, βS ∈ NE(S) and (ε, µ) up to genus g ≤ g0, it is enough
to prove the F -invariance for descendent invariants of f -special type. Namely,

F 〈A, τk1 ε1, · · · , τkρ
ερ〉Ẽg,βS,d2

∼= 〈F A, τk1 ε1, · · · , τkρ
ερ〉Ẽ

′
g,βS,d2

for any A ∈ H(Ẽ)⊕n, k j ∈ N ∪ {0}, ε j ∈ H(E) and βS ∈ NE(S), d2 ≥ 0 up to
genus g ≤ g0.

Proof. The proof proceeds inductively on the 5-tuple

(g, βS, |µ| = d2, n, ρ)

in the lexicographical order, with ρ in the reverse order.
Given 〈a1, · · · , an | ε, µ〉g,βS , since ρ ≤ |µ|, there are only finitely many

5-tuples of lower order. The proposition holds for those cases by the induc-
tion hypothesis.

We apply degeneration to the normal cone for Z ↪→ Ẽ to get W → A1.
Then W0 = Y1 ∪ Y2 with π : Y1

∼= P(OE(−1,−1) ⊕ O) → E a P1 bundle
and Y2 ∼= Ẽ. Denote by E0 = E = Y1 ∩ Y2 and E∞ ∼= E the zero and infinity
divisors of Y1 respectively.

The idea is to analyze the degeneration formula for

〈a1, · · · , an, τµ1−1ε1, · · · , τµρ−1ερ〉Ẽg,βS,d2
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since formally it sums over the same curve classes β as those in 〈a1, · · · , an |
ε, µ〉g,βS such that

n

∑
j=1

deg aj + |µ| − ρ +
ρ

∑
j=1

(deg ε j + 1)

=(c1(Ẽ).β) + (dim Ẽ− 3)(1− g) + n + ρ.

As in the proof of Proposition 3.3, we consider the generating series of
invariants with possibly disconnected domain curves while keeping the
total contact order d2 = |µ|. Then we degenerate the series according to the
contact order.

We first analyze the splitting of curve classes. Under N1(Ẽ) = i∗N1(Z)⊕
Zγ, β = βZ + d2γ may be split into

β1 ∈ NE(Y1) ⊂ NE(E)⊕Zγ̄, β2 ∈ NE(Y2) ≡ NE(Ẽ),

such that
(β1, β2) = (β1

E + cγ̄, β2
Z + eγ)

is subject to the condition φ∗β1 + p∗β2 = β, i.e.

φ̄∗β
1
E + β2

Z = βZ, c = d2 ≥ 0,

and the contact order relation

e = (E.β2)Ẽ = (E.β1)Y1 = c + (E.β1
E)Y1 = d2 − (E.β1

E)Ẽ.

As an effective class in E, β1
E is also effective in Ẽ, hence β1

E = ζ + mγ

with ζ ∈ NE(Z) and m ∈ Z. It is clear that ζ = φ̄∗β1
E and m = (E.β1

E)Ẽ. It
should be noticed that

e = d2 −m

is not necessarily smaller than d2 since m maybe negative. This causes no
trouble since we always have that

β− β2 = (βZ + d2γ)− (β2
Z + eγ) = φ̄∗β

1
E + mγ = β1

E ≥ 0.

The equality holds if and only if β1
E = 0 and in that case we arrive at fiber

class integrals on (Y1, E) with β1 = d2γ̄.
In fact, more is true. It is automatic that [β] > [β2] under the curve

class splitting. The equality [β] = [β2] occurs if and only if β1
E consists of

extremal rays d1`. But extremal rays must stay inside Z, hence we again
conclude that β1

E = 0 and get fiber integrals on (Y1, E). No summation
over extremal rays is needed for these integrals.

Next we analyze the splitting of cohomology insertions. It is sufficient to
consider (ε1, . . . , ερ) = eI = (ei1 , . . . , eiρ

). Since ε i|Z = 0, one may choose
the cohomology lifting ε i(0) = (ι1∗ ε i, 0). This ensures that insertions of the
form τk ε must go to the Y1 side in the degeneration formula.
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For a general cohomology insertion α ∈ H(Ẽ), by Lemma 3.1, the lifting
can be chosen to be α(0) = (a, α) for some a. From α(0) = (a, α) and
F α(0) = (a′, F α), Lemma 3.2 implies that a = a′.

As before the relative invariants on (Y1, E) can be regarded as constants
under F . Then

〈a1, · · · , an, τµ1−1ei1 , · · · , τµρ−1eiρ
〉•Ẽg,βS,d2

= ∑
µ′

m(µ′)×

∑
I′
〈τµ1−1ei1 , · · · , τµρ−1eiρ

| eI′ , µ′〉•(Y1,E)
0,0 〈a1, · · · , an | eI′ , µ′〉(Ẽ,E)

g,βS
+ R,

where the main terms contain invariants whose (Ẽ, E) components admit
the highest order with respect to the first four induction parameters

(g, βS, |µ| = d2, n).

In fact, the potentially highest order term 〈a1, · · · , an | eI , µ〉(Ẽ,E)
g,βS

occurs by
the dimension count at the beginning of the proof. Yet it is not clear a priori
whether it is also the highest one in ρ.

For the the remaining terms R, a term is in it if each connected compo-
nent of its relative invariants on (Ẽ, E) has either smaller genus or has β2

S
strictly smaller than βS or has smaller contact order or has fewer insertions
than n. Notice that disconnected invariants on (Ẽ, E) must lie in R.

For the main terms, by the genus constraint and the fact that the invari-
ants on (Ẽ, E) are connected, the invariants on (Y1, E) must be of genus zero
and the connected components are indexed by the contact points. Also each
connected invariant contains fiber integrals with total fiber class β1 = d2γ̄.

To get constraints about (eI′ , µ′) and ρ′ on the main terms, we recall the
dimension count on Ẽ and (Ẽ, E). Let D = (c1(Ẽ).β) + (dim Ẽ− 3)(1− g).
For the absolute invariant on Ẽ,

n

∑
j=1

deg aj + |µ| − ρ +
ρ

∑
j=1

(deg eij + 1) = D + n + ρ,

while on (Ẽ, E) (notice that now (c1(Ẽ).β2) = (c1(Ẽ).β)),

n

∑
j=1

deg aj +
ρ′

∑
j=1

deg ei′j
= D + n + ρ′ − |µ′|.

Hence (eI , µ) occurs in (eI′ , µ′)’s and in particular, R is F -invariant by in-
duction. Moreover,

deg eI − deg eI′ = ρ− ρ′.
We will show that the highest order term in the main terms, with respect

to all five parameters, consists of the single one

C(µ)〈a1, · · · , an | eI , µ〉(Ẽ,E)
g,βS

with C(µ) 6= 0.
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For any (eI′ , µ′) in the main terms, consider the splitting of weighted
partitions

(eI , µ) =
ρ′

ä
k=1

(eIk , µk)

according to the connected components of the relative moduli of (Y1, E),
which are indexed by the contact points of µ′.

Since fiber class relative invariants on P1 bundles over E can be com-
puted by pairing cohomology classes in E with certain Gromov–Witten in-
variants in the fiber P1 (c.f. [20], §1.2), we must have deg eIk + deg ei′k ≤
dim E to get non-trivial invariants. That is

deg eIk = ∑
j

deg eik
j
≤ dim E− deg ei′k ≡ deg ei′k

for each k. In particular, deg eI ≤ deg eI′ , hence also ρ ≤ ρ′.
The case ρ < ρ′ is handled by the induction hypothesis, so we assume

that ρ = ρ′ and then deg eIk = deg ei′k
for each k = 1, . . . , ρ′. In particular

Ik 6= ∅ for each k. This implies that Ik consists of a single element. By
reordering we may assume that Ik = {ik} and (eIk , µk) = {(eik , µk)}.

Since the relative invariants on Y1 contain genus zero fiber integrals, the
virtual dimension for each k (connected component of the relative virtual
moduli) is

2µ′k + (dim Y1 − 3) + 1 + (1− µ′k)
= (µk − 1) + (deg eik + 1) + (dim E− deg ei′k

).

Together with deg eik = deg ei′k
, this implies that

µ′k = µk, k = 1, . . . , ρ.

From the fiber class invariants consideration and

deg eik + deg ei′k = dim E,

eik and ei′k must be Poincaré dual to get non-trivial integral over E. That
is, ei′k

= eik for all k and (eI′ , µ′) = (eI , µ). This gives the term we expect
where C(µ) is a product of nontrivial fiber class invariants

ρ

∏
k=1

(
〈τµk−1eik | eik , µk〉

(Y1,E)
0, µkγ̄ qµkγ̄

)
= cµqd2γ̄

with cµ 6= 0.
In order to compare with the series 〈a1, · · · , an, τµ1−1ei1 , · · · , τµρ−1eiρ

〉Ẽg,βS,d2
,

which satisfies the functional equation under F by assumption, we need
only to match the formal variables involved. Under φ : Y1 → Ẽ we set
qγ̄ 7→ qγ and under p : Y2 ∼= Ẽ → Ẽ we set qγ 7→ q0 = 1. Similarly we
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identify formal variables in the Ẽ′ side. It is clear that these identifications
commute with F . Hence

F 〈a1, · · · , an | eI , µ〉Ẽg,βS
∼= 〈F a1, · · · , F an | eI , µ〉Ẽ′g,βS

,

and the proof of Proposition 3.7 is complete. �

4. RECONSTRUCTIONS ON LOCAL MODELS

In this section, X and X′ are the projective local models (double projec-
tive bundles over S) of the flop

f : X = Ẽ = PZ(NZ/X ⊕O) 99K X′ = Ẽ′ = PZ′(NZ′/X′ ⊕O).

Since we consider only genus zero invariants for the discussion on big
quantum rings, the subscript on genus will be omitted. One special fea-
ture for genus zero GW theory is that there exists several reconstruction
theorems which allow us to deal with only some initial GW invariants.

By Leray–Hirsch,

H(X) = H(S)[h, ξ]/( fF(h), fN⊕O(ξ)).

So every a ∈ H(X) admits a canonical presentation a = t̄hiξ j with 0 ≤ i ≤ r,
0 ≤ j ≤ r + 1 and t̄ ∈ H(S). (In this case F a = t̄(F h)i(F ξ)j = t̄(ξ ′− h′)iξ ′j

for i ≤ r and for any j.) We abuse notations by writing ξ|a if j ≥ 1.

Definition 4.1 ( f -special invariants). An insertion τka is called special if k 6= 0
implies that ξ|a. A (possibly) descendent invariant is f -special it is not
extremal (i.e. (βS, d2) 6= (0, 0)) and if all of its insertions are special. An
f -special invariant is of type I if ξ divides some insertion, otherwise it is
called of type II.

4.1. Topological recursion relation and divisor axiom.

Theorem 4.2. The F -invariance for descendent invariants of f -special type is
equivalent to the F -invariance of big quantum rings.

Proof. We only need to prove “⇐”:
Consider the generating series 〈τk1 a1, · · · , τkn an〉βS,d2 of f -special type

with (βS, d2) 6= (0, 0). Let k = ∑i ki be the total descendent degree. We
will prove the theorem by induction on k.

If k = 0, we may assume that n ≥ 3 by adding divisors ξ or D ∈ H2(S)
into the insertions. Since (ξ.`) = 0 = (D.`), this only affects the series
by a nonzero constant, hence the F -invariance reduces to the case of big
quantum ring.

Now let k > 0. Without loss of generality we assume that k1 ≥ 1. By
induction the results holds for strictly smaller descendent degree and for
any n ≥ 1.

We first treat the case n ≥ 3. By the topological recursion relation

ψ1 = [D1|2,3]
virt,
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we get

〈τk1 a1, · · · , τkn an〉βS,d2

= ∑
µ

〈τk1−1a1, · · · , Tµ〉β′S,d′2
〈Tµ, τk2 a2, τk3 a3, · · · 〉β′′S ,d′′2

,

where the sum is over all splitting of curve classes such that (β′S, d′2) +
(β′′S, d′′2 ) = (βS, d2).

Notice that on the RHS, the case (β′S, d′2) = (0, 0) is excluded since ξ|a1
and it will lead to trivial invariants. The (β′S, d′2) series is then F -invariant
since it has strictly smaller descendent order k1 − 1 < k. (Recall that on the
X′ side we may choose F Tµ and F Tµ for the splitting since F preserves
the Poincaré pairing.)

The (β′′S, d′′2 ) series is also F -invariant: It has strictly smaller descendent
degree and it has at least 3 insertions. So even if (β′′S, d′′2 ) = (0, 0) we still
get the F -invariance.

The case n = 1 can be reduced to the case n = 2 by the divisor equation
for descendant invariants. Namely let b be a divisor coming from the base
S or ξ such that b.(βS + d2γ) 6= 0. Then (b.β) 6= 0 is independent of d and

〈b, τka〉βS,d2 = (b.β)〈τka〉βS,d2 + 〈τk−1ab〉βS,d2 .

The case n = 2 can be similarly reduced to the case n = 3. If there is only
one descendent insertion, say 〈a1, τka2〉βS,d2 , then

〈b, a1, τka2〉βS,d2 = (b.β)〈a1, τka2〉βS,d2 + 〈a1, τk−1a2b〉βS,d2 .

If there are two descendent insertions, say 〈τla1, τk−la2〉βS,d2 , then

〈b, τla1, τk−la2〉βS,d2 = (b.β)〈τla1, τk−la2〉βS,d2

+ 〈τl−1a1b, τk−la2〉βS,d2 + 〈τla1, τk−l−1a2b〉βS,d2 .

All the other series are either 3-point functions or have descendent degree
drops by one. Thus by induction the proof is complete. �

4.2. Divisorial reconstruction and quasi-linearity. Theorem 4.2 reduces
the analytic continuation problem to the local models completely. How-
ever, in the actual determination of GW invariants (as will see in later sec-
tions), another natural set of initial GW invariants are those with at most
one descendent insertion. This suggests another reconstruction procedure.

Definition 4.3 (Quasi-linearity). We say that the flop f is quasi-linear if for
every special insertion α ∈ H(X)∪ τ•H(E), t̄i ∈ H(S) and (βS, d2) 6= (0, 0),
we have

F 〈t̄1, · · · , t̄n−1, α〉XβS,d2
∼= 〈t̄1, · · · , t̄n−1, F α〉X′βS,d2

.

We call invariants of the above type (with only one insertion not from
the base) elementary. Quasi-linearity is the F -invariance for elementary
f -special invariants.
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Notice that the similar statement for descendent invariants, even for sim-
ple flops, is generally wrong if α = τka with k > 0 but a 6∈ H(E) (c.f. [11]).

Theorem 4.4. Suppose that f is quasi-linear. Then all descendent invariants
of f -special type are F -invariant. Namely for α = (α1, . . . , αn) (n ≥ 1) with
αi ∈ H(X) ∪ τ•H(E) and for (βS, d2) 6= (0, 0), we have

F 〈α〉XβS,d2
∼= 〈F α〉X′βS,d2

.

More precisely, any series of f -special type can be reconstructed, in an F -
compatible manner, from the extremal functions with n ≥ 3 points and elementary
f -special series.

We will prove the reconstruction by induction on (βS, d2) ∈W, and then
on m which is the number of insertions not coming from base classes. This
is based on the following observations:

(1) Under divisorial reconstruction: ψi + ψj = [Di|j]virt, and for L ∈ Pic(X),

(4.1) e∗i L = e∗j L + (β.L)ψj − ∑
β1+β2=β

(β1.L)[Diβ1|jβ2
]virt

([13], c.f. also [11]), the degree β is either preserved or split into effective
classes β = β1 + β2.

(2) When summing over β ∈ (d2γ + ψ̄∗βS.Hr + Z`) ∩ NE(X), the split-
ting terms can usually be written as the product of two generating series
with no more marked points in a manner which will be clear in each con-
text during the proof.

We also need to comment on the excluded cases (βS, d2) = (0, 0):
(3) Let αi = τki ai. If k = ∑ ki 6= 0, say ξ|a1, then the extremal invariants

survive only for the case β = 0. Since M0,n(X, 0) ∼= M0,n × X, we have

(4.2) 〈τk1 a1, · · · , τkn an〉n,β=0 =
∫

M0,n

ψk
1 ×

∫
X

a1 · · · an.

It is non-trivial only if k = dim M0,n = n− 3, and then∫
X

a1 · · · an =
∫

X′
F a1 · · ·F an

since the flop f restricts to an isomorphism on E.
(4) For extremal invariants with k = 0, since ξ|Z = 0 and the extremal

curves will always stay in Z, we get trivial invariant if one of the insertions
involves ξ. Hence by Theorem 2.9 the statement in the theorem still holds in
this initial case except for the 2-point invariants 〈t̄1hr, t̄2hr〉. By the divisor
axiom

δh〈t̄1hr, t̄2hr〉 = 〈h, t̄1hr, t̄2hr〉+,
the 2-point invariants will satisfy the F -invariance functional equation up
to analytic continuation only after incorporated with classical defect. Thus
we may base our induction on (βS, d2) = (0, 0) with special care taken to
handle this case.
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Proof. Let (βS, d2) 6= (0, 0). If m = 1 then we are done, so let m ≥ 2 .
Step 1. First we handle the type I case, i.e. with the appearance of ξ in

some αi.
By reordering we may assume that αn = τsξa, s ≥ 0. Write

α1 = t̄1τkhlξ j.

We will reduce m by moving divisors in α1 into αn in the order of ψ, h and
ξ. This process is compatible with F since F a.F ξ = F (a.ξ).

For ψ, we use the equation

ψ1 = −ψn + [D1|n]
virt.

If k ≥ 1 then j 6= 0 and we get

〈t̄1τkhlξ j, · · · , τsξa〉βS,d2 = −〈t̄1τk−1hlξ j, · · · , τs+1ξa〉βS,d2

+ ∑
µ

〈t̄1τk−1hlξ j, · · · , Tµ〉β′S,d′2
〈Tµ, · · · , τsξa〉β′′S ,d′′2

.

For each i, if one of (β′S, d′2) and (β′′S, d′′2 ) is (0, 0) then since both terms
contain ξ the splitting term must vanish. So we may assume that

(β′S, d′2) < (βS, d2) and (β′′S, d′′2 ) < (βS, d2)

and these terms are done by the induction hypothesis. (By performing this
procedure to α1, . . . , αn−1 we may assume that the only descendent inser-
tion is αn.)

For h, if l ≥ 1 we use the divisor relation (4.1) for L = h to get

〈t̄1hlξ j, · · · , τsξa〉βS,d2

= 〈t̄1hl−1ξ j, · · · , τsξah〉βS,d2 + δh〈t̄1hl−1ξ j, · · · , τs+1ξa〉βS,d2

−∑
µ

δh〈t̄1hl−1ξ j, · · · , Tµ〉β′S,d′2
〈Tµ, · · · , τsξa〉β′′S ,d′′2

.

The only cases for the splitting term to have one factor with the same
(βS, d2) and m are of the form (denote by t̄∗ some set of insertions αj ∈
H(S))

δh〈t̄1hl−1ξ j, t̄∗, Tµ〉0,0〈Tµ, · · · , τsξa〉βS,d2 ,

where the LHS has n′ points, or

δh〈t̄1hl−1ξ j, · · · , Tµ〉βS,d2〈T
µ, t̄∗, τsξa〉0,0.

But l − 1 < r forces the former LHS invariants to vanish: For j 6= 0 this is
trivial. For j = 0, the codimension (c.f. §2)

(4.3) µ = |h| − (2r + 1 + n′ − 3) < 2r− 2r = 0.

The latter RHS invariants also vanish since they contain ξ.
If j = 0, the case (β′S, d′2) = (0, 0) may still support nontrivial invari-

ants with 3 or more points. In that case m decreases in the RHS. For the
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other terms, the only possible appearance of type II invariants (i.e. without
ξ insertion) is

(4.4) δh〈t̄1hl−1, · · · , Tµ〉β′S,d′2
= 〈h, t̄1hl−1, · · · , Tµ〉β′S,d′2

,

where j = 0, which has at least 3 points and (0, 0) < (β′S, d′2) < (βS, d2).
For ξ, the argument is entirely similar. For j ≥ 1, the divisor relation says

that

〈t̄1ξ j, · · · , τsξa〉βS,d2

= 〈t̄1ξ j−1, · · · , τsξ
2a〉βS,d2 + δξ〈t̄1ξ j−1, · · · , τs+1ξa〉βS,d2

−∑
µ

δξ〈t̄1ξ j−1, · · · , Tµ〉β′S,d′2
〈Tµ, · · · , τsξa〉β′′S ,d′′2

.

We then have (β′S, d′2) < (βS, d2) and (β′′S, d′′2 ) < (βS, d2) as before. Notice
that only type I invariants appear in the reduction.

Step 2. Next we deal with the type II case: αi = t̄ihli , 1 ≤ i ≤ n. In
case βS = 0, we can add one ξ into the insertions and then go back to
Step 1. From (4.4), (βS, d2) will be getting smaller when the possible type
II invariants appear again, so it is done by induction. Thus we can allow
βS 6= 0 here. By adding base divisors into the insertions we may always
assume that n ≥ 3.

We can not apply (4.1) to move divisors since it will produce non f -
special invariants. Instead, since n ≥ 3 we may apply (2.1), the descendent-
free form of the divisor relation, as we have used in the proof of Theorem
2.9.

Suppose that l1 > 0 and l2 > 0 and we move h from α1 to α2. We run
induction on l1. Namely we assume the F -invariant reduction holds for
α1 = t̄1hj with j ≤ l1 − 1. The initial case j = 0 holds since m drops by 1.
Then

〈t̄1hl1 , t̄2hl2 , α3, · · · 〉βS,d2

= 〈t̄1hl1−1, t̄2hl2+1, α3, · · · 〉βS,d2

+ ∑
µ

〈t̄1hl1−1, α3, · · · , Tµ〉β′S,d′2
δh〈t̄2hl2 , · · · , Tµ〉β′′S ,d′′2

− δh〈t̄1hl1−1, · · · , Tµ〉β′S,d′2
〈t̄2hl2 , α3, · · · , Tµ〉β′′S ,d′′2

.

If l2 ≤ r− 1, the processes on X and X′ are clearly F -compatible and the
splitting terms are all handled by induction. Indeed, if (β′S, d′2) = (βS, d2)
and m′ = m then (β′′S, d′′2 ) = (0, 0) which gives an extremal function with
m′′ ≤ 2. The analogous codimension condition as in (4.3) forces the term to
vanish. Similar consideration applies to the case (β′′S, d′′2 ) = (βS, d2) as well.

If l2 = r, the first term is no longer F -compatible. The topological de-
fect of the second insertion is given by Lemma 2.8: F (hr+1)− (F h)r+1 =
(−1)r+1F Θr+1, where Θr+1 is the dual class of pt.hrξ0. Meanwhile, the
splitting terms also contain one term not of lower order in (βS, d2) and m.
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By the codimension consideration as in (4.3), we have Tµ = ˇ̄t2hr and the
term is given by

〈t̄1hl1−1, α3, · · · , αn, t̄2Θr+1〉βS,d2 δh〈t̄2hr, ˇ̄t2hr〉0,0.

Comparing with its corresponding term on X′

〈t̄1F hl1−1, F α3, · · · , F αn, t̄2F Θr+1〉βS,d2 δF h〈t̄2F hr, ˇ̄t2F hr〉0,0

and using the induction, we get the difference to be

− 〈t̄1F hl1−1, F α3, · · · , F αn, t̄2F Θr+1〉βS,d2 × (−1)r+1

= −〈t̄1F hl1−1, t̄2F (hr+1), · · · 〉βS,d2 + 〈t̄1F hl1−1, t̄2(F h)r+1, · · · 〉βS,d2 .

This cancels the defect of the non F -compatible terms.
Thus the whole reduction is F -invariant and the proof is complete. �

4.3. WDVV equations. We may strengthen Theorem 4.4 to

Theorem 4.5. If the quasi-linearity holds for elementary type I series

〈t̄1, · · · , t̄n−1, τkaξ〉,
then the F -invariance holds for all series of f -special type.

The significance of this reduction will become clear after we introduce
the practical method to calculate GW invariants. The proof is based on

Proposition 4.6. Any type II series over (βS, d2) can be transformed into sum
of products of (1) type I series over (β′S, d′2) ≤ (βS, d2), (2) type II series over
β′S < βS, and (3) extremal functions. Also, the processes can be done in a F -
compatible manner.

Indeed, with Proposition 4.6, Theorem 4.5 then follows from the proof
of Theorem 4.4: Simply replace Step 2 by the proposition and run the in-
duction. All type II special series eventually disappear. (Degenerate type II
series with (βS, d2) = (0, 0) are simply extremal functions.)

The remaining of this subsection is devoted to the proof of Proposition
4.6. Notice that if d2 6= 0 then this is trivial: By the divisor axiom,

〈a1, · · · , an〉βS,d2 = 〈a1, · · · , an, ξ〉βS,d2 /d2.

Thus we consider 〈a1, · · · , an−1, t̄ihj〉βS,0 with a1, . . . , an−1 ∈ H(Z).
Let {T̄i} be a basis for H(S) and { ˇ̄Ti} be its dual basis. We start with the

case of three-point functions 〈a, b, T̄ihj〉βS,0 for any a, b ∈ H(Z). This cer-
tainly includes also the one-point and two-point cases by picking suitable
a, b ∈ H2(S).

For any c, d ∈ H(X), the WDVV equations

∑
m,n

∂ijmF0 gmn ∂nkl F0 = ∑
m,n

∂ikmF0 gmn ∂njl F0
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lead to the diagram

[a ∨ b 7→ ξc ∨ ξd] = [a ∨ ξc 7→ b ∨ ξd].

We apply it to split the curve classes over (βS, d2 = 1) and get a linear
equation

(4.5) ∑
i,j
〈a, b, T̄ihj〉βS,0〈 ˇ̄Ti Hr−jΘr+1, ξc, ξd〉0,d2 = Ic,d,

where all terms in the LHS of WDVV with either (1) β′S < βS, (2) d′2 6= 0,
or (3) with basis class insertion Tµ = T̄ihjξk (k > 0) from the diagonal
splitting, have been moved into the RHS. Since the original RHS of WDVV
are all type I series, any series in Ic,d over (β′S, d′2) must satisfy β′S < βS or
(β′S, d′2) = (βS, 0).

Let m = ∑i hi(S). We intend to form an N × N invertible system with
N = m(r + 1). The virtual dimension of the second series is

d2(r + 2) + 2r + 1 + s.

Thus for d2 = 1, we should require |c| + |d| = r + |T̄i| + j to match the
dimension.

Natural choices of {(c, d)} are

(4.6) c = ck,l := T̄kξ l , d = hr.

The set {ck,l} is partially ordered by |T̄k| and then by l.
We claim that the resulting system is upper triangular with non-zero di-

agonal. Indeed,
〈 ˇ̄Ti Hr−jΘr+1, T̄kξ l+1, ξhr〉0,1 6= 0

only if |T̄k|+ l = |T̄i|+ j.
The key point is to use the fiber bundle structure M0,n(X, β) → S for

β = d` + d2γ as in the extremal case (where d2 = 0). The fiber is given by
M0,n of the toric local model for the simple flop case.

Thus if |T̄k| > |T̄i| then | ˇ̄Ti| + |T̄k| > s and the invariant is zero. Even
in the case |T̄k| = |T̄i|, and so l = j, we must have T̄k = T̄i to avoid trivial
invariants. The other cases |T̄k| < |T̄i| belong to the strict upper triangular
region which do not affect our concern.

It remains to calculate the diagonal fiber series (sum in d ≥ 0)

∑
i
〈 ˇ̄Ti Hr−jΘr+1, T̄iξ

j+1, ξhr〉0,1 = 〈hr−j(ξ − h)r+1, ξ j+1, ξhr〉simple
d2=1 .

We had done a similar calculation before for the extremal case in [11],
Proposition 3.8. In the current case we have

Lemma 4.7. For simple flops, the fiber series in d with d2 = 1 are given by

〈hr−j(ξ − h)r+1, ξ j+1, ξhr〉d2=1 =

{
(−1)jq`qγ, 0 ≤ j ≤ r− 1;
(1− (−1)r+1q`)qγ, j = r.
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Proof. By applying the divisor relation to move one ξ class with respect to
(i, j, k) = (2, 1, 3), we get (notice that ξ(ξ − h)r+1 = 0)

〈hr−j(ξ − h)r+1, ξ j+1, ξhr〉d2=1

= ∑
µ

〈ξ j, ξhr, Tµ〉0δξ〈Tµ, hr−j(ξ − h)r+1〉1 − δξ〈ξ j, Tµ〉1〈Tµ, hr−j(ξ − h)r+1, ξhr〉0

= 〈hr−j(ξ − h)r+1, ξ j+1hr〉1.

By another divisor relation (4.1), we can keep track on the 2-point invari-
ants as follows:

〈hr−j(ξ − h)r+1, ξ j+1hr〉1
= 〈ψhr−j(ξ − h)r+1, ξ jhr〉1 −∑

µ

δξ〈ξ jhr, Tµ〉1〈Tµ, hr−j(ξ − h)r+1〉0

= 〈ψhr−j(ξ − h)r+1, ξ jhr〉1 = · · ·
= 〈ψj+1hr−j(ξ − h)r+1, hr〉1.

Here we use the fact that there is no extremal invariants with any insertion
involving ξ (notice that (ξ − h)r+1 = ξ(· · · ) since hr+1 = 0).

Next we move the divisor class h in hr to the left one by one:

〈ψj+1hr−j(ξ − h)r+1, hr〉1
= 〈ψj+1hr−j+1(ξ − h)r+1, hr−1〉1 + δh〈ψj+2hr−j(ξ − h)r+1, hr−1〉1
−∑

µ

δh〈hr−1, Tµ〉0〈Tµ, ψj+1hr−j(ξ − h)r+1〉1

= 〈ψj+1(h + dψ)hr−j(ξ − h)r+1, hr−1〉1 = · · ·
= 〈ψj+1(h + dψ)r−1hr−j(ξ − h)r+1, h〉1.

Note that 〈hr−1, Tµ〉0 = 0 since the power of h is less than r.
Finally, the divisor axiom helps us to obtain the result:

〈ψj+1(h + dψ)r−1hr−j(ξ − h)r+1, h〉1
= d〈ψj+1(h + dψ)r−1hr−j(ξ − h)r+1〉1 + 〈hψj(h + dψ)r−1hr−j(ξ − h)r+1〉1
= 〈ψj(h + dψ)rhr−j(ξ − h)r+1〉1,

which is the constant term in the z expansion in〈
∑
k≥0

ψk

zk zj(h + dz)rhr−j(ξ − h)r+1
〉

1

= zj+2e1∗

( 1
z(z− ψ)

e∗1(h + dz)rhr−j(ξ − h)r+1
)

.

According to the same discussion of quasi-linearity in [11], if d2 − d < 0
then Pβ vanishes after multiplication by ξ. Here hr−j(ξ− h)r+1 does contain
at least one ξ. Hence we only need to consider d2 ≥ d. Now d2 = 1, thus
d = 0 or 1.
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If d = 0, then hrhr−j(ξ − h)r+1 is nontrivial only if j = r and in this case
we get hr(ξ − h)r+1 = hrξr+1 = pt. It is clear that the constant term of z in

zr+2 Jβ.pt = zr+2 1
(ξ − h + z)r+1(ξ + z)

.pt

is equal to 1.
If d = 1, then Jβ = 1/(h + z)r+1(ξ + z). Thus

zj+2 (h + z)rhr−j(ξ − h)r+1

(h + z)r+1(ξ + z)

=
zj+2

z2
hr−j(ξ − h)r+1

(1 + h/z)(1 + ξ/z)

= zjhr−j(ξ − h)r+1
(

1− h
z

+
h2

z2 − · · · (−1)j hj

zj + · · ·
)(

1− ξ

z
+ · · ·

)
.

Since ξ(ξ − h)r+1 = 0, the constant term is given by

(−1)jhr(ξ − h)r+1 = (−1)jhrξr+1 = (−1)j.

The proof is complete. �

Now we consider n-point functions with n ≥ 3. The WDVV equation is
for triple derivatives of the g = 0 potential function. Let t ∈ H>2(X) be
a general insertion without the fundamental class and divisors. Then we
have

(4.7) ∑
i,j
〈a, b, T̄ihj〉βS,0(t)〈 ˇ̄Ti Hr−jΘr+1, T̄kξ l+1, ξhr〉0,1(t) = Ik,l(t)

where any series in Ic,d over (β′S, d′2) must satisfy β′S < βS or (β′S, d′2) =
(βS, 0).

By dimension counting, one more marked point increases one virtual
dimension while t has Chow degree more than one, so we find that

〈 ˇ̄Ti Hr−jΘr+1, T̄kξ l+1, ξhr〉0,1(t) = 〈 ˇ̄Ti Hr−jΘr+1, T̄kξ l+1, ξhr〉0,1

is in fact independent of t when |T̄i|+ j = |T̄k|+ l. The linear system (4.7)
is thus F -compatible by the quantum invariance of simple flop case [11].

In any case, if |T̄k| > |T̄i| then the invariants are still zero. In particular
the N × N system is still upper triangular. Moreover the diagonal entries
are still given by the original 3 point (finite) series. Thus the series

〈a, b, T̄ihj〉βS,0(t)

are solvable in terms of the expected terms.
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5. BIRKHOFF FACTORIZATION

In this section, a general framework for calculating the J function for a
split toric bundle is discussed. It relies on a given (partial) section I of the
Lagrangian cone generated by J. The process to go from I to J is introduced
in a constructive manner, and Theorem 0.4 will be proved (= Proposition
5.6 + Theorem 5.10).

5.1. Lagrangian cone and the J function. We start with Givental’s sym-
plectic space reformulation of Gromov–Witten theory arising from Witten’s
basic dilaton, string, and topological recursion relation in two-dimensional grav-
ity [25]. The main references for this section are [6, 2], with supplements
and clarification from [15, 10]. In the following, the underlying ground
ring is the Novikov ring

R = ̂C[NE(X)].
All the complicated issues on completion are deferred to [15].

Let H := H(X), H := H[z, z−1]], H+ := H[z] and H− := z−1H[[z−1]].
Let 1 ∈ H be the identity. One can identify H as T∗H+ and this gives a
canonical symplectic structure and a vector bundle structure onH.

Let

q(z) = ∑
µ

∞

∑
k=0

qµ
k Tµzk ∈ H+

be a general point, where {Tµ} form a basis of H. In the Gromov–Witten
context, the natural coordinates on H+ are t(z) = q(z) + 1z (dilaton shift),
with t(ψ) = ∑µ,k tµ

k Tµψk serving as the general descendent insertion. Let
F0(t) be the generating function of genus zero descendent Gromov–Witten
invariants on X. Since F0 is a function on H+, the one form dF0 gives a
section of π : H → H+.

Givental’s Lagrangian cone L is defined as the graph of dF0, which is con-
sidered as a section of π. By construction it is a Lagrangian subspace. The
existence of C∗ action on L is due to the dilaton equation ∑ qµ

k ∂/∂qµ
k F0 =

2F0. Thus L is a cone with vertex q = 0 (c.f. [6, 10]).
Let τ = ∑µ τµTµ ∈ H. Define the (big) J-function to be

JX(τ, z−1) = 1 +
τ

z
+ ∑

β,n,µ

qβ

n!
Tµ

〈
Tµ

z(z− ψ)
, τ, · · · , τ

〉
0,n+1,β

= e
τ
z + ∑

β 6=0,n,µ

qβ

n!
e

τ1
z +(τ1.β)Tµ

〈
Tµ

z(z− ψ)
, τ2, · · · , τ2

〉
0,n+1,β

,

(5.1)

where in the second expression τ = τ1 + τ2 with τ1 ∈ H2. The equality
follows from the divisor equation for descendent invariants. Furthermore,
the string equation for J says that we can take out the fundamental class 1
from the variable τ to get an overall factor eτ0/z in front of (5.1).
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The J function can be considered as a map from H to zH−. Let Lf = TfL
be the tangent space of L at f ∈ L. Let τ ∈ H be embedded intoH+ via

H ∼= −1z + H ⊂ H+.

Denote by Lτ = L(τ,dF0(τ)). Here we list the basic structural results from [6]:

(i) zL ⊂ L and so L/zL ∼= H+/zH+ ∼= H has rank N := dim H.
(ii) L ∩ L = zL, considered as subspaces insideH.

(iii) The subspace L of H is the tangent space at every f ∈ zL ⊂ L.
Moreover, Tf = L implies that f ∈ zL. zL is considered as the ruling
of the cone.

(iv) The intersection of L and the affine space −1z + zH− is parameter-
ized by its image −1z + H ∼= H 3 τ via the projection by π.

−zJ(τ,−z−1) = −1z + τ + O(1/z)

is the function of τ whose graph is the intersection.
(v) The set of all directional derivatives z∂µ J = Tµ + O(1/z) spans an N

dimensional subspace of L, namely L∩ zH−, such that its projection
to L/zL is an isomorphism.

Note that we have used the convention of the J function which differs
from that of some more recent papers [6, 2] by a factor z.

Lemma 5.1. z∇J = (z∂µ Jν) forms a matrix whose column vectors z∂µ J(τ) gen-
erates the tangent space Lτ of the Lagrangian cone L as an R{z}-module. Here
a = ∑ qβaβ(z) ∈ R{z} if aβ(z) ∈ C[z].

Proof. Apply (v) to L/zL and multiply zk to get zkL/zk+1L. �

We see that the germ of L is determined by an N-dimensional submani-
fold. In this sense, zJ generates L. Indeed, all discussions are applicable to
the Gromov–Witten context only as formal germs around the neighborhood
of q = −1z.

5.2. Generalized mirror transform for toric bundles. Let p̄ : X → S be a
smooth fiber bundle such that H(X) is generated by H(S) and fiber divisors
Di’s as an algebra, such that there is no linear relation among Di’s and
H2(S). An example of X is a toric bundle over S. Assume that H(X) is a
free module over H(S) with finite generators {De := ∏i Dei

i }e∈Λ.
Let t̄ := ∑s t̄sT̄s be a general cohomology class in H(S), which is iden-

tified with p̄∗H(S). Similarly denote D = ∑ tiDi the general fiber divisor.
Elements in H(X) can be written as linear combinations of {T(s,e) = T̄sDe}.
Denote the T̄s directional derivative on H(S) by ∂T̄s

≡ ∂t̄s , and denote the
multiple derivative

∂(s,e) := ∂t̄s ∏
i

∂ei
ti .
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Note, however, most of the time z will appear with derivative. For the
notational convenience, denote the index (s, e) by e. We then denote

(5.2) ∂ze ≡ ∂z(s,e) := z∂t̄s ∏
i

z∂ei
ti = z|e|+1∂(s,e).

As usual, the Te directional derivative on H(X) is denoted by ∂e = ∂Te .
This is a special choice of basis Tµ (and ∂µ) of H(X), which is denoted by

Te ≡ T(s,e) ≡ T̄sDe; e ∈ Λ+.

The two operators ∂ze and z∂e are by definition very different, nevertheless
they are closely related in the study of quantum cohomology as we will see
below.

Assuming that p̄ : X → S is a toric bundle of the split type, i.e. toric
quotient of a split vector bundle over S. Let JS(t̄, z−1) be the J function on
S. The hypergeometric modification of JS by the p̄-fibration takes the form

(5.3) IX(t̄, D, z, z−1) := ∑
β∈NE(X)

qβe
D
z +(D.β) IX/S

β (z, z−1)JS
βS

(t̄, z−1)

with the relative factor IX/S
β , whose explicit form for X = Ẽ → S will be

given in Section 6.2.
The major difficulty which makes IX being deviated from JX lies in the

fact that in general positive z powers may occur in IX. Nevertheless for
each β ∈ NE(X), the power of z in IX/S

β (z, z−1) is bounded above by a
constant depending only on β. Thus we may study IX in the space H :=
H[z, z−1]] over R.

Notice that the I function is defined only in the subspace

(5.4) t̂ := t̄ + D ∈ H(S)⊕
⊕

i

CDi ⊂ H(X).

J. Brown recently established the following result:

Theorem 5.2 ([1] Theorem 1). (−z)IX(t̂,−z) lies in the Lagrangian cone L of
X.

Definition 5.3 (GMT). For each t̂, zI(t̂) lies in Lτ of L. The correspondence

t̂ 7→ τ(t̂) ∈ H(X)⊗ R

is called the generalized mirror transformation (c.f. [2, 6]).

Remark 5.4. In general τ(t̂) may be outside the submodule of the Novikov
ring R generated by H(S)⊕⊕i CDi. This is in contrast to the (classical) mir-
ror transformation where τ is a transformation within (H0(X)⊕ H2(X))R
(small parameter space).

To make use of Theorem 5.2, we start by outlining the idea behind the
following discussions. By the properties of L, Theorem 5.2 implies that I
can be obtained from J by applying certain differential operator in z∂e’s
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to it, with coefficients being series in z. However, what we need is the
reverse direction, namely to obtain J from I, which amounts to removing
the positive z powers from I. Note that, the I function has variables only in
the subspace H(S)⊕⊕i CDi. Thus a priori the reverse direction does not
seem to be possible.

The key idea below is to replace derivatives in the missing directions
by higher order differentiations in the fiber divisor variables ti’s, a pro-
cess similar to transforming a first order ODE system to higher order scaler
equation. This is possible since H(X) is generated by Di’s as an algebra
over H(S).

Lemma 5.5. z∂1 J = J and z∂1 I = I.

Proof. The first one is the string equation. For the second one, by definition
I = ∑β qβeD/z+(D.β) IX/S

β JS
βS

(t̄), where IX/S
β depends only on z. The differen-

tiation with respect to t0 (dual coordinate of 1) only applies to JS
βS

(t̄). Hence
the string equation on JS

βS
(t̄) concludes the proof. �

Proposition 5.6. (1) The GMT: τ = τ(t̂) satisfies τ(t̂, q = 0) = t̂.
(2) Under the basis {Te}e∈Λ+ , there exists an invertible N×N matrix-valued

formal series B(τ, z), which is free from cohomology classes, such that

(5.5)
(

∂ze I(t̂, z, z−1)
)

=
(

z∇J(τ, z−1)
)

B(τ, z),

where (∂ze I) is the N × N matrix with ∂ze I as column vectors.

Proof. By Theorem 5.2, zI ∈ L, hence z∂I ∈ TL = L. Then z(z∂)I ∈ zL ⊂ L
and so z∂(z∂)I lies again in L. Inductively, ∂ze I lies in L. The factoriza-
tion (∂ze I) = (z∇J)B(z) then follows from Lemma 5.1. Also Lemma 5.5
says that the I (resp. J) function appears as the first column vector of (∂ze I)
(resp. (z∇J)). By the R{z} module structure it is clear that B does not in-
volve any cohomology classes.

By the definitions of J, I and ∂ze (c.f. (5.1), (5.3), (5.2)), it is clear that

(5.6) ∂zeet̂/z = Teet̂/z, z∂eet/z = Teet/z

(t ∈ H(X)). Hence modulo Novikov variables ∂ze I(t̂) ≡ Teet̂/z and z∂e J(τ) ≡
Teeτ/z

To prove (1), modulo all qβ’s we have

et̂/z ≡ ∑
e∈Λ+

Be,1(z)Teeτ(t̂)/z.

Thus
e(t̂−τ(t̂))/z ≡∑

e
Be,1(z)Te,

which forces that τ(t̂) ≡ t̂ (and Be,1(z) ≡ δTe,1).
To prove (2), notice that by (1) and (5.6), B(τ, z) ≡ IN×N when modulo

Novikov variables, so in particular B is invertible. Notice that in getting
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(5.5) we do not need to worry about the sign on “−z” since it appears in
both I and J. �

Definition 5.7 (BF). The left-hand side of (5.5) involves z and z−1, while the
right-hand side is the product of a function of z and a function of z−1. Such
a matrix factorization process is termed the Birkhoff factorization.

Besides its existence and uniqueness, for actual computations it will be
important to know how to calculate τ(t̂) directly or inductively.

Proposition 5.8. There are scalar-valued formal series Ce(t̂, z) such that

(5.7) J(τ, z−1) = ∑
e∈Λ+

Ce(t̂, z) ∂ze I(t̂, z, z−1),

where Ce ≡ δTe,1 modulo Novikov variables.
In particular τ(t̂) = t̂ + · · · is determined by the 1/z coefficients of the RHS.

Proof. Proposition 5.6 implies that

z∇J = (∂ze I) B−1.

Take the first column vector in the LHS, which is z∇1 J = J by Lemma
5.5, one gets expression (5.7) by defining Ce to be the corresponding e-th
entry of the first column vector of B−1. Modulo qβ’s, B−1 ≡ IN×N , hence
Ce ≡ δTe,1. �

Definition 5.9. A differential operator P is of degree Λ+ if P = ∑e∈Λ+ Ce∂ze

for some Ce. Namely, its components are multi-derivatives indexed by Λ+.

Theorem 5.10 (BF/GMT). There is a unique, recursively determined, scalar-
valued degree Λ+ differential operator

P(z) = 1 + ∑
β∈NE(X)\{0}

qβPβ(ti, t̄s, z; z∂ti , z∂t̄s),

with each Pβ being polynomial in z, such that P(z)I(t̂, z, z−1) = 1 + O(1/z).
Moreover,

J(τ(t̂), z−1) = P(z)I(t̂, z, z−1),
with τ(t̂) being determined by the 1/z coefficient of the right-hand side.

Proof. The operator P(z) is constructed by induction on β ∈ NE(X). We set
Pβ = 1 for β = 0. Suppose that Pβ′ has been constructed for all β′ < β in
NE(X). We set P<β(z) = ∑β′<β qβ′Pβ′ . Let

(5.8) A1 = zk1 qβ ∑
e∈Λ+

f e(ti, t̄s)Te

be the top z-power term in P<β(z)I. If k1 < 0 then we are done. Other-
wise we will remove it by introducing “certain Pβ”. Consider the “naive
quantization”

(5.9) Â1 := zk1 qβ ∑
e∈Λ+

f e(ti, t̄s)∂ze.
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In the expression

(P<β(z)− Â1)I = P<β(z)I − Â1 I,

the target term A1 is removed since

Â1 I(q = 0) = Â1et̂/z = A1et̂/z = A1 + A1O(1/z).

All the newly created terms either have smaller z-power or have curve de-
gree qβ′′ with β′′ > β in NE(X). Thus we may keep on removing the new
top z-power term A2, which has k2 < k1. Since the process will stop in no
more than k1 steps, we simply define Pβ by

qβPβ = − ∑
1≤j≤k1

Âj.

By induction we get P(z) = ∑β∈NE(X) qβPβ, which is clearly of degree Λ+.
Now we prove the uniqueness of P(z). Suppose that P1(z) and P2(z) are

two such operators. The difference δ(z) = P1(z)− P2(z) satisfies

δ(z)I =: ∑
β

qβδβ I = O(1/z).

Clearly δ0 = 0. If δβ 6= 0 for some β, then β can be chosen so that δβ′ = 0
for all β′ < β. Let the highest non-zero z-power term of δβ be zk ∑e δβ,k,e∂ze.
Then

qβzk ∑
e

δβ,k,e∂ze
(

et̂/z + ∑
β1 6=0

qβ1 Iβ1

)
+ RI = O(1/z).

Here R denotes the remaining terms in δ. Note that terms in RI either do
not contribute to qβ or have z-power smaller than k. Thus the only qβ term
is

qβzk ∑
e

δβ,k,eTeet̂/z.

This is impossible since k ≥ 0 and {Te} is a basis. Thus δ = 0.
Finally, by Lemma 5.1 B, and so does B−1, has entries in R{z}. Thus

Proposition 5.8 provides an operator which satisfies the required proper-
ties. By the uniqueness it must coincide with the effectively constructed
P(z). �

5.3. Reduction to special BF/GMT.

Proposition 5.11. Let f : X 99K X′ be the projective local model of an ordinary
flop with graph correspondence F . Suppose there are formal liftings τ, τ′ of t̂
in H(X) ⊗ R and H(X′) ⊗ R respectively, with τ(t̂), τ′(t̂) ≡ t̂ when modulo
Novikov variables in NE(S), and with F τ(t̂) ∼= τ′(t̂). Then

F J(τ(t̂)).ξ ∼= J′(τ′(t̂)).ξ ′ =⇒ F J(t̂).ξ ∼= J′(t̂).ξ ′

and consequently QH(X) and QH(X′) are analytic continuations to each other
under F .
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Proof. By induction on the weight w := (βS, d2) ∈ W, suppose that for all
w′ < w we have invariance of any n-point function (except that if β′S = 0
then n ≥ 3). Here we would like to recall that W := (NE(Ẽ)/ ∼) ⊂
NE(S)⊕Z is the quotient Mori cone.

By the definition of J in (5.1), for any a ∈ H(X) we may pick up the fiber
series over w from the ξaz−(k+2) component of the assumed F -invariance:

(5.10) F 〈τn, ψkξa〉X ∼= 〈τ′n, ψkξ ′F a〉X′ .

Write τ(t̂) = ∑w̄∈W τw̄(t̂)qw̄. The fiber series is decomposed into sum of
subseries in q` of the form

〈τw̄1(t̂), · · · , τw̄n(t̂), ψkξa〉Xw′′q∑n
j=1 w̄j+w′′ .

Since ∑ w̄j + w′′ = w, any w̄j 6= 0 term leads to w” < w, whose fiber series
is of the form ∑i gi(q`, t̂)hi(q`) with gi from ∏ τw̄j(t̂) and hi a fiber series
over w”. The gi is F -invariant by assumption and hi is F -invariant by
induction, thus the sum of products is also F -invariant.

¿From (5.10) and τ0(t̂) = t̂, the remaining fiber series with all w̄j = 0
satisfies

F 〈t̂n, ψkξa〉Xw ∼= 〈t̂n, ψkξF a〉X′w′ ,

which holds for any n, k and a.
Now by Theorem 4.5 (divisorial reconstruction and WDVV reduction)

this implies the F -invariance of all fiber series over w. �

Later we will see that for the GMT τ(t̂) and τ′(t̂), the lifting condition
τ(t̂) ≡ t̂ modulo NE(S)\{0} (instead of modulo NE(X)\{0}) and the iden-
tity F J(τ(t̂)).ξ ∼= J′(τ′(t̂)).ξ ′ holds for split ordinary flops.

6. HYPERGEOMETRIC MODIFICATION

From now on we work with a split local Pr flop f : X 99K X′ with bundle
data (S, F, F′), where

F =
r⊕

i=0

Li and F′ =
r⊕

i=0

L′i.

We study the explicit formula of the hypergeometric modification IX and
IX′ associated to the double projective bundles X → S and X′ → S, espe-
cially the symmetry property between them.

In order to get a better sense of the factor IX/S it is necessary to have
a precise description of the Mori cone first. We then describe the Picard–
Fuchs equations associated to the I function.
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6.1. The minimal lift of curve classes and F -effective cone. Let C be an
irreducible projective curve with ψ : V =

⊕r
i=0 O(µi) → C a split bundle.

Denote by µ = max µi and ψ̄ : P(V) → C the associated projective bundle.
Let h = c1(OP(V)(1)),

b = ψ̄∗[C].Hr = Hr = hr + c1(V)hr−1

be the canonical lift of the base curve, and ` be the fiber curve class.

Lemma 6.1. NE(P(V)) is generated by ` and b− µ`.

Proof. Consider V ′ = O(−µ) ⊗ V = O ⊕ N. Then N is a semi-negative
bundle and NE(P(V)) ∼= NE(P(V ′)) is generated by ` and the zero section
b′ of N → P1. In this case b′ is also the canonical lift b′ = h′r + c1(V ′)h′r−1.
From the Euler sequence we know that h′ = h + µp. Hence

b′ = (h + µp)r +
r

∑
i=1

(µi − µ)p(h + µp)r+1

= hr + rµphr−1 +
r

∑
i=1

(µi − µ)phr−1

= hr + c1(V)hr−1 − µphr−1

= b− µ`.

�

Let ψ : V =
⊕r

i=0 Li → S be a split bundle with ψ̄ : P = P(V)→ S. Since
ψ̄∗ : NE(P) → NE(S) is surjective, for each βS ∈ NE(S) represented by a
curve C = ∑j njCj, the determination of ψ̄−1

∗ (βS) corresponds to the deter-
mination of NE(P(VCj)) for all j. Therefore by Lemma 6.1, the minimal lift
with respect to this curve decomposition is given by

βP := ∑
j

nj(ψ̄∗[Cj].Hr − µCj`) = βS − µβS`,

with µCj = maxi(Cj.Li) and µ = µβS := ∑j njµCj . As before we identify
the canonical lift ψ̄∗βS.Hr with βS. Thus the crucial part is to determine the
case of primitive classes. The general case follows from the primitive case
by additivity. When there are more than one way to decompose into prim-
itive classes, the minimal lift is obtained by taking the minimal one. Notice
that further decomposition leads to smaller (or equal) lift. Also there could
be more than one minimal lifts coming from different (non-comparable)
primitive decompositions.

Now we apply the above results to study the effective and F -effective
curve classes under local split ordinary flop f : X 99K X′ of type (S, F, F′).
Fixing a primitive curve class βS ∈ NE(S), we define

µi := (βS.Li), µ′i := (βS.L′i).
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Let µ = max µi and µ′ = max µ′i. Then by working on an irreducible repre-
sentation curve C of βS, we get by Lemma 6.1

NE(Z)βS = (βS − µ`) + Z≥0` ≡ βZ + Z≥0`,

NE(Z′)βS = (βS − µ′`′) + Z≥0`
′ ≡ βZ′ + Z≥0`

′.

Now we consider the further lift of the primitive element βZ (resp. βZ′)
to X. The bundle N ⊕O is of splitting type with Chern roots −h + L′i and
0, i = 0, . . . , r. On βZ they take values

(6.1) µ + µ′i (i = 0, . . . , r) and 0.

To determine the minimal lift of βZ in X, we separate it into two cases:
Case (1): µ + µ′ > 0. The largest number in (6.1) is µ + µ′ and

NE(X)βZ = (βZ − (µ + µ′)γ) + Z≥0γ.

Case (2): µ + µ′ ≤ 0. The largest number in (6.1) is 0 and

NE(X)βZ = βZ + Z≥0γ.

To summarize, we have

Lemma 6.2. Given a primitive class βS ∈ NE(S), β = βS + d`+ d2γ ∈ NE(X)
if and only if

(6.2) d ≥ −µ and d2 ≥ −ν,

where ν = max{µ + µ′, 0}.

Remark 6.3. For the general case βS = ∑j nj[Cj], the constants µ, ν are re-
placed by

µ = µβS := ∑
j

njµCj , ν = νβS := ∑
j

nj max{µCj + µC′j
, 0}.

Thus a geometric minimal lift βX
S ∈ NE(X) for βS ∈ NE(S), with respect to the

given primitive decomposition, is

βX
S = βS − µ`− νγ.

(If µCj + µ′Cj
≥ 0 for all j, then ν = µ + µ′.)

The geometric minimal lifts describe NE(X). We will however only need
a “generic lifting” (I-minimal lift in Definition 6.7) in the study of GW in-
variants.

Definition 6.4. A class β ∈ N1(X) is F -effective if β ∈ NE(X) and F β ∈
NE(X′).

Proposition 6.5. Let βS ∈ NE(S) be primitive. A class β ∈ NE(X) over βS is
F -effective if and only if

(6.3) d + µ ≥ 0 and d2 − d + µ′ ≥ 0.
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Proof. Let β = βS + d` + d2γ, then F β = βS − d`′ + d2(γ′ + `′) = βS +
(d2 − d)`′ + d2γ =: βS + d′`′ + d′2γ′. It is clear that β is F -effective implies
both inequalities. Conversely, the two inequalities imply that

d2 ≥ d− µ′ ≥ −(µ + µ′) ≥ −ν,

hence β ∈ NE(X). Similarly F β ∈ NE(X′). �

6.2. Symmetry for I. For F =
⊕r

i=0 Li, F′ =
⊕r

i=0 L′i, the Chern polynomi-
als for F and N ⊕O take the form

fF = ∏ ai := ∏(h + Li), fN⊕O = br+1 ∏ bi := ξ ∏(ξ − h + L′i).

For β = βS + d` + d2γ, we set µi := (Li.βS), µ′i := (L′i.βS). Then for i =
0, . . . , r, (ai.β) = d + µi, (bi.β) = d2 − d + µ′i, and (br+1.β) = d2. Let

(6.4) λβ = (c1(X/S).β) = (c1(F) + c1(F′)).βS + (r + 2)d2.

The relative I factor is given by
(6.5)

IX/S
β :=

1
zλβ

Γ(1 + ξ
z )

Γ(1 + ξ
z + d2)

r

∏
i=0

Γ(1 + ai
z )

Γ(1 + ai
z + µi + d)

Γ(1 + bi
z )

Γ(1 + bi
z + µ′i + d2 − d)

,

and the hypergeometric modification of p̄ : X → S is

(6.6) I = I(D, t̄; z, z−1) = ∑
β∈NE(X)

qβe
D
z +(D.β) IX/S

β JS
βS

(t̄),

where D = t1h + t2ξ is the fiber divisor and t̄ ∈ H(S).
In more explicit terms, for a split projective bundle ψ̄ : P = P(V) → S,

the relative I factor is

(6.7) IP/S
β :=

r

∏
i=0

1
β.(h+Li)

∏
m=0

(h + Li + mz)
,

where the product in m ∈ Z is directed in the sense that

(6.8)
s

∏
m=0
≡

s+

∏
m=0+

:=
s

∏
m=−∞

/
0

∏
m=−∞

.

Thus for each i with β.(h + Li) ≤ −1, the corresponding subfactor is un-
derstood as in the numerator which must contain the factor h + Li corre-
sponding to m = 0. In general I is viewed as a cohomology valued Laurent
series in z−1. By the dimension constraint it in fact has only finite terms.

Remark 6.6. The relative factor comes from the equivariant Euler class of
H0(C, TP/S|C)− H1(C, TP/S|C) at the moduli point [C ∼= P1 → X].

Definition 6.7 (I-minimal lift). Introduce

µI
βS

:= max
i
{βS.Li}, µ′IβS

:= max
i
{βS.L′i}
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and
νI

βS
= max{µI

βS
+ µ′IβS

, 0} ≥ 0.

Define the I-minimal lift of βS to be

βI
S := βS − µI

βS
`− νI

βS
γ ∈ NE(X)

where βS ∈ NE(X) is the canonical lift such that h.βS = 0 = ξ.βS.

Clearly, βI
S is an effective class in NE(X), as µI

βS
≤ µβS and νI

βS
≤ νβS .

When the inequality is strict, the I-minimal lift is more effective than the
geometric minimal lift. Nevertheless it is uniquely defined and we will
show that it encodes the informations of the hypergeometric modification.

Definition 6.8. Define β to be I-effective, denoted β ∈ NEI(X), if

d ≥ −µI
βS

and d2 ≥ −νI
βS

.

It is called F I-effective if β is I-effective and F β is I′-effective. By the same
proof of Proposition 6.5, this is equivalent to

d + µI
βS
≥ 0 and d2 − d + µ′IβS

≥ 0.

Lemma 6.9 (Vanishing lemma). If ψ̄∗β ∈ NE(S) but β 6∈ NE(P) then IP/S
β =

0. In fact the vanishing statement holds for any β = βS + d` with d < −µI
βS

.

Proof. We have β.(h + Li) = d + µi ≤ d + µI
βS

< 0 for all i. This implies that

IP/S
β = 0 since it contains the Chern polynomial factor ∏i(h + Li) = 0 in

the numerator. �

Now IX/S
β ≡ IZ/S

β IX/Z
β is given by

(6.9)
r

∏
i=0

1
β.ai

∏
0

(ai + mz)

r

∏
i=0

1
β.bi

∏
0

(bi + mz)

1
β.ξ
∏
0
(ξ + mz)

=: AβBβCβ.

Although (6.9) makes sense for any β ∈ N1(X), we have

Lemma 6.10. IX/S
β is non-trivial only if β ∈ NEI(X).

Proof. Indeed, if βS ∈ NE(S) but β 6∈ NEI(X) then either d < −µI
βS

and
Aβ = 0 by Lemma 6.9, or d ≥ −µI

βS
and we must have d2 < −νI

βS
≤ 0 and

all factors in Bβ appear in the numerator:

d2 − d + µ′i ≤ d2 + µI
βS

+ µ′IβS
≤ d2 + νI

βS
< 0.

In particular BβCβ contains the Chern polynomial fN⊕O = 0. �



INVARIANCE OF QUANTUM RINGS 55

Remark 6.11. In view of Lemma 6.2, β ∈ NEI(X) is the “effective condition
for β as if it is a primitive class”. One way to think about this is that the
localization calculation of the I factor is performed on the main component
of the stable map moduli where β is represented by a smooth rational curve.

As far as I is concerned, the I-effective class plays the role of effective
classes. However one needs to be careful that the converse of Lemma 6.10
is not true: If β is I-effective, it is still possible to have IX/S

β = 0.

The expression (6.9) agrees with (6.5) by taking out the z factor with m.
The total factor is clearly

z−(∑r
i=0 ai+∑r+1

i=0 bi).β = z−c1(X/S).β.

Similarly for β′ ∈ NE(X′), IX′/S
β′ ≡ IZ′/S

β′ IX′/Z′
β′ is given by

(6.10)
r

∏
i=0

1
β′.a′i
∏
0

(a′i + mz)

r

∏
i=0

1
β′.b′i
∏
0

(b′i + mz)

1
β′.ξ ′

∏
0

(ξ ′ + mz)
=: A′β′B

′
β′C
′
β′ .

Here a′i = h′ + L′i = F bi and b′i = ξ ′ − h′ + Li = F ai.
By the invariance of the Poincaré pairing, (β.ai) = d + µi = (F β.b′i) and

(β.bi) = d2 − d + µ′i = (F β.a′i), and it is clear that all the linear subfactors
in IX/S

β and IX′/S
F β correspond perfectly under Aβ 7→ B′F β, Bβ 7→ A′F β and

Cβ 7→ C′F β.
However, since the cup product is not preserved under F , in general

F Iβ 6= I′F β. Clearly, any direct comparison of Iβ and I′F β (without analytic
continuations) can make sense only if β is F I-effective. This is the case
for (β.ai)’s (resp. (β.bi)’s) not all negative. Namely Aβ and Bβ both contain
factors in the denominator.

Lemma 6.12 (Naive quasi-linearity). (1) F Iβ.ξ = I′F β.ξ ′.
(2) If d2 := β.ξ < 0 then F Iβ = I′F β.

The expressions in (1) or (2) are nontrivial only if β is F I-effective.

Proof. (1) follows from the facts that f : X 99K X′ is an isomorphism over
the infinity divisors E ∼= E. For (2), notice that since d2 < 0 the factor
Cβ contains ξ in the numerator corresponding to m = 0. Similarly C′F β

contains ξ ′ in the numerator. Hence (2) follows from the same reason as in
(1). The last statement follows from Lemma 6.10. �

6.3. Picard–Fuchs system. Now we return to the BF/GMT constructed in
Theorem 5.10 and multiply it by the infinity divisor ξ:

JX(τ(t̂)).ξ = P(z)IX(t̂).ξ.

By Proposition 5.11 and Lemma 6.12, we need to show the F -invariance
for P(z) and τ(t̂) in order to establish the general analytic continuation.
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The very first evidence for this is that, as in the case of classical hyper-
geometric series, IX (resp. IX′) is a solution to certain Picard–Fuchs system
which turns out to be F -compatible:

Proposition 6.13 (Picard–Fuchs system on X). �` IX = 0 and �γ IX = 0,
where

�` =
r

∏
j=0

z∂aj − q`et1
r

∏
j=0

z∂bj , �γ = z∂ξ

r

∏
j=0

z∂bj − qγet2
.

Recall that t1, t2 are the dual coordinates of h, ξ respectively. Here we use
∂v to denote the directional derivative in v. Thus if v = ∑ viTi ∈ H2 then
∂v = ∑ vi∂ti .

Proof. By extracting all the divisor variables D = t1h + t2ξ and t̄1 ∈ H2(S)
from IX (where t̄ = t̄1 + t̄2), we get

IX = ∑
β∈NE(X)

qβe
D+t̄1

z +(D+t̄1).β IX/S
β JS

βS
(t̄2).

It is clear that z∂v produce the factor v + z(v.β) for v ∈ H2. From (6.9),
∏j z∂aj modifies the AβBβCβ factor to

r

∏
j=0

1
β.aj−1

∏
m=0

(aj + mz)

BβCβ = Aβ−`Bβ−`

r

∏
j=0

(bj + (β− `).bj)Cβ−`

(since β.aj − 1 = (β− `).aj, (β− `).bj = β.bj + 1 and (β− `).ξ = β.ξ).
Clearly it equals the corresponding term from q`et1

∏j z∂bj I
X unless β− `

is not effective. But in that case the term is itself zero since Aβ−` = 0 by
Lemma 6.9.

The proof for �γ IX = 0 is similar and is thus omitted. �

Similarly IX′ is a solution to

�`′ =
r

∏
j=0

z∂a′j
− q`′e−t1

r

∏
j=0

z∂b′j
, �γ′ = z∂ξ ′

r

∏
j=0

z∂b′j
− qγ′et2+t1

,

where the dual coordinates of h′ and ξ ′ are −t1 and t2 + t1 (since F (t1h +
t2ξ) = t1(ξ ′ − h′) + t2ξ ′ = (−t1)h′ + (t2 + t1)ξ ′).

Proposition 6.14.
F 〈�X

` ,�X
γ 〉 ∼= 〈�X′

`′ ,�X′
γ′ 〉.

Proof. It is clear that
F�` = −q−`′et1

�`′ ,
and

F�γ = z∂ξ ′

r

∏
j=0

z∂a′j
− qγ′+`′et2

= z∂ξ ′�`′ + q`′e−t1
�γ′ .
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�

Namely, the Picard–Fuchs system on X and X′ are indeed equivalent
under F . Moreover, both I = IX and I′ = IX′ satisfy this system, but in
different coordinate charts “|q`| < 1” and “|q`| > 1” (of the Kähler moduli)
respectively.

We do not expect I and I′ to be the same solution under analytic contin-
uations. We know this is not true for J and J′ since the general descendent
invariants are not F -invariant. Nevertheless it turns out that P(z) and τ(t̂)
are correct objects to admit F -invariance.

Lemma 6.15. Modulo qβS , βS ∈ NE(S) and γ, we have P(z) ≡ 1 and τ(t̂) ≡ t̂.

Proof. One simply notices that in the proof of Theorem 5.10 to construct
P(z), the induction can be performed on [β] = (βS, d2) ∈ W, as in section
3.2, by removing the whole series in q` with the same top non-negative z
power once a time. For the initial step [β] = 0 and JS([β] = 0) = et̄/z, from
(6.9) we have extremal ray contributions:

I[β]=0 = et̂/z(1 + O(1/zr+1)).

As there is no non-negative z powers besides 1, also later inductive steps
will create only higher order q[β]’s with respect to W, hence the result fol-
lows. �

Remark 6.16. By the virtual dimension count and (5.1), J is weighted ho-
mogeneous of degree 0 in the following weights | · |: We set |Tµ| to be its
Chow degree, |tµ| = 1− |Tµ|, |qβ| = (c1(X).β) and |ψ| = |z| = 1. This
is usually expressed as: The Frobenius manifold (QH(X), ∗) is conformal
with respect to the Euler vector field

E = ∑(1− |Tµ|)tµ∂µ + c1(X) ∈ Γ(TH).

For the hypergeometric modification I, the base JS has degree 0 with |qβS | =
(c1(S).βS). But when βS is viewed as an object in X the weight increases by
(c1(X/S).βS). This cancels with the weight of the factor IX/Sqβ−βS , which
is

− c1(X/S).β + c1(X).β− c1(X).βS

= c1(S).β− c1(X).βS

= −c1(X/S).βS.

Hence I is also homogeneous of degree 0.

7. EXTENSION OF QUANTUM D MODULES

In this section we will complete the proof of the main theorem (Theorem
0.6) on invariance of quantum rings under ordinary flops of splitting type.
Proposition refp:6.11 guarantees the F -invariance of the Picard–Fuchs sys-
tems (in the fiber directions). In order to construct the D module MI = D I,
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we will need to find the derivatives in the general base directions. This will
be accomplished by a lifting of the QDE on the base S. Put these together,
we will show that they generate enough (correct) equations for M X

I . This
is referred as the quantum Leray–Hirsch theorem, which is the content of
Theorem 0.5 (= Theorem 7.6 + Theorem 7.8 + Theorem 7.10).

To obtain the (true) quantum D-module M X
J (on a sufficiently large Zariski

closed subset given by the image of τ(t̂)), we apply the Birkhoff factoriza-
tion on M X

I . We specifically choose a way to perform BF such that the
F -invariance can be checked.

Before proceeding to the first step, let us lay out the notations and con-
ventions for this section.

Notations 7.1. We use β̄ ∈ NE(S), t̄ ∈ H(S) etc. to denote objects in S.
When they are viewed as objects in X, β̄ means the canonical lift, t̄ means
the pullback p̄∗ : H(S)→ H(X).

For a basis {T̄i} of H(S), denote t̄ = ∑ t̄iT̄i a general element in H(S).
When T̄i is considered as an element in H(X), we sometimes abuse the
notation by setting Ti := T̄i.

Given a basis {T̄i} of H(S), we use the following canonical basis for H(X):

{Te = T̄ihlξm | 0 ≤ l ≤ r, 0 ≤ m ≤ r + 1}.

A general element in H(X) is denoted t = ∑ teTe. The index set of the
canonical basis is denoted Λ+.

By abusing the notations, if Te = T̄i (i.e. l = m = 0), we set te = ti = t̄i.
Similarly we set te = t1 for Te = h, and te = t2 for Te = ξ. That is, we
reserve the index 0, 1 and 2 for 1, h and ξ respectively.

On H(X′) the canonical basis is chosen to be

{T′e := F Te = T̄i(ξ ′ − h′)lξ ′m}

so that it shares the same coordinate system as H(X):

t = ∑
e

teTe 7→ F t = ∑
e

teF Te = ∑
e

teT′e.

7.1. I-lifting of the Dubrovin connection. Let the quantum differential
equation of QH(S) be given by

z∂iz∂j JS(t̄) = ∑
k

C̄k
ij(t̄, q̄) z∂k JS(t̄).

If we write C̄k
ij(t̄, q̄) = ∑ C̄k

ij,β̄(t̄) qβ̄, then the effect on the β̄-components
reads as

z∂iz∂j JS
β̄

= ∑
k,β̄1

C̄k
ij,β̄1

z∂k JS
β̄−β̄1

.
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Now we lift the equation to X. In the following, for a curve class β̄ ∈
NE(S), its I-minimal lift in NE(X) is denoted by β̄I . We compute

z∂iz∂j I = ∑
β

qβe
D
z +(D.β) IX/S

β z∂iz∂j JS
β̄

= ∑
k,β,β̄1

qβe
D
z +(D.β) IX/S

β C̄k
ij,β̄1

z∂k JS
β̄−β̄1

= ∑
k,β̄1

qβ̄I
1 eD.β̄I

1 C̄k
ij,β̄1

z∂k ∑
β

qβ−β̄I
1 e

D
z +D.(β−β̄I

1) IX/S
β JS

β̄−β̄1
.

(7.1)

The terms in last sum are non-trivial only if β̄ − β̄1 ∈ NE(S). However,
in this presentation it is not a priori guaranteed that β − β̄I

1 is I-effective.
(Hence, there might be some vanishing terms in the presentation.)

In order to obtain the RHS as an operator acting on I, we will seek to
“transform” terms of the form e

D
z +D.(β−β̄I

1) IX/S
β JS

β̄−β̄1
to those of the form

e
D
z +D.(β−β̄I

1) IX/S
β−β̄I

1
JS
β̄−β̄1

. This can be achieved by differentiation the RHS ju-
diciously and will be explained below.

As a first step, we will show that IX/S
β = 0 if β − β̄I

1 6∈ NEI(X) and
β̄− β̄1 ∈ NE(S).

Definition 7.2. For any one cycle β ∈ A1(X), effective or not, we define

ni(β) := −β.(h + Li),

n′i(β) := −β.(ξ − h + L′i),

n′r+1(β) := −β.ξ,

where 0 ≤ i ≤ r.

Lemma 7.3. For β̄ ∈ NE(S), the I-minimal lift β̄I ∈ NE(X) satisfies ni(β̄I) ≥
0, n′i(β̄I) ≥ 0 for all i.

Proof. During the proof, the superscript I is omitted for simplicity.
By definition,

ni = −β̄I .(h + Li) = −µ + µi ≥ 0.

Similarly for 0 ≤ i ≤ r,

n′i = −β̄I .(ξ − h + L′i) = max{µ + µ′, 0} − µ− µ′i.

If µ + µ′ ≥ 0, we have
n′i = µ′ − µ′i ≥ 0.

Otherwise if µ + µ′ < 0, then we get

(7.2) n′i = 0− (µ + µ′i) ≥ −(µ + µ′) > 0.

Finally for the compactification factor O , we get

n′r+1 = −β̄I .ξ = max{µ + µ′, 0} ≥ 0.

�
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Let β, β′ ∈ A1(X) be (not necessarily effective) one cycles. By definition
of I-function, the β factor corresponding to h + Li is

Ai,β =
1

β.(h+Li)
∏

m=0
(h + Li + mz)

,

which depends only on the intersection number. Suppose that

li := β′.(h + Li)− β.(h + Li) ≥ 0,

we have

(7.3) Ai,β = Ai,β′

β′.(h+Li)

∏
m=β.(h+Li)+1

(h + Li + mz).

We say that Ai,β is a product of Ai,β′ with a (cohomology-valued) factor of
length li. The factors corresponding to ξ − h + L′i and ξ behave similarly.

Lemma 7.4. Let β ∈ NE(X) and β − β̄I
1 be an I-effective class. IX/S

β is the

product of IX/S
β−β̄I

1
with a factor which is a product of length ni(β̄I

1), n′i(β̄I
1), and

n′r+1(β̄I
1) corresponding to h + Li, ξ − h + L′i, and ξ respectively.

If β− β̄I
1 is not I-effective, the conclusion holds in the sense that IX/S

β = 0.

Proof. Set β′ = β− β̄I
1 in (7.3), the length is

(β′ − β).(h + Li) = −β̄I
1.(h + Li) = ni(β̄I

1).

The argument for ξ − h + L′i and ξ are similar.
If β− β̄I

1 is not I-effective, formally IX/S
β−β̄I

1
= 0 contains either the Chern

polynomial fF or fN⊕O in its numerator. Notice that (7.3) holds formally.
This proves the lemma. �

our next step is to show that the factors in (7.3) can be obtained by intro-
ducing certain differential operators acting on I.

Definition 7.5. An one cycle β ∈ A1(X) is called admissible if ni(β) ≥ 0,
n′i(β) ≥ 0, and n′r+1(β) ≥ 0. For admissible β we define differential opera-
tors

DA
β :=

r

∏
i=0

ni(β)−1

∏
m=0

(z∂h+Li −mz),

DB
β :=

r

∏
i=0

n′i(β)−1

∏
m=0

(z∂ξ−h+L′i
−mz),

DC
β :=

n′r+1(β)−1

∏
m=0

(z∂ξ −mz),

Dβ(z) := DA
β DB

β DC
β .
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Now we are ready to lift the quantum differential equations for JS to
equations for IX.

Theorem 7.6 (I-lifting of QDE). The Dubrovin connection on QH(S) can be
lifted to H(X) as

(7.4) z∂iz∂j I = ∑
k,β̄

qβ̄∗eD.β̄∗ C̄k
ij,β̄(t̄) z∂kDβ̄∗(z)I

where β̄∗ ∈ A1(X) is any admissible lift of β̄, which in particular implies the
well-definedness of the operators Dβ̄∗(z).

Furthermore, one can always choose β̄∗ to be effective. An example of an effective
lift is the I-minimal lift β̄∗ = β̄I , which is the only admissible lift if and only if
µ + µ′ ≥ 0.

In general, all liftings are related to each other modulo the Picard–Fuchs system
generated by �` and �γ.

Proof. We apply the calculation in (7.1) with β̄I
1 being replaced by a general

admissible lift β̄∗1. For t̄ = t̄1 + t̄2 with t̄1 being the divisor part,

∑
β

qβ−β̄∗1 e
D
z +D.(β−β̄∗1) IX/S

β JS
β̄−β̄1

(t̄)

= ∑
β

Dβ̄∗1
(z)qβ−β̄∗1 e

D+t̄1
z +(D+t̄1).(β−β̄∗1) IX/S

β−β̄∗1
JS
β̄−β̄1

(t̄2) = Dβ̄∗1
(z)I.

Now we prove the last statement. Any two (admissible) lifts differ by
some a` + bγ. Say, β′′ = β′ + a` + bγ. Then we have

ni(β′′) = ni(β′)− a,

n′i(β′′) = n′i(β′) + (a− b),

n′r+1(β′′) = n′r+1(β′)− b.

(7.5)

Then it is elementary to see that we may connect β′ to β′′ by adding or
subtracting ` or γ once a time, with all the intermediate steps β′j being ad-
missible. For example, if a > 0, b > 0 and a − b > 0, then we start by
adding ` up to j = a− b times. Then we iterate the process: Adding γ fol-
lowed by adding `, up to b times. Thus we only have to consider the two
cases (1) β′′ = β′ + ` or (2) β′′ = β′ + γ.

For case (1), we get from (7.5) with (a, b) = (1, 0) that ni(β′) ≥ 1 for all
i. This implies that DA

β′ = DA+
β′ DA

0 where DA
0 = ∏r

j=0 z∂aj comes from the
product of m = 0 terms. Since �` I = 0, we compute

Dβ′(z)I = DB
β′D

C
β′D

A+
β′ q`et1

r

∏
j=0

z∂bj I.

Now we move q`et1
to the left hand side of all operators by noticing

z∂het1
= et1

(z∂h + z)
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in the operator sense. Then (notice that DC
β′ = DC

β′+`)

Dβ′(z)I = q`et1
DB+

β′+`DC
β′D

A
β′+`

r

∏
j=0

z∂bj I = q`et1
Dβ′+`(z)I,

which is the desired factor for β′′.
The proof for case (2) is entirely similar, with�γ I = 0 being used instead,

and is thus omitted.
The uniqueness statement for µ + µ′ ≥ 0 follows from (7.5) and the ob-

servation: ni(β̄I) = µ− µi and n′i(β̄I) = µ′ − µ′i, both attain 0 somewhere
and there is no room to move around. The proof is complete. �

Notice that the liftings of QDE may not be unique. We will see the im-
portance of such a freedom when we discuss the F -invariance property.

7.2. Quantum Leray–Hirsch.

Definition 7.7. Let Te = T̄ihlξm be an element in the canonical basis of H(X).
The naive quantization of Te is defined as (c.f. (5.2) and (5.9))

T̂e := ∂ze = z∂t̄i(z∂t1)l(z∂t2)m.

Theorem 7.8 (Quantum Leray–Hirsch). The I-lifting (7.4) of quantum differ-
ential equations on S and the Picard–Fuchs equations determine a first order ma-
trix system under the naive quantization ∂ze of canonical basis Te’s of H(X):

z∂a(∂ze I) = (∂ze I)Ca(z, q), ta ∈ {t1, t2, t̄i}.
This system has the property that for any fixed β̄ ∈ NE(S), the coefficients

are formal functions in t̄ and polynomial functions in qγet2
, q`et1

and the basic
rational function f(q`et1), defined in (2.2).

We start with an overview of the general ideas involved in the proof.
The Picard–Fuchs system generated by �` and �γ is a perturbation of the
Picard–Fuchs (hypergeometric) system associated to the (toric) fiber by op-
erators in base divisors. The fiberwise toric case is a GKZ system, which
by the theorem of Gelfand–Kapranov–Zelevinsky is a holonomic system
of rank (r + 1)(r + 2), the dimension of cohomology space of a fiber. It is
also known that the GKZ system admits a Gröbner basis reduction to the
holonomic system.

We apply this result in the following manner: We will construct a D
module with basis ∂ze, e ∈ Λ+. We apply operators z∂t1 , z∂t2 and first order
operators z∂i’s to this selected basis. Notice that

�` = (1− (−1)r+1q`et1
)(z∂t1)r+1 + · · · ,

�γ = (z∂t2)r+2 + · · · .

The Gröbner basis reduction allows one to reduce the differentiation order
in z∂t1 and z∂t2 to smaller one. In the process higher order differentiation in
z∂i’s will be introduced. Using the I-lifting, the differentiation in the base
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direction with order higher than one can be reduced to one by introducing
more terms with strictly larger effective classes in NE(S). A refinement of
these observations will lead to a proof, which is presented below.

Remark 7.9. In fact, neither the Gröbner basis nor the GKZ theorem will be
needed, due to the simple feature of the Picard–Fuchs system we have for
split ordinary flops.

Proof. Consider first the case of simple Pr flops (S = pt). In this special case
the Gröbner basis is already at hand. The naive quantization of canonical
cohomology basis gives

∂z(i,j) := (z∂t1)i(z∂t2)j, 0 ≤ i ≤ r, 0 ≤ j ≤ r + 1.

Then further differentiation in the t1 direction leads to

z∂t1 ∂z(i,j) = ∂z(i+1,j).

It is clear that we only need to deal with the boundary case i = r, when the
RHS goes beyond the standard basis.

Case (i, j) = (r, 0). The equation �` = (z∂t1)r+1 − q`et1(z∂t2 − z∂t1)r+1 ≡
0 modulo I leads to

(7.6) (z∂t1)r+1 ≡ q`et1

1− (−1)r+1q`et1

r+1

∑
k=1

Cr+1
k (z∂t2)k(−z∂t1)r+1−k,

which solves the case.
Case (i, j) = (r,≥ 1). For j ≥ 1, notice that �γ = z∂t2(z∂t2 − z∂t1)r+1 −

qγet2 ≡ 0 modulo I. Hence

(z∂t1)r+1(z∂t2)j = q`et1
(z∂t2)j(z∂t2 − z∂t1)r+1

≡ q`et1
(z∂t2)j−1qγet2

= q`et1
qγet2

(z∂t2 + z)j−1.

(7.7)

This in particular solves the other cases 1 ≤ j ≤ r + 1.
Similarly differentiation in the t2 direction:

z∂t2 ∂z(i,j) = ∂z(i,j+1).

And we only need to deal with the boundary case j = r + 1.
Case (i, j) = (0, r + 1). First of all, �γ I = 0 leads to

(z∂t2)r+2 ≡ −(−1)r+1(z∂t1)r+1z∂t2 −
r

∑
k=1

Cr+1
k (z∂t2)k+1(−z∂t1)r+1−k + qγet2

= (1− (−1)r+1q`et1
)qγet2 −

r

∑
k=1

(−1)r+1−kCr+1
k ∂z(r+1−k,k+1),

(7.8)

which solves the case.
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Case (i, j) = (≥ 1, r + 1). By further differentiating t1 on (7.8) and on
(7.7) with j = r + 2 we get

(z∂t1)i(z∂t2)r+2 ≡ (z∂t1)iqγet2 − (−1)r+1(z∂t1)iq`et1
qγet2

−
r

∑
k=1

(−1)r+1−kCr+1
k (z∂t1)r+1+(i−k)(z∂t2)k+1

= qγet2
(z∂t1)i − (−1)r+1q`et1

qγet2
(z∂t1 + z)i

−
r

∑
k=i+1

(−1)r+1−kCr+1
k ∂z(r+i+1−k,k+1)

− q`et1
qγet2

i

∑
k=1

(−1)r+1−kCr+1
k (z∂t1 + z)i−k(z∂t2 + z)k.

(7.9)

This in particular solves the remaining cases 1 ≤ i ≤ r.
An important observation of the above calculation of the matrix C1(z, q),

C2(z, q) is that Ci is constant in z when modulo qγ. Moreover qd2γ appears
only in d2 = 1.

Now we consider the case with base S. The Picard–Fuchs equations are

�` =
r

∏
j=0

z∂h+Lj − q`et1
r

∏
j=0

z∂ξ−h+L′j
,

�γ = z∂ξ

r

∏
j=0

z∂ξ−h+L′j
− qγet2

.
(7.10)

Recall that for a basis element Te = T̄shiξ j in its canonical presentation
(0 ≤ i ≤ r, 0 ≤ j ≤ r + 1), we associated its naive quantization

(7.11) T̂e = ∂ze = z∂t̄s(z∂t1)i(z∂t2)j.

The above calculations (7.6) — (7.9) need to be corrected by adding more
differential symbols which may consist of higher derivatives in base divi-
sors z∂Lj ’s and z∂L′j

’s instead of a single z∂t̄s . Thus they are not yet in the
desired form (7.11). The I-lifting (7.4) helps to reduce higher derivatives
in base to the first order ones. Although new derivatives Dβ̄’s may appear
during this reduction, it is crucial to notice that they all come with non-
trivial classes qβ̄I

’s.
With these preparations, we will prove the theorem by constructing

Ca,β̄(z) = ∑
β 7→β̄

Ca;β(z) qβ

for any fixed β̄ ∈ NE(S).
For β̄ = 0, the I-lifting (7.4) introduces no further derivatives: Dβ̄=0(z) =

Id. Thus higher order differentiations on t̄s’s can all be reduced to the first
order. Notice that in (7.10) all the corrected terms have (z∂t1)i(z∂t2)j in the
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canonical range, hence (7.6) — (7.9) plus (7.4) lead to the desired matrix
Ca;β̄=0(z).

Given β̄ ∈ NE(S), to determine the coefficient Ca,β̄ from calculating
z∂a(∂ze), it is enough to consider the restriction of (7.4) to the finite sum
over β̄′ ≤ β̄. We repeatedly apply the following two constructions:

(i) The double derivative in base can be reduced to single derivative
by (7.4). If new non-trivial derivative Dβ̄1

(z) is introduced then the order

qβ̄I
1 is added, thus such processes will produce classes with image outside

NE≤β̄(S) in finite steps. In fact the only term in (7.4) not increasing the
order in NE(S) is given by

C̄k
aj;β̄=0 z∂k.

This is precisely the structural constant of cup product on H(S), which is
non-zero only if

deg T̄a + deg T̄j = deg T̄k.

Hence deg T̄k ≥ deg T̄a, with equality holds only if T̄j = 1, which may oc-
cur only for the first step. Any further reduction of base double derivatives
z∂kz∂l into a single derivative z∂m must then increase the cohomology de-
gree deg T̄m > deg T̄k, if the order in NE(S) is not increased. It is clear the
process stops in finite steps.

(ii) Each time we have terms not in the reduced form (7.11) we perform
the Picard–Fuchs reduction (7.6) — (7.9) with correction terms. After the
first step in simplifying z∂t1(∂ze) and z∂t2(∂ze), in all the remaining steps we
face such a situation only when we have non-trivial terms Dβ̄1

(z) from con-
struction (i). As before this produces classes with image outside NE≤β̄(S)
in finite steps.

Combining (i) and (ii) we obtained Ca;β̄ in finite steps. It is clearly poly-

nomial in z, qγet2
, q`et1

and f(q`et1) since this holds for each steps. �

Theorem 7.10 (Naturality). The system is F -invariant. That is, FCa(t̂) ∼=
C′a(F t̂).

Proof. We have seen the F -invariance of the Picard–Fuchs systems. It re-
mains to show the F -invariance of the I-lifting of the base Dubrovin con-
nection, up to modifications by �` and �γ.

By (7.4), the simplest situation to achieve such an invariance is the case
that F β̄I = β̄I′ , since then F Dβ̄I (z) = D′

β̄I (z) as well.

Indeed, when µ + µ′ ≥ 0 for a curve class β̄, we do have

F β̄I = F (β̄− µ`− (µ + µ′)γ)

= β̄ + µ`′ − (µ + µ′)(`′ + γ′)

= β̄− µ′`′ − (µ + µ′)γ′ = β̄I′ .
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It remains to analyze the case µ + µ′ < 0 for β̄. In this case,

F β̄I − β̄I′ = β̄ + µ`′ − (β̄− µ′`′) = (µ + µ′)`′ = −δ`′,

where δ := −(µ + µ′) > 0 is the finite gap. Thus

F qβ̄I−δ` = qβ̄I′

and this suggests that we should try to decrease β̄I by ` for δ times.
In other words, we should expect to have another valid lifting:

(7.12) z∂iz∂j I = ∑
k,β̄

qβ̄I−δ`eD.β̄I
C̄k

ij,β̄(t̄) z∂kDβ̄I−δ`(z)I.

This is easy to check: Notice that ni(β̄I − δ`) = ni(β̄I) + δ > 0. n′i(β̄I − δ) =
n′i(β̄I) − δ, which is also n′i(β̄ + µ′`) = µ′ − µ′i ≥ 0 (c.f. the gap in (7.2)).
n′r+1 ≥ 0 is unchanged. Thus, the operator Dβ̄I−δ` is well defined, though
β̄I − δ` may not be effective. By Theorem 7.6, (7.12) is also a lift and the
theorem is proved. �

7.3. Reduction to the canonical form: The final proof. We will construct
a gauge transformation B to eliminate all the z dependence of Ca. The final
system is then equivalent to the Dubrovin connection on QH(X). Such
a procedure is well known in small quantum cohomology of Fano type
examples or in the context of abstract quantum cohomology. (See e.g. [7]
and references therein.) Here we will also need to take into account the role
played by the generalized mirror transformation (GMT) τ(t̂).

In fact B is nothing more than the Birkhoff factorization introduced be-
fore:

(7.13) ∂ze I(t̂) = (z∇J)(τ)B(τ)

valid at the generalized mirror point τ = τ(t̂). Thus B exists uniquely via
an inductive procedure. However the analytic (formal) dependence of B is
not manifest if one proceeds in this direction, as the procedure involves J
and I, for neither the analytic dependence holds. Therefore, it is not clear
how to prove F B ∼= B′ up to analytic continuations.

In this subsection we will proceed in a slightly different, but ultimately
equivalent, way. Namely we study instead the gauge transformation B
directly from the differential system

(7.14) z∂a(∂ze I) = (∂ze I)Ca.

Even though the solutions I are not F -invariant, the system is by Theorem
7.10. This system can be analyzed inductively with respect to the partial
ordering of the Mori cone on the base NE(S).

Substituting (7.13) into (7.14), we get z∂a(∇J)B + z(∇J)∂aB = (∇J)BCa,
hence

(7.15) z∂a(∇J) = (∇J)(−z∂aB + BCa)B−1 =: (∇J)C̃a.
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We note the subtlety in the meaning of C̃a(t̂). Let τ = ∑ τµTµ. Then the
QDE reads as

z∂µ(∇J)(τ) = (∇J)(τ)C̃µ(τ),

where C̃µ(τ) is the structure matrix of quantum multiplication at the point
τ ∈ H(X). Then

z∂a(∇J) = ∑
µ

∂τµ

∂ta z∂µ(∇J) = (∇J) ∑
µ

C̃µ
∂τµ

∂ta ,

hence

(7.16) C̃a(t̂) ≡∑
µ

C̃µ(τ(t̂))
∂τµ

∂ta (t̂).

In particular C̃a is independent of z.
With this understood, (7.15) in fact is equivalent to

(7.17) C̃a = B0Ca;0B−1
0

and the cancellation equation

(7.18) z∂aB = BCa − B0Ca;0B−1
0 B,

where the subscript 0 stands for the coefficients of z0 in the z expansion.
Our plan is to analyze B = B(z) with respect to the weight w := (β̄, d2) ∈

W, which carries a natural partial ordering. The initial condition is Bw=(0,0) =
Id: Since we have seen that for w = (0, 0), Ca has only z constant terms
Ca;(0,0),0 z0. The total z constant terms in (7.18) are trivially compatible. They
are −B0Ca,0 on both sides.

Now perform the induction on W. Suppose that Bw′ satisfies F Bw′ = B′w′
for all w′ < w. Then

(7.19) z∂aBw = ∑
w1+w2=b

Bw1 Ca;w2 − ∑
w1+w2+w3+w4=w

Bw1,0Ca;w2,0B−1
w3,0Bw4 .

Write Ca;w = ∑m(w)
j=0 Ca;w,j zj and Bw = ∑n(b)

j=0 Bw,j zj. Then (7.19) implies that

n(w) = max
w′<w

(n(w′) + m(w− w′))− 1.

Notice that on the RHS all the B terms have strictly smaller degree than w
except

BwCa;(0,0) − Ca;(0,0)Bw + Bw,0Ca;(0,0) − Ca;(0,0)B−1
w,0

which has maximal z degree ≤ n(w). Moreover, by descending induction
on the z degree, to determine Bw,j we need only Bw′ with w′ < w or Bw,j′

with j′ > j, which are all F -invariant by induction. Hence the difference
satisfies

∂a(F Bw,j − B′w,j) = 0.

The functions involved are all formal in t̄ and analytic in t1, t2, and without
constant term (Bw=(0,0) = Id). Hence F Bw,j = B′w,j.



68 Y.-P. LEE, H.-W. LIN, AND C.-L. WANG

To summarize, we have proved that for any t̂ = t̄ + D ∈ H(S)⊕Ch⊕Cξ,

F B(τ(t̂)) ∼= B′(τ′(t̂)).

In particular, by (7.17) this implies that the F -invariance of C̃a(t̂). In more
explicit terms, we have the F -invariance of

(7.20) C̃κ
aν = ∑

n≥0, µ

qβ

n!
∂τµ(t̂)

∂ta 〈Tµ, Tν, Tκ, τ(t̂)n〉β

for arbitrary (basis elements) Tν, Tκ ∈ H(X).
The very special case Tν = 1 leads to non-trivial invariants only for 3-

point classical invariant (n = 0) and β = 0, and also µ = κ. Since κ is
arbitrary, we have thus proved the F -invariance of ∂aτ. Then

∂a(F τ − τ′) = F ∂aτ − ∂aτ′ = 0.

Again since τ(t̂) = t̂ for (β̄, d2) = (0, 0), this proves

F τ = τ′.

Remark 7.11. C̃a is the derivative of the 2-point (Green) function at τ(t̂):

C̃κ
aν =

∂

∂ta 〈〈Tν, Tκ〉〉(τ).

Now we may finish the proof of the quantum invariance (Theorem 0.6).

Proof. Since we have established the analytic continuation of B (hence P)
and τ, by Proposition 5.11 (reduction to special BF/GMT with ξ class) and
Lemma 6.12 (naive quasi-linearity with ξ class) the invariance of quantum
ring is proved. �

Remark 7.12. We sketch an alternative shortcut to the proof to minimize the
usage of extremal functions and completely get rid of the quasi-linearity
reduction.

Indeed, by degeneration reduction (§3), the quantum invariance prob-
lem is reduced to local models for descendent invariants of special type.
Theorem 4.2 then eliminates the necessity of using ψ classes and we only
need to prove the invariance of quantum ring for local models.

Now for split flops, the Birkhoff factorization matrix B(z) exists uniquely.
Then quantum Leray–Hirsch theorem (Theorem 7.8) produces the matrix
Ca(z) which satisfies the analytic continuation property. The analytic con-
tinuation of B(z) is then deduced from it. In particular, (7.17) gives the
analytic continuation of C̃a(t̂), namely (7.20), and then of τ(t̂).

Now we apply the reduction method used in the proof of Proposition 5.11,
with the role of special insertion τkaξ being replaced by 3 primary insertions
Ta, Tν, Tκ with Ta ∈ H(S) and Tν, Tκ ∈ H(X) being arbitrary. We can do so
because ∂τ/∂ta = Ta + · · · . Notice that since n ≥ 3, the divisor reconstruc-
tion we need can all be performed within primary invariants.

Namely, using (2.1) for h and ξ, we may reconstruct any n ≥ 3 point pri-
mary invariants by the the one with only two general insertions not from
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H(S). As in Step 2 of the proof of Theorem 4.4, the moving of ξ class will al-
ways be F -compatible, while the moving of h class to an insertion tihr may
generate topological defect. The key point is that this defect can be can-
celed out by the extremal quantum corrections from some diagonal split-
ting term. (In fact this is the building block of our determination of the
extremal invariants in §2.)

This leads to a logically shorter and more conceptual proof of the quan-
tum invariance theorem.

We present the complete argument for at least two reasons. Firstly, the
quantum correction part (extremal case) works for non-split flops as well.
Secondly, the BF/GMT algorithm, together with the divisorial reconstruc-
tion, provides an effective method to determine all genus zero descendent
(not just primary) invariants for any split toric bundles.
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