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ABSTRACT. We study the problem: How many singular points of a solution
λ(t) to the Painlevé VI equation with parameter ( 1

8 , −1
8 , 1

8 , 3
8 ) might have in

C \ {0, 1}? Here t0 ∈ C \ {0, 1} is called a singular point of λ(t) if λ(t0) ∈
{0, 1, t0, ∞}. Based on Hitchin’s formula, we explore the connection of
this problem with Green function and the Eisenstein series of weight one.
Among other things, we prove:

(i) There are only three solutions which have no singular points in
C \ {0, 1}. (ii) For a special type of solutions (called real solutions here),
any branch of a solution has at most two singular points (in particular, at
most one pole) in C \ {0, 1}. (iii) Any Riccati solution has singular points
in C \ {0, 1}. (iv) For each N ≥ 5 and N 6= 6, we calculate the number of
the real j-values of zeros of the Eisenstein series EN

1 (τ; k1, k2) of weight
one, where (k1, k2) runs over [0, N − 1]2 with gcd(k1, k2, N) = 1.

The geometry of the critical points of the Green function on a flat torus
Eτ , as τ varies in the moduliM1, plays a fundamental role in our analysis
of the Painlevé IV equation. In particular, the conjectures raised in [22] on
the shape of the domain Ω5 ⊂ M1, which consists of tori whose Green
function has extra pair of critical points, are completely solved here.
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1. INTRODUCTION

1.1. Painlevé property. In the literature, a nonlinear differential equation
in one complex variable is said to possess the Painlevé property if its solu-
tions have neither movable branch points nor movable essential singulari-
ties. For the class of second order differential equations

(1.1) λ′′(t) = F(t, λ, λ′), t ∈ CP1,

where F(t, λ, λ′) is meromorphic in t and rational in both λ and λ′, Painlevé
(later completed by Gambier, [11, 29]) obtained the classification of those
nonlinear ODEs which possess the Painlevé property. They showed that
there were fifty canonical equations of the form (1.1) with this property,
up to Möbius transformations. Furthermore, of these fifty equations, forty-
four are either integrable in terms of previously known functions (such as
elliptic functions), equivalent to linear equations, or are reduced to one of
six new nonlinear ODEs which define new transcendental functions (see
eg. [17]). These six nonlinear ODEs are called Painlevé equations. Among
them, Painlevé VI is often considered to be the master equation, because oth-
ers can be obtained from Painlevé VI by the confluence. Due to its connec-
tion with many different disciplines in mathematics and physics, Painlevé
VI has been extensively studied in the past several decades. See [1, 3, 8, 10,
12, 13, 15, 20, 24, 25, 27, 28, 35] and the references therein.

Painlevé VI (PVI) is written as

d2λ

dt2 =
1
2

(
1
λ
+

1
λ− 1

+
1

λ− t

)(
dλ

dt

)2

−
(

1
t
+

1
t− 1

+
1

λ− t

)
dλ

dt
(1.2)

+
λ (λ− 1) (λ− t)

t2 (t− 1)2

[
α + β

t
λ2 + γ

t− 1

(λ− 1)2 + δ
t (t− 1)

(λ− t)2

]
,

where α, β, γ, δ are four complex constants. From (1.2), the Painlevé prop-
erty says that any solution λ(t) is a multi-valued meromorphic function in
C\{0, 1}. To avoid the multi-valueness of λ(t), it is better to lift solutions
of (1.2) to its universal covering. It is known that the universal covering
of C\{0, 1} is the upper half plane H = {τ | Im τ > 0}. Then t and the
solution λ(t) can be lifted through the covering map τ 7→ t by

(1.3) t(τ) =
e3(τ)− e1(τ)

e2(τ)− e1(τ)
, λ(t) =

℘(p(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
,

where ℘(z) = ℘(z|τ) is the Weierstrass elliptic function defined by

(1.4) ℘(z|τ) :=
1
z2 + ∑

ω∈Λτ\{0}

(
1

(z−ω)2 −
1

ω2

)
,

and Λτ := {m + nτ |m, n ∈ Z} is the lattice generated by ω1 = 1 and
ω2 = τ. Also ω3 = 1 + τ and ei(τ) = ℘(ωi

2 |τ) for i = 1, 2, 3. Consequently,
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p(τ) satisfies the following elliptic form of PVI:

(1.5)
d2 p (τ)

dτ2 =
−1
4π2

3

∑
i=0

αi℘
′ (p (τ) + ωi

2 |τ
)

,

where ω0 = 0 and

(1.6) (α0, α1, α2, α3) =
(
α,−β, γ, 1

2 − δ
)

.

This elliptic form was first discovered by Painlevé [30]. For more recent
derivations of it, see [1, 25].

1.2. Hitchin solutions. In this paper, we consider the special case αi =
1
8

for 0 ≤ i ≤ 3, i.e.,

(1.7)
d2 p (τ)

dτ2 =
−1

32π2

3

∑
i=0

℘′
(

p (τ) + ωi
2 |τ
)

,

which is the elliptic form of PVI( 1
8 ,−1

8 , 1
8 , 3

8 )
. Equation (1.7) has connections

with some geometric problems. The well-known example is related to the
construction of Einstein metrics in four dimension; see [15]. In the seminal
work [15], Hitchin obtained his famous formula to express a solution p(τ)
of (1.7) with some complex parameters r, s:

(1.8) ℘ (p(τ)|τ) = ℘ (r + sτ|τ) + ℘′ (r + sτ|τ)
2 (ζ (r + sτ|τ)− (rη1(τ) + sη2(τ)))

.

Here ηi(τ) = 2ζ(ωi
2 |τ), i = 1, 2, are quasi-periods of the Weierstrass zeta

function ζ(z|τ) = −
∫ z

℘(ξ|τ)dξ.
By (1.8), he could construct an Einstein metric with positive curvature if

r ∈ R and s ∈ iR, and an Einstein metric with negative curvature if r ∈ iR
and s ∈ R. He also obtained an Einstein metric with zero curvature, but
the corresponding solution of (1.7) is given by another formula other than
(1.8). Indeed, this corresponds to the Riccati solutions of (1.7); see §3.

For simplicity, we denote pr,s(τ) (equivalently, λr,s(t) via (1.3)) to be the
solution of (1.7) with the expression (1.8). It is obvious that if

(r, s) ∈ 1
2 Z2 :=

{
(0, 0), (0, 1

2 ), (
1
2 , 0), ( 1

2 , 1
2 )
}
+ Z2,

then either ζ (r + sτ|τ)− (rη1(τ) + sη2(τ)) ≡ ∞ or ζ (r + sτ|τ)− (rη1(τ) +
sη2(τ)) ≡ 0 in H. Hence for any complex pair (r, s) 6∈ 1

2 Z2, pr,s(τ) is always
a solution to (1.7), or equivalently, λr,s(t) is a (multi-valued) solution to
PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

. We say that two solutions λr,s(t) and λr′,s′(t) give (or belong to)
the same solution if λr′,s′(t) is the analytic continuation of λr,s(t) along some
closed loop in C \ {0, 1}. In §4, we will prove that λr,s and λr′,s′ give the same
solution to PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

if and only if (s′, r′) ≡ (s, r) · γ mod Z2 for some
matrix

γ ∈ Γ(2) = {γ ∈ SL(2, Z) | γ ≡ I2 mod 2}.
In this paper, we are mainly concerned with the question of smoothness

of solutions to PVI( 1
8 ,−1

8 , 1
8 , 3

8 )
, and the location of its singular points. Notice
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that for a solution λ(t) and a point t0 ∈ C\{0, 1}, the RHS of Painlevé
VI (1.2) has a singularity at (t0, λ(t0)) provided that λ(t0) ∈ {0, 1, t0, ∞}.
Therefore, in this paper, we say λ(t) is smooth at t0 if λ(t0) 6∈ {0, 1, t0, ∞}.
Furthermore, a singular point t0 ∈ C\{0, 1} is called of type 0 (1, 2, 3 respec-
tively) if λ(t0) = ∞ (λ(t0) = 0, 1, t0 respectively).

We take PVI(0,0,0, 1
2 )

as an initial example for our discussion, because it
can be transformed to PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

of our concern by a Bäcklund transfor-
mation (cf. [28]). In the literature, the Bäcklund transformation plays a very
useful role in the study of Painlevé VI; for example, for finding the algebraic
solutions, see [10, 26, 24]. Conventionally, solutions of PVI(0,0,0, 1

2 )
, the so-

called Picard solutions, can be expressed in terms of Gauss hypergeometric
functions. It was first found by Picard [31]. Let

(1.9) ω1(t) = −iπF( 1
2 , 1

2 , 1; 1− t), ω2(t) = πF( 1
2 , 1

2 , 1; t)

be two linearly independent solutions of the Gauss hypergeometric equa-
tion

(1.10) t(1− t)ω′′(t) + (1− 2t)ω′(t)− 1
4 ω(t) = 0.

Then Picard solution of PVI(0,0,0, 1
2 )

can be expressed as

(1.11) λ̂ν1,ν2(t) = ℘(ν1ω1(t) + ν2ω2(t) | ω1(t), ω2(t)) +
1 + t

3
,

for some (ν1, ν2) 6∈ 1
2 Z2, where ℘(·|ω1(t), ω2(t)) is the Weierstrass elliptic

function with periods ω1(t) and ω2(t). See [12] for a proof. Obviously,
λ̂ν1,ν2(t) is smooth for all t ∈ C\{0, 1} if and only if (ν1, ν2) ∈ R2\ 1

2 Z2 (see
(A.1)). The lifting of λ̂ν1,ν2(t) by (1.3) is given by

(1.12) p̂ν1,ν2(τ) = ν1 + ν2τ,

which of course is a solution of the elliptic form of PVI(0,0,0, 1
2 )

: d2 p(τ)
dτ2 = 0.

Then the Bäcklund transformation takes λ̂ν1,ν2(t) into solution λr,s(t) of
PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

with (r, s) = (ν1, ν2). Thus, in the elliptic form the Bäcklund
transformation seems comparably simple. This fact and (1.12) are well known
to experts. But it is difficult to find references for the proof. For the reader’s
convenience, we present a rigorous proof in Appendix A.

It is surprising to us that after the Bäcklund transformation from PVI(0,0,0, 1
2 )

to PVI( 1
8 ,−1

8 , 1
8 , 3

8 )
, PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

has only three solutions which are smooth in
C\{0, 1}.
Theorem 1.1. There are only three solutions λ(t) to PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

such that λ(t)
is smooth for all t ∈ C\{0, 1}. They are precisely λ 1

4 ,0(t), λ0, 1
4
(t) and λ 1

4 , 1
4
(t).

Theorem 1.1 shows that the Bäcklund transformation does not preserve
the smoothness of solutions. Thus, Theorem 1.1 can not be proved by ap-
plying Picard solutions and the Bäcklund transformation. We remark that
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the Bäcklund transformation is complicated due to not only the compli-
cated form of birational maps between solutions but also the fact that it
transforms a pair of solutions of the Hamiltonian system (equivalently, the pair
(λ(t), λ′(t))), but not the solution λ(t) only.

To prove Theorem 1.1, we start from the formula (1.8). Of course, (1.8)
does not give the complete set of solutions to (1.7). The missing ones are
solutions obtained from Riccati equations. For such Riccati solutions, we
have some expressions like (1.8). By employing these expressions, we will
prove in §6 that any Riccati solution has singularities in C\{0, 1}. Hence
our strategy for the proof of Theorem 1.1 is to study the smoothness of
λr,s(t) for any complex pair (r, s) 6∈ 1

2 Z2.
From (1.8), it is easy to see that if (r, s) is not a real pair, then λr,s(t) al-

ways possesses a singularity t0 6∈ {0, 1, ∞} (indeed, infinitely many singu-
larities), because there always exist infinitely many τ0 ∈H such that r + sτ0
is a lattice point of the torus Eτ0 := C/Λτ0 . So for the proof of Theorem 1.1
we could restrict ourselves to consider only (r, s) ∈ R2\ 1

2 Z2. In this case,
we introduce the Green function and the Hecke form to study it.

1.3. Green function and Hecke form. Let G(z|τ) be the Green function on
the torus Eτ:

(1.13)

{
−∆G (z|τ) = δ0 (z)− 1

|Eτ | in Eτ,∫
Eτ

G (z|τ) dz = 0,

where δ0 is the Dirac measure at 0 and |Eτ| is the area of the torus Eτ. We
recall the analytic description of G(z|τ) in [22]. Recall the theta function
ϑ := ϑ1, where

ϑ1(z; τ) = −i
∞

∑
n=−∞

(−1)ne(n+
1
2 )

2πiτe(2n+1)πiz.

Then the Green function is given by

(1.14) G(z|τ) = − 1
2π

log |ϑ(z; τ)|+ (Im z)2

2 Im τ
+ C(τ),

where C(τ) is a constant so that
∫

Eτ
G = 0. Recall that ηi(τ) = 2ζ(ωi

2 |τ),
i = 1, 2, are quasi-periods of ζ(z|τ). Using (log ϑ)z = ζ(z)− η1z and the
Legendre relation η1ω2 − η2ω1 = 2πi, we have

(1.15) −4πGz(z|τ) = ζ(z|τ)− rη1(τ)− sη2(τ),

where z = r + sτ with r, s ∈ R. As mentioned before, ζ (r + sτ|τ) −
rη1(τ) − sη2(τ) ≡ 0 in H whenever (r, s) ∈ 1

2 Z2 \Z2. Thus for (r, s) ∈
R2\ 1

2 Z2, (1.15) shows that r+ sτ is a non half-period critical point of G(z|τ)
(we call such critical point a nontrivial critical point) if and only if ζ(r +
sτ|τ) − rη1(τ) − sη2(τ) = 0. Naturally, we ask the question: How many
nontrivial critical points might G(z|τ) have? Note that the nontrivial critical
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points must appear in pair because G(z|τ) is an even function in z. This
question was answered in the following surprising result:

Theorem A. [22] For any torus Eτ, G(z|τ) has at most one pair of nontrivial
critical points.

Theorem B. [23] Suppose that G(z|τ) has one pair of nontrivial critical points.
Then the three half-periods are all saddle points of G(z|τ), i.e., the Hessian satisfies
det D2G(ωk

2 |τ) ≤ 0 for k = 1, 2, 3. 1

For any (r, s) ∈ R2\ 1
2 Z2, we define Z = Zr,s by

(1.16) Zr,s(τ) := ζ(r + sτ|τ)− rη1(τ)− sη2(τ), ∀τ ∈H.

Clearly Zr,s is a holomorphic function in H. If (r, s) is an N-torsion point,
i.e., (r, s) = ( k1

N , k2
N ) with 0 ≤ k1, k2 < N and gcd(k1, k2, N) = 1, it was

proved by Hecke in [14] that Zr,s(τ) is a modular form of weight 1 with
respect to Γ(N) = { A ∈ SL(2, Z) | A ≡ I2 (mod N) }. This modular form
is called the Hecke form in [21]. Indeed, it is the Eisenstein series of weight
1 with characteric (r, s) if (r, s) is an N-torsion point. Following [32, p.59],
the Eisenstein series of weight 1 is defined by

EN
1 (τ, s; k1, k2) := (Im τ)s ∑

(m,n)
(mτ + n)−1|mτ + n|−2s,

where (m, n) runs over Z2 under the condition 0 6= (m, n) ≡ (k1, k2) mod N.
It is known that EN

1 (τ, s; k1, k2) is a meromorphic function in the s-plane
and holomorphic at s = 0. Set EN

1 (τ; k1, k2) := EN
1 (τ, 0; k1, k2). By using the

Fourier expansions of both Zr,s(τ) and EN
1 (τ; k1, k2) (see [32, p.59] and [9,

p.139]), we have

(1.17) Zr,s(τ) = NEN
1 (τ; k1, k2), if (r, s) ≡ ( k1

N , k2
N ) mod 1.

Hence, (1.15) yields that G(z|τ0) has a critical N-torsion point k1
N + k2

N τ0 with
N ≥ 3 if and only if EN

1 (τ0; k1, k2) = 0.
Now we see the connection of the Hecke form with the solution pr,s(τ)

(or λr,s(t)) of (1.7): Zr,s(τ) appears in the denominator of the RHS of (1.8).
When (r, s) ∈ R2\ 1

2 Z2, the formula (1.8) implies that t0 is a type 0 singular-
ity, i.e., λr,s(t0) = ∞ if and only if Zr,s(τ0) = 0, t0 = t(τ0), or equivalently,
the Green function G(z|τ0) has a nontrivial critical point r + sτ0. By Theorem
A, it means that G(z|τ0) have exactly five critical points in the torus Eτ0 : ω1

2 ,
ω2
2 , ω3

2 and ±(r + sτ0). This connection and (1.8) together with the Painlevé
property say that the Eisenstein series EN

1 (τ; k1, k2) of weight 1 has only
simple zeros; see Theorem 4.1. The simplicity of zeros was also proved by
Dahmen [7] as a consequence of his counting formula of algebraic integral

1Theorem B is used in the proof of Theorem 1.2 (ii) to be stated later. After establishing
Theorem 1.2, we have a stronger version of Theorem B: det D2G(ωk

2 |τ) < 0 for k = 1, 2, 3 if
G(z|τ) has one pair of nontrivial critical points; see Proposition 6.2 in §6.
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Lamé equations by the method of dessins d’enfants. In §7 we will discuss
the position and the number of those zeros of EN

1 (τ0; k1, k2).
Recall the group action of SL(2, Z) on the upper half plane H:

τ′ = γ · τ =
aτ + b
cτ + d

, γ =

(
a b
c d

)
∈ SL(2, Z).

Then we have the transformation law (see (4.4) in §4):

(1.18) Zr′,s′(τ
′) = (cτ + d)Zr,s(τ) where (s′, r′) = (s, r) · γ−1.

From here, we see that G(z|τ′) has five critical points whenever G(z|τ) has
five critical points. LetM1 := H/SL(2, Z) and

Ω5 := {τ ∈ M1 | G(z|τ) has five critical points},
Ω3 := {τ ∈ M1 | G(z|τ) has three critical points}.

Then we have Ω3 ∪Ω5 =M1 by Theorem A. Moreover, from the proof of
Theorem A in [22], we know that Ω5 ⊂ M1 is open and Ω3 is closed. In
this paper we determine the geometry of Ω3 and Ω5 as conjectured in [22]:

Theorem 1.2 (Geometry of Ω3 and Ω5).
(i) Both Ω5 and Ω̄3 = Ω3 ∪ {∞} are simply connected inM1

∼= S2.
(ii) C = ∂Ω5 = ∂Ω̄3 ∼= S1. C\{∞} ∼= R is smooth. It consists of points τ so

that some half-period is a degenerate critical point of G(z|τ).
The proof is given in §5 and §6. We actually prove a stronger result on

∂Ω5: For any τ ∈ ∂Ω5, there is only one half period whose Hessian det D2G
vanishes.

Theorem 1.1 is clearly closely related to the following question: What
is the set of pairs (r, s) such that Zr,s(τ) has no zeros? We should write an
alternative form of (i) in Theorem 1.2 to answer this question. We note that
the following two statements hold:

(1.19) Zr,s(τ) = ±Zr′,s′(τ)⇐⇒ (r, s) ≡ ±(r′, s′) (mod Z2),

(1.20) λr,s(τ) = λr′,s′(τ)⇐⇒ (r, s) ≡ ±(r′, s′) (mod Z2).

The statement (1.19) is trivial while (1.20) was proved in [6]. From both
(1.19) and (1.20), we could assume (r, s) ∈ [0, 1] × [0, 1

2 ]\ 1
2 Z2. Then (i) of

Theorem 1.2 can be stated more precisely. For this purpose, we consider

(1.21) F0 = { τ ∈H | 0 ≤ Re τ ≤ 1, |τ − 1
2 | ≥ 1

2 }.
It is elementary to prove that F0 is a fundamental domain for Γ0(2) (c.f. Re-
mark 5.1). Notice that F0 is one half of the fundamental domain of Γ(2).
The following theorem will imply (i) of Theorem 1.2.

Theorem 1.3. Let (r, s) ∈ [0, 1]× [0, 1
2 ]\ 1

2 Z2. Then Zr,s(τ) = 0 has a solution
τ ∈ F0 if and only if

(r, s) ∈ 40 := {(r, s) | 0 < r, s < 1
2 , r + s > 1

2}.
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FIGURE 1. The lifted domain Ω̃5 ⊂ F0 of Ω5 is the domain
bounded by the 3 curves corresponding to the loci of degen-
erate critical points.

Moreover, the solution τ ∈ F0 is unique for any (r, s) ∈ 40.

We will see that Theorem 1.1 is a consequence of the non-existence part
of Theorem 1.3 in §5. Indeed, the existence part of Theorem 1.3 has appli-
cations as well; see the next subsection, where we will discuss the singular
points of a real solution λ(t).

1.4. Real solution. It is well known that Painlevé VI governs the isomon-
odromic deformations of some linear ODE. In the elliptic form it is conve-
nient to choose the ODE to be a generalized Lamé equation (c.f. (2.4)). A
solution λ(t) of PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

is called a real solution if its associated mon-
odromy of the generalized Lamé equation is unitary. In [6] it was proved
that a solution λ(t) is a real solution if and only if λ(t) = λr,s(t) for some
(r, s) ∈ R2\ 1

2 Z2. We call such a solution of PVI( 1
8 ,−1

8 , 1
8 , 3

8 )
real because any

solution with unitary monodromy representation must come from blowup



GREEN FUNCTION AND PAINLEVÉ VI EQUATION 9

solutions of the mean field equation; see [6]. We remark that real solutions
do not mean ”real-valued solutions along the real-axis of t”. Indeed, for (1.7)
there are no real-valued solutions; see the discussion in Appendix B.

The reasons we are studying real solutions are: (i) any algebraic solution
is a real solution; (ii) any real solution is smooth for t ∈ R\{0, 1} (see [6]);
(iii) any real solution has no essential singularity even at 0, 1 and ∞ (see
Appendix B).

It is known (see §2) that t(τ) = e3(τ)−e1(τ)
e2(τ)−e1(τ)

maps any fundamental do-
main of Γ(2) one-to-one and onto C \ {0, 1}. Then by the transformation
(1.3), we see that any solution λ(t(τ)) is single-valued and meromorphic
whenever τ is restricted on a fundamental domain of Γ(2). In this paper, a
branch of a solution λ(t) to (1.2) means a solution λ(t(τ)) defined for τ in a
fundamental domain of Γ(2) (e.g. F given by (2.1)).

Recall a singular point t0 6∈ {0, 1, ∞} of λ(t) means λ(t0) ∈ {0, 1, t0, ∞}.
Denote C± = {t | Im t ≷ 0}. Then for real solutions we have:

Theorem 1.4. Suppose λ(t) is a real solution. Then any branch of λ(t) has at
most two singular points in C \ {0, 1}, and they must be different type singular
points if the branch has exactly two singular points. Furthermore, the set

(1.22) Ω(0)
− := {t ∈ C− | t is a type 0 singular point of some real solution}

is open and simply connected and ∂Ω(0)
− consists of three smooth curves connecting

0, 1, ∞ respectively.

Remark 1.5. Theorem 1.4 shows that for each k ∈ {0, 1, 2, 3}, any branch of a
real solution has at most one type k singular point in C \ {0, 1}. Theorem 1.4
will be proved in §6, where we will see that, the curve of ∂Ω(0)

− connecting
∞ and 0 (resp. connecting 1 and ∞, connecting 0 and 1) is the image of the
degenerate curve of ω1

2 (resp. ω2
2 , ω3

2 ) of Green function G(z|τ) in F0 under
the map t(τ). Similarly, we can define
(1.23)

Ω(k)
± := {t ∈ C± | t is a type k singular point of some real solution}.

Then Ω(k)
− = Ω(0)

− and Ω(k)
+ = Ω(0)

+ = {t | t−1 ∈ Ω(0)
− } for k ∈ {1, 2, 3},

and any real solution is smooth in C \ (Ω(0)
− ∪Ω(0)

+ ∪ {0, 1}), which consists
of three connected components that contain (−∞, 0), (0, 1) and (1,+∞) re-
spectively. See the proof in §6.

1.5. Algebraic solution. A solution λ(t) to PVI is called an algebraic so-
lution if there is a polynomial h ∈ C[t, x] such that h(t, λ(t)) ≡ 0. It is
equivalent to that λ(t) has only a finite number of branches. By our classi-
fication theorem for (1.7), λ(t) is an algebraic solution of PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

if and
only if λ(t) = λr,s(t) for some (r, s) ∈ QN with N ≥ 3, where

(1.24) QN :=
{(

k1
N , k2

N

)∣∣∣ gcd(k1, k2, N) = 1, 0 ≤ k1, k2 ≤ N − 1
}
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is the set of N-torsion points of exact order N. The classification of the
algebraic solutions for PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

could be deduced from the Bäcklund
transformation and Picard solutions, as shown in [26]. It is therefore natural
to ask the following question:

Is any singular point t0 of an algebraic solution λ(t) an algebraic number? Is
the lifting τ0 of t0 a transcendental number?

The first question is equivalent to asking whether the j-value of any zero
of EN

1 (τ; k1, k2) is an algebraic number. Here j(τ) is the classical modular
function, the j-invariant of τ, under the action by SL(2, Z); see (1.25) below.

This question can be answered easily from the aspect of Painlevé VI or
from the q-expansion principle in the theory of modular forms (c.f. [19]).
It is well known from the addition theorem of ℘ function that there is a
polynomial ΨN ∈ Z[x, y, g2, g3] such that if (x, y) is an N-torsion point of
the elliptic curve y2 = 4x3 − g2x − g3, then ΨN(x, y) = 0. The degree of
ΨN is N2−1

2 , and y appears only with odd powers in ΨN(x, y) if N is even;
y appears only with even powers in ΨN(x, y) if N is odd. See [16, p.272].

Now we come back to (1.9) and (1.11). Suppose that λ̂(t) = λ̂ν1,ν2(t) is
a solution of PVI(0,0,0, 1

2 )
, where (ν1, ν2) is an N-torsion point. Then by the

above result and the formulae for ẽk := ℘(ωk(t)
2 |ω1(t), ω2(t)) (here ω3 =

ω1 + ω2, see [26]):

ẽ1 = −1 + t
3

, ẽ2 = 1− 1 + t
3

, ẽ3 = t− t + 1
3

,

we see that there is a polynomial P̂ ∈ Q[t, x] such that

P̂(t, λ̂(t)) ≡ 0.

This polynomial seems too complicated to be computed in general. By the
Bäcklund transformation, we conclude that for any algebraic solution λ(t),
there is a polynomial P ∈ Q[t, x] such that P(t, λ(t)) ≡ 0. Hence any sin-
gular point t of λ must be a root of a polynomial with integral coefficients,
which implies that t is an algebraic number.

Let t = t(τ). Recall the classical modular function j(τ) of SL(2, Z):

(1.25) j(τ) := 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2 = 1728
g2(τ)3

∆(τ)
,

where g2(τ) and g3(τ) are the coefficients of the elliptic curve Eτ: y2 =
4x3 − g2(τ)x− g3(τ), and the relation between t(τ) and j(τ) is

(1.26) j = 256
(t2 − t + 1)3

t2(t− 1)2 .

So if t(τ) is algebraic, then j(τ) is algebraic.
Another way to see it is to use a general principle from the theory of

modular forms. Since all the coefficients of the Fourier expansion of Zr,s(τ)
are algebraic numbers, {j(τ) | Zr,s(τ) = 0} are algebraic by the so-called
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q-expansion principle (c.f. [19]). However, we can prove more. Let us con-
sider

Z(N)(τ) := ∏
(r,s)∈QN

Zr,s(τ).

This is a modular form of weight |QN | := #QN with respect to SL(2, Z).

For N ≥ 5, m := |QN |
24 ∈N and

Z(N)(τ)

∆(τ)2m is invariant under SL(2, Z). Observe
that

(1.27) Zr,s(τ) =

 −Z1−r,0(τ) if s = 0,
−Z0,1−s(τ) if r = 0,
−Z1−r,1−s(τ) if r 6= 0, s 6= 0,

which implies that any zero of
Z(N)(τ)

∆(τ)2m must be doubled. Since
Z(N)(τ)

∆(τ)2m has no
poles in H, we conclude that

(1.28)
Z(N)(τ)

∆(τ)2m = C2m (`N(j))2

for some monic polynomial `N of j and nonzero constant C2m. If N is

odd, then Z(N)(∞) 6= 0. Hence
Z(N)(τ)

∆(τ)2m has poles of order 2m at τ = ∞,

equivalently, `N(j) is a polynomial of degree m = |QN |
24 . If N is even, then

lN := deg `N < m. In any case, we have

Z(N)(τ) = C2m∆(τ)2m−2ln H(G4(τ)
3, ∆(τ))2,

where H(X, Y) is a homogeneous polynomial of X, Y and G4(τ) = g2(τ)/60
is the classical Eisenstein series of weight 4. By using the q-expansion of
Zr,s(τ), we can prove that `N(j) has rational coefficients.

Theorem 1.6. For any N ≥ 5 with N 6= 6, the monic polynomial `N(j) deter-
mined by (1.28) has rational coefficients and satisfies

(i) for any zero j0 of `N(j), there is an algebraic solution λr,s(t), (r, s) ∈ QN ,
such that j0 = j(τ0), where t0 = t(τ0) satisfies λr,s(t0) = ∞. Conversely,
for any algebraic solution λr,s(t), (r, s) ∈ QN , if λr,s(t0) = ∞ for some
t0 = t(τ0), then j0 = j(τ0) is a zero of `N(j).

(ii) `N(j) has distinct roots.
(iii) for any N1 6= N2, `N1(j) and `N2(j) have no common zeros.
(iv)

(1.29) deg `N =

{
|QN |

24 if N is odd,
|QN |

24 − 1
2 ϕ(N

2 ) if N is even,

where ϕ(·) is the Euler function.

Recall the elementary formulae

(1.30) |QN | = N2 ∏
p|N, p prime

(
1− 1

p2

)
, ϕ(N) = N ∏

p|N, p prime

(
1− 1

p

)
.
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Denote the j-value set of zeros of Z(N)(τ) by

J(N) := {j(τ) | Zr,s(τ) = 0 for some (r, s) ∈ QN}.
If N = 3, then |QN | = 8 and Z(N)(τ) =const·G4(τ)

2. Thus the zero τ =

ρ := e
πi
3 and J(3) = {0}. By Theorem 1.1 and Lemma 5.2, we see that

J(4) = J(6) = ∅. For N ≥ 5, J(N) is just the zero set of `N(j). Note that
formula (1.29) also holds for N = 6, which gives deg `6 = 0, so `6(j) is a
non-zero constant. This also proves J(6) = ∅.

The computation of `N seems to be difficult in general. However, by ap-
plying PVI, it is considerably easier for small N. Here are some examples:

(1.31) J(3) = {0}, J(5) =
{

5·212

35

}
, J(8) =

{ 207646
38

}
,

(1.32) J(7) =
{

211

57·34 (−333009± 175519
√

21)
}

.

For N = 9, the polynomial is

`9(j) =j3 +
86191391040000000

78815638671875
j2 +

19885648112869441536
78815638671875

j

− 7205712225604271603712
78815638671875

.

So J(9) = {a, b, b̄}, where a ∈ R and b 6∈ R. Numerically,

(1.33) a ≈ 186.3, b ≈ −639.9 + 285.0×
√
−1.

It seems that except for N = 3, all elements in J(N) are not algebraic integers.
If this would be true, then by a classical result of Siegal and Schneider, all
τ such that λ(t(τ)) = ∞ for an algebraic solution λ(t) are transcendental.
A natural question is how to determine their location in the fundamental
domain F of SL(2, Z), where

(1.34) F = {τ ∈H | 0 ≤ Re τ < 1, |τ| ≥ 1, |τ − 1| > 1} ∪ {ρ = e
πi
3 }.

The above examples show that there is at least one zero of `N(j) of where
the corresponding τ is on the circular arc {τ ∈H | |τ| = 1}. Define

J−N = {(r, s) ∈ QN | 2r + s = 1 and 1
3 < s < 1

2},
J+N = {(r, s) ∈ QN | 2r + s = 1 and 0 < s < 1

3}.
Then we have the following interesting result.

Theorem 1.7. For any N ≥ 5 with N 6= 6, `N(j) has exactly #J+N real zeros in
(0, 1728) and exactly #J−N real zeros in (−∞, 0). Furthermore, `N(j) has no zeros
in {0} ∪ [1728,+∞).

Notice that in the fundamental domain F of SL(2, Z), the corresponding
τ of any positive zero of `N(j) is on the circular arc {τ ∈ F | |τ| = 1}; while
the corresponding τ of any negative zero of `N(j) is on the line {τ ∈ F |
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Re τ = 1
2}. We can use (1.31)-(1.33) to check the validity of Theorem 1.7 for

small values of N. For example,

J+5 = {( 2
5 , 1

5 )}, J−5 = ∅; J+7 = {( 3
7 , 1

7 )}, J−7 = {( 2
7 , 3

7 )};

J+8 = {( 3
8 , 2

8 )}, J−8 = ∅; J+9 = {( 4
9 , 1

9 )}, J−9 = ∅.

The proof of Theorems 1.6 and 1.7 will be given in §7. In §8 we will give
some further remarks about Theorems 1.4 and 1.7. The explicit relation
between Picard solutions and Hitchin’s solutions will be given in Appendix
A. Finally, Appendix B is denoted to the asymptotics of real solutions at
{0, 1, ∞}, which are needed in the computation of `N(j).

2. PAINLEVÉ VI: OVERVIEWS

In this section, we start with the discussion of Painlevé VI (1.2):

d2λ

dt2 =
1
2

(
1
λ
+

1
λ− 1

+
1

λ− t

)(
dλ

dt

)2

−
(

1
t
+

1
t− 1

+
1

λ− t

)
dλ

dt

+
λ (λ− 1) (λ− t)

t2 (t− 1)2

[
α + β

t
λ2 + γ

t− 1

(λ− 1)2 + δ
t (t− 1)

(λ− t)2

]
.

It is well-known that (1.2) possesses the Painlevé property, which says that
any solution λ(t) has no branch points and no essential singularities at any
t ∈ C\{0, 1}.

2.1. Multi-valueness via single-valueness. The Painlevé property implies
that although a solution λ(t) is multi-valued in C, λ(t) is a single-valued
meromorphic function if t is restricted in C± = {z = x + iy|y ≷ 0}. That
means if λ(t) is analytically continued along a closed curve t = t(ε), t(0) =
t(1), in C+ (or C−), then λ(t(0)) = λ(t(1)).

Due to the multi-valueness of a solution of (1.2), it is convenient to lift
solutions and the equation to the universal covering. The universal cover-
ing space of C\{0, 1} is the upper half plane H. The covering map t(τ) is
given in (1.3), by which, Painlevé VI (1.2) is transformed into the elliptic
form (1.5).

It is elementary that t(τ) is invariant under the action of γ ∈ Γ(2), where

Γ(2) = {A ∈ SL(2, Z) | A ≡ I2 mod 2}.

That is t(τ) = t(τ′) if and only if τ′ = γ · τ = aτ+b
cτ+d for some γ =

(
a b
c d

)
∈

Γ(2). Indeed t(τ) is the principal modular function of Γ(2). Let H∗ =
H ∪Q, where Q is the set of rational numbers. Then it is well known that
H∗/Γ(2) ∼= CP1 with three cusp point ∞, 0, 1 which are mapped to 1, 0, ∞
by t(τ) respectively. As the consequence of the isomorphism, we have

t′(τ) =
dt
dτ

(τ) 6= 0, ∀τ ∈H,
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namely the transformation t(τ) is locally one-to-one. Therefore, t(τ) maps
any fundamental domain of Γ(2) one-to-one onto C \ {0, 1}, and any so-
lution λ(t(τ)) is single-valued and meromorphic whenever τ is restricted
in a fundamental domain of Γ(2). As pointed out in §1, throughout this
article, a branch of a solution λ(t) always means a solution λ(t(τ)) defined
for τ in a fundamental domain of Γ(2).

The fundamental domain F2 of Γ(2) is

(2.1) F2 =
{

τ | 0 ≤ Re τ < 2, |τ − 1
2 | ≥ 1

2 , |τ − 3
2 | > 1

2

}
.

When τ ∈ iR+, ek(τ) are real-valued and satisfies e2(τ) < e3(τ) < e1(τ)
(see e.g. [6]). From here, it is easy to see that t(iR+) = (0, 1), where t(i∞) =

1 and t(i0) = 0. Here we used limτ→i∞ e2(τ) = limτ→i∞ e3(τ) = −π2

3 (see
§6). Furthermore, we could deduce from above that for any τ ∈ F2, t(τ) ∈
R if and only if τ ∈ iR+ ∪ {τ ∈H | |τ − 1

2 | = 1
2} ∪ {τ ∈H | Re τ = 1}.

By the formula (1.8), we see that ℘(p(τ)|τ) is always a single-valued
meromorphic function defined in H. However, as a solution of (1.7), p(τ)
has a branch point at those τ such that p(τ) ∈ Eτ[2], where Eτ[2] :=
{ωk

2 |0 ≤ k ≤ 3} is the set of 2-torsion points in Eτ. The single-valueness of
℘(p(τ)|τ) is one of the advantages of the elliptic form.

Recalling (1.21) and (2.1), F0 is a half part of F2. Then it is not difficult to
prove that the transformation t(τ) maps the interior of F0 onto the lower
half plane C−, and t(τ) maps F2\F0 onto C+; see §6. Hence it is convenient
to use τ ∈ F2 when a branch of solution λ(t) with t ∈ C \ {0, 1} is discussed.
Different branches of λ(t) can be obtained from (1.8) by considering τ in
another fundamental domain of Γ(2).

2.2. Isomonodromic deformation. It is well known that Painlevé VI gov-
erns the isomonodromic deformation of some linear ODE. See [18] in this
aspect. For the elliptic form (1.5), it was shown in [6] that it is convenient
to use the so-called generalized Lamé equation (GLE):

(2.2) y′′ =

[
∑3

j=0 nj
(
nj + 1

)
℘
(

z + ωj
2

)
+ 3

4 (℘ (z + p) + ℘ (z− p))
+A (ζ (z + p)− ζ (z− p)) + B

]
y.

Suppose nj 6∈ 1
2 + Z. Then p(τ) is a solution of (1.5) if and only if there exist

A(τ) and B(τ) such that GLE (2.2) preserves the monodromy as τ deforms. The
formula to connect parameters of (1.5) and (2.2) is:

(2.3) αj =
1
2

(
nj +

1
2

)2
, j = 0, 1, 2, 3.

See [6] for the proof. The advantage to employ GLE (2.2) is that for some
cases, the monodromy representation is easier to describe. For example, let
us consider nj = 0 for all j. Then the elliptic form of PVI is (1.7), and GLE is

(2.4) y′′ =
[ 3

4 (℘ (z + p) + ℘ (z− p)) + A (ζ (z + p)− ζ (z− p)) + B
]

y.

For any p 6∈ Eτ[2], ±p are the singular points of (2.4) with local exponents
− 1

2 and 3
2 . We always assume that ±p are apparent singularities. If (r, s) ∈
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C2\ 1
2 Z2 and p(τ) = pr,s(τ) is the solution given by (1.8), then we proved

in [6] that the monodromy representation ρ : π1(Eτ\{±p}, q0) → SL(2, C)
of GLE (2.4) is generated by

ρ(γ±) = −I2, ρ(`1) =

(
e−2πis 0

0 e2πis

)
, ρ(`2) =

(
e2πir 0

0 e−2πir

)
,

where q0 is a base point, γ± ∈ π1(Eτ\{±p}, q0) encircles ±p once and
`1,2 ∈ π1(Eτ\{±p}, q0) are two fundamental circles of the torus Eτ such
that γ+γ− = `−1

2 `−1
1 `2`1. In particular, the monodromy representation ρ is

completely reducible.

2.3. Bäcklund transformation. In [28], Okamoto constructed the so-called
Bäcklund transformations between solutions of Painlevé VI with different
parameters. Indeed, this transformation is a birational transformation be-
tween the solutions of the corresponding Hamiltonian system, or equiva-
lently, a birational transformation of (λ(t), λ′(t)) together. Since λ(t) and
λ′(t) are algebraically independent generally (otherwise, Painlevé equation
would be reduced to a first order ODE), the Bäcklund transformation is not
a birational transformation of the solution λ(t) only.

For example, it is known that a solution λ(t) of PVI( 1
8 ,−1

8 , 1
8 , 3

8 )
can be ob-

tained from a solution λ̂(t) of PVI(0,0,0, 1
2 )

by the following Bäcklund trans-
formation (cf. [34, transformation s2 in p.723]):

(2.5) λ(t) = λ̂(t) +
1

2µ̂(t)
, µ̂(t) =

t(t− 1)λ̂′ − λ̂(λ̂− 1)
2λ̂(λ̂− 1)(λ̂− t)

.

As mentioned in the Introduction, for PVI(0,0,0, 1
2 )

, all its solutions are Picard
solutions:

(2.6) λ̂(t) = λ̂ν1,ν2(t) = ℘(ν1ω1(t) + ν2ω2(t) | ω1(t), ω2(t)) +
t + 1

3
,

where (ν1, ν2) ∈ C2\ 1
2 Z2 and ω1,2(t) are given by (1.9). See [26, 12]. In

principle, Hitchin’s formula (1.8) could be obtained from Picard solution
(2.6) via (2.5), as mentioned by [26] and some other references. However,
the computation of λ̂′(t) via (2.6) is actually very difficult, and in practice,
it is not easy at all to obtain Hitchin’s formula from Picard solution (This
is why we can not find a rigorous derivation of Hitchin’s formula from
Picard solution in the literature). In Appendix A, we will give a rigorous
derivation from Hitchin’s formula to Picard solution.

In the literature, researchers often restrict the study of Painlevé VI to spe-
cial parameters via Bäcklund transformations. This leaves the impression
that the theory for different parameters may be much the same. However,
this turns out not to be completely true in general. For example, it is easy to see
from the expression (A.1) that λ̂(t) is smooth for all t ∈ C\{0, 1} if and only
if (ν1, ν2) ∈ R2\ 1

2 Z2. But this assertion is obviously false for PVI( 1
8 ,−1

8 , 1
8 , 3

8 )
.
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However, the Bäcklund transformation is useful to discuss branch points
and essential singularities, which are preserved under the Bäcklund trans-
formation. For example, if t = 0 is a branch point for a solution, then after
the Bäcklund transformation, t = 0 is still a branch point for the new so-
lution. Another example is that t = 1 is an essential singularity for λr,s(t)
if r ∈ R and s ∈ iR. Thus, t = 1 is also an essential singularity for Picard
solution λ̂ν1,ν2(t) if ν1 ∈ R and ν2 ∈ iR. For the discussion of branch points
for real solutions, please see Appendix B.

3. RICCATI SOLUTIONS

First we review the classification theorem of solutions to the elliptic form
(1.7) due to the associated monodromy representation of GLE (2.4). It was
shown that solutions expressed in (1.8) does not contain all the solutions.
Indeed, we have the following classification theorem proved in [6]. In this
article, when we talk about the monodromy representation, we always mean the
one of GLE (2.4).

Theorem C. ([6, Theorem 4.2]) Suppose p(τ) is a solution to the elliptic form
(1.7). Then the followings hold:

(i) The monodromy representation is completely reducible if and only if there
exists (r, s) ∈ C2\ 1

2 Z2 such that ℘(p(τ)|τ) is given by (1.8).
(ii) The monodromy representation is not completely reducible if and only if

(3.1) λ (t) =
℘ (p (τ) |τ)− e1 (τ)

e2 (τ)− e1 (τ)
, t =

e3 (τ)− e1 (τ)

e2 (τ)− e1 (τ)

satisfies one of the following four Riccati equations:

(3.2)
dλ

dt
= − 1

2t(t− 1)
(λ2 − 2tλ + t), µ ≡ 0,

(3.3)
dλ

dt
=

1
2t(t− 1)

(λ2 − 2λ + t), µ ≡ 1
2λ

,

(3.4)
dλ

dt
=

1
2t(t− 1)

(λ2 − t), µ ≡ 1
2(λ− 1)

,

(3.5)
dλ

dt
=

1
2t(t− 1)

(λ2 + 2(t− 1)λ− t), µ ≡ 1
2(λ− t)

.

Here µ(t) is defined by the second formula in (A.2), i.e., (λ(t), µ(t)) sat-
isfies the well-known Hamiltonian system of Painlevé VI.

It is known that Riccati equations can be transformed into second order
linear equations (such as the Gauss hypergeometric equation). Hence, this
classification shows that once the associated monodromy representation
is not completely reducible, then solution λ(t) can be expressed in terms
of previously known functions, i.e., it does not define new transcendental
functions.
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Now we discuss the solutions of which the associated monodromy rep-
resentation is not completely reducible, and the results in this section will
be used to prove Theorem 1.1 in §5. For GLE (2.4) in Eτ with p 6∈ Eτ[2], we
proved in [6] that there is always a solution which is expressed by:

(3.6) ya1 (z) := exp
( 1

2 z(ζ(a1 + p) + ζ(a1 − p))
) σ (z− a1)√

σ (z + p) σ (z− p)
,

where the pair ±a1 ∈ Eτ is uniquely determined by

(3.7) A = 1
2 [ζ (p + a1) + ζ (p− a1)− ζ (2p)] .

If a1 6≡ −a1 mod Λτ, then y−a1(z) and ya1(z) are linearly independent so-
lutions to (2.4). In this case, the monodromy representation associated to
(2.4) is completely reducible. In fact, we proved in [6, Lemma 2.3] that the
monodromy representation for (2.4) is not completely reducible if and only
if a1 ∈ Eτ[2].

Now we assume a1 = ωk
2 ∈ Eτ[2]. Let y1 (z) = ya1 (z) and y2(z) =

χ(z)y1(z) be a linearly independent solution of (2.4) to y1(z). Clearly it is
equivalent to χ(z) 6≡const and

(3.8)
χ′′(z)
χ′(z)

+ 2
y′1(z)
y1(z)

= 0, i.e., χ′(z) = const · y1(z)−2.

On the other hand, by using 2ζ(z)− ζ(2z) = − 1
2
℘′′(z)
℘′(z) , (3.7) is equivalent to

(3.9) A = −1
4
℘′′(p− ωk

2 )

℘′(p− ωk
2 )

.

When a1 = 0, we have

y1(z)−2 =
σ (z + p) σ (z− p)

σ(z)2 = c(℘(z)− ℘(p)),

and then (3.8) yields χ(z) = c(ζ(z)+℘(p)z). So for any c(τ) 6= 0, (c(τ)y1, y2)
is a fundamental system of solutions to GLE (2.4), where y2(z) = (ζ(z) +
℘(p)z)y1(z). In particular,

(3.10) `∗j

(
c(τ)y1

y2

)
=

(
1 0

ηj+℘(p)ωj
c(τ) 1

)(
c(τ)y1

y2

)
.

Proposition 3.1. The solutions of the Riccati equation (3.2) can be parametrized
by C ∈ CP1 :

(3.11) λC(t) =
℘(pC(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
, ℘(pC(τ)|τ) =

η2(τ)− Cη1(τ)

C− τ
.

Proof. We separate the proof into two steps.

Step 1. We prove that for any constant C ∈ CP1, λC(t) given by (3.11)
solves the Riccati equation (3.2).
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Fix any C ∈ CP1 and let p(τ) = pC(τ), A(τ) = − 1
4
℘′′(p(τ))
℘′(p(τ)) in the gener-

alized Lamé equation (2.4).
If C = ∞, then ℘(p(τ)) = −η1(τ). Choose c(τ) = η2(τ) + ℘(p(τ))τ. By

the Legendre relation τη1(τ)− η2(τ) = 2πi, c(τ) = −2πi. Thus by (3.10),
we have

`∗1

(
c(τ)y1

y2

)
=

(
1 0
0 1

)(
c(τ)y1

y2

)
, `∗2

(
c(τ)y1

y2

)
=

(
1 0
1 1

)(
c(τ)y1

y2

)
.

That is, GLE (2.4) is monodromy preserving as τ deforms, so p∞(τ) is a
solution of the elliptic form (1.7) (see Subsection 2.2).

If C 6= ∞, then (3.11) gives η1(τ) + ℘(p(τ)) 6≡ 0 and C = η2(τ)+℘(p(τ))τ
η1(τ)+℘(p(τ)) .

Choose c(τ) = η1(τ) + ℘(p(τ)). Clearly except a set of discrete points in
H, c(τ) 6= 0 and so
(3.12)

`∗1

(
c(τ)y1

y2

)
=

(
1 0
1 1

)(
c(τ)y1

y2

)
, `∗2

(
c(τ)y1

y2

)
=

(
1 0
C 1

)(
c(τ)y1

y2

)
.

As before, we conclude that pC(τ) is a solution of the elliptic form (1.7).
We remark that the second formula in (3.11) was previously obtained

in [15, 33], where there does not contain the relation between λC(t) and
Riccati equations. Here, together with our result in [6], we conclude that
λC(t) actually satisfies the Ricatti equation (3.2).

Step 2. Let λ(t) be any solution of the Riccati equation (3.2). We prove
the existence of C ∈ CP1 such that λ(t) = λC(t).

Define ±p(τ) by λ(t) via (3.1) and A(τ) = − 1
4
℘′′(p(τ))
℘′(p(τ)) . Then p(τ) is a

solution of the elliptic form (1.7), which implies that (2.4) is monodromy
preserving as τ deforms. Therefore, there exists a fundamental system of
solutions (ỹ1(z; τ), ỹ2(z; τ)) to (2.4) such that the monodromy matrices M1,
M2, which are defined by

`∗j

(
ỹ1
ỹ2

)
= Mj

(
ỹ1
ỹ2

)
, j = 1, 2,

are independent of τ. We may assume ℘(p(τ)|τ) 6≡ ℘(p∞(τ)|τ), otherwise
we are done. Then c(τ) := η1(τ) + ℘(p(τ)) 6≡ 0. For any τ such that
c(τ) 6= 0, (c(τ)y1, y2) is also a fundamental system of solutions, so there is

an invertible matrix γ =

(
a b
c d

)
such that

(
ỹ1
ỹ2

)
= γ

(
c(τ)y1

y2

)
. Clearly

the monodromy matrices of (c(τ)y1, y2) is given by (3.12), where

(3.13) C :=
η2(τ) + ℘(p(τ)|τ)τ
η1(τ) + ℘(p(τ)|τ)

may depend on τ. Then

M1 = γ

(
1 0
1 1

)
γ−1 =

(
1 + bd

ad−bc
−b2

ad−bc
d2

ad−bc 1− bd
ad−bc

)
,
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M2 = γ

(
1 0
C 1

)
γ−1 =

(
1 + bd

ad−bc C −b2

ad−bc C
d2

ad−bc C 1− bd
ad−bc C

)
.

Since M1, M2 are independent of τ and bd 6≡ 0, we conclude that C is
a constant independent of τ. Consequently, (3.13) implies ℘(p(τ)|τ) =
℘(pC(τ)|τ) and so λ(t) = λC(t).

The proof is complete. �

Remark 3.2. It is easy to see that if Im C > 0, then λC(t) has singularities (at
least a pole) in C\{0, 1}. However, it is not so obvious to see whether λC(t)
has singularities or not if Im C ≤ 0. In §6, we will exploit formulae (3.11)
and (3.18) (below) to prove that any solution of the four Riccati equations
has singularities in C\{0, 1}.

Another observation is that C = ∞ gives that

(3.14) λ∞(t) = −
η1(τ) + e1(τ)

e2(τ)− e1(τ)

is a solution of PVI( 1
8 ,−1

8 , 1
8 , 3

8 )
. Since λ∞(t), λ∞(t)− 1 and λ∞(t)− t can have

only simple zeros (cf. [18, Proposition 1.4.1]), a direct consequence is

Theorem 3.3. For fixed k ∈ {1, 2, 3}, the followings hold:
(i) Any zero of η1(τ) + ek(τ) must be simple.

(ii)

(3.15)
d

dτ
((η1(τ) + ek(τ))

−1) 6= 1
2πi

for any τ ∈H.

(iii) η2(τ)+τek(τ)
η1(τ)+ek(τ)

is a locally one-to-one map from H to C∪ {∞}.
Proof. Recall

t = t(τ) =
e3(τ)− e1(τ)

e2(τ)− e1(τ)
.

Since t′(τ) 6= 0 for all τ ∈ H, the assertion (i) follows readily from the fact
that λ∞(t) (for k = 1), λ∞(t)− 1 (for k = 2) and λ∞(t)− t (for k = 3) can
have only simple zeros.

For the assertion (ii), we note from the Legendre relation and (3.11) that

λC(t) = −
η1(τ) + e1(τ)− 2πi

τ−C

e2(τ)− e1(τ)
.

Fix any τ0 ∈ H. If τ0 is a zero of η1 + e1, then d
dτ ((η1 + e1)

−1)|τ=τ0 = ∞. So
it suffices to consider the case η1(τ0) + e1(τ0) 6= 0. Then by letting

C = τ0 −
2πi

η1(τ0) + e1(τ0)
,

we see that t0 = t(τ0) is a zero of λC(t). Since λC(t) has only simple zeros,
we have

d
dτ

(
η1 + e1 −

2πi
τ − C

)
|τ=τ0 6= 0.
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This, together with η1(τ0) + e1(τ0) − 2πi
τ0−C = 0, easily implies d

dτ ((η1 +

e1)
−1)|τ=τ0 6= 1

2πi . This proves (3.15) for k = 1. Similarly, by consider-
ing λC(t)− 1 and λC(t)− t, we can prove (3.15) for k = 2, 3. This proves
the assertion (ii).

Finally, using the Legendre relation leads to

η2(τ) + τek(τ)

η1(τ) + ek(τ)
= τ − 2πi

η1(τ) + ek(τ)
.

Therefore, η2(τ)+τek(τ)
η1(τ)+ek(τ)

is locally one-to-one. This completes the proof. �

Remark 3.4. In §6, we will see that the Hessian of the Green function G(z|τ)
at z = ω1

2 = 1
2 :

det D2G( 1
2 |τ) = −C(τ) · Im

(
η2(τ) + τe1(τ)

η1(τ) + e1(τ)

)
for some C(τ) > 0, provided that η1(τ) + e1(τ) 6= 0. The local one-to-one
of the map η2(τ)+τe1(τ)

η1(τ)+e1(τ)
is important for studying the curve in H where the

half-period ω1
2 is a degenerate critical point of G(z|τ). See §6. Furthermore,

we will prove a stronger result that η1(τ) + e1(τ) has only one zero in any
fundamental domain of Γ(2); see Theorem 6.6.

Similarly, we can prove that all solutions of the other three Riccati equa-
tions can be parametrized by CP1. The calculation is as follows. Fix k ∈
{1, 2, 3}. When a1 = ωk

2 , by (3.6) it is easy to see that

χ(z) = − ℘(p)− ek

(ek − ei)(ek − ej)
ζ(z− ωk

2 )−
(

1 + ek
℘(p)− ek

(ek − ei)(ek − ej)

)
z

satisfies (3.8), where {i, j} = {1, 2, 3}\{k}. As before, for any c(τ) 6=
0, (c(τ)y1(z), y2(z)) is a fundamental system of solutions to (2.4), where
y2(z) = χ(z)y1(z). In particular,

(3.16) `∗j

(
c(τ)y1

y2

)
=

(
1 0

−Dηj+ωj(1+Dek)

c(τ) 1

)(
c(τ)y1

y2

)
,

where

(3.17) D :=
℘(p)− ek

(ek − ei)(ek − ej)
.

Proposition 3.5. For C ∈ CP1, we let λC(t) =
℘(pC(τ)|τ)−e1(τ)

e2(τ)−e1(τ)
, where

(3.18) ℘(pC(τ)|τ) =
ek(Cη1(τ)− η2(τ)) + ( g2

4 − 2e2
k)(C− τ)

Cη1(τ)− η2(τ) + ek(C− τ)
.

Then λC(t) satisfies the Ricatti equation (3.3) if k = 1, (3.4) if k = 2, (3.5)
if k = 3. Furthermore, such λC(t) give all the solutions of these three Riccati
equations.
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Proof. We sketch the proof for fixed k ∈ {1, 2, 3}. For any C ∈ CP1, we let

p(τ) = pC(τ), A(τ) = − 1
4
℘′′(p(τ)− ωk

2 )

℘′(p(τ)− ωk
2 )

in (2.4). If C = ∞, i.e., Dη1 + (1 +

Dek) ≡ 0, then we choose c(τ) = Dη2 + τ(1 + Dek) = 2πi
η1(τ)+ek(τ)

6≡ 0. By
(3.16),

`∗1

(
c(τ)y1

y2

)
=

(
1 0
0 1

)(
c(τ)y1

y2

)
, `∗2

(
c(τ)y1

y2

)
=

(
1 0
1 1

)(
c(τ)y1

y2

)
.

If C 6= ∞, then (3.18) gives Dη1 + (1 + Dek) 6≡ 0 and C = Dη2+τ(1+Dek)
Dη1+(1+Dek)

.
Choose c(τ) = Dη1 + (1 + Dek). Then

`∗1

(
c(τ)y1

y2

)
=

(
1 0
1 1

)(
c(τ)y1

y2

)
, `∗2

(
c(τ)y1

y2

)
=

(
1 0
C 1

)(
c(τ)y1

y2

)
.

Similarly as in Proposition 3.1, we see that pC(τ) is a solution of the elliptic
form (1.7). Again the formula in (3.18) was first obtained in [33]. Here,
together with our result in [6], we conclude that λC(t) actually satisfies the
Ricatti equation (3.3) if k = 1, (3.4) if k = 2, (3.5) if k = 3. The rest of the
proof is similar to that of Proposition 3.1. �

For solution pC(τ) of the Riccati equations given in Propositions 3.1 and
3.5, we let τ′ = γ · τ and C′ = γ · C for γ ∈ SL(2, Z). By using (4.2)-(4.4)
(see §4) and the formula of ℘ (pC(τ)|τ), it is easy to prove

(3.19) ℘(pC′(τ
′)|τ′) = (cτ + d)2℘ (pC(τ)|τ) .

Then we have the following result, which can be proved by the same argu-
ment of Proposition 4.4 in §4, so we omit the details of the proof here.

Proposition 3.6. Let λC(t) and λC′(t) solve the same one of the four Riccati
equations (3.2)-(3.5). Then they give the same solution to PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

if and only
if C′ = γ · C for some γ ∈ Γ(2).

We conclude this section by a remark. In [26], Mazzocco classified so-
lutions of PVI((2µ−1)2/2,0,0, 1

2 )
(write PVIµ for convenience) for µ ∈ 1

2 + Z.
Notice that PVI 1

2
is precisely PVI(0,0,0, 1

2 )
and PVIµ can be transformed to

PVI 1
2

via Bäcklund transformations. Mazzocco proved for µ ∈ 1
2 + Z and

µ 6= 1
2 , say µ = −1

2 for instance, PVI−1
2

has two types of solutions: one is so-
called Picard type solutions, which is obtained from Picard solutions (2.6) via
Bäcklund transformations; the other one is so-called Chazy solutions, such
as

λ̃(t) =
1
8{[ω2 + νω1 + 2t(ω′2 + νω′1)]

2 − 4t(ω′2 + νω′1)
2}2

(ω2 + νω1)(ω
′
2 + νω′1)[2(t− 1)(ω′2 + νω′1) + ω2 + νω1][ω2 + νω1 + 2x(ω′2 + νω′1)]

(where ν ∈ C), which will turn to be the singular solutions λ0(t) ≡ 0, 1, t
or ∞ of PVI 1

2
via Bäcklund transformations. Here together with Theorem C

and our argument in §2, in principle, solutions of the four Riccati equations
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could be obtained from Chazy solutions of PVI−1
2

via Bäcklund transforma-
tions, but the process would be too complicated to be computed.

4. COMPLETELY REDUCIBLE SOLUTIONS

4.1. Simple zeros of Hecke form. By Theorem C in §3, any solution λ(t)
of PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

with a completely reducible monodromy representation can
be expressed by (3.1):

λ(t) =
℘(p(τ)|τ)− e1 (τ)

e2 (τ)− e1 (τ)
, t =

e3 (τ)− e1 (τ)

e2 (τ)− e1 (τ)
,

where ℘(p(τ)|τ) is given by (1.8) with some (r, s) ∈ C2\ 1
2 Z2. From (1.8),

we have the following application of the Painlevé property.

Theorem 4.1. Suppose (r, s) ∈ C2\ 1
2 Z2 is a pair of complex constants. Then the

Hecke form Zr,s(τ) = ζ(r + sτ|τ)− (rη1(τ) + sη2(τ)) has only simple zeros.

Proof. First, we note that the situations r + sτ ∈ Eτ[2] and Zr,s(τ) = 0 can
not occur simultaneously. If not, then there are τ0 and m, n ∈ Z such that
r + sτ0 = m + nτ0 +

ω
2 , where ω is any lattice points {0, ω1, ω2, ω3 = ω1 +

ω2}, and also ζ(r + sτ0) = rη1(τ0) + sη2(τ0). Without loss of generality, we
might assume ω = ω1. The other cases can be proved similarly.

The second identity also implies
1
2 η1(τ0) = ζ(ω1

2 ) = ζ ((r−m) + (s− n)τ0)

= ζ (r + sτ0)−mη1(τ0)− nη2(τ0)

= (r−m)η1(τ0) + (s− n)η2(τ0).

Therefore, we have

(r−m− 1
2 ) + (s− n)τ0 = 0,

(r−m− 1
2 )η1(τ0) + (s− n)η2(τ0) = 0,

which implies r−m− 1
2 = 0 and s = n because the matrix

(
1 τ

η1(τ) η2(τ)

)
is non-degenerate for any τ due to the Legendre relation. Obviously it
contradicts to the assumption (r, s) 6∈ 1

2 Z2.
Now suppose Zr,s(τ0) = 0, which implies ℘(p(τ0)) = ∞ by (1.8) because

℘′(r + sτ0) 6= 0. Consider the transformation τ0 7→ t0 via (3.1). Then by
the Painlevé property, we know that λ(t) has a pole at t = t0 6∈ {0, 1, ∞}.
By substituting the local expansion of λ(t) at t = t0 into (1.2), it is easy to
prove that the order of pole at t = t0 is 1, which implies the zero of Zr,s at
τ = τ0 is simple. �

Remark 4.2. If (r, s) is an N-torison point, i.e., (r, s) = ( k1
N , k2

N ) for positive
integers ki, N ≥ 3 and gcd(k1, k2, N) = 1, then the function Zr,s(τ) is a
modular form of weight 1 with respect to the modular group Γ(N). In this
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case, Theorem 4.1 was proved in [7], where the method of dessins d’enfants
was used. For a real pair of (r, s), we will give an alternative proof in §5.

Since αi =
1
8 for 0 ≤ i ≤ 3, it is easy to see that for 1 ≤ k ≤ 3, p(τ) + ωk

2
is also a solution of the elliptic form (1.7) provided that p(τ) is a solution of
(1.7). Then we have the following result, which will be used in §5.

Proposition 4.3. Given (r, s) ∈ C2 \ 1
2 Z2, we define

(4.1) (rk, sk) =


(r− 1

2 , s) if k = 1,
(r, s− 1

2 ) if k = 2,
(r− 1

2 , s− 1
2 ) if k = 3.

Then pr,s(τ) +
ωk
2 = ±prk ,sk(τ) in Eτ.

Proof. It was proved in [6] that (1.8) is equivalent to

ζ(r + sτ + pr,s(τ)) + ζ(r + sτ − pr,s(τ))− 2(rη1(τ) + sη2(τ)) = 0.

Form here, we easily obtain

ζ(rk + skτ + (pr,s(τ) +
ωk
2 )) + ζ(rk + skτ − (pr,s(τ) +

ωk
2 ))

− 2(rkη1(τ) + skη2(τ)) = 0,

and so

℘(pr,s(τ) +
ωk
2 |τ)

=℘ (rk + skτ|τ) + ℘′ (rk + skτ|τ)
2 (ζ (rk + skτ|τ)− (rkη1(τ) + skη2(τ)))

=℘(prk ,sk(τ)|τ).
This completes the proof. �

We call a solution to (1.5) a real solution if the monodromy group of its
associated GLE (2.2) is contained in SU(2). For the case αj =

1
8 , p(τ) is a real

solution if and only if it is given by (1.8) for some real pair (r, s) ∈ R2\ 1
2 Z2.

4.2. Modularity. In this subsection we study the modularity property of
solutions to PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

. Consider the pair (z, τ) ∈ C×H and z = r + sτ.

For any γ =

(
a b
c d

)
∈ SL(2, Z), conventionally γ can act on C×H by

γ(z, τ) := ( z
cτ+d , γ · τ) = ( z

cτ+d , aτ+b
cτ+d ). Then

z
cτ + d

=
r + sτ

cτ + d
= r′ + s′τ′, where τ′ = γ · τ and (s′, r′) = (s, r) · γ−1.

Using

(4.2) ℘

(
z

cτ + d

∣∣∣∣ τ′
)
= (cτ + d)2 ℘ (z|τ) , τ′ =

aτ + b
cτ + d

,
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we derive

ζ

(
z

cτ + d

∣∣∣∣ τ′
)
= (cτ + d) ζ (z|τ) ,

and so

(4.3)
(

η2(τ′)
η1(τ

′)

)
= (cτ + d)γ ·

(
η2(τ)
η1(τ)

)
.

Set (r, s) · (η1(τ), η2(τ))T = rη1(τ)+ sη2(τ). Then (r′, s′) · (η1(τ
′), η2(τ′))T =

(cτ + d)(r, s) · (η1(τ), η2(τ))T and so

(4.4) Zr′,s′(τ
′) = (cτ + d)Zr,s(τ).

Together (4.2) and (4.4), we obtain

(4.5) ℘
(

pr′,s′(τ
′)|τ′

)
= (cτ + d)2℘ (pr,s(τ)|τ) = ℘

(
pr,s(τ)
cτ+d

∣∣∣ τ′
)

,

where (r′ + s′τ′, τ′) = γ(r + sτ, τ). Indeed, by a direct calculation, we
could prove that pr,s(τ)

cτ+d as a function of τ′ is a solution of the elliptic form

(1.7) since pr,s(τ) is a solution of (1.7). Particularly, pr,s(τ)
cτ+d = ±pr′,s′(τ

′) mod
Λτ′ . Recall that λr,s(t) is the corresponding solution of (1.2), namely

(4.6) λr,s(t) =
℘(pr,s(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
.

Then the above argument yields the following result.

Proposition 4.4. λr,s (t) and λr′,s′ (t) belong to the same solution of PVI( 1
8 ,−1

8 , 1
8 , 3

8 )

if and only if (s, r) ≡ (s′, r′) · γ mod Z2 by some γ ∈ Γ (2).

Proof. For the sufficient part, assume (s, r) ≡ (s′, r′) · γ mod Z2 by some
γ ∈ Γ (2). Recall from [6, Lemma 4.2] that

(4.7) ℘(pr,s(τ)|τ) = ℘ (pr̃,s̃(τ)|τ)⇐⇒ (r, s) ≡ ±(r̃, s̃) (mod Z2),

which implies that all elements in±(r, s)+Z2 give precisely the same solu-
tion λr,s(t). Hence we may assume (s, r) = (s′, r′) ·γ by replacing (s, r) with
some element in (s, r) +Z2 if necessary. Let `0 ⊂H be a path starting from
any fixed point τ0 to τ′0 = γ · τ0. Then ` := t(`0) ∈ π1(CP1\{0, 1, ∞}, t0),
where t (τ) = e3(τ)−e1(τ)

e2(τ)−e1(τ)
and t0 = t(τ0). Let U ⊂ H be a small neighbor-

hood of τ0 and denote V = t(U). Since

λr′,s′ (t) =
℘(pr′,s′(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
, τ ∈ U,

so the analytic continuation `∗λr′,s′ (t) of λr′,s′ (t) along ` satisfies

`∗λr′,s′ (t) =
℘(pr′,s′(γ · τ)|γ · τ)− e1(γ · τ)

e2(γ · τ)− e1(γ · τ)
, τ ∈ U.
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On the other hand, (s, r) = (s′, r′) · γ gives (r′ + s′τ′, τ′) = γ(r + sτ, τ),

where τ′ = γ · τ. Moreover, γ =

(
a b
c d

)
∈ Γ(2) gives

(4.8) ej(γ · τ) = (cτ + d)2ej(τ), j = 1, 2, 3.

Then it follows from (4.5) and (4.8) that

λr′,s′ (t(γ · τ)) =
℘(pr′,s′(γ · τ)|γ · τ)− e1(γ · τ)

e2(γ · τ)− e1(γ · τ)
(4.9)

=
℘(pr,s(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
= λr,s (t(τ)) , τ ∈ U,

namely

(4.10) λr,s (t) = `∗λr′,s′ (t) , t ∈ V.

Conversely, assume that λr,s (t) and λr′,s′ (t) represent different branches
of the same solution in a small neighborhood V of t0 ∈ CP1\{0, 1, ∞}.
Then there is ` ∈ π1(CP1\{0, 1, ∞}, t0) such that (4.10) holds. Fix any τ0 ∈
H such that t0 = t (τ0) and let t−1(`) ⊂ H denote the lifting path of `

under the map t (τ) = e3(τ)−e1(τ)
e2(τ)−e1(τ)

such that its starting point is τ0. Denote
its ending point by τ′0. Then t(τ′0) = t0 = t(τ0), which implies τ′0 = γ · τ0

for some γ =

(
a b
c d

)
∈ Γ(2). Let U be a neighborhood of τ0 such that

t(U) ⊂ V. Then (4.6) and (4.10) give (4.9). Define (s̃, r̃) := (s′, r′) · γ, then
(r′ + s′τ′, τ′) = γ(r̃ + s̃τ, τ), where τ′ = γ · τ, and so (4.5) gives

(4.11) ℘(pr′,s′(γ · τ)|γ · τ) = (cτ + d)2℘(pr̃,s̃(τ)|τ).
Substituting (4.11) and (4.8) into (4.9) leads to

℘(pr,s(τ)|τ) = ℘ (pr̃,s̃(τ)|τ) , τ ∈ U.

Again by (4.7) we obtain (r, s) ≡ ±(r̃, s̃)mod Z2, namely (s, r) ≡ (s′, r′) ·
(±γ)mod Z2 where ±γ ∈ Γ(2). �

Define for any N-torsion point (r, s) = ( k1
N , k2

N ) ∈ QN ,

Γ(r,s) :=
{

γ ∈ SL(2, Z) | (s, r) · γ ≡ ±(s, r)mod Z2} .

Then ℘(pr,s(τ)|τ) is a modular form of weight 2 with respect to Γ(r,s) in the
sense

℘(pr,s(τ
′)|τ′) = (cτ + d)2℘(pr,s(τ)|τ), ∀γ ∈ Γ(r,s).

For example, if r = 0, then

Γ(r,s) =

{
γ =

(
a b
c d

)
∈ SL(2, Z)

∣∣∣∣ b ≡ 0, a ≡ ±1 mod N
}

.
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5. GEOMETRY OF Ω5

In this and the next sections, our main purpose is to prove Theorems 1.1-
1.4. In these two sections, we mainly consider τ ∈ F0, where F0 ⊂ H is the
fundamental domain for Γ0(2) defined by

(5.1) F0 := {τ ∈H | 0 ≤ Re τ ≤ 1, |τ − 1
2 | ≥ 1

2}.
Remark 5.1. Recall that

Γ0(N) = {γ =

(
a b
c d

)
∈ SL(2, Z) | c ≡ 0 (mod N)}.

It is well known that the modular curve X0(N) = H/Γ0(N) parametrizes
the pair (E, C) of an elliptic curve E together with a cyclic subgroup C ⊂ E
with |C| = N. For N = p being a prime, [SL(2, Z) : Γ0(p)] = p + 1 and a
fundamental domain for Γ0(p) is given by

F̃ = F ∪ S(F) ∪ ST(F) ∪ · · · ∪ STp−1(F),

where S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
and F is any fundamental domain for

SL(2, Z).
For N = p = 2, X0(2) parametrizes (E, q) with q a half period. An

alternative choice of fundamental domain is F0 = F ∪ TS(F) ∪ (TS)2(F)
(notice that (TS)3 = −Id and TS fixes ρ = eπi/3).

Recall the Hecke form

Zr,s(τ) := ζ(r + sτ|τ)− (rη1(τ) + sη2(τ)),

which is doubly periodic in (r, s) ∈ R2. It is related to the Green function
on Eτ via Zr,s(τ) = −4π∂zG(r + sτ|τ).

Recall also the q expansion for ζ with q := e2πiτ:

ζ(z|τ) = η1(τ)z− πi
1 + e2πiz

1− e2πiz

− 2πi
∞

∑
n=1

(
e2πizqn

1− e2πizqn −
e−2πizqn

1− e−2πizqn

)
.

(5.2)

(This can be deduced form the Jacobi triple product formula for theta func-
tion ϑ and the relation between ϑ and σ, see e.g. [36].)

We use the Legendre relation η1τ − η2 = 2πi and the above q expansion
to compute the q expansion for Z:

Zr,s(τ) = 2πis− πi
1 + e2πiz

1− e2πiz

− 2πi
∞

∑
n=1

(
e2πizqn

1− e2πizqn −
e−2πizqn

1− e−2πizqn

)
,

(5.3)

where z = r + sτ. See also [9, 14].
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-2.0 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.5

1

1.5

FIGURE 2. F0 = F ∪ TS(F) ∪ (TS)2(F).

For fixed s ∈ [0, 1), (5.3) then implies that

(5.4) lim
τ→∞

Zr,s(τ) =

{
2πi(s− 1

2 ) if s 6= 0,
π cot πr if s = 0.

By the periodicity, the limit is a discontinuous linear function with discon-
tinuity at s ∈ Z.

To compute the limit as τ → 0, we use the transformation τ 7→ S · τ =
−1/τ, and (4.4) yields

(5.5) Zr,s(−1/τ) = τZ−s,r(τ),

and for r ∈ (0, 1),

(5.6) Zr,s(τ) =
−1
τ

Z−s,r(−1/τ) =
2πi
τ

( 1
2 − r + o(1)

)
as τ → 0. For r = 0, a contribution π cot πs/τ appears as the dominant
term instead. For other r, the value is determined by periodicity.

It is also easy to see that under the translation τ 7→ T · τ = τ + 1, (4.4)
yields

(5.7) Zr,s(τ + 1) = Zr+s,s(τ),

and for r + s ∈ (0, 1),

(5.8) Zr,s(τ) = Zr+s,s(τ − 1) =
2πi

τ − 1
( 1

2 − (r + s) + o(1)
)

as τ → 1. For r + s = 0, the dominant term is replaced by π cot πs/(τ− 1).
For general r + s, the value is again determined by periodicity.

We will analyze the structure of the solutions τ ∈ F0 for Zr,s(τ) = 0 by
varying (r, s). Since half periods are trivial solutions for all τ, we exclude
those cases by assuming that r, s are not half integers in our discussion.
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For the proof of Theorems 1.2 and 1.3, we need the following result about
the critical points of the Green function G(z|τ) if τ ∈ ∂F0. Recall that for
τ ∈ ∂F0 ∩H, Eτ is conformally equivalent to rectangular tori.

Theorem D. [22] If Eτ is a rectangular torus, then G(z|τ) has only three
critical points, i.e, the three half-periods ωk

2 , k = 1, 2, 3.

Using our language, Theorem D just says that for any (r, s) ∈ R2\ 1
2 Z2,

Zr,s(τ) 6= 0 for τ ∈ ∂F0 ∩H. Based on this, the idea of our analysis is
to make use of the argument principle along the curve ∂F0 to analyze the
number of zeros of Zr,s in F0.

We start with a simple yet important observation:

Lemma 5.2. For any τ ∈H,
(i) ζ( 3

4 ω1 +
1
4 ω2) 6= 3

4 η1 +
1
4 η2.

(ii) ζ( 1
6 ω1 +

1
6 ω2) 6= 1

6 η1 +
1
6 η2.

(iii) ζ( 2
6 ω1 +

3
6 ω2) 6= 2

6 η1 +
3
6 η2.

In particular, solution λr,s(t) of PVI( 1
8 ,−1

8 , 1
8 , 3

8 )
has no poles provided that (r, s) ∈

{( 3
4 , 1

4 ), (
1
6 , 1

6 ), (
2
6 , 3

6 )}.
Proof. We will use the addition formula

℘′(z)
℘(z)− ℘(u)

= ζ(z + u) + ζ(z− u)− 2ζ(z).

For (i), we choose z = 1
4 (3ω1 + ω2) = 1

2 ω1 +
1
4 ω3 and u = 1

4 ω3. Then
ζ(z− u) = ζ( 1

2 ω1) =
1
2 η1 and ζ(z + u) = ζ(ω1 +

1
2 ω2) = η1 +

1
2 η2. Hence

ζ( 3
4 ω1 +

1
4 ω2)− ( 3

4 η1 +
1
4 η2) = ζ(z)− 1

2 (ζ(z + u) + ζ(z− u))

= −1
2

℘′( 3
4 ω1 +

1
4 ω2)

℘( 3
4 ω1 +

1
4 ω2)− ℘( 1

4 ω3)
6= 0.

This proves (i).
For (ii), we choose z = 1

6 (ω1 + ω2) =
1
6 ω3 and u = 1

3 ω3. Then

0 6= ℘′(z)
℘(z)− ℘(u)

= ζ( 1
2 ω3) + ζ(− 1

6 ω3)− 2ζ( 1
6 ω3)

= −3(ζ( 1
6 ω1 +

1
6 ω2)− 1

6 η1 − 1
6 η2).

This proves (ii).
For (iii), we choose z = 1

3 ω1 +
1
2 ω2 and u = 1

3 ω1. Then ℘′(z) 6= 0 and

0 6= ζ( 2
3 ω1 +

1
2 ω2) + ζ( 1

2 ω2)− 2ζ( 1
3 ω1 +

1
2 ω2)

= ζ(− 1
3 ω1 − 1

2 ω2) + (η1 + η2) +
1
2 η2 − 2ζ( 1

3 ω1 +
1
2 ω2)

= −3(ζ( 1
3 ω1 +

1
2 ω2)− 1

3 η1 − 1
2 η2).

This proves (iii). �

Now we are in the position to prove Theorem 1.3.
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FIGURE 3. Triangle region40 describing all r, s coordinates
of p(τ). The upper one third is bijective to Ω5 ⊂M1.

Proof of Theorem 1.3. We separate the proof into three steps.

Step 1. We will show that Zr,s(τ) has no solutions if (r, s) 6∈ 40.
Indeed, if s, r, r + s 6= 1

2 , then (5.4), (5.6) and (5.8) imply that

Zr,s(τ) 6→ 0 as τ → ∞, 0, 1

respectively. Furthermore, the pole order at τ = 0, 1 is unchanged among
such (r, s)’s.

Thus an extended version of the argument principle shows that the num-
ber of zero of Zr,s(τ) is constant in the region

43 := {(r, s) | r > 0, s > 0, r + s < 1
2}.

By Lemma (5.2) (ii), Z1/6,1/6(τ) has no solutions. Since ( 1
6 , 1

6 ) ∈ 43, this
implies that Zr,s(τ) has no solutions for any (r, s) ∈ 43.

Similarly Zr,s(τ) has no solutions for (r, s) ∈ 2, where

2 := {(t, s) | 1
2 < t < 1 and 0 < s < 1

2}.
This follows from Lemma (5.2) (i) and the fact that ( 3

4 , 1
4 ) ∈ 2.

Step 2. Zr,s(τ) has no solutions if (r, s) 6∈ 40.
Indeed, it follows easily form the argument principle in complex analysis

that the points (r, s) such that Zr,s(τ) has only finite solutions form an open
set. In particular, by Step 1, for (r, s) ∈ 2∪43, the function Zr,s(τ) either
has no solutions or has infinite solutions (which corresponds to the trivial
case r, s ∈ 1

2 Z and Zr,s ≡ 0).

Step 3. In order to conclude the proof of the theorem, by the same rea-
soning as in Step 1 we only need to establish the existence and uniqueness
of solution Zr,s(τ) = 0 in τ ∈ F0 for one special point (r, s) ∈ 40. For this
purpose we take (r, s) = ( 1

3 , 1
3 ) ∈ 40.
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By an easy symmetry argument (c.f. [22]), Z 1
3 , 1

3
(τ) = 0 for τ = ρ := eπi/3.

Conversely we will prove that ρ ∈ F0 is the unique zero of Z 1
3 , 1

3
and it is a

simple zero. The following argument motivated by [14, 2] is the only place
where the theory of modular forms is used.

Recall
Z(3)(τ) = ∏′ Z k1

3 , k2
3
(τ),

where the product is over all pairs (k1, k2) with 0 ≤ k1, k2 ≤ 2 and with
gcd(k1, k2, 3) = 1. In this case it simply means (k1, k2) 6= (0, 0). There are
8 factors in the product and in fact Z(3) is a modular function of weight 8
with respect to the full modular group SL(2, Z). The counting formula for
the zeros of Z(3) then reads as

ν∞(Z(3)) +
1
2

νi(Z(3)) +
1
3

νρ(Z(3)) + ∑
p 6=∞,i,ρ

νp(Z(3)) =
8
12

.

Since Z 1
3 , 1

3
(ρ) = Z 2

3 , 2
3
(ρ) = 0, we have νρ(Z(3)) ≥ 2. The counting formula

then implies that νρ(Z(3)) = 2 and all the other terms vanish. Hence τ = ρ

is a simple (and unique) zero for Z 1
3 , 1

3
(τ) (as well as for Z 2

3 , 2
3
(τ)).

The proof of the theorem is complete. �

Corollary 5.3. The set Ω5 ⊂M1 is an “unbounded” simply connected domain.

Proof. Let Ω̃5 be the lifting of Ω5 in F0, i.e.,

Ω̃5 = {τ ∈ F0 | G(z|τ) has five critical points}.
Theorem 1.3 establishes a continuous map φ : (r, s) 7→ τ from40 onto Ω̃5.
The map φ is one to one due to the uniqueness theorem of extra pair of
nontrivial critical points of Green function G; see Theorem A in §1. Being
the continuous image of a simply connected domain40 under a one to one
continuous function φ on R2, Ω̃5 must also be a simply connected domain.
(This is the classic result on “Invariance of Domain” proved in algebraic
topology. In the current case it follows easily from the inverse function
theorem since φ is differentiable.)

It is also proven in [22] that the domain Ω̃5 contains the vertical line
1
2 + ib for b ≥ b1 where b1 ∈ (1/2,

√
3/2), hence it is unbounded.

The corresponding statement for Ω5 follows from the obvious Z3 identi-
fication. �

Define
41 := {(r, s) | 1

2 < r < 1, 0 < s < 1
2 , r + s > 1},

42 := {(r, s) | 1
2 < r < 1, 0 < s < 1

2 , r + s < 1}.
Corollary 5.4. Let (r, s) ∈ [0, 1]× [0, 1

2 ]\ 1
2 Z2. Then

(i) λr,s(t) = ∞ (equivalently, pr,s(τ) = 0) has a solution t = t(τ) with
τ ∈ F0 if and only if (r, s) ∈ 40.
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(ii) λr,s(t) = 0 (equivalently, pr,s(τ) = ω1
2 ) has a solution t = t(τ) with

τ ∈ F0 if and only if (r, s) ∈ 41.
(iii) λr,s(t) = 1 (equivalently, pr,s(τ) = ω2

2 ) has a solution t = t(τ) with
τ ∈ F0 if and only if (r, s) ∈ 42.

(iv) λr,s(t) = t (equivalently, pr,s(τ) = ω3
2 ) has a solution t = t(τ) with

τ ∈ F0 if and only if (r, s) ∈ 43.

Proof. Noting from (1.8) that pr,s(τ) = 0 in Eτ if and only if Zr,s(τ) = 0, this
corollary follows readily from Theorem 1.3, Proposition 4.3 and (4.7). �

Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose λ(t) is smooth for all t ∈ C\{0, 1}. We will
prove in Corollary 6.7 (see §6) that any Riccati solution has singularities in
C\{0, 1}. Therefore, λ(t) = λr,s(t) for some (r, s) ∈ [0, 1)× [0, 1

2 ]\ 1
2 Z2.

First we claim (r, s) ∈ Q2. By Corollary 5.4, we must have (r, s) ∈
∪3

k=0∂4k. Recalling from (4.9) that for any γ ∈ Γ(2),

(5.9) λr′,s′(t(τ)) = λr,s(t(γ · τ)), whenever (s′, r′) = (s, r) · γ,

we see that λr′,s′(t) is also smooth for all t ∈ C\{0, 1}, namely

±(r′, s′) ∈ ∪3
k=0∂4k + Z2 for any γ ∈ Γ(2) and (s′, r′) = (s, r) · γ.

Taking γ =

(
3 2
4 3

)
, we conclude that {r, s, r + s} ∩ Q 6= ∅ and {4r +

3s, 3r + 2s, 7r + 5s} ∩Q 6= ∅, which implies (r, s) ∈ Q2.
Once (r, s) ∈ Q2, it is straightforward to check that if for some N ≥ 3

there are no N-torsion points contained in ∪3
k=04k, then N = 4. Thus (r, s)

must be a 4-torsion point. By Proposition 4.4, it is easy to check that λ 1
4 ,0

and λ 1
4 , 2

4
give the same solution; λ0, 1

4
and λ 2

4 , 1
4

give the same solution; λ 1
4 , 1

4

and λ 3
4 , 1

4
give the same solution. Therefore, {λ 1

4 ,0, λ0, 1
4
, λ 1

4 , 1
4
} gives all the

solutions that are smooth in C \ {0, 1}. �

6. GEOMETRY OF ∂Ω5

Even though Ω̃5, the lifting of Ω5 in F0, is a simply connected domain,
its boundary may still possibly be ill-behaved. The purpose in this section
is to show that this is not the case.

For i = 1, 2, 3 we put

(6.1) Ci(F0) := {τ ∈ F0 | 1
2 ωi is a degenerate critical point of G(z|τ)}.

It is known that all the half period points 1
2 ωi’s are non-degenerate critical

points of G(z|τ) if τ ∈ ∂F0 . Hence Ci(F0) ∩ ∂F0 = ∅ for all i. When
no confusion may possibly arise, we will drop the dependence on F0 and
simply write Ci.

The first main result of this section is



32 ZHIJIE CHEN, TING-JUNG KUO, CHANG-SHOU LIN, AND CHIN-LUNG WANG

M1

0 1
2 1

i

1
2 (1 + i)

1
2 + b1i

Figure: Ω5 contains a neighborhood of eπi/3.

• On the line Re τ = 1/2 which are equivalent to the rhombuses
tori, the proof relies on functional equations of ϑ1.

• The general case uses modular forms of weight one.

FIGURE 4. The dotted region is the lifted domain Ω̃5 ⊂ F0.
The lower boundary curve C1 3 1

2 + b1i consists of τ with
1
2 ω1 being a degenerate critical point of G. The upper left
(resp. right) boundary is C3 (resp. C2) respectively.

Theorem 6.1. (1) For each i, Ci is a smooth connected curve.
(2)

∂Ω̃5 =
⋃3

i=1
Ci.

We first derive the equation for Ci, and then extend the discussion in [22]
for rhombus tori to the general cases. To compute the Hessian of G(z|τ) at
1
2 ωi, we recall that for τ = a + bi, z = x + iy,

(6.2) 4πGz = −(log ϑ)z − 2πi
y
b

,

where ϑ denotes the theta function ϑ1. Then

2πGxx = −Re (log ϑ)zz,

2πGxy = +Im (log ϑ)zz,

2πGyy = +Re (log ϑ)zz +
2π

b
,

(6.3)

and the Hessian H is given by

H = det D2G

=
−1
4π2

(
|(log ϑ)zz|2 +

2π

b
Re (log ϑ)zz

)
=
−1
4π2

(∣∣∣(log ϑ)zz +
π

b

∣∣∣2 − π2

b2

)
.

(6.4)

The relation to the Weierstrass elliptic functions is linked by

(6.5) (log ϑ)z(z) = ζ(z)− η1z.

For z = 1
2 ωi we have then

(6.6) (log ϑ)zz(
1
2 ωi) = −℘( 1

2 ωi)− η1 = −(ei + η1).



GREEN FUNCTION AND PAINLEVÉ VI EQUATION 33

For our discussion, using the SL(2, Z) action (see (6.13) below) we only
need to work on the case i = 1. At the critical point z = 1

2 , we have clearly
(by (6.2) and (6.5))

(6.7) (log ϑ)z(
1
2 ; τ) = 0.

Recall the heat equation for theta function

ϑzz = 4πiϑτ.

It allows us to transform the Hessian into deformations in τ. Then

(6.8) (log ϑ)zz = 4πi(log ϑ)τ − (log ϑ)2
z .

At z = 1
2 we get (log ϑ)zz = 4πi(log ϑ)τ, and (6.4) becomes

H( 1
2 ; τ) = −4|(log ϑ)τ|2 +

2
b

Im (log ϑ)τ

=
−1
4b2

(
| − 4bi(log ϑ)τ − 1|2 − 1

)
.

(6.9)

That is, the curve Ci is the inverse image of the unit circle centered at ξ = 1
under the analytic (but not holomorphic) map F0 → C:

(6.10) τ 7→ ξ := −4bi(log ϑ)τ(
1
2 ; τ) =

b
π
(e1 + η1).

To proceed, we need to calculate (log ϑ)ττ at z = 1
2 . By (6.8), (6.7) and

(6.5),

4πi(log ϑ)ττ = (log ϑ)zzτ + 2(log ϑ)z(log ϑ)zτ

= (4πi)−1((log ϑ)zz + (log ϑ)2
z
)

zz

= (4πi)−1(− ℘′′( 1
2 ) + 2(log ϑ)2

zz
)
,

which implies that

(6.11) (log ϑ)ττ − 2(log ϑ)2
τ =

℘′′( 1
2 )

16π2 6= 0

since ℘′′( 1
2 ) = (e1 − e2)(e1 − e3).

If (log ϑ)τ(
1
2 ; τ) = 0, then (log ϑ)ττ 6= 0 and ∇τ H( 1

2 ; τ) 6= 0 since

∂H/∂a =
2
b

Im (log ϑ)ττ,

∂H/∂b =
2
b

Re (log ϑ)ττ.

In particular C1 is smooth near such τ.
If (log ϑ)τ(

1
2 ; τ) 6= 0, we may write

H = −2
b
|(log ϑ)τ|2Im

(
2τ +

1
(log ϑ)τ

)
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and C1 is defined by Im f = 0 where

(6.12) f (τ) := 2τ +
1

(log ϑ)τ(
1
2 ; τ)

.

We compute

f ′ = 2− (log ϑ)ττ

(log ϑ)2
τ

= − (log ϑ)ττ − 2(log ϑ)2
τ

(log ϑ)2
τ

6= 0.

Since
∂Im f

∂a
= Im f ′,

∂Im f
∂b

= Re f ′,

we conclude again that C1 is smooth near such τ.
Hence Ci are smooth curves for i = 1, 2, 3.
To characterize ∂Ω̃5, we first show that Ci ∩ Ω̃5 = ∅. If not, say Ci ∩ Ω̃5

is a (not necessarily connected) smooth curve in the open set Ω̃5. Let τ0 ∈
C1 ∩ Ω̃5. Either (log ϑ)τ(

1
2 ; τ0) = 0 or Im f (τ0) = 0. Since (log ϑ)τ(

1
2 ; τ) has

only discrete zeros (it is non-constant since (log ϑ)ττ 6= 0 over the zeros),
we may choose τ0 so that (log ϑ)τ(

1
2 ; τ0) 6= 0. Since Ω̃5 is open, there is a

neighborhood U of τ0 inside Ω̃5 such that (log ϑ)τ(
1
2 ; τ) 6= 0 for all τ ∈ U.

Thus, f ( 1
2 ; τ) is a holomorphic function in U.

By Theorem B, z = 1
2 is a saddle point of G(z|τ) for all τ ∈ U. Thus

H(τ) ≤ 0 for all τ ∈ U; this is equivalent to that Im f ≥ 0 over U. But
Im f is a harmonic function on U and Im f (τ0) = 0, the maximal principle
implies that Im f (τ) ≡ 0 on U and f (τ) is a constant, which leads to a
contradiction. Thus Ci ∩ Ω̃5 = ∅ for all i.

Similar argument applies to the open set Ω̃◦3 , the interior of Ω̃3, where
z = 1

2 is known to be a minimal point and H ≥ 0 (c.f. [22]). Again the
maximum principle implies Ci ∩ Ω̃◦3 = ∅ for all i.

Hence we have proved the following result:

Proposition 6.2. ∂Ω̃5 = ∂Ω̃3 =
⋃3

i=1 Ci. In particular, for τ ∈ Ω̃5 ∪ Ω̃◦3 , all the
half period points are non-degenerate critical points.

Proof of Theorem 6.1. It remains to show that Ci is connected for each i. Since
∂Ω̃5 =

⋃3
i=1 Ci and Ω̃5 is simply connected, Ci can not bound any bounded

domain. (We note that this can not be proved by the maximal principle
as we have done above since f might have singularities on the boundary
of this bounded domain. Instead, the contradiction is draw from the un-
boundedness and simply connectedness of Ω̃5.)

It thus suffices to show that at each cusp (i.e. 0, 1, ∞), C1 has at most one
component near a neighborhood of them.

It is known that as Im τ → +∞, 2η1(τ)− e1(τ) → 0 and e1(τ) → 2
3 π2.

Thus (6.9)-(6.10) yield that

C1 ∩ {τ ∈ F0 | Im τ ≥ R} = ∅
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for large R. Since C1 is symmetric with respect to the line Re τ = 1
2 , it

suffices to show that C1 ∩ {τ ∈ F0 | |τ| < δ0} is a smooth curve for small
δ0 > 0.

It is readily checked that the Hessian of G satisfies

(6.13) H((cτ + d)z; τ) = |cτ + d|4H(z; τ′),

where

γ =

(
a b
c d

)
∈ SL(2, Z), τ′ = γ · τ =

aτ + b
cτ + d

.

Let γ =

(
1 −1
1 0

)
, i.e. τ′ = (τ − 1)/τ. Then γ maps F0 onto F0 with

γ(∞) = 0. By (6.13) we have

(6.14) H( 1
2 ; τ) = |τ|4H( 1

2 (1− τ′); τ′) = |τ|4H( 1
2 (1 + τ′); τ′).

Therefore the degeneracy curve C1 is mapped to the degeneracy curve C3
and it suffices to show that C3 ∩ {τ ∈ F0 | Im τ ≥ R} is a smooth curve for
large R.

In doing so, we use the following q = e2πiτ expansion for ℘(z|τ):
Proposition 6.3. [21, p.46] For |q| < |e2πiz| < 1/|q|, we have

℘(z|τ)
(2πi)2 =

1
12

+
e2πiz

(1− e2πiz)2 +
∞

∑
m=1

∞

∑
n=1

nqmn(e2πinz + e−2πinz − 2).

By substituting z = 1
2 +

1
2 τ, we have e2πinz = (−1)nqn/2. After rearrang-

ing terms and simplifications, we get

(6.15) e3(τ) = −
π2

3
− 8π2

∞

∑
n=1

(
(−1)n ∑

d∈N,n/d odd
d− ∑

d∈N,n/d even
d
)

qn/2.

By integrating the q expansion in Proposition 6.3, we get a second q ex-
pansion for ζ(z|τ) which does not involve η1(τ) (c.f. (5.2)):

Corollary 6.4.

ζ(z|τ)
2πi

= −2πiz
12
− 1

1− e2πiz +
1
2

+ 4πiz
∞

∑
n=1

nqn

1− qn +
∞

∑
n=1

e2πinz − e−2πinz

1− qn .
(6.16)

By substituting z = 1
2 , e2πinz = (−1)n, we get

(6.17) η1(τ) =
π2

3
− 8π2

∞

∑
n=1

nqn

1− qn .

Thus for τ = a + ib,

e3(τ) + η1(τ) = 8π2eπiτ(1 + O(e−πb)).
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By (6.4) and (6.6), it is easy to see that H( 1
2 ω3; τ) = 0 if and only if (a, b)

satisfies
cos πa = 4πbe−πb(1 + O(b−1)).

This implies that near ∞ the curve C3 is (smooth and) connected.
The proof is complete. �

Remark 6.5. Similarly, for z = 1
2 , e2πiz = −1, Proposition 6.3 leads to

e1(τ) =
2π2

3
+ 16π2

∞

∑
n=1

(
∑

0<d|n, d odd
d
)

qn.

It had been shown in [22] that along the line τ = 1
2 + ib, e1 ↗ 2

3 π2, 1
2 e1 −

η1 ↗ 0 and e1 + η1 ↗ π2 as b→ +∞.

Recalling (6.4) and (6.6), we have

H(ωk
2 ; τ) = − 1

4π2b
|ek(τ) + η1(τ)|2Im

(
τ − 2πi

ek(τ) + η1(τ)

)
.

In the following, we use H(ωk
2 ; τ) to determine the location of zeros of

ek(τ) + η1(τ). Note that if ek(τ) + η1(τ) 6= 0, then H(ωk
2 ; τ) = 0 if and

only if Im (τ − 2πi
ek(τ)+η1(τ)

) = 0. Theorem 3.3 says that ek(τ) + η1(τ) has
only simple zeros, which can also be obtained by (6.11) as well.

Clearly ek(τ)+ η1(τ) is not a modular form. However, any zero of ek(τ)+
η1(τ) lies on the curve H(ωk

2 ; τ) = 0. Recall that H(ωk
2 ; τ) = 0 is the degen-

erate curve of ωk
2 as a critical point of G(z|τ). Since Eτ′ is conformally equiv-

alent to Eτ if τ′ = γ · τ for some γ ∈ SL(2, Z), but transforms H(ωk
2 ; τ) = 0

to another degenerate curve H(
ωj
2 ; τ′) = 0 (by (6.13)). Therefore, without

loss of generality, we may assume k = 1. Then by (6.10), it is equivalent to
determine the location of zeros of (log ϑ)τ(

1
2 ; τ).

From (6.13), if γ ∈ Γ0(2) = {γ ∈ SL(2, Z) | c ≡ 0 (mod 2)}, the image
of C1(F0) is mapped to C1(F′0) for another fundamental domain F′0 := γ(F0).

For example, if γ = TS−1T2S−1 =

(
1 −1
2 −1

)
, i.e.

τ′ = γ · τ =
τ − 1

2τ − 1
,

then F′0 is the domain bounded by 3 half circles:

F′0 = {τ ∈H | |τ − 1
2 | ≤ 1

2 , |τ − 1
4 | ≥ 1

4 , |τ − 3
4 | ≥ 1

4}.
Noting that the curve {τ | |τ − 1

2 | = 1
2} is invariant under γ, the curves

C1(F0), C1(F′0) bound a simply connected domain D in

F0 ∪ F′0 = {τ ∈H | 0 ≤ Re τ ≤ 1, |τ − 1
4 | ≥ 1

4 , |τ − 3
4 | ≥ 1

4},
where D ∩R = {0, 1}. Since Γ0(2) = Γ(2) ∪ γΓ(2), F0 ∪ F′0 is also a funda-
mental domain of Γ(2) (different from (2.1)). Note that for any τ ∈ D, the
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half period 1
2 is a minimum point of G(z|τ) in Eτ, and Theorem 6.1 yields

that 1
2 is actually a non-degenerate critical point of G(z|τ).

Thus, the map κ = f (τ) = 2τ + (log ϑ)−1
τ maps C1(F0) ∪ C1(F′0) to the

real axis. By [22, Theorem 1.6],

(6.18) C1(F0) ∩ {τ | Re τ = 1
2} = { 1

2 + ib1},

where b1 ∈ ( 1
2 ,
√

3
2 ) is the unique zero of the increasing function in b

(6.19) e1 + η1 −
2π

b

along the vertical line 1
2 + ib. Similarly, C1(F′0)∩ {τ | Re τ = 1

2} = { 1
2 + ib0}

where b0 ∈ (0, 1
2 ) is the unique zero of the increasing function e1 + η1 along

1
2 + ib. Then

f ( 1
2 + ib) = 2( 1

2 + ib)− 4πi
e1 + η1

= 1 +
2bi

e1 + η1

(
e1 + η1 −

2π

b

)
.

In particular, f ( 1
2 + ib1) = 1, f ( 1

2 + ib0) = 1− i∞ and f mapsD to the lower
half plane C− = {κ | Im κ < 0} in a locally one-to-one manner, because for
any τ ∈ D, the half period 1

2 is a non-degenerate minimum point. The local
one-to-one is due to Theorem 3.3. Then f is actually one to one overD onto
C− ∪R∪ {∞}.

Since (log ϑ)τ(
1
2 ; τ) → ∞ when τ ∈ C1(F0) ∪ C1(F′0) tends to the bound-

ary point 0 (resp. 1), we have by (6.12) that f (τ) → 0 (resp. 2). Therefore f
maps C1(F0) and C1(F′0) onto [0, 2] and R ∪ {∞}\(0, 2) respectively. Then
f (τ) = ∞ has only one solution τ = 1

2 + ib0.
Therefore we have proved the following theorem:

Theorem 6.6. The function (log ϑ)τ(
1
2 ; τ) has a unique zero τ0 ∈ F0 ∪ F′0. It

takes the form τ0 = 1
2 + ib0 where 0 < b0 < 1

2 is the unique zero for e1 + η1

along the vertical line Re τ = 1
2 . Therefore, in any fundamental domain of Γ(2),

(log ϑ)τ(
1
2 ; τ) has a unique zero.

Remark that although (log ϑ)τ(
1
2 ; τ) is not a modular form, the curve

C1(F0) ∪ C1(F′0), the degenerate curve of 1
2 ω1 in F0 ∪ F′0, is invariant un-

der Γ(2), a fact coming from the invariance of the Green function under
SL(2, Z) action and that 1

2 ω1 is preserved under Γ(2). The last statement
of Theorem 6.6 follows from this and the fact that zeros of (log ϑ)τ(

1
2 ; τ) lie

on this curve.
As a consequence, we are in a position to prove the following result

about Riccati solutions.

Corollary 6.7. Any solution of the four Riccati equations (3.2)-(3.5) has singu-
larities in C \ {0, 1}.
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Proof. For k ∈ {1, 2, 3}, we define

fk(τ) :=
τek(τ) + η2(τ)

ek(τ) + η1(τ)
= τ − 2πi

ek(τ) + η1(τ)
.

Clearly f1(τ) =
1
2 f (τ), where f is defined in (6.12). Then the proof of Theo-

rem 6.6 shows that f1 is one-to-one fromD onto C− ∪R∪ {∞} and f1(0) = 0,
f1(1) = 1. Remark that D\{0, 1} ⊂H, so

(6.20) f1
(
D\{0, 1}

)
= C− ∪R∪ {∞}\{0, 1} ⊂ f1(H).

Step 1. Let λC(t) be any solution of the Riccati equation (3.2). We show
that λC(t) has singularities in C\{0, 1}.

If C ∈ H, we let τ0 = C. By the Legendre relation τ0η1(τ0)− η2(τ0) =
2πi, we easily deduce from (3.11) that t(τ0) is a pole of λC.

It suffices to consider C ∈ C− ∪R∪ {∞}. First we assume C 6∈ {0, 1}.
Then (6.20) shows the existence of τ0 ∈ D\{0, 1} ⊂H such that f1(τ0) = C,
which is equivalent to

℘(pC(τ0)|τ0) =
η2(τ0)− Cη1(τ0)

C− τ0
= e1(τ0).

Therefore, λC(t(τ0)) = 0, i.e., t(τ0) is a type 1 singularity of λC.
Before we consider the final case C ∈ {0, 1}, we prove that

(6.21) C− ∪R\{−1}⊂ f2(H),

(6.22) C− ∪R∪ {∞}\{0, 1
2}⊂ f3(H).

Let τ′ = γ · τ = −τ
τ−1 and C′ = γ · C = −C

C−1 , where γ = STS =(−1 0
1 −1

)
. Using (4.2) it is easy to see t(τ′) = t(τ)

t(τ)−1 . Let λC(t) and λC′(t)

be solutions of the Riccati equation (3.2).Then by (3.19), we easily obtain

λC′(
t(τ)

t(τ)−1 ) = λC′(t(τ′)) =
λC(t(τ))− t(τ)

1− t(τ)
.

For any C ∈ C− ∪R∪ {∞}\{0, 1
2}, we have C′ ∈ C− ∪R∪ {∞}\{0, 1},

which implies the existence of τ0 ∈ H such that λC′(
t(τ0)

t(τ0)−1 ) = 0. Con-
sequently, λC(t(τ0)) = t(τ0), i.e., ℘(pC(τ0)|τ0) = e3(τ0). This, together
with (3.11), gives f3(τ0) = C. This proves (6.22). To prove (6.21), we let
τ′ = S · τ = −1

τ and C′ = S · C = −1
C . Then t(τ′) = 1− t(τ) and

λC′(1− t(τ)) = λC′(t(τ′)) = 1− λC(t(τ)).

From here, we can prove (6.21) similarly.
Now for C ∈ {0, 1}, (6.21) shows the existence of τ0 ∈ H such that

f2(τ0) = C, which is equivalent to λC(t(τ0)) = 1. Thus, λC has a type 2
singularity at t(τ0). This completes the proof of Step 1.

Step 2. Let λ(t) be any solution of the three Riccati equations (3.3)-(3.5).
We show that λ(t) has singularities in C\{0, 1}.
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For λ(t) satisfying (3.3), we define

λ̃(t) :=
t

λ(t)
.

Then a straightforward computation shows that λ̃(t) solves (3.2). Since
Step 1 shows that λ̃(t) has singularities in C\{0, 1}, so does λ(t).

For λ(t) satisfying (3.4), we define

λ̃(t) :=
λ(t)− t
λ(t)− 1

.

Again λ̃(t) solves (3.2), which implies that λ(t) has singularities in C\{0, 1}.
For λ(t) satisfying (3.5), we define

λ̃(t) := t
λ(t)− 1
λ(t)− t

.

Again λ̃(t) solves (3.2), so λ(t) has singularities in C\{0, 1}.
The proof is complete. �

Remark 6.8. There is another way to prove Step 2 of Corollary 6.7. That is,
we can exploit the formula (3.18) and (6.20)-(6.22) to show that λC(t) has
singularities just as done in Step 1. We leave the details to the reader.

We conclude this section by giving the proof of Theorem 1.4. Recall the
fundamental domain F2 of Γ(2) defined in (2.1) and F0 of Γ0(2) defined in
(5.1). As mentioned in Subsection 2.1, first we prove the following

Lemma 6.9. The map t(τ) = e3(τ)−e1(τ)
e2(τ)−e1(τ)

maps the interior of F0 onto the lower
half plane C−, and maps F2\F0 onto C+.

Proof. Note that t(iR+) = (0, 1) (see e.g. [6]). Using t(T · τ) = 1
t(τ) and

t(ST−1 · τ) = 1− 1
t(τ) (see e.g. Propositions B.2 and B.3 in Appendix B),

we obtain t(1 + iR+) = (1,+∞) and t({τ ∈ H | |τ − 1
2 | = 1

2}) = (−∞, 0).
That is, t(τ) maps ∂F0 ∩H onto R\{0, 1}.

Recalling ρ = e
πi
3 ∈ F0, we claim t(ρ) ∈ C−. Indeed, By [22, (2.10)] we

have
℘(z|ρ) = ρ2℘(ρz|ρ),

by which, it is easy to see that e3(ρ) = ρ2e1(ρ) and e2(ρ) = ρ−2e1(ρ) =
ρ4e1(ρ). Hence,

t(ρ) =
ρ2 − 1
ρ4 − 1

= ρ̄ =
1
2
(1−

√
3) ∈ C−.

Now this lemma follows readily from the fact that t(τ) is one-to-one from
F2 onto C\{0, 1}. �
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Proof of Theorem 1.4. Suppose λ(t) is a real solution. Then there exists (r, s) ∈
[0, 1]× [0, 1

2 ] \ 1
2 Z2 such that λ(t) = λr,s(t). The goal is to prove that any

branch of λr,s(t) has at most one singular point in both C− \ {0, 1} and C+.
For this purpose, it suffices to consider the F2 branch (i.e., the branch corre-
sponding to τ ∈ F2) when a branch of λr,s(t) in C \ {0, 1} is discussed. By
(5.9) (or (4.9)), for any other branch of the same real solution λr,s(t) in C \ {0, 1},
which can be obtained from (1.8) by considering τ in another fundamental
domain of Γ(2), its restriction in C− \ {0, 1} (resp. in C+) is just the restriction
in C− \ {0, 1} (resp. in C+) of the F2 branch of a ”new” real solution λr′,s′(t).
Therefore, we only need to prove this theorem for the F2 branch.

Step 1. We consider τ ∈ F0. Applying Corollary 5.4 and Lemma 6.9,
we see that the F2 branch of λr,s(t) has at most one singular point in C− \
{0, 1} = t(F0). More precisely, this F2 branch of λr,s(t) has no singularities
in R \ {0, 1} = t(∂F0 ∩H) (see also [6]); if (r, s) ∈ ∪3

k=0∂4k, then it has
no singularities in C− either; while for k ∈ {0, 1, 2, 3}, it has only a type k
singularity in C− if and only if (r, s) ∈ 4k. Recalling that Ω̃5 is the lifting
of Ω5 in F0, we have

Ω̃5 = {τ ∈ F0 | G(z|τ) has five critical points}
=
{

τ ∈ F0 | Zr,s(τ) = 0 for some (r, s) ∈ [0, 1]× [0, 1
2 ] \ 1

2 Z2}
= {τ ∈ F0 | Zr,s(τ) = 0 for some (r, s) ∈ 40} .

This, together with the definition (1.22) of Ω(0)
− , easily implies

Ω(0)
− = t ({τ ∈ F0 | Zr,s(τ) = 0 for some (r, s) ∈ 40}) = t(Ω̃5).

Therefore, we conclude from Theorem 6.1 that Ω(0)
− is open and simply con-

nected and ∂Ω(0)
− consists of three smooth curves connecting 0, 1, ∞ respec-

tively; they are precisely t(Ci(F0)) for i = 1, 2, 3, where Ci(F0) is defined in
(6.1).

Now we recall Ω(k)
− defined in (1.23) and fix k ∈ {1, 2, 3}. It follows from

Proposition 4.3, (4.7) and Corollary 5.4 that

Ω(k)
− = t

({
τ ∈ F0 | pr,s(τ) =

ωk
2 for some (r, s) ∈ [0, 1]× [0, 1

2 ] \ 1
2 Z2})

= t
({

τ ∈ F0 | prk ,sk(τ) = 0 for some (r, s) ∈ [0, 1]× [0, 1
2 ] \ 1

2 Z2})
= t

({
τ ∈ F0 | pr,s(τ) = 0 for some (r, s) ∈ [0, 1]× [0, 1

2 ] \ 1
2 Z2})

= t ({τ ∈ F0 | Zr,s(τ) = 0 for some (r, s) ∈ 40})
= Ω(0)

− .

Step 2. We consider τ ∈ F2 \ F0. Then τ′ = T−1 · τ = τ − 1 ∈ F0. By
(B.11), we have t(τ) = 1/t(τ′) and

λr,s(t(τ)) =
λr1,s1(t(τ

′))
t(τ′)

,
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where (r1, s1) ∈ [0, 1]× [0, 1
2 ]\ 1

2 Z2 is given by (B.10):

(6.23) (r1, s1) :=
{

(r + s, s) if r + s < 1,
(r + s− 1, s) if r + s ≥ 1.

Therefore, by the result of Step 1, we conclude that the F2 branch of λr,s(t)
has at most one singular point in C+ = t(F2 \ F0) and Ω(k)

+ = Ω(0)
+ = {t ∈

C+ | t−1 ∈ Ω(0)
− } (see (1.23) for the definition of Ω(k)

+ ).
In conclusion, the F2 branch of λr,s(t) has at most two singular points in

C \ {0, 1}. If it has two singular points, then one is in C+ and the other
one is in C−. Furthermore, they are the same type 0 (resp. type 1) singular
points if and only if both (r, s) and (r1, s1) given by (6.23) belong to 40
(resp. 41); while they are the same type 2 (resp. type 3) if and only if (r, s) ∈
42 and (r1, s1) ∈ 43 (resp. (r, s) ∈ 43 and (r1, s1) ∈ 42). Therefore, it is
easy to see from the definition of 4k and (6.23) that these two singular
points can not be the same type. Finally, any real solution is smooth in
C \ (Ω(0)

− ∪Ω(0)
+ ∪ {0, 1}).

The proof is complete. �

7. ALGEBRAIC SOLUTIONS

In this section, we study the monic polynomial `N(j) defined in (1.28)
and prove Theorems 1.6 and 1.7. In the following we always assume N ≥ 5.

Lemma 7.1.

deg `N =

{
|QN |

24 if N is odd,
|QN |

24 − 1
2 ϕ(N

2 ) if N is even.

Proof. Recalling q = e2πiτ, we use the q-expansions (cf. [16, p.193]):

(7.1) ∆(τ) = (2π)12q
+∞

∏
n=1

(1− qn)24,

(7.2) j(τ) =
1
q
+ 744 + 196884q + 21493760q2 + · · · .

Let τ = ib with b ↑ +∞, then q = e−2πb ↓ 0. By (B.3), (B.6), (B.7) in
Appendix B and (1.27), we have for (r, s) ∈ QN that, as b ↑ +∞,

(7.3) Zr,s(τ) =


2πi(s− 1

2 ) + O(qs) if s 6∈ {0, 1
2},

π cot πr + O(q) if s = 0,
4π sin(2πr)q

1
2 + O(q) if s = 1

2 .

First we assume that N is odd. Then r, s 6= 1
2 , which implies that Z(N)(τ)

converges to a nonzero constant as b ↑ +∞. Substituting (7.1) and (7.2) into
(1.28) and computing the leading term, we obtain deg `N = m = |QN |

24 .
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Now we consider that N is even. Then the number of (r, 1
2 ) in QN is

2ϕ(N
2 ), which implies from (7.3) that Z(N)(τ) ∼ qϕ( N

2 ) as b ↑ +∞. Again by
(7.1), (7.2) and (1.28), we obtain deg `N = m− 1

2 ϕ(N
2 ). �

Lemma 7.2. The constant C2m and all the coefficients of `N(j) are rational num-
bers. In particular, all zeros of `N(j) are algebraic numbers.

Proof. Denote a = e2πi/N . Then for any (r, s) = ( k1
N , k2

N ) ∈ QN , e2πi(r+sτ) =

ak1 qs = ak1 q
k2
N . Recalling the q-expansion (5.3) of Zr,s, we have

Zr,s(τ)

πi
=2s− (1 + ak1 qs)

∞

∑
l=0

(ak1 qs)l(7.4)

− 2
∞

∑
n=1

∞

∑
l=1

(
(ak1 qn+s)l − (a−k1 qn−s)l

)
, i f s 6= 0,

Zr,0(τ)

πi
= −1 + ak1

1− ak1
− 2

∞

∑
n=1

∞

∑
l=1

(
(ak1 qn)l − (a−k1 qn)l

)
.

Therefore,

(7.5)
Z(N)(τ)

(πi)|QN | = ∏
(r,s)∈QN

Zr,s(τ)

πi
= R0(a) +

∞

∑
n=1

Rn(a)qn,

where Rj(a) are rational functions of a with integer coefficients. Here by
(1.28) and (7.1)-(7.2) we know that there are no terms of q with fractional
powers in (7.5). Define

PN := {k ∈N | 1 ≤ k ≤ N − 1, gcd(k, N) = 1}.
Fix any k ∈ PN . For any (r, s) = ( k1

N , k2
N ) ∈ QN , we also have gcd(kk1, k2, N) =

1. Denote r′ = kr − [kr] ∈ [0, 1), then (r′, s) ∈ QN and aN = 1 gives
e2πi(r′+sτ) = (ak)k1 qs. Thus, repeating the argument of (7.4)-(7.5) leads to

∏
(r,s)∈QN

Zr′,s(τ)

πi
= R0(ak) +

∞

∑
n=1

Rn(ak)qn.

Since (r′, s) takes over all elements in QN whenever (r, s) does, we conclude
that

Z(N)(τ)

(πi)|QN | = ∏
(r,s)∈QN

Zr′,s(τ)

πi
= R0(ak) +

∞

∑
n=1

Rn(ak)qn, ∀k ∈ PN .

Comparing this with (7.5), we have for any j ≥ 0 that Rj(a) = Rj(ak), ∀k ∈
PN , which implies that Rj(a) are rational numbers.

Recall |QN | = 24m and i|QN | = 1. It follows from (1.28), (7.1) and (7.5)

that all the coefficients of the q-expansion of C2m(`N(j))2 =
Z(N)(τ)

∆(τ)2m are ra-
tional numbers. This, together with (7.2), easily implies that C2m and all the
coefficients of `N(j) are rational numbers. This completes the proof. �
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Motivated by (1.27), we define

(7.6) Q′N =

{
(r, s) ∈ QN

∣∣∣∣ r < 1
2 if s = 0; s < 1

2 if r = 0;
s ≤ 1

2 if r 6= 0, s 6= 0

}
.

Clearly |Q′N | = |QN |/2. We are now in the position to prove Theorem 1.6.
Recall the fundamental domain F of SL(2, Z) defined in (1.34).

Proof of Theorem 1.6. The assertion (i) follows readily from the fact that for
(r, s) ∈ R2 \ 1

2 Z2, λr,s(t0) = ∞ for some t0 = t(τ0) if and only if Zr,s(τ0) = 0.
So it suffices to prove (ii) and (iii).

(ii) Assume by contradiction that j0 = j(τ0), τ0 ∈ F, is a multiple zero
of `N(j). Then by (1.28) and (1.27), there exist at least two (ri, si) ∈ Q′N
such that Zri ,si(τ0) = 0 for i = 1, 2. The definition (7.6) of Q′N implies
that r1 + s1τ0 6= ±(r2 + s2τ0) in the torus Eτ0 . Thus, G(z|τ0) has two pairs
of nontrivial critical points ±(r1 + s1τ0) and ±(r2 + s2τ0), a contradiction
with Theorem A.

(iii) Suppose that for some N1 6= N2, `N1(j) and `N2(j) has a common zero
j0 = j(τ0), τ0 ∈ F. Then there exists (ri, si) ∈ Q′Ni

such that Zri ,si(τ0) = 0 for
i = 1, 2. Clearly r1 + s1τ0 6= ±(r2 + s2τ0) in the torus Eτ0 , again we obtain a
contradiction.

The proof is complete. �

To give the proof of Theorem 1.7, we exploit the following result in [22].
Recall from (6.19) that b1 ∈ ( 1

2 ,
√

3
2 ) is the unique zero of the increasing

function e1 + η1 − 2π
b in b where τ is along the vertical line 1

2 + ib.

Theorem E. [22, Lemma 6.4 and Theorem 6.7] For any b > b1, G(z|τ) with
τ = 1

2 + ib has a critical point of the form 1
2 + iy(b) with y(b) ∈ (0, b

2 ).

Recalling from (6.18) that τ1 := 1
2 + ib1 ∈ ∂Ω̃5, where Ω̃5 is the lifting of

Ω5 in F0, so G(z|τ1) has only three critical points 1
2 , τ1

2 and 1+τ1
2 . Therefore,

y(b) ↓ 0 as b ↓ b1. Write the critical point 1
2 + iy(b) = r(b) + s(b)τ, then

(7.7) 2r(b) + s(b) = 1, s(b) =
y(b)

b
∈
(
0, 1

2

)
, lim

b→b1
s(b) = 0.

Lemma 7.3. As a function of b ∈ (b1,+∞), s(b) is strictly increasing. Further-
more, s(

√
3

2 ) = 1
3 and limb→∞ s(b) = 1

2 .

Proof. It was shown in [22] that if τ = ρ = e
πi
3 , then G(z|τ) has a critical

point at 1+τ
3 , which gives s(

√
3

2 ) = 1
3 .

If s(b) is not strictly increasing, then there exist b3 > b2 > b1 such that
s(b2) = s(b3). Clearly (7.7) gives r(b2) = r(b3) and (r, s) := (r(b2), s(b2)) ∈
40. Write τk = 1

2 + ibk for k = 2, 3, then τk ∈ F0 by (5.1). Since G(z|τk)
has a critical point at r + sτk, so Zr,s(τ) has two zeros τ2, τ3 ∈ F0, which
contradicts to Theorem 1.3.
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Finally, we prove limb→∞ s(b) = 1
2 . Suppose limb→∞ s(b) = s̄ < 1

2 .
Define a function K : (0, 1

2 ) × F0 → C by K(s, τ) := Z 1−s
2 ,s(τ). Since

( 1−s̄
2 , s̄) ∈ 40, Theorem 1.3 shows that there is a unique τ̄ ∈ F0 such that

K(s̄, τ̄) = 0. Furthermore, Theorem 4.1 gives ∂K
∂τ (s̄, τ̄) 6= 0. Then by the

implicit function theorem, there exists a function τ(s) for s ∈ (s̄− ε, s̄ + ε)
such that τ(s̄) = τ̄ and K(s, τ) = 0 for s ∈ (s̄ − ε, s̄ + ε) if and only if
τ = τ(s), where ε > 0 is small. Thus Theorem E implies τ(s) = 1

2 + ib for
s ∈ (s̄− ε, s̄) and b ↑ +∞ as s ↑ s̄, which is a contradiction with τ(s) → τ̄.
This completes the proof. �

Now we can give the proof of Theorem 1.7.

Proof of Theorem 1.7. Let j = j(τ0) ∈ J(N), τ0 ∈ F, be a real zero of `N(j).
Since J(3) = {0}, the same proof as Theorem 1.6-(iii) shows that j(τ0) 6= 0.
Recall that in F, j(τ) maps {ib | b ≥ 1} onto [1728,+∞); maps {τ ∈ F |
|τ| = 1} onto [0, 1728]; maps { 1

2 + ib|b >
√

3
2 } onto (−∞, 0). Since Theorem

D says that Zr,s(τ) 6= 0 for any (r, s) ∈ R2\ 1
2 Z2 and τ ∈ iR+, we deduce

from Theorem 1.6-(i) that `N(j) has no zeros in [1728,+∞). Thus, j(τ0) ∈
(−∞, 0) ∪ (0, 1728).

Step 1. We prove that `N(j) has #J−N zeros in (−∞, 0).
Assume that j(τ0) ∈ (−∞, 0), τ0 ∈ F, is a zero of `N(j). Then τ0 ∈

{ 1
2 + ib | b >

√
3

2 } and there exists (r, s) ∈ Q′N such that Zr,s(τ0) = 0. Write

τ0 = 1
2 + ib̂ with b̂ >

√
3

2 . Then Theorem E, Lemma 7.3 and (7.7) imply that
Zr(b̂),s(b̂)(τ0) = 0 and 1

3 < s(b̂) < 1
2 . Since (r, s), (r(b̂), s(b̂)) ∈ [0, 1)× [0, 1

2 ]

and G(z|τ0) has at most one pair of nontrivial critical points ±(r + sτ0), we
conclude that (r, s) = (r(b̂), s(b̂)), i.e., (r, s) ∈ J−N .

Conversely, given (r, s) ∈ J−N , by Theorem E, Lemma 7.3 and (7.7), there
exists b̄ ∈ (

√
3

2 ,+∞) such that s = s(b̄), namely G(z|τ̄) with τ̄ = 1
2 + ib̄ has

a critical point at r + sτ̄. Thus Zr,s(τ̄) = 0 and then j(τ̄) ∈ (−∞, 0) is a zero
of `N(j).

For any two different (r2, s2), (r3, s3) ∈ J−N , we have s2 6= s3, say s2 < s3.
Then there exist b3 > b2 > b1 such that sk = s(bk) for k = 2, 3. Write
τk = 1

2 + ibk. Then b3 > b2 implies j(τ2) > j(τ3), so j(τ2) 6= j(τ3) are two
different zeros of `N(j) in (−∞, 0). This proves the one-to-one correspon-
dence between elements of J−N and negative zeros of `N(j). Therefore, `N(j)
has exactly #J−N zeros in (−∞, 0).

Step 2. We prove that `N(j) has #J+N zeros in (0, 1728).
Assume that j(τ0) ∈ (0, 1728), τ0 ∈ F, is a zero of `N(j). Then τ0 ∈ {τ ∈ F

| |τ| = 1}. Let τ′ = γ · τ = 1
1−τ , where γ =

(
0 1
−1 1

)
. Then τ′ = 1+i

2 if
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τ = i, τ′ = τ if τ = e
πi
3 , and

τ ∈ {τ ∈ F | |τ| = 1} ⇐⇒ τ′ ∈ { 1
2 + ib | 1

2 ≤ b ≤
√

3
2 }.

Furthermore, j(τ′) = j(τ), which gives that j maps { 1
2 + ib | 1

2 ≤ b ≤
√

3
2 }

onto [0, 1728] with j( 1+i
2 ) = 1728 and j(e

πi
3 ) = 0. Therefore, τ′0 ∈ { 1

2 + ib
| 1

2 < b <
√

3
2 } and there exists (r, s) ∈ Q′N such that Zr,s(τ′0) = 0. Since

it was shown in [22] that G(z|τ) has only three critical points 1
2 , τ

2 and 1+τ
2

if τ = 1
2 + ib with 1

2 ≤ b ≤ b1, we see that τ′0 = 1
2 + ib̂ with b1 < b̂ <√

3
2 . Then Theorem E, Lemma 7.3 and (7.7) imply that Zr(b̂),s(b̂)(τ

′
0) = 0 and

0 < s(b̂) < 1
3 . Similarly as in Step 1, we conclude that (r, s) = (r(b̂), s(b̂)),

i.e., (r, s) ∈ J+N .
Conversely, given (r, s) ∈ J+N , there exists b̄ ∈ (b1,

√
3

2 ) such that s = s(b̄),
namely G(z|τ̄) with τ̄ = 1

2 + ib̄ has a critical point at r + sτ̄. Thus Zr,s(τ̄) =
0 and then j(τ̄) ∈ (0, 1728) is a zero of `N(j).

Finally, we can prove that any two different points in J+N correspond to
two different positive zeros of `N(j) as in Step 1. Therefore, `N(j) has ex-
actly #J+N zeros in (0, 1728).

The proof is complete. �

In the rest of this section, we give an generic approach to compute `N(j)
for small N. Fix N ≥ 5 with N 6= 6. Recalling that J(N) is the zero set of
`N(j), we denote

J(N) = {jk | 1 ≤ k ≤ deg `N}.
Instead of considering the product like Z(N)(τ), we consider the summa-
tion of λr,s(t) with (r, s) ∈ Q′N (see (7.6)), because (4.7) implies that λr,s(t) =
λ1−r,1−s(t) if r, s 6= 0, λ0,s(t) = λ0,1−s(t) and λr,0(t) = λ1−r,0(t). Define

(7.8) yN(t) := ∑
(r,s)∈Q′N

λr,s(t) =
1
2 ∑

(r,s)∈QN

λr,s(t).

Clearly Proposition 4.4 implies that yN(t) is meromorphic and single-valued
in C∪ {∞}. Furthermore, Propositions B.1 and B.2 yield that yN(t) is holo-
morphic at t = 0, 1 (i.e., neither 0 nor 1 is a pole), and Proposition B.3 shows
that yN(t) is at most linear growth at t = ∞. Therefore, yN(t) is a rational
function. Note from (B.9) that

λr,s(t) = 1− λr̃,s̃(1− t),

where (r̃, s̃) ∈ Q′N is determined by (r, s) via (B.8). Since (r̃, s̃) take over all
elements of Q′N whenever (r, s) does, we obtain

(7.9) yN(t) = |Q′N | − yN(1− t).

Similarly, by (B.10) and (B.11), we have

(7.10) yN(t) = tyN(
1
t ).
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On the other hand, it is known (see [18, Proposition 1.4.1] or the proof
of Theorem 4.1) that poles of any solution of PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

must be simple
poles. Moreover, similarly as the proof of Theorem 1.6-(ii), we see that for
any two different (rk, sk) ∈ Q′N , k = 1, 2, λr1,s1(t(τ)) and λr2,s2(t(τ)) have
no common poles as functions of τ. Therefore, t0 = t(τ0) is a pole of yN(t)
if and only if there exists a (r, s) ∈ Q′N such that t0 is a pole of λr,s(t) ((r, s)
is uniquely determined by τ0, i.e., if t0 = t(τ1) with τ1 6= τ0, then (r, s)
might be different, because by Proposition 4.4, (r, s) will permute in Q′N
after the analytic continuation along a path connecting τ0 and τ1 although
yN(t) remains invariant). Furthermore, t0 is a simple pole with

(7.11) Res
t=t0

yN(t) = Res
t=t0

λr,s(t) = −2t0(t0 − 1).

Here the second equality in (7.11) was proved in [6].
From (7.9)-(7.10), we see that if t0 is pole of yN(t), then any of

(7.12) Ξ(t0) :=
{

t0, 1− t0, 1
t0

, 1− 1
t0

, 1
1−t0

, t0
t0−1

}
is also a pole of yN(t). This, together with Theorem 1.6-(i), implies that
all elements in Ξ(t0) give the same j-value j(t0) ∈ J(N) via (1.26). For
jk ∈ J(N), since jk 6∈ {0, 1728} by Theorem 1.7, there are exactly six different
t’s which satisfies j(t) = jk. We fix a tk ∈ C such that j(tk) = jk, then Ξ(tk)
gives precisely these six different t’s. Therefore, we conclude that

deg `N⋃
k=1

Ξ(tk)

gives precisely all the poles of yN(t).
From the above argument, we have

(7.13) yN(t) = −
deg `N

∑
k=1

∑
a∈Ξ(tk)

2a(a− 1)
t− a

+ Ct + D,

where C, D are two constants that can be easily determined. Indeed, by
(7.12), ∑a∈Ξ(tk)

a = 3, which implies

yN(0) = 2
deg `N

∑
k=1

∑
a∈Ξ(tk)

(a− 1) + D = D− 6 deg `N .

First we assume that N is odd. Then s < 1
2 for any (r, s) ∈ Q′N . By

Proposition B.1, we have yN(1) = |Q′N |. This, together with (7.9)-(7.10),
gives yN(0) = 0 and yN(t) = o(t) as t → ∞. Therefore, C = 0 and D =

6 deg `N = |QN |
4 , namely

yN(t) = −
deg `N

∑
k=1

∑
a∈Ξ(tk)

2a(a− 1)
t− a

+
|QN |

4
, if N odd.
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Now we consider that N is even. Then the number of (r, 1
2 ) in Q′N is

ϕ(N
2 ), and Proposition B.1 gives yN(1) = |Q′N | − 2ϕ(N

2 ), yN(0) = 2ϕ(N
2 )

and yN(t) = 2ϕ(N
2 )t + O(1) as t → ∞. Therefore, C = 2ϕ(N

2 ) and D =

6 deg `N + 2ϕ(N
2 ) =

|QN |
4 − ϕ(N

2 ), namely

yN(t) = −
deg `N

∑
k=1

∑
a∈Ξ(tk)

2a(a− 1)
t− a

+ 2ϕ(N
2 )t +

|QN |
4
− 2ϕ(N

2 ), if N even.

We turn back to the problem of computing J(N). The key observation
is that the coefficients of the Taylor expression of yN(t) at t = 0 are expressed in
terms of jk ∈ J(N). For example, we use ∑a∈Ξ(tk)

a−1
a = 3 to obtain

y′N(0) = 2
deg `N

∑
k=1

∑
a∈Ξ(tk)

a− 1
a

+ C = 6 deg `N + C;

we use the following formula, which is obtained from (7.12) and (1.26):

1
2 ∑

a∈Ξ(tk)

a− 1
a2 = 3− (t2

k − tk + 1)3

t2
k(tk − 1)2

= 3− jk
256

,

to obtain

y′′N(0) = 4
deg `N

∑
k=1

∑
a∈Ξ(tk)

a− 1
a2 = 8

deg `N

∑
k=1

(
3− jk

256

)
.

Similarly, a direct computation gives

y′′′N (0) = 12
deg `N

∑
k=1

(
3− jk

256

)
;

y′′′′N (0) = 48
deg `N

∑
k=1

[(
3− jk

256

)
− 2

(
3− jk

256

)2

+ 12

]
;

and so on. Thus, if deg `N = 1 (such as N = 5, 8), then J(N) can be com-
puted from y′′N(0). If deg `N = 2 (such as N = 7), then J(N) can be com-
puted from y′′N(0) and y′′′′N (0). In general, J(N) should be determined by
y(2l)

N (0) with 1 ≤ l ≤ deg `N . On the other hand, by exploiting the same
argument as Proposition B.1 in Appendix B, we can compute the Taylor ex-
pansion of yN(t) at t = 1 up to the term (t− 1)2 deg `N (which can be done
by using Mathematica). Consequently, by using (7.9) we obtain the Taylor
expansion of yN(t) at t = 0 up to the term t2 deg `N , from which we can
compute J(N) as explained above. Once J(N) is determined, all poles of
yN(t) (or equivalently, poles of λr,s(t) with (r, s) ∈ Q′N) can be computed
via (1.26).

By exploiting the above approach, we computed for the cases N = 5, 7, 8, 9
and obtained (1.31)-(1.33). We take N = 7 as an example.
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Example 7.4. Let N = 7, then deg `7 = 2. By using Mathematica, the Taylor
expansion of y7(t) at t = 0 is

y7(t) = 12t +
19243064

703125
t2 +

9621532
703125

t3 − 536777924542148
27× 7031252 t4 + O(t5).

Hence,

4
2

∑
k=1

(
3− jk

256

)
=

19243064
703125

,

2
2

∑
k=1

[(
3− jk

256

)
− 2

(
3− jk

256

)2

+ 12

]
= −536777924542148

27× 7031252 .

From here, a straightforward computation gives

`7(j) = j2 − (j1 + j2)j + j1 j2 = j2 +
212 · 37001

32 · 57 j− 224 · 571787
37 · 57 ,

and so J(7) is given by (1.32).

8. FURTHER DISCUSSION

In this final section, we make some further remarks about the results
proved in this paper.

First we turn back to Step 2 in the proof of Theorem 1.7 in §7. Denote

j0 := j( 1
2 + ib1) ∈ (0, 1728),

because 1
2 < b1 <

√
3

2 and j maps { 1
2 + ib | 1

2 ≤ b ≤
√

3
2 } one-to-one onto

[0, 1728] with j( 1+i
2 ) = 1728 and j(e

πi
3 ) = 0. Since G(z|τ) has only three

critical points 1
2 , τ

2 and 1+τ
2 if τ = 1

2 + ib with 1
2 ≤ b ≤ b1, we see that

Zr,s(
1
2 + ib) 6= 0 for any (r, s) ∈ R2\ 1

2 Z2 and 1
2 ≤ b ≤ b1, which implies

that `N(j) has no zeros in [j0, 1728]. Therefore, Theorem 1.7 can be restated
in a sharper form: `N(j) has no zeros in {0} ∪ [j0,+∞) and has exactly #J+N
zeros in (0, j0).

For each prime N ≥ 5, we define (rN , sN) := (N−1
2N , 1

N ). Clearly (rN , sN) ∈
J+N . The proof of Theorem 1.7 shows that ZrN ,sN (τ) has a zero 1

2 + ibN with
bN ↓ b1 as N ↑ +∞. Therefore, `N(j) has a positive zero jN := j( 1

2 + ibN)
which satisfies jN ↑ j0 as N ↑ +∞. Even though jN is an algebraic number
for each prime N, we still do not know whether j0 is an algebraic number or
not. This question seems very difficult and remains open.

We conjecture that the polynomial `N(j) is irreducible in Q[j] and moreover
Q[j]/(`N(j)) is a Galois extension of Q. Once this conjecture can be proved,
all the zeros of `N(j) should not be algebraic integers provided N ≥ 5,
which implies that all the corresponding τ are transcendental.

Now let us turn to Theorem 1.4. Recall from Lemma 6.9 that t(iR+) =
(0, 1), t(1 + iR+) = (1,+∞) and t({τ ∈ H | |τ − 1

2 | = 1
2}) = (−∞, 0).
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Clearly

C− \Ω(0)
− = U1 ∪U2 ∪U3 ∪ t(C1) ∪ t(C2) ∪ t(C3),

where U1 (resp. U2, U3) is the domain bounded by (−∞, 0] and the curve
t(C1) (resp. by [1,+∞) and t(C2), by [0, 1] and t(C3)) (these can be seen
from Figures 2 and 4). Let D1 ⊂ F0 be the domain bounded by C1 and
{τ ∈ H | |τ − 1

2 | = 1
2}, then t(D1) = U1. Recalling the domain D defined

in the proof of Theorem 6.6, clearly D1 ∪ C1 ⊂ D \ {0, 1}. Then Step 1 of
the proof of Corollary 6.7 shows that for any t0 = t(τ0) ∈ U1 ∪ t(C1) with
τ0 ∈ D1 ∪C1, we have λC(t0) = 0, i.e., t0 is a type 1 singularity of λC, where
C = f1(τ0) and λC is a solution of the Riccati equation (3.2). Therefore,
each element in U1 ∪ t(C1) is a type 1 singularity of some solution of the Riccati
equation (3.2).

We can prove analogous results for U2 ∪ t(C2) and U3 ∪ t(C3). Recalling

(6.13)-(6.14), we let γ =

(
1 −1
1 0

)
, i.e. τ′ = (τ− 1)/τ. Then γ maps F0 onto

F0 and
τ ∈ {τ ∈H | |τ − 1

2 | = 1
2} ⇐⇒ τ′ ∈ iR+.

Furthermore, (6.14) implies that γ maps C1 onto C3. Denote D3 ⊂ F0 to be
the domain bounded by C3 and iR+ (see Figure 4). Then it is easy to see
that t(D3) = U3 and

(8.1) τ ∈ D1 ∪ C1 ⇐⇒ τ′ ∈ D3 ∪ C3.

Let C′ = γ · C = (C − 1)/C. Similarly as Step 1 of the proof of Corollary
5.4, we can prove t(τ′) = 1/(1− t(τ)) and

λC′(t(τ′)) =
λC(t(τ))− 1

t(τ)− 1
=

λC(t(τ))
t(τ)− 1

+ t(τ′),

namely t(τ′) ∈ U3 ∪ t(C3) is a type 3 singular point of λC′ provided that
t(τ) ∈ U1 ∪ t(C1) is a type 1 singular point of λC. Therefore, we have
proved that each element in U3 ∪ t(C3) is a type 3 singularity of some solution

of the Riccati equation (3.2). Similarly, by letting γ =

(
0 1
−1 1

)
, i.e. τ′ =

1/(1− τ), which maps {τ ∈ H | |τ − 1
2 | = 1

2} onto 1 + iR+, we can prove
that each element in U2 ∪ t(C2) is a type 2 singularity of some solution of the
Riccati equation (3.2).

Finally, we make a remark about Theorem C in §3. Let ME denote the
solution space of the elliptic form (1.7), andMC denote the solution space
of PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

. Define (r, s) ∼ (r̃, s̃) if (r, s) ≡ ±(r̃, s̃)mod Z2. Then by
Theorem C and Propositions 3.6, 4.4 and (4.7), we have

ME ∼=
((

C2\ 1
2 Z2) / ∼

)
∪ four copies of CP1,

and

MC
∼=
(
(C2\ 1

2 Z2)/(∼ ∪Γ(2))
)
∪ four copies of CP1/Γ(2).
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APPENDIX A. PICARD SOLUTION AND HITCHIN’S SOLUTION

In this Appendix, as an application of GLE (2.4), we give a rigorous
derivation of Picard solution from Hitchin’s formula. First, we note that
Picard solution (2.6) can be also written as

(A.1) λ̂(t) = λ̂ν1,ν2(t) =
℘(ν1 + ν2τ|τ)− e1(τ)

e2(τ)− e1(τ)
, t =

e3(τ)− e1(τ)

e2(τ)− e1(τ)
.

This can be seen from (1.3) and the fact that the elliptic form (1.5) of PVI(0,0,0, 1
2 )

is d2 p(τ)
dτ2 = 0 (i.e., ν1 + ν2τ is the general solution). Here we give a proof of

(A.1) if λ̂(t) is given by (2.6). Clearly t+1
3 = −e1(τ)

e2(τ)−e1(τ)
. Recalling (1.9), it

is well known that locally the inverse function of t(τ) = e3(τ)−e1(τ)
e2(τ)−e1(τ)

can be
expressed as

τ = τ(t) = i
F( 1

2 , 1
2 , 1; t)

F( 1
2 , 1

2 , 1; 1− t)
=

ω2(t)
ω1(t)

.

Furthermore,

e2(τ)− e1(τ) = −π2F( 1
2 , 1

2 , 1; 1− t)2 = ω1(t)2.

Therefore, we easily deduce from (2.6) that

λ̂(t) =
℘(ν1 + ν2τ | 1, τ)

ω1(t)2 − e1(τ)

e2(τ)− e1(τ)
=

℘(ν1 + ν2τ|τ)− e1(τ)

e2(τ)− e1(τ)
,

which proves (A.1).
On the other hand, λ̂(t) can be obtained from solution λ(t) of PVI( 1

8 ,−1
8 , 1

8 , 3
8 )

by the following Bäcklund transformation (cf. [34, transformation s2 in
p.723]):

(A.2) λ̂(t) = λ(t)− 1
2µ(t)

, µ(t) =
t(t− 1)λ′ + 1

2 λ2 − t(λ− 1
2 )

2λ(λ− 1)(λ− t)
.

Now let λ(t) = λr,s(t) given by Hitchin’s formula (1.8), namely

(A.3) λ(t) =
℘(pr,s(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
=

℘(r + sτ|τ)− e1(τ) +
℘′(r+sτ|τ)

2Zr,s(τ)

e2(τ)− e1(τ)
,

where Zr,s is the Hecke form (1.16). The important thing is that, by studying
the isomonodromic deformation of GLE (2.4), we proved in [6, Theorem
4.2] (without computing λ′(t)) that

µ(t) =
e2(τ)− e1(τ)

2(℘(pr,s(τ)|τ)− ℘(r + sτ|τ))(A.4)

=
(e2(τ)− e1(τ))Zr,s(τ)

℘′(r + sτ|τ) .

We do not think that it is easy to obtain (A.4) via (A.3) and the second
formula of (A.2). Substituting (A.3) and (A.4) into the first formula of
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(A.2), we immediately obtain the formula (A.1) of Picard solution λ̂(t) with
(ν1, ν2) = (r, s).

APPENDIX B. ASYMPTOTICS OF REAL SOLUTIONS AT {0, 1, ∞}
In this appendix, we prove the following asymptotic behaviors for real

solutions at branch points, which are needed in §7. See [12] for asymptotics
of solutions to Painlevé VI with generic parameters. As before, we may as-
sume λ(t) = λr,s(t) for some (r, s) ∈ [0, 1)× [0, 1

2 ] \ 1
2 Z2. First we consider

t→ 1. The covering map t = t(τ) has infinitely many branches over (0, 1).
For our purpose we only need to consider τ ∈ iR+.

Proposition B.1. Suppose that t = t(τ), τ ∈ iR+ and λ(t) = λr,s(t) is a real
solution with (r, s) ∈ [0, 1)× [0, 1

2 ] \ 1
2 Z2, then the followings hold:

(i) if s ∈ (0, 1
2 ), then

(B.1) λ(t) = 1 +
8se2πir

2s− 1

(
1− t

16

)2s

+ O((1− t) + (1− t)4s) as t ↑ 1.

(ii) if s = 0, then

λ(t) = 1 +
t− 1

2
+ O((t− 1)2) as t ↑ 1.

(iii) if s = 1
2 , then

λ(t) = −1 +
1
4
(cos(2πr)− 2) (t− 1) + O((t− 1)2) as t ↑ 1.

Proof. By t(τ) = e3(τ)−e1(τ)
e2(τ)−e1(τ)

, we have that if τ = ib with b ∈ R+, then
t ∈ (0, 1) and t ↑ 1 as b→ +∞. To compute the limit, we recall the formula
for ℘(z|τ) in Proposition 6.3: if q = e2πiτ and |q| < |e2πiz| < |q|−1, then
(B.2)

℘(z|τ) = −π2

3
− 4π2

[
e2πiz

(e2πiz − 1)2 +
∞

∑
n=1

nqn

1− qn

(
e2πinz + e−2πinz − 2

)]
.

Now we put z = r + sτ = r + ibs with (r, s) ∈ [0, 1)× [0, 1
2 ]. Then e−2πb =

|q| < |e2πiz| = e−2πsb < |q|−1. We consider three cases separately.
Case 1. 0 < s < 1

2 .
In this case, by (B.2) and (5.3) we have

℘(r + sτ|τ) = −π2

3
− 4π2e2πire−2πbs + O

(
e2π(s−1)b

)
,

℘′(r + sτ|τ) = −8π3ie2πire−2πbs + O(e2π(s−1)b + e−4πbs),

(B.3) Zr,s(ib) = πi (2s− 1) + O(e−2πbs),

as b→ +∞. Since

℘(pr,s(τ)|τ) = ℘(r + sτ|τ) + ℘′(r + sτ|τ)
2Zr,s(τ)

,
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we have

℘(pr,s(τ)|τ) =−
π2

3
− 8s

2s− 1
π2e2πire−2πbs

+ O
(

e2π(s−1)b + e−4πbs
)

as b→ +∞.

On the other hand, by letting z = 1
2 , τ

2 , 1+τ
2 in (B.2) respectively, we easily

obtain the following expansions for ei(τ) (see (6.15) and Remark 6.5):

e1(τ) =
2π2

3
+ 16π2

∞

∑
k=1

akqk, e2(τ) = −
π2

3
− 8π2

∞

∑
k=1

akq
k
2 ,

e3(τ) = −
π2

3
− 8π2

∞

∑
k=1

(−1)kakq
k
2 ,

where ak = ∑0<d|k, d odd d. From here, we easily deduce

t− 1 =
e3(τ)− e2(τ)

e2(τ)− e1(τ)
= −16e−πb + O

(
e−2πb

)
,(B.4)

and

λ(t)− 1 =
℘(pr,s(τ)|τ)− e2(τ)

e2(τ)− e1(τ)

=
8s

2s− 1
e2πire−2πbs + O

(
e−πb + e−4πbs

)
(B.5)

as b→ +∞, which implies (B.1) by using (B.4).
Case 2. s = 0.
In this case, as b→ +∞, we have

℘(r|τ) = −π2

3
+

π2

sin2(πr)
+ 16π2 sin2(πr)e−2πb + O(e−4πb),

℘′(r|τ) = −2π3

sin2(πr)
cot(πr) + 16π3 sin(2πr)e−2πb + O(e−4πb),

(B.6) Zr,0(ib) = π cot(πr) + 4π sin(2πr)e−2πb + O(e−4πb),

℘(pr,0(τ)|τ) = −
π2

3
+ 8π2 (1 + 4 sin2(πr)

)
e−2πb + O(e−4πb),

and so, as t ↑ 1,

λ(t)− 1 = −8e−πb + 16(3− 2 sin2(πr))e−2πb + O(e−3πb)

=
t− 1

2
+ O((t− 1)2).

Case 3. s = 1
2 .
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In this case, we note that |e2πiz| = e−πb = |qe−2πiz|. As b → +∞, a
straightforward computation gives

℘(r + τ
2 |τ) =−

π2

3
− 8π2 cos(2πr)e−πb

+ 8π2 (1− 2 cos(4πr)) e−2πb + O(e−3πb),

℘′(r + τ
2 |τ) = 16π3 sin(2πr)e−πb + 64π3 sin(4πr)e−2πb + O(e−3πb),

(B.7) Zr, 1
2
(ib) = 4π sin(2πr)e−πb + 4π sin(4πr)e−2πb + O(e−3πb),

℘(pr, 1
2
(τ)|τ) = 5π2

3
+ 4π2 cos(2πr)e−πb + O(e−2πb),

and so, as t ↑ 1,

λ(t) + 1 = (8− 4 cos(2πr)) e−πb + O(e−2πb)

=
1
4
(cos(2πr)− 2) (t− 1) + O((t− 1)2).

This completes the proof. �

Proposition B.2. Suppose that t = t(τ), τ ∈ iR+ and λ(t) = λr,s(t) is a real
solution with (r, s) ∈ [0, 1)× [0, 1

2 ] \ 1
2 Z2, then the followings hold:

(i) if r 6∈ {0, 1
2}, then

λ(t) = −8s̃e2πir̃

2s̃− 1

(
t

16

)2s̃

+ O(t + t4s̃) as t ↓ 0,

where

(B.8) (r̃, s̃) =


(s, 1− r) if r ∈ [ 1

2 , 1),
(1− s, r) if r ∈ [0, 1

2 ), s > 0,
(0, r) if r ∈ [0, 1

2 ), s = 0.

(ii) if r = 0, then

λ(t) =
t
2
+ O(t2) as t ↓ 0.

(iii) if r = 1
2 , then

λ(t) = 2 +
1
4
(cos(2πs)− 2) t + O(t2) as t ↓ 0.

Proof. Let τ′ = S · τ = − 1
τ and (s′, r′) = (s, r) · S−1 = (−r, s). By using

(4.5), e1(τ
′) = τ2e2(τ), e2(τ′) = τ2e1(τ) and e3(τ′) = τ2e3(τ), we obtain

λr,s(t(τ)) =
℘(pr,s(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
= −℘(pr′,s′(τ

′)|τ′)− e2(τ′)
e2(τ′)− e1(τ′)

(B.9)

= −λr′,s′(t(τ′)) + 1 = −λr′,s′(1− t(τ)) + 1

= −λr̃,s̃(1− t(τ)) + 1,

where (r̃, s̃) ∈ ±(r′, s′) + Z2 is given by (B.8), namely s̃ = min{r, 1− r} ∈
[0, 1

2 ]. Now our assertion follows readily from Proposition B.1. �
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To give the asymptotic behavior as t ↑ +∞, we remark that t(τ) ∈
(1,+∞) provided τ ∈ 1 + iR+, see the proof of the following result.

Proposition B.3. Suppose that t = t(τ), τ ∈ 1 + iR+ and λ(t) = λr,s(t) is a
real solution with (r, s) ∈ [0, 1)× [0, 1

2 ] \ 1
2 Z2. Define

(B.10) (r1, s1) :=
{

(r + s, s) if r + s < 1,
(r + s− 1, s) if r + s ≥ 1.

Then the followings hold:
(i) if r1 6∈ {0, 1

2}, then

λ(t) = − s̃e2πir̃

2(2s̃− 1)
(16t)1−2s̃ + O(1 + t1−4s̃) as t ↑ +∞,

where

(r̃, s̃) =


(s1, 1− r1) if r1 ∈ ( 1

2 , 1),
(1− s1, r1) if r1 ∈ (0, 1

2 ), s1 > 0,
(0, r1) if r1 ∈ (0, 1

2 ), s1 = 0.

(ii) if r1 = 0, then

λ(t) =
1
2
+ O(t−1) as t ↑ +∞.

(iii) if r1 = 1
2 , then

λ(t) = 2t +
1
4
(cos(2πs1)− 2) + O(t−1) as t ↑ +∞.

Proof. Let τ′ = T−1 · τ = τ − 1 ∈ iR+. Then e1(τ
′) = e1(τ), e2(τ′) = e3(τ)

and e3(τ′) = e2(τ), which implies t(τ) = 1
t(τ′) ∈ (1,+∞). Define (s′, r′) =

(s, r) · γ−1 = (s, r + s). By using (4.5) we have

λr,s(t(τ)) =
℘(pr,s(τ)|τ)− e1(τ)

e2(τ)− e1(τ)
=

℘(pr′,s′(τ
′)|τ′)− e1(τ

′)
e3(τ′)− e1(τ′)

(B.11)

=
λr′,s′(t(τ′))

t(τ′)
= t(τ)λr′,s′(t(τ)−1)

= t(τ)λr1,s1

(
1

t(τ)

)
,

where (r1, s1) ∈ (r′, s′) + Z2 is given by (B.10). Consequently, this proposi-
tion follows readily from Proposition B.2. �

As pointed out in §1, no solution is real-valued along the real-axis. To see
it, we first classify all solutions λr,s(t) which are real-valued along t(τ) ∈
(0, 1) with τ ∈ iR+.

Proposition B.4. Let t = t(τ), τ ∈ iR+ and (r, s) ∈ C2\ 1
2 Z2. Then λr,s(t(τ))

is real-valued along τ ∈ iR+ if and only if either r ∈ R, s ∈ 1
2 Z + iR or

s ∈ R, r ∈ 1
2 Z + iR. In particular, for such a solution λr,s(t(τ)), it is smooth for

t(τ) ∈ (0, 1) if and only if it is also a real solution.
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Proof. Since τ ∈ iR+, it is easy to see from the definition (1.4) of ℘(z) that
℘(z) = ℘(z̄), ℘′(z) = ℘′(z̄) and ζ(z) = ζ(z̄). In particular, ej(τ) ∈ R,
η1(τ) ∈ R and η2(τ) ∈ iR. Clearly λr,s(t(τ)) is real-valued for τ ∈ iR+ if
and only if ℘(pr,s(τ)) is real-valued for τ ∈ iR+, which is equivalent to

℘(pr,s(τ)) = ℘(pr,s(τ))

= ℘(r + sτ) +
℘′(r + sτ)

2(ζ(r + sτ)− rη1(τ)− sη2(τ))

= ℘(r̄− s̄τ) +
℘′(r̄− s̄τ)

2(ζ(r̄− s̄τ)− r̄η1(τ) + s̄η2(τ))

= ℘(pr̄,−s̄(τ)) for all τ ∈ iR+.(B.12)

Together with (4.7), we conclude that λr,s(t(τ)) is real-valued for τ ∈ iR+

if and only if (r, s) ≡ ±(r̄,−s̄) mod Z2. This proves the first assertion.
For the second assertion, we recall [6, Theorem 1.7] where we proved

that any real solution λr,s(t) has no singularities in R\{0, 1}, i.e., λr,s(t) 6∈
{0, 1, t, ∞} for all t ∈ R\{0, 1}, so the sufficient part holds. For the nec-
essary part, it suffices to prove r, s ∈ R. If not, without loss of generality,
we may assume Im s 6= 0. Then r ∈ R and s ∈ 1

2 Z + iR. Clearly there
exists τ0 ∈ iR+ such that r + sτ0 ∈ {0, 1

2 τ0} + Λτ0 , by which we have
λr,s(t(τ0)) ∈ {1, ∞}, namely λr,s(t(τ)) has a singularity t(τ0) ∈ (0, 1), a
contradiction with the assumption that λr,s(t(τ)) is smooth in (0, 1). �

Remark B.5. From Propositions B.1,B.2 and B.4, we see that for any real solu-
tion λr,s(t(τ)) which is real-valued along τ ∈ iR+, its analytic continuation
to the line 1 + iR+ (i.e. t(τ) ∈ (1,+∞)) or to the arc {τ ∈ H | |τ − 1

2 | = 1
2}

(i.e. t(τ) ∈ (−∞, 0)) turns out not real-valued. It is easy to see that any
other solution can not be real-valued along the real-axis either, because it
has at least a branch point at one of {0, 1, ∞} by Propositions 3.6 and 4.4.

The following result seems an interesting consequence of our smooth-
ness result.

Proposition B.6. Let t = t(τ), τ ∈ iR+ and (r, s) ∈ [0, 1)× [0, 1
2 ] \ 1

2 Z2. Then

0 < t < λr,0(t) < 1, 0 < λ0,s(t) < t < 1,(B.13)

λr, 1
2
(t) < 0, λ 1

2 ,s(t) > 1.

In particular, λr,0(t) and λ0,s(t) are both one-to-one from (0, 1) onto (0, 1).

Proof. By Proposition B.4 and the assumption, λr,0, λ0,s, λr, 1
2

and λ 1
2 ,s are

all real-valued for τ ∈ iR+. To prove (B.13), we use again that any real
solution λr,s(t) satisfies λr,s(t) 6∈ {0, 1, t, ∞} for all t ∈ R\{0, 1}. Together
this with Propositions B.1 and B.2, (B.13) follows readily.

It suffices to prove the one-to-one for λr,0(t). The proof for λ0,s(t) is sim-
ilar and we omit the details. Recall from Propositions B.1, B.2 and (B.13)
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that
lim
t↓0

λr,0(t) = 0, lim
t↑1

λr,0(t) = 1, t < λr,0(t) < 1.

Suppose λr,0(t) is not one-to-one, then there is a critical point t0 ∈ (0, 1)
such that λ′r,0(t0) = 0 and λ′′r,0(t0) ≤ 0, which implies from Painlevé VI
(1.2) that

1
8
− 1

8
t0

λ(t0)2 −
1
8

1− t0

(λ(t0)− 1)2 −
3
8

t0(1− t0)

(λ(t0)− t0)2 ≥ 0.

Thus, t0 < λ(t0)2 and 1− t0 < (λ(t0) − 1)2, which imply 2λ(t0)(λ(t0) −
1) > 0, a contradiction to 0 < λ(t0) < 1. This completes the proof. �
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Acad. Sic. Paris Sér. I 143 (1906), 1111–1117.
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