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1 Introduction, 2/20

Let A = Zwy + Zw, be a lattice in C, where wy, wy are linearly independent over R. We

define the Weierstrass’ p-function:

pz4) = +Z<z—w %)’

where A* = A\ {0}. This sum converges absolutely (and uniformly on any compact set)
when z ¢ A and hence define a meromorphic function on the torus ) := C/A. After a

coordinate change, we may choose A to be Z + Z7, where

reH:={reC|Im7 >0}

By a simple calculation, we get
o = 49" — 92(M)p — gs(A)

for some gy(A), g3(A) € C. The map (p,'): Ex --» C? thus gives us an isomorphism

between C/A and a cubic curve. Write

L SN I =t 2 G (A )2
/=1

weAX (=1

Definition 1.1. The number
1
Z —
cAX

is called the Eisenstein series, where k € 2Z>,.




Typical problem (sum of squares): Given natural numbers n, k, what is the number
r(n, k) of ways to write
n=nj+---+ni, mn; €L’
By definition, r(n, k) = Z r(€,i)r(m, 7) for any i+j = k. So we consider the generating

{+m=n
function

O(r, k) = Zr(n, k)", q=e"".

n=0

Then
0(’7’, ]{31)9(7', k’g) = 9(7’7 k?l + kg),

and hence (7, k) = (7, 1)".

Formal definition of modular forms with respect to SL(2,7Z). (Note that Ey = Ey if
and only if A and A’ are related by SL(2,Z). The upper half plane H admits an SL(2,Z)-

at+b
ct+d

action: (1) = if v = (2%). So the moduli space of elliptic curves is given by the

quotient SL(2,Z)\H.

Definition 1.2. For an integer k£, a meromorphic function f: H — C is weakly mod-

ular of weight £ if
f(y(r)) = (er + d)* f(7)

for all 7 € H and v € SL(2,7Z).

This condition is equivalent to f(7+1) = f(7) and f(—7*) = 7% f(7) since SL(2, Z)

G = ()

f(T) _ Zanqn’ q= 627riT

is generated by

So we can write

nez
near 700. Note that
a(er +d) — (at + b)c dr
d = dr = ———.
1) (crd)? e

Hence, for the pluricanonical s-form, f(7)dr%?,

FO () dy (1) = (e + &) f(7)dr.




Definition 1.3. A weakly modular function f is modular if it is holomorphic on H

and holomorphic also at oo, i.e., |f(7)| is bounded near co. The set of modular functions

of weight k is denoted by My (SL(2,7Z)).

M(SL(2,Z)) := P My (SL(2,Z))

keZ

defines a ring. The subset
Si(SL(2,7)) € M (SL(2,7Z))

consists of cusp forms, i.e., f(7) vanishes at cusps, which is ico in this case.

Back to the sum of squares problem. For k = 1, we have

0(z) :=0(1,1) = 2627”‘127.
dez
We have
0(—1/41) = vV —2iT0(T)
by Poisson summation formula. Note that —1/47 = (§ ') (7) but (§ ') ¢ SL2(2,Z). So

we should resolve it by

0 1/4\ (1 -1\ [0 -1 10
-1 0 0 1 40 41

This gives us

0, (471 1) = (47 + 1)204(7).

Definition 1.4 (Modular form with respect to congruent subgroup). Let N be a natural

number. The principal congruent subgroup of level N is

T(N) := {(Z Z) € SL(2,Z) (‘z Z)

A group I is congruent of level N if

0 1

(1 O) (mod N)} C SL(2,Z) =T(1).

I'(N)C T CSL(2,7).

(Weakly) modular forms with respect to I' are defined similarly as in the case SL(2,7Z).
The set of modular forms of weight & with respect to I' is denoted by M(T).




There are some other congruence subgroups:
b a b x %k
L(2,7Z = N
a b a b
I''(N) := L(2,7Z =

Then there is an inclusion

—
2
=

'| |.

—N—
N
o

[(N) 9 T1(N) < To(N) C SL(2,Z).

In fact, I'; (V) is the kernel of
Lo(N) —— (Z/NZ)"
vy — d,

and I'(V) is the kernel of
I''(N) —— Z/NZ

v ——— b.

Hence, if we consider the group I' = ((}9),( % ¢)), which is in fact T'g(4), then 6, is

a modular form with respect to I'.

2 Introduction II, 2/22

Recall that 6(7) = Z 2T satisfies 0(—1/47) = /—2i70(7),

deZ

o () =+ 17000,

4741
and 6, € M(I'o(4)).

Recall the identity

(e o]

1
Z =mcotmT.
n-+rT

n=—oo

Taking derivatives on the both sides we get

= 1 2 —4q?e?miT (271)2q =
= = — = = (—2mi)* » {q".
Z (n+71)2  sin*(rr)  (1—e?™7)2 (1 —q)? (=2mi) ez—; 4

n=—oo

Differentiate this identity k& — 2 times with respect to 7, we get

[e.9]

1 (—2mi)F o= .,
Z CEST = (k:—l)!;% q.

n=—oo




For even k > 4, since

Gi(7) +2ZZ EpE=

m>0n=—o0

ZZC QWZ'ZZKklfm

m>0 (=1

we get (by letting r = ¢m):

Theorem 2.1. The number Gy (7 Z w* is equal to

weAX

2 (k 27rz Zak 1

Remark. For k = 2, we shall define
1

=3 e () # 0.0)

so that it converges and is equal to
2) — 87 Z o(r
r=1

but Go(7) is not modular: In fact,

_ 1 ~

Go(—771) =7 Z Z T m)e =: 72Gy (1),

which is in general not equal to 7°G5(7). Nevertheless, it is the one needed in the 4-square

problem! In fact, let
GQ’N(T) = GQ(T)—NGQ(NT>7 N e N.

Then GQJ\T(T) € MQ(F()(N))

It turns out that dim My(Iy(4)) = 2. If so, then 64 = aGa 2 + 0G5 4. Comparing the

power series expansions:

2
1+8¢+-- za(—%(1+24q—l—---)> +b(—m(1+8g+---)),
we get 0, = _FG274. Hence, r(n,4), the coefficient of ¢" in 6y, is equal to
8) d.
44d|n




Today’s goal is to define S(I';(N)) € M(T;(N)) and to determine dim My (SL(2,7Z)).
Recall that for v = (¢ %) € SL(2,Z),

d~(7) 1

dt (e +d)?
We define j(v,7) = cr + d, called the automorphic factor. For k € Z, v € SL(2,7Z),
define the operator [y]; on f: H — C by

(f)(T) =5 (v, 1) f( (7).

Then a weakly modular form f of weight & with respect to I' is just f[vy]x = f for all
vel.

The cusps with respect to I are the equivalence classes of QU{ oo} under I'-action. For
I' = SL(2,7Z), there is only one cusp co. Each cusp with respect to I' can be represented
by 7 - 00, v € SL(2,7Z)/T’, so the number of cusps is equal to [SL(2,Z) : T'].

Since I'(N) = ker(mod N) is a normal subgroup of SL(2,Z). So I' O I'(N) contains
(14). Take the smallest i such that

1 h
I,
(b1

Then h | N. Hence, ¢, = e>™/" i a local coordinate near oo € [\H. So we define f is

holomorphic at oo if
f(r)=ao+ Z An () -
n>0

A modular f is a cusp form if lim f(7) = 0 for all cusp p. When p = oo, this means that

T—p
apg = 0.

Definition 2.2. For even k > 4, define
_ Gi(7)
2¢(k)
so that the constant term (with respect to ¢) is 1 and lies in Q[[¢]]. (Recall that

(—1)k/2+lBk(27r)k
2 kz!

Ek<7')

(k) = -)

Theorem 2.3. As QQ-algebras,

M(SL(2,Z)) N Qllq] = Q[E}, Eq].




In fact,

dim M, (SL(2,Z)) = L£/6] ifk=1 (mod6),

|k/6] +1 ifk#1 (mod6),
Take A = g5 — 2793 so that A € S15(SL(2,7Z)).

Corollary 2.4. We have S(SL(2,Z)) = AM(SL(2,7Z)).

This follows from the following:

Theorem 2.5. Let f # 0 be modular of weight 2k. Then

1 1 k
vao(f) + ui(f) + 30N + D wl(H) =7,
pelM\H
PFip
where p = ™/3,
Proof. Consider the curve
C:OO & 7 2 CQ}Z CS\ C 7 OQ.
Rez:—% |z|=1 |z]=1 Re z:%

We have by argument principle that

1 1 1 <
)+ 30 gD+ 3 ) =D / s s
p#i,p

Since f(z 4+ 1) = f(2), f(—2z71) = f(2)/2*, / dlog f =0 and

C1+Cy

| aosse) =~ [ dlog ==
02 CS
:—/ dlogf(z)—i—%/ dlog z
Cs

C3
k
= —/ dlog f(z) + ?ﬂ
Cs

This gives us the desired result. [ |

Proof of (2.3). For f € ag + Zanq" € My (SL(2,Z)), since v,(f) > 0 for all p, we see
n=1

that f = 0 if and only if v (f) > k/6, i.e., (ao,...,aks)) = 0. Hence, we must have

dim Moy, (SL(2,7Z)) < |k/6] + 1.




For k=1 (mod 6), we cannot have f such that v (f) = k/6, otherwise

1 1 1
évz(f) + gvp(f> +p§HUp(f) = G’
PFi,p

which leads to a contradiction. So in this case, dim Mo, (SL(2,2Z)) < |k/6].

It suffices to show that F4 and Eg are algebraically independent. If not, write

i,§>0 k>0 4i+6j=F k

We see that for each 7,
0=> fily(r) =iy, ) fu(r),
k k
and hence, f; = 0 for each k. Let g = E}/E;. We get
fo=Y yBiE,=EPEPY  cigi= 0k =0,
4i+65=Fk J

Since C is algebraically closed and g is not constant, we get ¢;; = 0 for each 7, j. [ |

3 Modular curves, 3/1

Let £ = C/A be a complex tori, where A = Zw; + Zw, with 7 := wy/ws € H. Let
N =7Z7+ 7.

Proposition 3.1. A map ¢: C/A — C/A’ is holomorphic if and only if there exists m,
b € C such that mA C A" and (2 + A) = mz + b+ A'. Also, p ' exists if and only if
mA = A

Proof. Lift ¢ to ¢: C — C. For each A € A, define fy(z) = ¢(z + \) — @(z) € A'. Since
N is a discrete set, fy(z) is a constant. Hence, @'(z + \) = @'(2). By Liouville’s theorem,

¢’ is a constant, i.e, p(z) = mz + b for some m, b and mA C A’ [

Corollary 3.2. Let ¢ be holomorphic as above. Then ¢ is a group homomorphism if

and only if b € A’, or, equivalently, p(0) = 0. In this case, ¢ is called an isogeny.




Proposition 3.3. Every isogeny m: C/A — C/A’ is a composition of
[N]
C/A —— C/A
24+ AN —— Nz+4+A
and a cyclic quotient E — E/C, where C'is a cyclic subgroup of E[N] := ker([N]: E — E)
of order N. (Note that C'+ A is a lattice in C.)

Proof. Let K = kerp = m™'A', N = [K : A]. Then K C E[N] 2 Z/NZ x Z/NZ. So
we can write K = Z/nZ x Z/nn'Z for some n, n’ € N. We see that [n] maps K to

nK = 7Z/n'Z and ¢ decomposes into

c/A " C/A —— C/nK —— C/N

m m
z2+nK —— —2z+ —nkK.
n n

Corollary 3.4. Let mA C A’. mA has basis njw;, nowsy for some basis w;, wy of A’
Then nyny A" C mA, equivalently, ™2A" C A. This give us a map @: E' — E, called the

dual isogeny of ¢. The composition

E—*5E 5 F
is precisely [deg ¢].

Proof. The kernel of ¢ has basis wy/m, wy/m, A has basis njw; /m, nsws/m. So ker p =

Z/n7Z x Z/nyZ and thus ¢ is an nine to 1 map. Now,

pop(z+A) =ninsz+ A =[degpl(z+ A). |
Definition 3.5. We define the Weil pairing
en: E[N] x E[N] — puy = (/)
as follows: for P, @ € E[N], write
= , € My(Z/NZ).
() (). e

Then ey (P, Q) := e2mdety/N,




This pairing is non-degenerate, skew-symmetric, and independent of the choice of the

basis (w1, ws).
Define

e So(N)={(F,C)}/ ~, where C is a cyclic subgroup of order N and (E,C) ~ (E',C")
if there is an isomorphism £ — E’ that sends C to C";

e Si(N) = {(E,P)}/ ~, where P is a point in E of exact order N and (E,P) ~
(E', P') if there is an isomorphism E — E’ that sends P to P';

e So(N)={(E,(P,Q))}/ ~, where P, () are generators of E[N] such that ex(P,Q) =
>N and (E, (P, Q)) ~ (E',(P',Q")) if there is an isomorphism E — E' that sends
P, Q to P', @), respectively.

Theorem 3.6. We have

(a) So(N) = {[Er (1/N + A-)] | 7 € H}, where [Er, (1/N + A7)] = [Eq, (1/N + Az)] if
7 ~ 7' under ['y(N);

(b) Si(N)=A{[E.,1/N+A,]| 7 € H}, where [E.,1/N+A,]| =[E/,1/N + A ]if 7~ 7
under 'y (N);

(¢) Si(N)=A{[E.,(t/N +A.,1/N + A,)] | 7 € H}, where [E,, (7/N + A, 1/N + A,)] =
[Ewy (T"/N + A 1/N + A if 7~ 7/ under T'(V).

Proof. For (b), if (E;,1/N + A;) ~ (E;,1/N + A,/), then there exists m € C such that
mA, = A and m(1/N 4+ A,) =1/N + A... Write

()= ()

m 1

for some v = (¢%). Then m = ¢7’ +d, so (¢,d) = (0,1) (mod N). Hence, v € I';(N).
It remains to show any (E,Q) is equivalent to a canonical representation: say (F,Q)
isomorphic to (C/A., (er" +d)/N + A,+) for some ¢, d € Z such that (¢,d, N) = 1. Then
there exists a, b € Z such that ad — bc = 1 + kN. Adjusting a, b, ¢, d by N, we may
assume that ad — be = 1, ie,, v = (¢4) € SL(2,Z). Let 7 = 7', m = ¢’ + d. Then

mT = at’ + b and

mA, = (a7’ + b)Z + (c7’' + d)Z = A,

10



Also,

1 e’ +d
—_— AT) pr— AT/ = . .
m ( N + N + Q
Remark. Modular forms are homogeneous functions of deg = —k on lattices. Say, for

I = T'y(N), F: {lattices } — C such that F'(C/mA, mC) =m *F(C/A,C) for m € C*.
Then
f(z) = F(C/A+, (1/N + A7)
is a modular form: for y = (¢5%) € T', let m = (c7 +d)™". Then mA, = A, s0
(7)) = F(C/Ayry, (/N + Ayiny))
= F(C/mA,, (¢t + d)/N +mA,))
=m  F(C/A;, (1/N + A;)) = (er + d)* f(7).

Let I' C SL(2,Z) be a congruence subgroup. The modular curve for I' is Y/(I') C
T\ H.
Y(N)=T(N\H, Yi(N)=Ty(N)\H, Yo(N)=To(N)\H.

Since I'(IV) C I'1(N) C T'o(V) C I'(1), we have
Y(N) — Yi(N) — Yo(N) — Y (1) = SL(2,Z)\H.

We will put Riemann surface and algebraic structure on them.

Proposition 3.7. The group SL(2,Z) acts on H properly discontinuously, i.e., for any
71, To € H, there exists and open neighborhood U; O 7; such that for each v € SL(2,7Z),
~v(Uy) N Uy # @ implies (1) = 7o.

In particular, I' acts on H properly discontinuously and thus, Y (I') is Hausdorff.

Definition 3.8. Let I'; := Stab(7) = {y € I' | 7(r) = 7}. 7 is an elliptic point if
I, # id as transformations (note that —1 = id as transformations), i.e., {+1}I'; D {£1}.

Theorem 3.9. For I' = SL(2,7Z), the only elliptic points are i, uz € Y (I'), with

() ()

Hence, for any I', it has only finitely many elliptic points, and each I'; is finite cyclic.

11



4 Genus of modular curves, 3/6

Let I" C SL(2,Z) be a congruence subgroup. How to compactify Y (I') = I'\H (by adding
“cusps”) to get a compact Riemann surface X (I")? This is called the modular curve with

respect to I', which is in fact defined over Q.

In order the make Y (') a Riemann surface, we give a chart at each elliptic point a.
Let 6, = (1 %) € GL(2,C) so that d,(a) = 0, 6,(@) = co. The isotropy group 6,I.d, " of
0 fixes oo as well: if y(a) = a, then y(a) = @ since v € SL(2,Z).

Let hy = [{£1}T, : {£I}]. Then the group §,I',0; " (as action) is simply (e27/ha) =
Z/h,7.. The coordinate near a is then given by 1, (7) := d,(7)".

Let s € QU {oo} be a cusp, § = d5 € SL(2,Z) such that §(s) = co. Let

he = P2 s nrs .

called the width of s. Note that

SL(2,Z) = {+1} <<(1) i)> |

({16 ) = {+1}(0T6 V) = {1} <<(1) hl)> |

In fact, h, is independent of choices of §. Also it depends only on T.

So

For M € R, let Nyy = {7 € H|Im7 > M} be a (punctured) neighborhood of “c0”.
Define U := 6" 1(N, U {o0}). Then (1) = e*®(/" together with U give us a chart near

s.
Hence, we get a Riemann surface X (I') = Y/(I') U { cusps } = I'\HL.

First computation: What is g(X(I'))? Recall that for a holomorphic map f: X; — X5

between compact Riemann surfaces,
29(X1) =2 =deg f - (29(X2) —2)+ Y (e — 1),
reX
where e, is the ramification index of x. For I'; C I'y, we have f: X(I'y) — X(I's). The

degree

d=deg f = [{£I}Ty : {£I)T}].

12



If 7o € H, U > 79 is a neighborhood, p1(7) = 7™, py(7) = 7" in local coordinate, the

ha/ha

map f is locally z — z . So the ramification index e, () is equal to hy/hs.

Since h; = {1} +,1/2 € {1, 2,3} (79 is conjugate to ¢ or p3 under SL(2,Z)). Hence,

Proposition 4.1. Either hy = hy or hy = 1.

If s € QU{oo}, pi(7) = e¥™™ = ¢ py(1) = €2™7/" in local coordinate (modelled at

hi1/h2

00), [ is locally g — ¢ and

enis) = Z—l = Eigg: Eﬁ?ﬂ = [{£)T,, : {£1}T1].

For X; = X(T'), Xo = X(1), let &9, €3 be the numbers of elliptic points over y, = i,

y3 = 3, respectively, 5, be the number of cusps. For j =2 or 3,

d=Y eo=1-g;+7-(If () — )

=Y

by (4.1). So

d—éj
j .

D=1 =G -1-(f ) -l =G -1

x|—>y]~

For 7 = o0,

Z(ex—l):d—sw.

T—=Yoo

So Riemann-Hurwitz formula tell us that

d—é‘g_}_2(d—2’53)>7

2 —2 = —2d <d—oo
g + |\ (d —ex0) + 5 3

ie.,

Meromorphic objects on X (I'):

Definition 4.2. An automorphic form of weight k& with respect to I' is a holomorphic
map

fiH— C=CuU{x}

such that f[y], = f for each v € I and f[7]) is meromorphic at oo for each v € SL(2,7Z).

13



Let h be the smallest positive integer such that (§ %) € I'. Then
f(T) = Z anq27 qn = €2ﬂi/h
near co. f is meromorphic at 0o if voo(f) = inf{m € Z | a,, # 0} > —oc.

Let A.(T) denotes the set of all automorphic forms of weight k, A(T") = @Ak(r).

keZ
For k =0, Ay(I") = C(X(I")), the meromorphic function field. For example,

3
gs . =~

= 1728 - X(1 ®
J g5 — 2793 L=

has a simple pole at ¢ = 0. So degj = 1, i.e., j is an isomorphism. Hence, Ay(X (1)) =
C(y).
dj
For general T, e € Ay(T"). So for even k,
T

Ay(T) = Ag(T) (3—3)/

5 Order, 3/8

Let 7: H — X(T') be the natural projection. For a automorphic form f € Ax(T), the
order vy(-)(f) of f at m(7) is defined as follows: if m(7) is an elliptic point, then v (f) =
v (f)/h, where h is the period of 7, i.e., we count order as its original order in H. The
order; if 7(7) is a cusp, i.e., 7 € QU {oc}, after a translation, we assume that 7 = oc.

The local coordinate near 7(7) is now g, = €>™/* where h is the width:

e (1)
eten((s ) (6 ) ()

The first two case, h is also the period, i.e., (§#) € T'. For the last (bad) case, we still

Then

have I'(7 + h) = I'r. The only trouble is that j(v,7) = ¢t +d = —1. So if k is even, no
difference between width and period; if &k is odd, get f(7 + h) = —f(7), i.e., h is only a

skew period. So we define

)i = .,
VUr(c0) = 2
Uso(f)  else.

14



For k odd, I'1(4) has % as an irregular cusp. This is the only case for I' = I'(V),
['1(N), To(IN).

Example 5.1. Modular forms of level N > 1. Recall that
0 = [[0 - ) A= (n)n(r)*
n=1
Let k(N + 1) = 24. Then N is a prime if N # 1. Define
r(7) = ()" n(NT)".

Proposition 5.2. If §;(I';(N)) # 0, then it is in fact Cipy. In particular, if S,(Ig(N)) #
0, then it is also Cypy.

Proof. A key point: Let I'y D 4Ty~ ! for some v € GL*(2,Z). Then

Sk = (det 1) 1i(v,7)7F f(7(7)) € M(T2)

if f € My(T';) and the similar statement also holds for cusp forms. We still have [y7'], =
[v]&[7']x as right operators.

Let 7 = (§9), 7 (257" = (4 0). Ifc = nd, we get (57%). Hence, for f €
M (To(m)), f € Mg(T'1(nm)). In particular, A(N7) € S12(Fo(N)).

Define
g=gp ™ =n(r)*n(NT)* o A(T)ANT) = " T](1 = ¢5)*(1 = ¢,
k=1

and let 7: H — X (N), mo: H — Xo(N). If N is prime, then X;(N) — Xy(N) is
unramified. All cusps are regular since N # 4 and in fact there are two cusps: mg(00)

with width 1 and m(0) with width N.

If 7r1(s) is a cusp over my(00), then it has width 1. Let a € T'g(NV) such that s = «(o0).

Using glaas = g, we see that vy, (5 (9) = N + 1.

If 71 (s) is a cusp over my(0), then it has width N. Write s = a(0) = aS(c0), where
S=(%73"), we get

glaS)as = glalaa[S]os = g[S)as x T H*A(=1/7)A(—=N/7) o< A(T)A(7/N).

15



So

e}

(918]24)(7) o N7yt (1 = a3)* (1 = ay)™.

n=1
Hence, vpyo(g) = N + 1. Now for f € Si(Ti(N)), F¥* /g € Ao(T3(N)) = C(Xi(N).
At cusps, f¥*! has order > N + 1. Then f¥*!/g is holomorphic, i.e., a constant. So

Let f € A,(T). Then f(7)(dr)®*/? is T-invariant, and hence descend to a k/2-form

won X(I'), i.e., a map

w: Ap(T) — C(X(I)) @ Q¥F2(X(T)).

Let 7 be an elliptic point with period h, ¢t = 2" a local coordinate near 7 under a

transformation. Then

®k/2 ®k/2
G- A
hah—1 Rk/2(1—1/h)k/2”

Fyd= = (e

Le., vr(w) = ve(r)(f) — 51— 1) € Z.

2miT /h

Let s be a cusp with width h, g, = e a local coordinate near s under a trans-

formation. Then
_ hdq

dr, dr =244
%= onig

So

hdq>®k/2

f(r)dr®? = f(r) <%

i'e~7 Us(w) = Uﬂ(s)(f) - %

6 Dimension formula, 3/13

Assume that £ > 0. We want to compute dim M (') and dim Sg(I"). If there exists
nonzero f € A(T), e.g., for k even, (dj/dr)*/?, them A(I') = C(X(T'))f. View My(T)

as a subspace of A ("), we see that

M(T) = {fo € Ax(T) | (fo) + (f) = 0}.

Here, (fo) + (f) is a Q-divisor, so it is equivalent to (fo) + [(f)] > 0, i.e., My(T) =
L(L(H)D)-

—_
(=}



So far, there are no restrictions on k.

For k even and k > 2, let w = w(f) = f(7)dr®? be the associated meromorphic k/2

form on X(T'). Then
(@) = () + ),

where

dr):—% Z xQ,i_g Z xg,i—zxi

period 2 period 3 cusps

by the formula last time. Hence,

D) =@+ | 2] St [E] St 2

This shows that

degt(f”22(29—2)%—GJQ—FLgJ&H‘g&o@ZQQ—Q—l—l:QQ—l

for g > 1. If g = 0, we still have deg|(f)| > 29 — 1 = —1 by applying the genus formula

k

dim M(T) = deg|(f)] +1—g = (k—1)(g— 1)+ gJ e+ [-

€3+ — €5
3]s

2
Also, Sp(T') = L([(f)] — > x;), so in particular Sy(T") = Q'(X(I')) has dimension g. For

dimS(T) = (k—1)(g—1) + L%J €9 + LgJ €3+ <§ — 1) Eoo

Corollary 6.1. For I' = SL(2,Z), this recovers (2.3).

For k odd, things becomes much more difficult. If =7 € T, then f[—1I]; = —f implies

f =0. So we assume that —I ¢ I". This gives e; = 0 by a simple computation.

Consider the k-form w = w(f?). Then
(w) = 2(f) + k(dr),

and thus,

L(N)] = L JZ%H— Zlvz—l—— .

regular irregular
cusps cusps

17



Indeed, for example, at z = x3;,

w(f)=m+l = e =m+ S
3 2 3
2| vg(w).
The remaining cases could be done similarly. Now,
k k E—1 .
deal(1)) = kg~ 1)+ | 5| ey 4 Bems ot

This shows in particular that €28 is even. When k£ > 3, this is greater than 2¢g — 2, so

k k k—1 .
dlka(F) = (/{ — 1)(g — 1) + LgJ €3 + igrozg + Tegé

For cusp forms, at regular cusps,
Um<f0) >0 < ’Ux(fo) > 1,

but at regular cusps,

N | —

UJB(fO) >0 — Um(fO):Ux(fO/f)+Ux(f> >

So Sk(D) = L([(f)] =X @i —3 > ). For k > 3, deg|(f)| > 29—1 by dimension formula.

Hence,

dimS&,(I) =(k—1)(g —1) + LgJ €3+

k—2 reg+k_1 irr
9 — &-
2 o0 2 o0}

It remains to show that such f € A;(I') exists (this implies f* € A(I')). Let

A = j'(7) dT be a meromorphic 1-form on X(I"). Consider the Jacobian variety

Div'(X(T)), _ ~ Cg/A

of X(I'). Pick any x¢ € X(I') and let z € C//A, be the image of () — (29 — 2)z,. Find
D € Div’ such that D + 2/2. Then

2D = () — (29 — 2)zo + (9)

for some rational function g, i.e., (gA\) = 2(D + (g — 1)z). Let g(7) dr be the pullback of
gA. Then

(9) = (gA) = (dr) =2(D — (g — 1)zo) + g 2373,1' + Z% + Zx;

18



So v,(§) is even for each 7 € H. Hence, there exists f on H such that f* = §. Since § is

of weight 2, f[v]; = x(I') f for some character x: I' — {%1}.
Let IV = kery. f ' =T", then f € A;(T'), done. If not, there is a order 2 map
T X(I') — X(I).
Write I' = I" UTa. The action of o on C(X(I")) gives us an eigenspace decomposition:
C(X(I") =C(X(I)) & C(X@) [,
where f'oa = —f'. Now, replace f by ff' and we are done.
Number of elliptic points. For I'(N) or I'1(V), there are no elliptic points except for

I'1(2), I'1(3) (only one for each).

Proposition 6.2. For I'y(N), the number of period 2 (resp. 3) elliptic points is equal
to the number of ideals J < A = Z[u4] (resp. A = Z]ug]) such that A/J = Z/NZ.

Sketch of proof. The number of period 2 (resp. 3) elliptic points is equal to the number

of (extended) conjugacy class
{ava™ | a € TF(N)} C Ty(N),

where I's (N) allows determinant to be +1. Write 4 = 4 (resp. pg). For the case e3,
given T'o(N), = (v) with 4% = I, we get an A-module structure on L = Z? by

(a+ bu)l := al + byl.

Let
Lo(N) ={(y) € L| N |y} C L.
Indeed, it is an A-submodule with L/Ly(N) = Z/NZ. Set

J=J, = AnnL/L()(N).

Conversely, given J < A such that A/J = Z/NZ. Since Z is a PID, there exists
a Z-basis u, v of A such that J has Z-basis u, Nv. Then u(u,v) = (u,v)y for some
v = (%) € My(Z). The characteristic polynomial of 7 is 2> — x + 1. So dety = 1, i.e.,
v € SL(2,Z). Now, pu = au+ cv € J. So N | ¢ and hence v € T'o(V).

It remains to check that the operations and inverse to each other. [ |
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7 Number of elliptic points, 3/15

Proposition 7.1. For I' = I'y(V), we have

[T+ (). it [T(1+(2)). 9t

o = { p|N gz = { pIN

0, if 4| N, 0, if 9| N.

Proof. Write N = H p;'. For e3, there are three cases:
(i) if p=1 (mod 3), then (p) = J,J, for some prime ideal J, I A = Z[us] and A/JS =
L|p°L;
(ii) if p=2 (mod 3), then (p) is a prime ideal of A and A/(p) = (Z/p°Z)?, which is not
cyclic;

(iii) if p = 3, then (p) = J3, where J5 = (1 + y6)* and

(Zrgerng)” if2] e,

Ao
7555\ 2 Z "
/3(e+1)/2Z &) /3(671)/2Z, if 2t e.

So we must have N e 301y - p¥, where p; = 1 (mod 3). For each i, we can choose Jp,

or J,,. The number of J such that A/J = Z/NZ is 2*. [

Explicit elements. Consider (! 9)pus, n=0,1, ..., N — 1, with isotropy group

<(i D0 )G (f>> (o sy 1 2)) estem

for each n. This group lies in I'o(N) if and only if n* —n 4+ 1 =0 (mod N) and this is

precisely the formula of 3. Hence, the elliptic points of period 3 are exactly

n+ p3
nz2—n+1’

o(V) (i 0) s = To(N)

1
n=0,1,...,N—1with N |n®>—n+1.

What is £,,7 For the easy case I' ISL(2,Z), e.g., I' = ['(IV), the ramification index

er(vee = [SL(2,Z) : {£1}T(N)oo] = [(£ (5 1)) : (£ (YN =N,
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50 €xo(I'(N)) = dn /N, where

dy = [SL(2,Z) : {£I}T(N)] = %N?’ [[a-»7
pIN

for N > 2 and dy = 6.
If I' is not normal, e.g., I' = I'g(N), I'1(IV), then we use the following fact:
{cusps} = T\P'(Q) =T\ SL(2,Z)/P,
where P = SL(2,Z),, s € P*(Q) is a parabolic subgroup.
Let I' = T'g(N). Consider the set
S ={(c,d) | ged(e,d) =1, d| N, 0 < c < N/d}.

For each (c,d) lies in S, there exists a, b such that ad — bc = 1, fix one such, then

Fo(N)\SL(2,Z) is represented by S: all elements are non-equivalent and the size of S is

equal to NH(l +ph).
pIN

Take s = 0, we see that e, = #(S/ ~), where (¢,d) ~ (¢, d') if

)-GO

for some m € Z, i.e., ¢ = c+dm, d = d. For each fixed d, we get ¢(ged(d, N/d)) pairs.

Hence,

Proposition 7.2. For I' = I'y(N),
e (To(V) = 3 oged(d, N/d)).
dIN

For I' = I'1(V), the only obvious method is to list all of them directly. Let N > 1,
s=ajc,s =d/c € P'(Q) (in their reduced form). For v (24) € SL(2,Z), s’ = s if and

c ra + sc c

The key point is the following:

only if
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Proposition 7.3. If y € ['(N), then

()= () = () wm

Proof. The only if part is trivial since ¥ = I (mod N). For the if part, we first assume
that (a,c¢) = (1,0), i.e., s = oo. Then N | @' — 1, ¢ and there exists 3, § such that
a'd — B = (1—d')/N (since ged(a’, ') = 1). Take

_(d BN
v = <C, 1+5N> € I'(N),

we get vs = 5.

For general s, let ad —bc = 1, o = (24) € SL(2,Z) such that a(§) = (¢). Then
o (9)=a"(¢)=(}) (mod N). Hence, there exists 7' € ['(N) such that a~' (%) =

C

a

7ot (2) and we define v = aya ™. [
This implies easily that

Proposition 7.4.

+ (Z) (mod N),

['(N)s' =T1(N)s < (a,> =+ (a—i—]c) (mod N) for some j € Z,
c

e}
=
CD\
I
e}
=
V)
N\
S
I

, .
[o(N)s' =To(N)s < (yc/t) = (a+jc> (mod N) for some y,j € Z.
e

8 Eisenstein series, 3/20

For a congruence subgroup I', we define

&) =M ‘“(F)/Sk(r)'

It follows from the dimension formula that dim & (I") = e, if there are no irregular
cusps. So we expect to find a basis {f;} such that f; vanishes at exactly one cusps. We

do the case I' = T'(N) first.

Definition 8.1. A Dirichlet character is a group homomorphism

x: Gy = (Z/NZ>X — C*.
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The dual group Gy (of Z/NZ) is the abelian group of all characters. This is (non-

canonically) isomorphic to G.

For n € (Z/NZ)*, we see that
> x(n) = 6,1 6(N).
XeaN
If d | N, then there is a natural surjection myg4: Gy — Gy which induces a map

na: Ga— GN.

Definition 8.2. Given y € G ~- The conductor of y, denoted by cond y, is the smallest

positive integer d such that x € Im 7y ;. x is called primitive if cond y = N.

For y € (A?N, we extend it to x: Z — C by

x(nmod N), if ged(n,N) =1,
x(n) =
0, if ged(n, N) > 1.

The Gauss sum of y is

—1 N-1 /N-1 -1 N-1
900900 = Y g0x(muy™ =3 (Z X(n)u%m) "= x(m) Yo p " =N,
m=0 m=0 \n=0 n=0 m=0
Definition 8.3. The y-eigenspace My (N, x) of My(I'1(N)) is the set of elements f
such that
a b
fhlk = X(@/, ¥ = < d) € To(N)
Then

Also for S, hence for &;.

Recall that the Riemann zeta function

((s) = Z% =H 1—1p—5’ Res > 1.
n=1 p
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It has an analytic continuation (entire expect at s = 1, which is a simple pole with residue

1) and &(s) := 7 ¥/?I'(s/2)((s) satisfies the functional equation &(s) = &(1 — s).
Given x mod N, we define the Dirichlet L-function:

x(n)

1
ns __21'1—-x@ﬁp“

Res > 1.

L(s, x) =

n=1

It has an entire extension to C unless y = 1y € G ~, and there is a functional equation

for L(s,x) (later).

Construction of &, for I' =I'(IV). Let £ > 3. Recall that

G"“(T):Z c¢+d Z Z CT—i-d

n=1 ged(c
I =
n= 1 ged(c,d)= ged(c,d)=1
and hence the Eisenstein series
Gk (T) 1 1 1 . —k
Bu(r) = oo — 2 =2 Y
QC(k) 2 ged(e,d)=1 (CT T d) 2 ~vePy\ SL(2,Z)

where Py = {(}1)).

Now for any row vector v € (Z/NZ)?* of order N, let (c,,d,) be a lifting in Z*. Fix
6= (22 )€SL(2,Z). Since —I € T(N) if and only if N =1, 2, we let

if N =1,2

D=

EN =
1, ifN>3.

Definition 8.4. We define

El(T) =en Z m =en Z jly, )7k

_g(cd((ig,d):le ~yePLNI(N)\I'(N)d

Proposition 8.5. For each v € SL(2,7Z),

(EXDe)(T) = B (7).

Hence E} € My (I'(N)).
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Proof. The left hand side is equal to

exitnn) ™S )T E ey i

Y EPLAT(N)\T(N)S Y€ PLAT(N)\ST(N)y
Here, we use the fact that I'(V)d = 6I'(V). This is equal to the right hand side since
OL(N)y =T(N)dy. |

Remark. For I'(V) CT' C SL(2,Z), simply take

Eir= > Eylke M)

Y €EL(N\D
If kis odd, N =1, 2, then —I € I'(N) implies that M (I'(V)) = 0, so we exclude
this case.

(i) It follows from the definition that

(£1)%,  if v =£(0,1),
I lim E}(r) =
mreee 0 otherwise.

(ii) For v = (0,1)6 of order N, and any cusp s = a(oco) € QU {oo}. The behavior of £}

at s is just the behavior of
Eila)y = B}" = BV
at co. Hence, the limit
lim E} (1)
T—S
is nonzero if and only if (0,1)da = £(0,1) (mod N), i.e.,
(c,d) = (0,1)6 = £(0,1)a " = (=¢,d’) (mod N),

where § = (¢%) and = (%% ). This is equivalent to

ie, ['(N)s=T(N)(—d/c) by (7.4).
Thus, for each k > 3 with k even or N > 3, we get a basis {E}} of & (I'(N)).

For Fourier expansion, we still have to go back to non-normalized form.
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Definition 8.6. We define

v o ! 1
G- Y ey Y o

v=(c,d) mod N n=1 v=(c,d) mod N
ged(e,d)=n

= 1 1
- L w2y

n~tv=(c,d’) mod N

ng( N)=1 ged(c’,d')=1
1 - n~ly 1 n n~ty
= en Z By t(r) = en Z CLR)EY (7),
gcd(?z,:]\lf) ne(Z/NZ)*
where
n - n - 1
(k)= > . (k) > %
meZ m=1
n=m mod N n=m mod N
We get
v n n~ly
Ek: (7—) =EN Z C+(k7 lj’)Gk (7—)7
ne(Z/NZ)*
where p is the Mobius function and
ney NS M)
C+( a:u) - Z mk .

Indeed, we prove the following identity:

(1mn—1>m,n * (,Ulnf—l)n,é =1.

In fact, the (m, ¢)-entry is

> Lyt # Lo (D) =D L1 (d)pa(e) Log-1 (e)

n  de=D

(ged(e,d, N) =1)

= Z ,u(e)lmgfl(D) = 0p1ly-1(D) = 0pedr— (D).

de=D

On the other hand, since

deZ

for N > 2,

1 _ (_27”)k k=1 m _. k=1 _m
Z(T—l—d)k_(k—l)!zm 0" =Gy mt
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where

op ()= > sgn(m)m* g,

mln
cy=n/m mod N

9 Eisenstein series for ['{(N)

We know that
M (T'1(N)) = @Mk<N7 X)-
X

Now,

Gilhle =G, v € SL(2,2).
Observe that (0,d)y = (0,dd,) for v € I'((N), so we do the symmetrization

> XDGT? € My(N, x).

de(Z/NZ)*

Our goal is to construct a basis of (N, x).

Let uv = N, 1, ¢ be primitive Dirichlet characters modulo u, v, respectively, such

that ¥p(—1) = (=1)*. Define

which lies in My (N, v¢): for v € To(N),

(cv,d + ev)y = (cva,, cvb, + dd, + evd.,)

= (cayv,dd, + (cby + ed,)v) =: (cv,d + €'v)

and

Y(0)p(d) = ¥()(a3)B(d)B(d ") = v ()B(d) - vB(dy).
The non-constant part of G}(7) is

Ck - v l=mn Ck - m_mn
w2 ooy =" D sen(m)m® T g
(=1 mn>0
cy=n mod N

For G, we get

C — — ev)m mmn
T2 YR DT sen(mymt g

c,d,e mn>0
cv=n mod N
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Write 1y (dev)m _ = 4™, Summing over e, we may replace m, n by wm, vn, respectively,

and the above equation is equal to

u—1 v—1
dow@pd) Y sgn(m)mtudmg™.
c=0 d=0 mn>0

c=n mod u
Change m, n < 0 to m, n > 0 and notice that ¥p(—1) is assumed to be (—1)*, we get
from > x(n)uy™ =X(m)g(x) that

C _ u—1 o
So@) vl Y senlm)plmmtlg
=,
-9 Ck — k—1 _mn
=2—9(@) Y vn)e(mm'q
m,n>0
=205 Gt =2 a2 S
n=1 m|n

m>0

The constant term is

3 veB DR () = XD yo) L~ ).

Hence,

Cry(®
apo(r) = 99D gy,

where

EP9(r) =6y L(1 =k, ) +2 ) 014 (n)g".

n=1

For N € N, k > 3. Define

Any={(¥ € Gy € Gu,t eN) |0, p prim. , (Yp)(=1) = (—1)", tuv | N} .

Theorem 9.1. For cach fixed x, the set {E}¥"(7)}ypey form a basis of (N, x). In
particular, { E}/¥"(7)} form a basis of & (I (N)).

For the weight 2 case, let v € (Z/NZ)? be a vector of order N. We define

" 1 CyT + d,
73(r) = 50 (27 )

S SR 1 1
= (CUT+dU>2 N2 — (cm;]i—du _ (CT+d>)2 (CT—|—d)2 )
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which is weakly modular with respect to I'(/V) of weight 2. Let
v dy 02 OO v n
G2 = 50,cv< (2) + m Z 01 (n)QN
n=1

Then fJ(7) = G5(1) — Ga(7)/N% Recall that Go(7) — 7/Im7 is weight 2, SL(2,Z)-
invariant. So we shall consider

1 =«

Gh(7) = G3T) — 15 o

which is weight 2, I'(V)-invariant.

Theorem 9.2. We have

&) = { > @Gy

Zav = 0}.

From I'(N) to I'y(N) with y, hence To(N) for y = 1, still use the same G5%, E"?.

Note that if one of ¥, ¢ is nontrivial, then the sum of coefficients
> v(e)p(d) = 0.
c,d

In this case, G5¥ = (Cog(P)/v})ES¥ € My(N,¢y).

Ify=1,, ¢ =1,. Then E21’1 = F5, so we use

Gy () — 16y o) = 2 (B (7) - 83 (1m) = 24T € Mmoo,

Let
Az = {0 € Gup € Gt € N) |4, prim. , ()(=1) =1, 1 < tuv | N}
Then |Ay 2| = dim &(I';(N)) and

EY?(tr), if 1, © not all trivial,
Bty =1

E21’1(7') — tEQI’l(tT), ifyp=p=1.

10 Eisenstein series of weight 1, 3/27

Define the Bernoulli numbers { By} by

> tk t
ZB]CH: et — 1’
k=1
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and define the polynomials { By (x)} by

> tk tet®
ZBk(x) A= T
k=0

k
Then By(z) = Z (];) B;z"7 and in fact

7=0
n—1 1

Let u € N, ¢: Z/uZ — C be any function. The Bernoulli numbers of v is defined by

0o tk u—1 teCt
Biy— = .
> Bhw gy = 240

We see that

u—1

By =u"""> " 4h(c) Bi(2).

c=0
Hence for k =1,

Bro- Yoo (E-1),

Consider the Hurwitz zeta function

o0

C(s,r) = Z(r+n)_s, r € (0,1], Res > 1.

n=0
We see that ((s) = ((s,1), Cflr(s) = ((s,d/N)/N?® ford =1, ..., N — 1. Our goal is to

find the analytic continuation of ((s,7) to all s € C.

Let

the Mellin transform (which transform Fourier series to Dirichlet series) of f,. Then

0= [T () =t

Also, fo(t) := —tf,(—t) = te ] gives us Bernoulli polynomials. Then
6 —

wis) = [ R T
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Consider
~ d
/ fr(2)z571 —Z, Res > 1,
Ve z

Im z=0 |z|=¢ Im z=0
N N

where 2° = €*198% 4, = —0 — — » —o0. We see that this integral
tends to
2mi
~2isin(ns) g,(s) = — = C(s,
isin(ms) g.(s) T ) C(s,r)
as € — 07, Hence, we get the meromorphic continuation to all s € C via
'l—s) [+, ,,dz
o) === [ B T

Now let s =1 — k, and ¢ # 1 a Dirichlet character modulo u. Then by definition,
S ()¢ (1=, ) = ™ 3 0l (1~ k) = wl L1~ k)
c=1 7 u c=1 " ,

On the other hand,

S uec (1-85) = =E= i [ S vefale) S

e—0t

which is, by Cauchy’s integral formula, equal to —ul_kBk,d,/k: if we require £ € N. We

conclude that

C(l—k):—% k>2, L(l—kq) =

_Bre
k_? )

k>1.
& 2

The Poisson summation formula asserts that

Z h(z+d) = Z h(m)eime.

deZ meZ

2

Since ]?: f for f(x) =e ™,

f _ —md?/t _ 41/2.q/(,;
19(7)—26 = t/79(it),

deZ

ie., 9(—=1/1) = —(i7)"29(7) for 7 € H. Let
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ie., £(s) = g(s/2), Res > 1. Hence,

| dt 1 1
= / —(9(it) — 1) (t/2 4 11792 — — —
1

2( t s 1-¢
and £(s) =&(1 — s).

Eisenstein series of weight 1: Let A = Zw; & Zw, be a lattice. The Weierstrass

(-function is

==+ Y (It ) =Gt -G

z Z— W w w
wEA

which is the integral of —p(z). ( is not periodic, but quasi-periodic:

mi(A) = ¢(z +wi, A) = ((z, M) = 2((wi/2)

is constant in z, called the quasi-periods.

U(z):exp(/g)zz+...7

i.e., ( = ¢'/o, which is an entire function with simple zeros at A. We get

Let

o(z +w;) = —e”i(”%w")a(z).
Theorem 10.1. We have
1 1 2 . . o0 (1 - 627rizqn)<1 - 6727rizqn) )
_ n22 Tz =Tz  omir
olz7) = 2m'62 e ‘ >¢£[1 (1—qn)? y g=en .

Sketch of Proof. The RHS has the same (simple) zeros at A and the same transformation

law as o. It is asymptotic to z as z — 0. Hence, they are the same. |

Corollary 10.2. We have

1 +e 2miz 27rzz 67271'izq
C(ZvT) =Tz — T —5— 1— - WZZ ( 627rzz 1 _ e—27rizq ’

Compare the coefficients of z on the both sides, we get

(2m
—1+24
N2 = T + Z 1 ¢
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The Legendre relation wyny — wamy = 2mi gives us my (1) = 7Gao(T) — 2mi.

Write z = sw; + twy. We see that

C(swy + twy) — smy — tny

is periodic. For v € (Z/NZ)?* of order N,

v 1 CoT + d, Co d,
1) = (c (AT ) () - )
is weakly modular of weight 1 with respect to I'(N). This is simply because (c,w; +

dyws)/N + A is I'(IV)-invariant.

) T +d . ) .
Since z = %, soin k > 3 or k = 2 case, we get Fourier expansion in qy. For

this case, we have

gl (1) =1+1II4+ 11141V,

where (recall that Cy = —27i)

2mic, Ci ¢

(7722 — —(com + dzﬂh))
5o —mey) = ——- = ——

v 7Tdv ™ Cl - m_com
I1 = 07 cot = + (1= 62,0) (—N+WZME@ ay )

Cl m n Cloo v Cym
3 S P

mln
cy=n/m mod N

C G m n
AEE 9IS SENEER) 18
n=1 m|n
cv:n/m‘modN
ny = T T o ™
Recall that ("(1) = N + N cot N So we define

GY(7) = 0e,0¢™ (1) Zao

Then

si(r) = Gir) - S (% 1)

If ¢, # 0, then G{ ™) = —G{®) and G~ = —G"*) S the dimension of & (T'(V))
iS £00/2.
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11 Hecke’s theory, 3/29
Given primitive characters ¢, ¢ modulo u, v, respectively, with ¢¢(—1) = —1. Define

GY2(r) =) kp()p(d)g" " (1) € Mu(N, y)

c,d,e

as before. A careful and detailed calculation taking care of the constant %(CN” — %) shows

© 019 (Sﬁ) ©
g%y — ’ E:’tlh ,

where

EY? = 0,1L(0,0) + 6, L(0,0) + 2 op?q".
n=1

Let A1 = {(¢,,t) | tuv | N}. Then |Ay,| = dim & (I';(NV)) and each element

(¢, p,t) of Ay corresponds to
B9 (r) = By 9 (t),

which form a basis in & (V, ¥¢).

Definition 11.1. Define

' (ImT7)*
E? = k+2Res > 2.
b7 5) = en » ; . (e + d)¥|er + d|?s’ tehes

ged(e,d)=1

We have
Ej(r,s) = en >, (m7)hl
YEP{ND(N)\T(N)3
where Py = ((§1)), 6 = (& £), and Ef[y]x = E, for v € SL(2,Z), hence it is T'(N)-

invariant. Its non-normalized form:

Glrs)=ey S m7)

v=(c,d) mod N (CT + d>k|CT T d|25

is linearly related to E} (7, s) as before. We define
Gi(7,0) = Gi(T,8) 4=

after analytic continuation to s € C. Nothing happens for £ > 3 but for £ < 2 (k can be

negative!).
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Definition 11.2. For v € GL(2,R), define

)= Y e,

nez?

For f € L'(R?), r > 0, let p(x) = f(z7yr), where x € R?. The Fourier transform (for
dety =1)

d@)= [ Fme T vide =2 [ py)etmion gy = 2@y T),

yeER? yER?
where v T = (v H)T.

—mlzf?

For example, when f(z) =e , Poisson summation formula tells us that

rYy ) =Tty fy T ).

nez? nez?

v (0 -1 d —c\ (b —a) _
57 _<1 O)(—b a)_<d —c =75

f(nSy~T/r) = f(nyS/r) = f(ny/r).

SO

Since n.S runs through all Z?, we get the functional equation
rd(yr) = r I (yr ).

For v € SL(2,R), define g(s,7) to be the Mellin transform of 9(yvt) — 1, i.e.,

S 7 %/1 j{: —WWWFtﬁ

nez?

Since ¥(yvt) — 1 as t — oo, ¥(yV/t) — 1/t as t — 0 by the functional equation. Hence

the integral exists for Res > 1 and

g(s,7) = 7T Z ny| .

nez?

Let Yregtiy = (\? Iff_ > € SL(2,R) so that ,(i) = 7. We get

S

9(s,7,) =7 °T(s) ZI |c7’§/k—d|25 =7 °T'(s)Go(T, s)

35



and the analytic continuation as before:

[ oavh - = oL [Ty ¥

>0 dt 1
= PVt — — =
/1 (W — = =
> t 1 1
— -1 l-s * = 1
/1(19(7\/5) L Res> 1,
SO
- s 1—s dt 1
g(s.) = [ WOVH=DE+17) — — -~ Res>1,
; -

which is invariant under s — 1 — s. All these extends to higher £ and level N > 1.

For v € (Z/NZ)?* of order N,

) = Y iy N)e TN

v=n mod N

= Z hy ((’U/N -+ n) 7) €_7T|(n+v/N)-y|2’

nez?

where hy(c,d) := (—i)*(c + di)*. For any a: (Z/NZ)* — C, its Fourier transform

-~ 1 —(w,wS
i) =5 >, e,
w€E(Z/NZ)?

Theorem 11.3. Let

G(T,s) = Z (a(v) + (=1)*a(—v)) G}(T, s), g +Res > 1.

v

Then

(%)ﬁgr(@—FS)Gz(T"S_g)’ Res > 1

has an analytic continuation to s € C\ {0, 1}, invariant under s — 1 —s. Indeed analytic

for k # 0.

Proof. Let
fi(x) = hi(z) f (),

where f(z) = e ™ so that 9U(y) = Z fr((v/N 4+ n)vy). We see that

rOi(yr) =1 ) fil(0/N +n)yr) =1 ou(v/N +n),
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where ¢ = fr(zvyr). Since F= (=) fr, Or(2) = (=) r 2 fr(xy~Tr™"). Hence,
roy(yr) = rz or(v/N +n)
_ k —1Zf n57 627rz (nS,v/N)

_ -1 ka ’I’L’)/ST ) —2mi(n, vS/N)

We see that fi(2S5) = hie(2S) f(2S) = (=) hi(z) - f(x) = (—i)* fu(z), so
7“19”(’}/7” k —Ika nyr -1 NnvS)

= (DR ST Y Sl ) e

we(Z/NZ)? w=n mod N

= (=1)kr~! Z ka (w/N 4+ n)yNr~ )fk(nvr_l)ux,(w’“&

we(Z/NZ)2 n

= (=DM DT IO
we(Z/NZ)?

If we think 9, as a function of v, then the above equation tells us
ri(or) = (=) N N,

or equivalently,

rIp(YNYPr) = (<1)f (N,

This shows that

Oi() = Y (a(v) + (=) a(~0) R (N?)

ve(Z/NZ)?

satisfies the transformation law

rO4(yr) =7 OR(yr ).

Define
G5, 7) = / 8 (111/2)¢°
0

Since

> _ dt e dt  hg(z)l'(s + k/2)
h tl/? W\xt1/2\2 —h / || tts+k/2 or _ Ik
[, ot P ¢ ey




we have (note that hy(0) = 0)

> dt 1 N7F2hy(ny)T(s + k/2)
9Y t1/2N1/2 A k
/0 Ry ) ; Z (|ny|2 /N )s+E/2 )

v=n mod N

and hence
gi(s,7) =Y _(a(v) + (=1)¥a(-v)) /Ooo 192(7751/2]\;1/2)755%
- w ijw(v) + (=1)*a(—v)) gmjd ) ﬁ@ﬂm-
Set v =, = \/Ly (o 1), we see that
(c,d)y = ici/; 4 (e dyy) = Wy}g%‘l)k

It follows that

T k., s—k/2 , —k/2
Girs — k) =ey 3 TRV g )y

(o) mod N ‘CT + d‘2s+k ‘n,y‘2s+k

Y

v=n mod N

and thus
o _ (Im 7)* _ NT(s+k/2)y*° .,
gu(8,7-) = en Z (er + d)F|er + d|?s - rstk/2 Gi(7,5 = k/2).
v=(c,d) mod N
Since
v = a 1/2\ (45 1-s dt
g(s,7) = [ OROET)(E +77) —
1

is entire in s and invariant under s — 1 — s. We get the theorem. |

12 Hecke operators

A correspondence T between compact Riemann surfaces ¥ and Y is a curve lies in ¥ x Y/

such that the projection maps

7 X
by ¥

are surjective. Then we define
Div(¥) —— Div(¥)

p——— ' (x"}(p))

If 3, ¥’ have genus > 2. Then ¥ = I'\H, ¥’ = I"\H for some T, I C SL(2,R).
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Definition 12.1. We say that I" and I'" are comeasurable if
T:TNIM <o, [IM:TNI'< 0.
We say that I' and I are a-comeasurable if

T:TNnal’la '] <oco, [M:a 'Tanl’'] < oco.

This implies that
Y= (TNnal’aHY\H2 (o 'TanT')\H =: 5

is a correspondence.

Now assume that o € GL(2,Q).

Lemma 12.2. If I is a congruent subgroup, then o 'I'a N SL(2,Z) is also a congruent

subgroup.
Proof. Pick N such that I' D I(N) and Na, Na~* € M(2,Z). Let N = N°. Then
al'(N)a~! C oI + N> M(2,Z))a "
= I+ N(Na)M(2,Z)(Na™") C I+ N M(2,7).

Since elements in o' (N)a ™' have determinant 1, we get

~

al'(N)a™ C (I + NM(2,Z)) N SL(2,Z) = I'(N).

Hence,

a 'Ta D a 'T'(N)a D T(N). u

Let I'y, I'y be congruent subgroups of SI(2,7Z). Consider the double coset I'yal'y C
GL™(2,Q) and I's = (o 'T1a) Ny < Ty.

Lemma 12.3. There is a 1-1 correspondence between I';\I'y and T'1\I'yal'y via v +—

ays.

Proof. First of all, T'y — I';\I'1al'y is surjective. If I'yary, = Tianh, then ayy(ay,) ™! € Ty,
ie., 157, " € a 'TiaNTy = I's. Hence, the kernel of 'y — I'1\I'jal'y is Ts. u
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Recall that for 8 € GLT(2,Q), k € Z,
FIBli(r) = (det B)*15(8, 7)* F(B(T)).

Definition 12.4. Let I'Jal's = ZFlﬂj. For f € M (T), let
J

fIlials)y = Z f18k

It is clear that this is independent of choice of j;’s.

Proposition 12.5. The operator [['yal's]y maps Mg (I'1) to M (I'y) and maps Si(I';)
to Sk<P2)

Proof. For v9 € T'y, there is an action on I')\I'yal'y by I'1 8 — T'1572. So f[['1al's]y is now
a weakly modular by the independence of choices of 3;’s. To show that it is holomorphic

/ vanishing at cusps, we see that
> B0l
J

does so at oo for each 6 € SL(2,7Z). |

Example 12.6.
(1) If 'y DTy, a = I, we get an injection M (I';) — M (Ty).

(2) If o 'Tia = I'y, T1al'y = 'y (alya Ya = I'a. Hence, f +— f[a]i gives an isomor-

phism M (T'y) = My(T9).

(3) If I'y C Ty, a =1, we get a surjection My (I'y) = My(I'2), which is the trace map.

Now, given I'y, 'y, a as above, consider I'; = al'sa™ C Ty, We get

f > f > flaly —— Zf[oé%,j]k-

Geometric point of view:

Iy — T X(T5) —— X(Iy)
[ = |
Iy Iy X(Iy) X(Ty)
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Definition 12.7 (Hecke operator). Set I'j =Ty =T'1(IV) I T'o(N),
(1) a=(25) € Lo(N);

(i) a= ((1)2), where p is a prime.

For (i), this is case (2), i.e., by f +— fla]x, which is determined by T'o(N)/I'1(N) =
(Z/NZ)*, o — d (mod N), hence it is denoted by (d): My(I'y(N)) = Mg(T'1(N)). In
this case, My(N, x) is the x-eigenspace of the “diamond” generators (d), d € (Z/NZ)*:
(d)f = flods = x(d)f.

For (ii),

v

(1 *> mod N, det'y:p}.
0 p

T,f == fI[1(N) ((1)2) (V)]

Proposition 12.8. We have

(b) (DT, = Ty(d),
(c) T,T, = T,T,.

: S _ (10 — (abd -1 — (1%
Proof. (a) is trivial, For (b), let o = (49), v = (2%) € To(N). Then yay™' = (45)
(mod N). So

[ (N)al'y(N) =T (N)yay 'T1(N) = 4T (N)al' (N)y ™

= 7<|_| Ty(N)B )y
= |_| Fl ”YﬁfY |_| Fl

J
i.e., there is a 1-1 correspondence between {T';(N )ij} and {T'1(N)v3;}. Thus,

d)T,f = Zf N)BAlk = FIDUN Bk = Tp(d) f.

For (c), we have I's = TY(N, p) := I';(N) NT°(p). Then we may guess

p—1 .
1
[3\['y = |_| Dsya5, 725 = (O i) :

j=0
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For v = (2%) € Iy,
N2 =\ ¢ —cj+d)’
which lies in I's if and only if p | —aj +b. If p { a, let j = ba™" (mod p), ie., v is

represented by 7y ;.

If p | a, then no such j (otherwise p | b and hence p | ad — bc = 1). This happens if
and only if p1 N, for example, if pm — Nn = 1, then take v = (' ). So for p{ N, need

. mpn
one more representative: va oo = (V' 1),

1 a b 1 —n a—Nb —na -+ mpb
V2,00 = = c Fg.
’ c d —N mp c— Nd —nc+ mpd

So we see that

T'\[aly = Ty (N\T1(N) (§ =| |T(V)B;,

1y
512@72,j:<0 p>,
Boo = @ (™ oy (PO ifpt N
0T M=\ ) o 1) PPTY

ie., for f € My(I'1(N)),

T, = STk + 0t NSRBIl

So

IfptN,

Put together,
an(Tpf) = anp(f) + 1N(p> pk_lan/p(<p>f)7 (CY))
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where a,/, = 0 if p { n. As a corollary, if f € M (N, x), so is T, f, and the additional

term is equal to x(p)p* ', (f) since (d)T,f = T,(d)f.

Now, we may prove (c). We may assume that f € My(N,x). Then

an(Ty Ty f) = anp(Tyf) + x(p) pkilan/p(qu)
= anpg([f) + x(q) qk_lanp/q(f) + x(p) pk_lanq/p

+x(0) 2" X (@) € @ g ( £)-

This is symmetric in p and ¢, and hence equal to a, (7,7, f). [ |

13 Hecke operators 11

Last time, we defined (d) for d € (Z/NZ)* and T, a prime p on M (I'1(N)). We extend

these to general n € Z:

(nmod N) if ged(n,N) =1,
(n) =
0 if ged(n, N) > 1.

It is clear that (nm) = (n)(m). Write n = pri, we define 77 =1 and
To=Tp Ty, Ty =TT — P ) Ty

We can check that T,-Ts = T,sT,» by induction (also for the case p = ¢). The definition
implies that T,,,,, = T,,)T,, if ged(n,m) = 1.

Consider the generating series

Proposition 13.1. For f € M(T'{(N)),

CLm<Tnf) = Z dkilamn/dQ (<a>f) :
d|ged(m,n)
In particular, if f € M (N, x),

a’m(Tnf) - Z X(d)dk_lamn/d? (f)

d|ged(m,n)
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Proof. We only need to prove the case f € My(N,x). The case n = p is done by (7).
Assume by induction that the assertion holds for n =1, p, ..., p"~!. We see that

am(Tp’“f) = am(Tpr“lf) - pk_lam(<p>TpT*2f)
= App(Tyr—1 ) + X(0)P* s (Tyr—1 f) = Xx(0)D" ™ (T2 f)
= > x(d)d" e (f)

d|ged(mp,pm—1)

+ X(p>pk_1 Z X(d)dk_lamprﬁ/dQ(f)

dlged(m/p,pm—1)

- X(p)pk_l Z X(d)dk_lan"apr‘z/cl2 (f)

d|ged(m,pr—2)

= () X Y (@)@ g2 a2 (),

d'|ged(m/p,p1)

as desired.

Finally, for ged(nq,ng) =1,

A (Tryng (f)) = am (Lo Tny f) = Z X(dl)dlf_lamnl/df (T, f)

dilged(m,n1)

= Z x(dy)dy™! Z X(d2)d§_1amn1n2/d§d§ (f)

d1|ged(m,n) dz\gcd(mn/d%,nﬂ

_ 3 DA s (F)- -

d=djdz|gcd(m,nin2)

Petersson inner product.

Recall that a matrix A is normal if AA* = A*A, where A is the adjoint with
respect to the hermitian inner product. The invariant measure (up to a scalar) on H is

dp = dx A dy/y? under GLT(2,R).

For a congruent subgroup I' of SL(2,7Z), write

SL(2,Z) = | |{£I}D)ay.

j

A fundamental domain for X (I") is Uosz*, where D* is a fundamental domain for
J

SL(2,Z). We see that the volume of the fundamental domain is

dm
vp = / dp = d - vsLi2,z) = 3
X(T)
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For (f,g) € Sk(T'1(N)) x Mg(I'1(N)), we define the Petersson inner product to be

(f,9)r = ,Ui F(r)g(T)y" dp.
rJx )

Note that the function f(7)g(7)y* is T-invariant since (Im(7))* = (cr + d)™?*, and the

integral is finite since ¢ is a cusp form. It follows from the definition that if IV C I, then
<_7 _>F’ = <_7 _>F'
We want to find the adjoint of Hecke operators with respect to (—, —)r. Let o €

GL"(2,Q). There is a measure preserving 1-1 correspondence between o 'T'a\H and

X(T) by a.

Lemma 13.2. We have [[': a 'TanTl] = [": al'la ' NI, call it n. Then there exists
617 ceey Bn S GL+(2, Q) such that

Tol'= | |T8; =] |8T.
J J

Proof. If

Tol' =| |Ta; =| [T,

then I'a; N b;I" # @ for each 7, j. Indeed, if

Fa; C| |l = Tal' =Ta,l C| | BT,
k#j k#j

a contradiction. Hence, it suffices to prove the first assertion:

[:a 'TanT]=[:ala'NT].

If o™ 'Ta C SL(2,Z), then v,-15, = v and
[SL(2,Z) : o 'Ta] = [SL(2,Z) : T).
Now let I' = o 'TaNT. Then we get
[SL(2,Z) :TNa 'Ta] = [SL(2,Z) : aTa ' NTY,

and thus
[:TNa'Ta]=[:ala'NT]. u

Proposition 13.3. Let o/ = adja = deta - a~'. Then
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(a) if o 'Ta C SL(2,Z), then

<f[a]kag>oﬁlf‘a = <fvg[0/]k>F;

(b)
(flCally, g) = (f, g[CaTx).

Proof. Note that deto’deta = (deta)? (since we are doing on 2 by 2 matrices), so
det o’ = det a. Since o/ = ™! as action,

1

lodghora =7, [ el (e, ) o) o ()

v

_1 / (det )1 F(1)j(, &/7) Fg(o/ (7)) (Im o/ (1))F dpu(7)
X(T)

— | et (e, 7)ot @) 7)o di(r)
X(T)

= <f’ g[O/]k>

This proves (a). For (b),
Tol' =| |Tp; =] |4T.
So LT = |_| I'8; and (b) now follows from (a). |

Theorem 13.4. We have (p)* = (p)~ !, T, = (p)~'T, for each prime p. Thus, for each

n with ged(n, N) = 1, (n), T,, are normal commuting operators.

Proof. We have

For T}, left for reading. [ |

14 Old forms and new forms (Arkin-Lehner-Li the-

ory)

Let M, N € N such that M | N. Then there are two ways to embed Si(I';(M)) into
Si(T'1(N)): f+ f,and for d | N/M,

F s (flad)(r) = & f(dr), o= (gi ‘f)
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For M = Nd~ !, we define
ia(f.9) = |+ gladls.

The sum of the images

Se(T1(N)M = "Imig

is called the old subspace, and the elements lies in it are called old forms. In fact, we only
need to sum over d = p | N. We define S(I';(N))"®", called the new subspace, to be the
orthogonal complement of old subspace with respect to the Petersson inner product. It

is easy to see that:

Proposition 14.1. The Hecke operators T),, (n), n € N acts on old, and hence new

subspaces.

We normalize g = d' *[ag)y, i.e., ¢" — ¢™. If f = prfp, fp € Sk(I'1(N/p)) old,
pIN
then we see that a,(f) = 0 for ged(n, N) = 1.

Theorem 14.2. The converse holds, i.e., if a,(f) = 0 for gcd(n, N) = 1, then f is an

old form.

Now, both old and new subspaces have orthonormal bases of T;,, (n)-eigenforms with

ged(n, N) = 1.

Definition 14.3. We say that f € M(I';(NV)) is a (Hecke) eigenform if it is an

eigenform for all 7,,, (n). A new form is an eigenform with a;(f) = 1.

Let f € Sg(I'1(IV)) be an eigenform with respect to n, i.e.,
Tof =caf, (m)f =duf.
Then x: (Z/NZ)* — C*, n+ d, is a Dirichlet character and f € S(XV, x). Since
an(f) = ar(Tnf) = caan(f),

we see that if a;(f) = 0, then a,(f) = 0 for each ged(n, N) = 1. This shows that f is an
old form by (14.2).
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For 0 # f € Sp(I'1(N))™¥, we have a1(f) # 0, and thus we may assume that
a;(f) = 1. For each m € N,

Im ‘= mf_am(f)f eSk(Fl(N))new

is still an (n), T,, eigenform for ged(n, N) = 1. but

a1(gm) = am(f) — am(f)ar =0

and hence g, =0, i.e., T, f = an,(f)[f for each m € N.

Theorem 14.4. Let 0 # f € Sp(I'1(N))"" be an eigenform for T;,, (n) with ged(n, N) =
1. Then

(a) in fact, no restriction on n € N, i.e.., f/ai(f) is a newform;

(b) (multiplicity one theorem) for any other f of the same T,-eigenvalues, f = cf.

Proof. (a) is already done. For (b), it equivalent to linearly independence of all new forms.
Let Z ¢ifi =0, ¢; # 0 be a relation with smallest n > 2. Then apply T, — a,,(f1) id to
i=1

it, we get
n

Zci(am<fi) —an(f1))fi =0,

i=2
and hence a,,(f;) = an(f1) for all ¢, m. This tells us that f; = fi, a contradiction. |

Corollary 14.5. The space Si(I'1(x))"", i.e., eigenspace of diamond operator, has an

orthonormal basis by new forms.

Consider the L-function for f € My(T'): if f = Z anq", then

o0
a”’l

L(s, f) = .

(forget ay).

Proposition 14.6. For I' =T'1(N), L(s, f) converges absolutely for

k
Res>§+1 if fedS;
Res >k if f is a sum of Eisenstein series

(notice that & may be 1, 2).
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Proof. For f € S,

1 dq

ap = = f(T q—n -
270 Jigi=r 1

1
_ / f(l' + Z-y)e—Qﬂin(x-Hy) dl‘,
0
where y = —logr. Set y = 1/n, we get
1 .
a, = 62”/ flz+i/n)e 2" dy.
0

We know that |f(7)|(Im7)*? < C on H for some universal C' > 0. Hence,

1 1\ —k/2
la,| < 62”/ C (—) dr = e>"Cn*/?,
0

n

which gives us the cusp form case.

For Eisenstein series, |a,| < Cn*~! by direct comparison on ¢;,_1(n), done. |

Remark. If f is holomorphic and weight k, then f is I'-modular if and only if |a,| < Cn”

for some r.

Theorem 14.7. For f € My(N,x), f is a normalized eigenform if and only if

L(S?f):H !

1 —appe + x(p)pF

Proof. By definition,

= al(Tnf) Tn 1
v =3 T = (T ) = o (H [= T + g > f) |

n=1 p

Conversely, let s — oo, then a; = 1. Look at the p component:

o

Z bp,r . 1

o prs - 1— app—s + X(p>pk—1—2s'

We get

00 br
NI

pTS

Lis./)=1]>_

bp7r
TS
P r=0 p n=1 p"‘”n

ie., a, = H b,r. In particular,

p"{n

i Qpr i by.r 1
p'I'S

r=0 r=0 pTS - 1 - CLpp_S + X(p)pk_l_zg’
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14.1 Functional equations for cusp forms

which gives us
Ay — apayr—1 + X(p)P* a2 = 0.
Also, app = amay, if ged(m,n) = 1.
Now we claim that a,,(7,f) = a,a,,. For p prime, m € N. If p { m, then

am(Tpf) = amp = apam,.

It p" || m, let m = p"m’. Then

am(Tpf) = am’p”l(f) + pk_1X(p)am’pT*1(f> = QpQpypr = Aplm,

as desired. [ |

14.1 Functional equations for cusp forms
Let f € Sp(T'1(V)),
o dt
o) = [ rtine = @n) T )

be its Mellin transform. Consider

SeT1(N)) — 2 (T4 (N))

fr—— "N,

Then Wi = id and get +l-eigenspaces Sp(I'1(N))E. Also, Wy is self adjoint, so the

+1-eigenspaces are orthogonal to each other.

Theorem 14.8. If f € S,(I'1(N))*, then
An(s) = N*/%g(s)
extends to an entire function such that
An(s) = £AN(k — s).

In particular, L(s, f) has a meromorphic continuation to C.

Sketch of proof. 1t follows from the modularity that

M) = [ (FE + V)Gt ) 5
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15 Proof of the main lemma

We are goint to prove:

Lemma 15.1. Let f = Zan(f)q” € Sk(I'y(N)). If a,(f) = 0 for all ged(n,N) = 1,

then

[ = prfpv fo € Sk(T'1(N/p)).

pIN

Observe that ay Ty (M)a,; = THM), where apr = (¥ 9):

M 0\ (a b\ [(1/M O\ ([ a Mb

0 1) \c d 0 1) \¢/M a )
So there is an isomorphism

M= Pagle: Sp(Ti(M)) — Si(TH(M)).

(Note that T (M) D I'(M) is congruent.) For N = dM, we have the diagram

Sp(TC1(M)) —— Sp(TH(M))

L |

Se(T1(N)) —— Sp(I'(N)).
In elements, it reads:
D g —— > andy
[ |
P e

So the map Si(I'1(M)) — Sk(I'1(N)) is in fact an inclusion (identity to its image).

Hence, we only need to prove that
Lemma 15.2. Let f € S(T"(N)). If a,(f) = 0 for each ged(n, N) = 1, then

F=3"fn € SUT(N/p).

p|N

Definition 15.3. For d | N, we define I'y = I'y(N) N T°(N/d) D T'(N).
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It is easy to see that

Hence taking trace

is a projection map, i.e., WZ = m,. Precisely,
7TdZGIHQN:ZCLn <C_Z 125N / qN:Za'nQN‘
n n b dln

Using this computation, we see that 74,4, = 7y, 74, = Ta,Ta,. S0 the hypothesis is simply

fe Z Im 7,, and hence the statement is now equivalent to the following:
pIN

Lemma 15.4. We have the inclusion

)N SKTy) = Y ST (N/p)).

pIN p|N

Write N = prl The kernel of the (right) action SL(2,Z) — Aut Sx(I'(N)) contains

['(N), and hence induces an action
G :=SL(2,Z/NZ) — Aut Sg(I'(N)).

Write
G =SL(2,Z/NZ) = [ SL(2, Z/p;'Z) =: || G:.

For each p;, let H; = I''(p) /T (pS), K; = T1(pc) NTO(p% 1) /T (p¢), which are the local
analogue of T (N) and T,.

Lemma 15.5. We have the equality
D= (T (), () NT(p* 1)) = TH(p°71).

Proof. Tt is clear that T (p°), ['1(p®) NTO(p™") C T (p°™!). Form = (28) e T (p°7 ). Tt

suffices to show ym~’ € T for some 7, 7' € T.
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If p|aorp|d (this implies e = 1), say p | a, then p{b and
10 a+b b
= b.
m(l 1) <c+d d)’ pfat
So we may assume that pta and p 1 d.

We may assume b, ¢ =0 (mod p®). Indeed, consider

(1 5) <a+cﬁ b+dﬁ>
m =
0 1 c d

and take 3 = —bd~' (mod p°), we get p*' | B (hence, (37) € T1(p°) NI°(p*') CT)
and p° | b+ df.

Now, p¢ | bc = ad — 1. Consider

o (0 (D6 ()

_f(a+a(l—ad) 1—ad) _ .
—< wd — 1 J )_m (mod p°).

We see that m € I [ |
Now, the statement is equivalent to
Lemma 15.6. Let H = HHi' Then
SN MY SD(N) =D Si(D(N)) .

Proof. Recall that for a finite dimensional representation of a finite group, it is a direct
sum of irreducible representations. The irreducible representations of G; X G4 is of the
form V; ® V5, where Vi, V5 are irreducible representations of Gy, G, respectively. Finally,

(®, ®) satisfy distribution law.

Since S (I'(IV)) is a finite dimensional representation of the finite group G, the result

follows easily by computation. [

Theorem 15.7 (Strong multiplicity one). If g € Sg(I'1(IN)) is an Hecke eigenform, then
there exists a new form f € Si(I'y(M))""™, M | N, such that

ap(f) = ap(g)a p{N.
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16 Algebraic eigenvalues

Let f(r Zan )" € Sp(N, x) for some character x modulo N. Is a,(f) € Q? If so,

say {an(f)} c K/@, is K a finite extension? Take an embedding o: K — C. This gives

us an automorphism C — C that extends o. We define

-3t
n=1
Does f7(1) € Sp(N, x7)?
Today, we answer all questions for £k = 2. Recall that we view the Hecke operator as

P3;>Fé

L]

FQ Fla
where I's = o 'Tya N Ty, r,=rin al'ya™!, and define a correspondence

X3;>X§

P

X2 X17

and hence, a map

[Ty aly) = mpapr?: Pic®(X,) — Pic®(X)).

Here, we give an abstract point of view. Consider the exact sequence

0 s 7 > O > O > 0,

which induces a long exact sequence

deg=cy
E—

HY(X,7) — HY(X,0) —— H'(X,0%) H*(X,7)
|2 E |2 K
7% CY Pic(X) Z.
This gives
: ~ HY(X,0 ~ CY
P1C0<X) = ( )/H1<X,Z) :C/A
The Abel-Jacobi map (for a fixed p € X)) is defined by

/| HA(X, QY)Y
x L B )/Hl(X,Z)
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This extends linearly to

Div?(x) o HDY 7 )

Then in fact, this is surjective and the principal divisors map to 0, so it defines an

isomorphism

Pic’(x) Lo X o)

This is actually the same map defined above.
In our case, we get the diagram

Pic’(X,) —— Pic’(X))
! r

Note that H'(X,0) 2 H°(X, Q") = S).

Proposition 16.1. The operators T' = T, and (d) act on Sy(I'1(N))" via ¢ + @ o T,
descends to J;(N) := J(X;(N)), i.e., as an endomorphism on H;(X;(N),Z).

Let f,, g, be the characteristic polynomials of T, on H,(X,(N),Z) = Z*, S, = CY,
respectively. Then f,(7,) =0 on Sy shows that g, | f,.

Corollary 16.2. If f € S, is a normalized eigenform, then a,(f) € Z.

Definition 16.3 (Hecke algebra over Z). Let
Tz = Z[T,, (n) | n € N]
on Hi(X1(N),Z) C Sy = S(I'1(N)). For a normalized eigenform f € Sy(N, x), we get
Ap: Tz — C

viaTf =X (T)f.

Since Hi(X1(N),Z) = Z*, Ty is a finitely generated algebra over Z. As before,

an(f) = ar(Tnf) = ax(M(T0) f) = Ap(T5).
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The image of s is Za,(f), x(n),n € N], and in fact, the x(n) terms are redundant.
Hence,

Tz/I; — Zlan(f),n € NJ,

where I; = ker \;. Let K; = Q(a,(f),n € Z) C Q, called the number field of f, which is

a finite extension over Q.

Theorem 16.4. For any embedding o: Ky — C, f7 € S3(N, x?) is also a normalized

eigenform. Also, if f is new, then f? is new.

Corollary 16.5. The space So(I'1(NN)) has a basis with Z-coefficients.

Proof. Let f € Sy(Ty (M) C STy (N)), M | N. Let K = K;, O = ZNK =
Zay @ -+ @ Zayg, d = [K,Q]. For an embedding o;: K — C, define

d
g; = ZO’j(O{i)ij € Zﬂ Q
j=1

For any automorphism o: C — C,

d
o __ 00 roioc __
g; = § aj f / = G,

=1
i.e., an(g;) is fixed by 0. So a,(g;) € ZNQ = Z. Since A = () is an invertible matrix,
f is spanned by g;. [ |

Proof of (16.4). The Hodge decomposition asserts that

H(X,Z)" ®C=HYX,Z)®C = H'(X,C)
=HYo H" = (X, 0N e H(X,0) =508, .
29
Let H1(X1(N),Z) = @Z%‘, ¢; € S). Each element T € Ty represents a matrix

i=1
[T] € M(2g,7Z) (with respect to ;). We say {A(T)}reT, is a system of eigenvalue if there
exists a v € C* such that Tv = A\(T)v. Extend [T] to C* = H,(X,(N),Z) ® C. Then

i.e., {\(T)7} is a system of eigenvalue.
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We claim that V = S @ S_2V as C-vector spaces and as Tz-modules. For g € S;, we

define 9,: S; — C via Petersson inner product:

the(h) = (wng, h).

We had seen that 7% = wNng,l. Now, wnT = T*wy, so

¢T9<h) = <wNTg7 h> = <T*ng7 h>
= (wng, Th) = y(Th) = (1,0 T)(h).

This shows that ¢: S, — Sy is an isomorphism both as C-vector spaces and as Tz-

modules. Now, let

V— S as)

@' —— (X 20, 3 2'%;) .
This is injective: if Z 2 = Z 23, = 0, then Z Re(2")p; = Z Im(z")¢; = 0. Since
¢; are linearly independent over R, Re(z') = Im(z") = 0, as desired.
Hence,

VS oS 28/ a8,.

By a simple result, S, has the same system of eigenvalue with S, (by Nakayama lemma).

Finally, let f € §3°¥. By Arkin-Lehner-Li,

fo(r) =Y d filwir),

i

where f; is new of level M;, n;M; | N. We get
=Y )T ().

If f7 is not new, then it is old since it is an eigenform. Then M; < N for each ¢, and thus

f is old, a contradiction. [ |

17 Abelian variety associated to an eigenform

Let f € S3(I'1 (V)" be an eigenform. Then we have a ring homomorphism A;: Ty — C.
Let Iy = ker A\y. Then Tz/I; = Im Ay = Z[{a,(f)}] € Ky = Q[{an(f)}]. The rank of
Z{a,(f)}] is equal to [K : Q.
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Definition 17.1. Consider the action of Tz on J;(M}), where f is a new form of level

M;. We define

A=, 01

Proposition 17.2. In fact,

\Y% \%
Ap = Sa sy o Vf/Af,

Vi=(f7)CS2

where Ay = H 1\Vf. This is a complex torus of dimension [K; : Q).

Corollary 17.3. There is a natural isogeny

Ji(N) — P AT™,
f

where the direct sum sums over equivalence classes of new forms f € Sy(I'1(My)), and

my = Oo(N/Mf).

Proof. We know that Sy(I'1(V)) has basis
By(N) ={f(nt) | f is new, n| N/My, o: K; — C}.

To construct isogeny, for each (f,n), let o1, ..., 04: Ky — C be all the embeddings, and
let
\I[f’ni Sg(rl(N))V — va

by sending ¢ to
¥: [P = e(nf7 (n7).
It maps Hy(X1(N),Z) — Ay since for ¢ = [, then
v =n [ Fonar= [ 1
where a(7) = na(r).

Let

U=]]¥m: S — PV =Puy)em.
fin fin f
This is an isomorphism by using the fact that B, is a basis. Then

N VVyems 1764 ®my
Jl(N)—®( r) /Hl(Xl(N),Z)_»@< f/Af> ’

and both sides are of same dimension. [ |
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By construction, the Hecke action induces, for pt N,

Ji(N) —2— J;(N)

J |

B A, @D 4y
fn fn

By isogeny, the reverse map also commutes with 7,,.

Definition 17.4. For I'4(V), everything works with A; replaced by
/ — JO(Mf) o~ VV
Ay 7T 3o(My) = N

Here, Vy = (f?) is the same, but A, = Hy(Xo(N),Z)|y,. We get a surjection (isogeny)
Ay — A, Then

Jo(N) — €D Ay
f

is an isogeny.

Theorem 17.5 (Modularity conjecture over C). Let E be an elliptic curve with j(E) €
Q.

Xc¢ There exists N € N such that X,(N) surjects E.

Jc There exists N € N such that Jo(N) surjects £ (which implies X¢ by Abel-Jacobi,

conversely, by the construction of Pic?).

Ac There exists a new form f € Sy(To(NN)) for some N such that A surjects E (which

is equivalent to J¢ via isogeny, though the N involved are different).

Our next goal is to change C to Q.

18 Universal elliptic curve

An elliptic curve over an arbitrary field & is a tuple (X, py), where X is a smooth projective
curve over k of genus 1 and pg is a point in X (k), i.e., an abelian variety of dimension

1. Consider the set of N-torsion points X[N] of X. We know that X[N] = (Z/NZ)?* if
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chark = 0 or chark | N and X[p| = Z/pZ or 0 if chark = p > 0 (cf. Hartshorne IV
Exercise 4.8).

Recall that

9
] = 1728 —————.
i) 95 — 2793
Let j(7) # 0, 1728. Consider

C/A (pug‘)/) PZ.

The image of this map is Ej) and is equivalent to (u’Z,u’y), where 7, ¥ is given by

(G2, 93) = (g2/u*, g* Ju®). Pick v* = ¢° /¢, we get

g 2
SRR T DT,
i.e., E; is defined by the equation
275 274

~2 ~3
=4z’ - —— < 7
ST T T st T s

which lies in Q(j). In particular, E; is defined over k if and only if j(7) € k for any k
with characteristic 0. Also, can get canonical generator 7/N, 1/N of C/A.[N]:

Pr = (u"p(r/N),u”¢/(/N)), Q- = (u*p(1/N),u”*¢/(1/N)).

Definition 18.1. Let

i) =20 (ST ir).

This is a weight 0 modular form with respect to I'(N). Also,

fo(y() = £ (7)

as before. Let
N-1

+(0,1 +(1,0 0,d
=t =Y fo=1"0% fo= S0 R0

Proposition 18.2. We have
(a) C(X(N)) =C(y, {fgw}) = C(J, f1,0, fo1),
(b) C(X1(N) = CG {f7 ")) = CG, fo),

(c) C(Xo(N)) =C(j, fo) = C(j, jn), where jn(7) = j(NT).
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Proof. We have
C(j) = C(X(1)) € C(5, {fz"}) € C(X(N)).

Consider the action 6: SL(2,Z) — Aut(C(X(N)), f — for. We claim that kerf =
{£I}T(N). The “D” side is trivial. For g € kerf, g fixes f;" shows that v = +uvg
for all v and hence g € {£/}I'(IV). By definition, the Galois group is #(SL(2,Z)) =
SL(2,7Z)/{£I}T(N). But both C(j,{f;*}) and C(j, fi,0, fo1) have fixing group 1. So
both are equal to C(X(N)). (b) and (c) could be done similarly. [

Proposition 18.3. (i) {fi"} are universal N-torsion z-coordinates, hence

C(X(N)) = C(j, 2(E4[N]))-

(ii) Moreover, y(E;[N]) is given by

go(7) =+ (g?(7)>3/2 ¢ (CUT; dv;T) ,

defined on a double cover of X (N).

C(j, E;|N]) is Galois over C(j), with Galois group SL(2,Z/NZ).

Proof. We use N(p) to denote the divisor supported on p with multiplicity N, and use
[N]p to denote p + - - - + p, which is a point, under addition law. Using the addition law,

we can write

¢N(xay) CUN(ZL’,y> >
wN(I7y)27 ¢N($7y)3 7

where ¢y, wy, YN € Z[g2, g3, x,y|, and JN = IDN/?JHN%2 € Z[g2, g3, x].

Ny = (

Hence, [N](x,y) is the group identity Og if and only if JN(:E, y) =0. So

N(gagafétv) = 07

27

————— is true for j # 0, 1728, and hence true for j = 0, 1728. [
J — 1728

where g =

Theorem 18.4. The degree of the map [N]: E — E is N°. If chark { N, then [N] is

unramified, and hence

E[N] = (Z/NZ>2 .
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Corollary 18.5. If K/k is Galois and contains all z, y coordinate of E[N]\ {Og}, then

addition law is defined over Q(gs, g3) C k. Hence,
Cal(K/k) —— GL(2,Z/N7),
o —— [(o) = ()]

is a 2-dimensional representation.

Fix a point py € E, we see that

E —— Pic’(E)

pr———"—>P—Po

is an isomorphism. We define the algebraic Weil pairing
en: E[N] x E[N] — un

as follows (assume that char k = 0): let (fg) = N(Q) — N(0g) — [N]Q = 0. We have

(foo =N > R- NZ N Y (Ro+8)—(9),

[NJR=Q SEE[N]

and fq o [N] = g§ for some go € k(E). For any X € E,

9a(X + P)" = fo([N]X + [N]P) = fo([N]X) = go(X)"".

Finally, we define
go(X +P)

B =)

c uN.

Proposition 18.6. The Weil pairing ey is bilinear, alternating, nondegenerate, Galois

action compatible, functorial.

Proof. Since

9o(X + P+ P)

en(PL+ P, Q) =

90(X)
_gQ(X‘f‘Pl‘f'PQ).gQ(X—FPQ)_e e
 go(X + Py) go(X) VP Qe @)

ey s left linear. To show that it is right linear, we let (h) = (Q1+Q2) — (Q1) — (Q2)+ (0r),

ie.,

(}E—}Z) N
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Le., fQ1+Q2 = ClefQ2hN' Hence, 9o1+Q2 = c/ngng(h © [N])> SO

g0 (X + P)go,(X + PR(NIX + [N]P
en(P Qi+ Q) = dan (X) g0, () R((N]X)

= eN(Pa Q1)€N(P, Q2)-

We see that .

(H fo(X + MQ)) = S (N[L - n]Q — N[-n]Q) = 0

n=0

since [N]Q) = 0. So the function is a constant. Hence,
N-1
I] 9o(X + Q)
n=0
is also a constant, where [N]|Q" = Q. At X and X + Q' they are equal, hence

90(X) = go(X + [N]Q') = go(X + Q),

e, en(Q,Q) = 1. If ex(P,Q) = 1 for all P € E[N], i.e., go(X + P) = go(X). Then
g = h o [N] for some set theoretic function h. We show that h € k(E). Let 7*: E[N] —
Aut k(E) by translation. If P € ker 7%, then (fp) = N(P) — N(0g) and

fr(0p) = (7pfP)(0r) = fp(P)

shows that P = 0, i.e., 7" is injective. Now k(E) is Galois over k(E)™ EIVD with Galois
group isomorphic to E[N]. The fixed field contains [N]*k() = {h o [N] | h € k(E)} with

[k(E) « [N]"R(E)] = N?,

and hence equal. Now g lies in the fixed field, hence gg = ho[N] for some h € k(E). R

19 Function fields over

Fix E;, where j is a transcendental variable, still have for (z,y) € Q(j)z. We have

Q) € QU E5IN]) € QG4

~—

and Q(j, E;[N]) is Galois over Q(j). Let

Ho = Gal(Q(uw, j, £;[N1])/Q(4))
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and
Hy —2— GL(2,Z/NZ)

o — [(o) = ()]

for P, @ an ordered basis of E;[N]. We define u” = u® for all y € py. If o fixes
E;[N], then it fixes py as well. So py C Q(j, E;[N]).

Let

Houy) = Aut(Q(, £5[N1)/Q(un, 7)) € He.

Then we have the diagram

Hy —2— CL(2,Z/N7)

J J

Hoguy) —2 SL(2,Z/NZ).
We had seen that p; is surjective over C:

Lemma 19.1. For field extensions k, F' over f, if F//f is Galois, then kF'/k is Galois
with Galois group

Gal(kF/k) = Gal(F/kN F).

Proof. Let o: kF — kF be an embedding fixing k. Restricting it to F' — F fixing kN F.
Since F/f is Galois, F/k N F is Galois. So 0: F — F and o: kF' — kI, i.e., kF/k is

Galois. Hence,

Gal(kF/k) — Gal(F/k N F) C Gal(F/ ).

This is injective since o fixes F' implies o fixes kF'. This is surjective since the fixed field

of F under the image of this map is kN F'. [ |

Corollary 19.2. The group

Aut(@QUuv 7)) = (Byg)

and both p, p; are isomorphisms. The intersection

C() N QG E;[N]) = Quw, j)-
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Proof. Apply the lemma to k = C(j), F = Q(j, E;[N]), f = Q(un,j). Then kF =
C(j, E;[N]) and we get

SL(2,Z/NZ) = Gal(kF/k) = Hguy).

There is also an inclusion p;: Hg.y) — SL(2,Z/NZ). Since they are both finite groups,

these maps are isomorphisms. This shows that
C(7) NQ; E;[N]) = Qun, 5)-
Intersect this with Q, we get
QNQG, B[N]) = Q(ux).

So
|Ho| = |Houy)| - (Z/NZ)*| = |GL(Z/NZ)|

shows that p is an isomorphism. |
Theorem 19.3. Let Q(j) C K C Q(j, E;[N]) with
K = Gal(Q(j, E;[N])/K).
Then KN Q = Q if and only if det p: K — (Z/NZ)* is surjective.
Proof. Note that KN Q = Q if and only if K N Q(uy) = Q by
QN QG B[N]) = Q(ux).

Since Hg permutes py via det p, so KN Q = Q if and only if det p: K — (Z/NZ)* is

surjective. [

20 Rationality

Last time, we prove that X (V) is defined over Q(uy). Let

KOZQ(j7fO)7 KE):@(%]N)a K1:Q<j7fl>7
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so that Ko ® C = K ® C and K; ® C are the function fields of Xo(N) and X;(N),
respectively. We get

Q(y, E;[N])
P N
Ko Ko Ky
\@(\,) -
J)s

and we know that Q(j, E;[N]) is Galois over Q with Galois group GL(2,Z/NZ). Since
foov =1y

we see easily that

Proposition 20.1. The subfield K, = Kj € Q(j, E;[N]) and corresponds to
{(§4) € GL(2,Z/NZ)},

and K; corresponds to

{£(a%) e GL(2,Z/NZ)}.

Hence,
detp: K; — (Z/NZ)X

is surjective, 7 = 0, 1. It follows from (19.3) that Ky, K; are function fields over Q.

Definition 20.2. Denote the corresponding algebraic curves of Ky, K; by Xo(NV)alg,
X1(N)ag-

Proposition 20.3. There is a canonical isomorphism

Xi(N) = Xi(N)ag ® C

Proof. For C = X((N)alg, say

QC) = QG fo) = WL py .

where P is the monic minimal polynomial of f,. Tensoring this with C, we only need to
show that P(y) is also a minimal polynomial in C(j)[y]. This follows from the fact that
Ko/Q(j) and Ky ® C/C(j) have same degree. |
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Definition 20.4. The planar model XZ-(N)EEWr of X;(N)ay is its birational projection

in @2 defined by polynomial ¢(x,y) associated to P(y).

We denote by

von(z,y), Pn(z,y), @in(T,Y)

the corresponding polynomials of fy, jn, f1, respectively. It could be shown that
Oy(w,y) = —(y —2)(2® —y) + 2" 3-3L-ay(w +y) + - .

If we only care about the equation over QQ, note the moduli problem, then the coefficients
can be much smaller, e.g., no equation if g(Xy(N)) = 0. For g(Xo(N)) = 1, we get an
isomorphism, e.g.,

Xo(11)ayg : v* +y = 2° — 2° — 10z — 20.

Theorem 20.5 (Modularity conjecture). Let E be an elliptic curve over Q.

Xg There exists Xo(NV)a, that surjects E over Q. Define the analtric conductor to be
the smallest V.

e There exists Jo(IV)ay that surjects E over Q.

e There exists some new form f € Sy(I'o(NV)) such that A ). surjects £ over Q.

Here, we assume that Jy(NV)ay is defined over Q, and we need Hecke operators over

Q. We first deal with isogeny: let ¢ = k(E[N]), C C E be a finite subgroup. We have

C —L— Aut({(E))

pr——[f = fom),

which gives £(F)“ C ¢(E) that corresponds to the quotient £ — E/C. It follows from

Hurwitz formula that E/C' is an elliptic curve over /.

Theorem 20.6. Isogenies between elliptic curves over k is an equivalence relation, i.e.,

for each ¢: E — E', there exists ¢: E' — E such that ¢ o 1) = [deg ¢] and

Y, = ¢*: Pic’(E') — Pic’(E).
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Proof. Let C' =kerp, N = [C|. We get 7, for p € E[N] on k(E) and the diagram

k(E)

K(E') —2— k(E)°

k(E)EIN,

[N

~

k(E)
This gives us an inclusion k(E) — k(E'), i.e., the map ¢* for some ¢: E' — FE over k.

This shows that ¢* o " = [N]*, i.e., ¥ o = [N]. |

Example of Q-points: Consider I'g(N) -0 € X,(N), which is a Q-point for each N by

induction on N. Indeed, consider
. X()(Np) — Xo(N)

Let P = I'o(Np)0, Q@ = To(N)0. The ramification index ep is p since S™'To(M)S =
(M), where S = (, ~!), implies that the width is M, and hence ep = Np/N = p. The
degree

p if p| N,

p+1 ifptN.

P ifp| N,
o {p< ) 1

So

p(P)+ (F) ifptN,

for some P’ # P. For each o € Aut(Q), (7*(Q))’ = 7*((Q)?) = 7*(Q) by induction. So

(P) is o-invariant, i.e., P is rational.

Hence, if g(Xo(N)) = 1, then there exists a unique new form f € Sy(T'o(NN)) and

isomorphisms of elliptic curves over Q:
Xo(N)atg — Jo(N)atg — A}’alg.

More generally, for any weight 2 rational new form f, A}’alg is modular elliptic.

Recall that
()L 1(N)T =T1(N)y(7),
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where v € I'y(N) such that d, = d (mod N). We see that j(y(7)) = j(7) and

+(0,1 +(0,d
for(y(7)) = foi2V7 = fr9,

ie., [E;, Q] — [E.,£[d|Q]. The group

(§39);
also fixes £[d]@. Hence, (d) is defined over Q.

Recall that

CCE,|C|=p
cn{Q)=0

Since E/C is defined over ¢, where H = {o € Gal(¢/k),o(C) = C}. We see from the
expression of 7, that the RHS is invariant by the whole Gal(¢/k). Hence, T, is defined

over Q.

21 Elliptic curves in any characteristic

Let E be an elliptic curve over k. We may assume that £ is defined by
y? + ayay + azy = 2 + apr® + agxt + ag.

The universal elliptic curve for all field & with invariant j is £, defined by
36 1

J_1728 " T 1728

Y +ay =1’ —

We see that A = j2/(j — 1728)°.

22 Introduction to Galois representation

Let F/Q be a Galois number field with Galois group G, p a prime in Z. Since F is Galois

over Q, we may write

in the Dedekind domain Op with F,, = Og/p; = F,r. We know that e # 1 only for finitely
many p’s. So [F : Q] = efg. The decomposition group D, is the stabilizer G,. It has
order ef and gives an action on F,,. The inertia group I, is the kernel of the action, which

has order e.
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Lemma 22.1. There is an isomorphism

DVJP — Gal(F,/F,) = Z/fz-

Definition 22.2. A Frobenius element Frob, € G is any representative of such a gen-

erator o, € Gal(F,/F,).

In particular, for each o0 € G, Do = a_lea, similarly for I,-, Frob,.. So we denote

by Frob, the conjugacy class of Frob,.

Theorem 22.3 (Weak Chebotarev). For each o € G, o = Frob,, for infinitely many p.

Example 22.4. (1) Let F = Q(Vd), d € Z a square-free integer. Then G = Z /27,
4d ifd#1 (mod 4)
d else,

O =7Z5(A+ VA)]. Frob, acts as VA" = APD/2V/A. For p # 2, this is just the
Legendre symbol.

(2) Let F = Q(pn). For pt N, p over p, Fy, = F,[un]. The Frobenius element Frob, is
just pn — phy. The map
G —— (Z/N7Z)*

maps Frob, to p mod N.

(3) Let F = @(\3/8, 3), where d is cubic-free. Then G = Ss. Its conjugacy classes are 1-1

correspond to their order. To compute Frob,, need
(

p1---ps ifp=1 (mod 3), dis a cubic modulo p

(p) = pP1p2 if p=1 (mod 3), d is not a cubic modulo p

| P1P2Ps ifp=2 (mod 3),

i.e., it consists of elements in S3 with corresponding order 1, 3, 2, respectively.

In all examples (1), (2), (3), Dirichlet’s arithmetic progressions theorem shows that
there exists infinitely many p for each ¢ with o € Frob,. More precisely, conjugacy class

with k elements has density of p = k/|G].
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Now, in (3), let
G=S; — GL(2,Z)

(123) —— (5 24)

(23) —— (16)-
Then trp(Frob,) = 2, —1, 0, respectively. This coincides with a,(C) = a,(0,(7)) €
S1(3N?,4), where a,(C) = #{2* = d (mod p)} — 1, N = 3[1,ap- detp(Frob,) =
p (mod 3). This coincides with (p), i.e., the Galois representation p arises from the
normalized eigenform 6,,. Namely,

L<S’9X):H1—ap(0

P

1
P+ x(p)p2

Let
Go=Gal@/Q) = lim Gal(F/Q).

F/Q: Galois

This is a profinite group with Krull topology, i.e., the fundamental system of neighborhood
at 1@ 1S
U(F) := ker(Gg — Gal(F/Q)).

For any maximal ideal p C Z over p € SpecZ, we get D,, I,, Frob, similarly. The
Chebotarev density theorem asserts that {Frob,} outside NV € N is dense in Gg.

Definition 22.5. Let K be a number field over Q, let

(0 = H Y

N\l
Then the A-adic integers are

Its quotient field is denoted by K, which is an extension of Q.

Now any Galois representation
p: Gog — GL(d,C)

has finite image, e.g., for d = 1,

Gy —— C*

|

Gal(F/Q),
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where F/Q is abelian. By Kronecker-Weber theorem, we can take F = Q(uy). So we get

p: Gal(Q(un)/Q) = (Zryg)” 2 €,

a Dirichlet character. We have p(Frob,) = x(p) for p{ N. Also Im p lies in some Ok .

Definition 22.6. An /-adic Galois representation is a continuous homomorphism
p: Gg — GL(d,L),

where L. = K, is a finite extension of Q,. We say two representations p and p’ are

equivalent if p'(c) = m™*p(c)m for all o for some m.

For example, the embedding Q(jus~) — Q gives us a map
GQ — GQg = Z; ,
and get f-adic cyclotomic character

Gg —— Q;

o —— (my),

where p1g, = pya". x¢ is continuous since

Xe (0" Zg) = U(Q(pen)).

Also, x¢(Frob,) = p for p # £. In particular, Im p is infinite.

Definition 22.7. We say a representation p is unramified at p if I, C kerp for each
p | p. In this case, p(Froby) is well-defined. Moreover, its characteristic polynomial

depends only on p.

Proposition 22.8. A representation p: Gg — GL(d, L) is equivalent to a representation
p’: GQ — GL(CZ, OL)

Proof. Let V =1L% A = Of CV a compact subset. Since Gg is compact, A x G under
V x Gg — V via p has compact image A’ that contains A. Take r such that A" C A7"A.
We see that A’ is free of rank d since Oy, is a PID. Now, Gg maps A" — A’. So any Oy,

basis of A’ gives the expected p'. [ |
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Let E be an elliptic curve over Q. We have
[0]: E[¢"] — E[(" 1]

for each n.

Definition 22.9. The Tate module

T,(E) = lim E[("] = 73

Now, consider

Gy —— Gal(Q(E[("])/Q) —— Aut E["] —— GL(2,Z/("Z).
We get PE: GQ — GL(Q, Zf)

23 Modularity conjecture for a,

Theorem 23.1. For an elliptic curve E over Q, there exists f € So(I'o(Ng)) such that
a,(f) = a,(E), where N is the conductor of E.

Galois representation is the tool to link these two worlds!

Theorem 23.2. The map pg, is unramified for each p { N, where N is the conductor
of E. For p | p, the characteristic polynomial of Frob, is 2% — a,(E) + p. Also, pg is

irreducible (but not necessarily absolutely irreducible).

Proof. The diagram
D, —2— Aut E[("]

| !
Gp, — Aut E[ﬁ"]
shows that I, C ker ¢,, for all n, and hence I, C ker pg .
det pp (o x¢(0)

Since fign = fign ) by Weil pairing, and on the other hand, pg. = pp.’, where x; is
the (-adic cyclotomic character, we get det pg (o) = x¢(o). In particular, det pg ¢(Frob,) =
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p for local components. For trace, since
A2 — (trA)A+p =0,
trA= A+ pA~". But o, acts on E[("] as Frob, acts on E[¢"], we get

trA=o0,+4po," = op + 0 = a,(E).

For the irreducibility, in fact it works for all number fields K. It needs Shafarevich’s
theorem: for S a finite set of places in K, the set of isomorphism classes of £ with good

reduction outside S is finite. This can be proved by Dirichlet’s unit theorem.

This implies that there exists only finite isomorphism classes of elliptic curves £’ over
K isogeny to E over K. Indeed, two isogeny elliptic curves have the same places of good

reductions.

Also, if E has no complex multiplication, i.e., End(E) ; Z, then for f;: F; — E with
C; = ker f; cyclic and Cy 2 Cs, By % Es over K.

If V, = T, ® Qy is reducible, then there exists an 1-dimensional subspace Y C V} fixed
by Gg. Then X =Y NT, = Zy and X/("X = X,, C E[("] for each n. This shows that
Xy, hence E/X,, is defined over K. The dual isogeny of F — E/X,, also has kernel being
cyclic of order ¢". In particular, £/X,, are not isomorphism for all n by the fact above.

This contradicts Shafarevich’s theorem. [ |

Consider
Pic(X; (V)] —255 Pic? (X, (N)e) ("] 2 (L/png) ™.
The modular curve X; (V) has good reduction at pf N/, and hence the reduction map is
surjective. This tells us
Pic’ (X (N))[¢"] —— Pic”(X1(N))[¢"]
is surjective. In fact, it is an isomorphism. Define the Tate module
Ty(N) := T,(Pic’ (X, (N))) = Z.°.

Since Q(Pic’(X1(N))[¢"]) is Galois over Q for each n, with compatible Gg-action, there

is a map

PX1(N),b

GQ GL(QQ,Z@).
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Recall the Hecke algebra Tz = Z[T},, (n)] acts on Pic’(X;(N)) and hence acts on £"-

torsions. Since the Hecke operators are defined over Q, it commutes with Gg-action.

Theorem 23.3. The map px,(v), is unramified at each p { {N. For such p | p, v =
px.(n)(Froby,) satisfies
z? — T,z + (p)p = 0.

Proof. By Eichler-Shimura relation,

T, = 0p + (p)o;, = Frob, +(p)p FI“Ob;I
on Pic’(X1(N))[¢"]. Write F' = Frob,, we get
F? — (F + (p)pF")F + (p)p = 0. n
To connect to modularity conjecture for a,, need to go from Pic’(X) to a normalized
eigenform f S SQ(N,X) Let If = {T € TZ | Tf = O}, Af = Jl(N)/Ifjl(N), Of =

Tz/Iy = Z[{a,(f)}]. The dimension of the quotient field Ky of O over Q is equal to
d = dim A;. We get an action of O on

To(Ay) = lim Ag[0") = Z;.
Lemma 23.4. The kernel of Pic®(X;(N))[("] — Af[¢"] is Gg-stable. Hence, Gg acts

on Af[("] and get
Go 1% GL(2d, Q)

For p | p, x = pa,«(Frob,) satisfies 2% — a,(f)z + x(p)p = 0.

Lemma 23.5. In fact,
Vi(Ay) =Ty (Ay) ® Q

is free of rank 2 Ky ®g Q,-module.

Theorem 23.6. For a normalized eigenform f € Sy(N, x), a prime ¢, A | £, there exists

a 2-dimensional Galois representation

Go 2 GL(2,K;.),
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which is unramified for each p { £N. Let p | p. Then x = pj,(Frob,) satisfies 2> —a,(f)z+
X(p)p = 0.

For example, for f € Sy(To(N)), we get 2° — a,(f)x +p = 0.

24 Introduction to Wiles’ proof of Fermat’s last the-
orem (I)

Consider the elliptic curve y* = x(z — A)(z + B), where C = A+ B # 0. Then the
discriminant A = 2*(ABC)?. This means that £ has semi-stable reduction for all odd

prime p, i.e., it has good reduction or multiplicative modulo p.
For A= —1 (mod 4), 2* | B, we get

; B—-(A+1 AB ;
pmin. y2+xy:$3+ (4 + >I‘2— 16’ Amln:278(ABcf)2.

This is semi-stable for all p. Now, if a’ 4+ b* = ¢’ with ged(a,b,c) = 1, £ > 5, we may
assume that a = —1 (mod 4), 2 | b and let A = a*, B = b’ so that C = ¢’

Theorem 24.1. The map pg,: Gg — E[{] is irreducible, unramified outside ¢ and 2.

Theorem 24.2 (Ribet’s “lowering the level”). If py, is modular (of some level), then

it is modular of level M (p).

The number M (p) is given by Serre, which is 2 in this case. But S(I'g(2)) = 0 since

9(Xo(2)) = 0. So pg, is not modular, and hence pg ¢ is not modular.

Theorem 24.3 (Taylor-Wiles, 1994). Let E be a semi-stable elliptic curve over Q.
Then E is modular.

Remark. This is proved for any elliptic curve (by Breuil-Conrad-Diamond-Taylor,

2001), i.e., the full Taniyama—Shimura—Weil conjecture.

The proof contains 3 steps:
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Step 1. Find mod ¢ = 3 or 5 modularity.
Step 2. Deformations of Galois representations (Mazur, 1985).
Step 3. There is an isomorphism RE™ — Ty,.

For Step 1., we get the modulo ¢ modularity by

Theorem 24.4 (Langlands-Tunnell). For an irreducible, continuous representation
p: Go — GL(2,C)

with image being (finite) solvable and det p is odd, there exists a weight 1 normalized

eigenform f in new space such that

L(s, f) = L(s, p)

up to finitely many Euler factors.

For example, if the image is S5, this is 0,. If the image is D, it was given by Hecke

via theta function. The proof of (24.4) uses trace formula for modular forms.

Proof. Given any E over QQ, consider
pes: Go — GL(2,F3) —— GL(2,Z[v—2]) —— GL(2,C).

We note that GL(2,F3) is solvable. If pp, 5 is irreducible, then it is absolute irreducible by
number theory. Then (24.4) implies that there exists a new form f € S&;(M, x)"" that
corresponds to p. Recall that

BE{ =14 auq", a, € 3L

n=1
is a Hecke eigenform. Let

g=3E]" f € S(To(3M)).
For A = (14+v=2) | 3, a,(f) = a,(E) (mod \) by (24.4). Then g = f (mod \) too.

Although f and Eiz’ 1 are eigenform, this does not imply ¢ is one. By Deligne-Serre’s

lifting lemma, we can modify g to get ¢, which is a new form.

If pg 5 is reducible, then Wiles showed that pp 5 is irreducible. In fact, Wiles dis-
covered that Y;(15)(Q) has exactly 4 points and all of them are not semisimple but are
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modular elliptic curves. Then he jumps to Step 2, 3 directly as long as we proved that

Pp,s restrict to G =5 is absolutely irreducible. |

For Step 2, if we are given a absolutely irreducible representation
p: Go — GL(2,k),

with chark = ¢ an odd prime (which is 3 or 5 in our case) such that detp = € (mod /)
(where € is the f-adic cyclotomic character, see the paragraph after (22.6)) and p is semi-
stable, i.e., either p|g, is semi-stable (where Gy = Gal(Q,/Qy)), i.e., good or ordinary
(there exists a short exact sequence 0 — M’ — M — M" — 0 with I, acts on M’ as €
and trivial on M"), or [p(I,)| | € if p # ¢.

Let O be a complete Noetherian local k-algebra with O/mp = k, Co the category
of complete Noetherian local O-algebra R with section R — . Let 3 be a finite set of

primes. A deformation of p is of type X if for R € Co, p mod mp = p and
o detp =c¢;
e p|g, is semi-stable (good or ordinary);

e p is “as unramified as possible” at p ¢ ¥, i.e., if £ ¢ ¥ and p|g, is good, then plg,
is good, and if p ¢ X U {¢} and p is unramified at p, then p is unramified at p or

pl, ~(61)-

In this case, we have

Theorem 24.5 (Mazur). There exists a universal lifting
pE™: Go — GL(2, By)

of type ¥, i.e., any p: Gg — GL(2, R) arises from Ry — R, such that Ry, can be topolog-
ically generated by Hy(Q,ad"5) elements as O-algebra. Moreover, for given 7: py — O,

univ

this may be computed from the special representation p = m o py"" via
Hom(p/p®, K/0) = Hy(Q,ad’ p @ K/0O),

where p = ker m and K is the quotient field of O.
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Now, suppose the given p is modular, i.e., a modulo ¢ representation of some new

form. p gives arise to a set ¥; where p is unramified at p if p € 35\ {¢}.

Wiles” method is to show that p is modular via

QOEZRE » TE’ )TE:HOf,
!

where f runs through a new forms such that it gives p modulo ¢.

25 Introduction to Wiles’ proof of Fermat’s last the-
orem (II)

For Step 3, Wiles showed that ¢y is an isomorphism. He first reduce X to case ¥ = & by
his “numerical criterion”, and Taylor—Wiles proved the case Ty by their criterion, which

requires to prove directly that T4 is a complete intersection.

For an object m4: A — O, let p4 = ker m4. The basic invariants are (1) the cotangent

space p4/p%, and (2) congruence ideal 74 = m4(annp4) < O.

Definition 25.1. Let A be a finite flat O-algebra, which is a finitely generated free

O-module, hence dimp A = 0. In this case, A is a complete intersection if

A2 Oz, xall/ s s fo)-

Theorem 25.2 (Wiles’ numerical criterion). Given ¢: R — T over O, finite flat with
nr # 0. Then £(pr/p%) > £(O/nr) and the equality holds if and only if ¢ is an isomor-

phism of complete intersection.

Remark. This works for any field &£ (not just finite field). The proof uses fitting ideal,

Koszul complex, and Tate’s formula for complete intersection.

Wiles applies it to px — Ty with Mazur’s formula, for np, use Weil pairing, to

reduce to the case X = @.

For ¥ = &, R = Ry /mpRy a k-algebra, N = Ny = Al H p, where 6 = 05 g00d-
p|N(o)
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The Hecke algebra T acts on
Hl(X,O) :Hl(X,Z)®O:T@(JQ(N)) ®Z[ O, X:Xo(N)

p comes from f modulo ¢ if and only if m = ker(T = Ty Ay Fy) is an maximal ideal. A

fact is that Ty = T,,.

Theorem 25.3. The followings are equivalent:
(a) Hi(X,O)n is free over Ty;
(b) Ty is a complete intersection;

(¢) ¢g is an isomorphism.

Remark. The proof need Taylor-Wiles’ criterion: let chark = ¢ > 0,
Jn=(1+s)" =1,...,(1+5,)" = 1) <O[[s1, ..., 80]].

Given

Ollz1,. .. 2] ———— R —2" % T

| |

R—*% T
such that Ry /JoRm = R, Ty/JoTw = T, and Ty, /J,, Ty is finite flat over the ring

Ol[s1,- -, 5n)]/Jm. Then ¢ is an isomorphism between complete intersection over O.
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