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1 Introduction, 9/5

Sample Problems:

1) Given two matrices A, B € M,,«,(C), tr[A4, B] = 0, where [A, B] = AB — BA is the
Lie bracket. Conversely, if tr C' = 0, can we find A, B such that C = [A, B]?

2) We know that ee? = eA*8 when [A, B] = 0, where

© Ak
oA = A
: R
k=0

If [A, B] # 0, what should be the RHS? (Baker-Campbell-Hausdorff formula)
Dynkin’s formula: for X; € M,,»,,(C), define
[xny L 7:61] = [1:717 [:Unflu s, To, xl“

recursively. More generally, define

[xg"),...,xyl)} = [:Cn,...,xg,...,@,...,xﬂ.
in in
Then we have eXe¥ = ¢Z, where
T o BT
R ST o T S S M (RYFLEREE MY

3) Consider the PDE: Au+¢e* =0 on U = By(1) C R% Liouville: The solution can be

explicitly written down! (integrable system).

More generally, consider ugy, ..., u, := U — R such that

Aui + Z aije”j =0.
j=1




Can the solution be written down explicitly (locally)? Toda: Yes, if A = (a;;) is the

Cartan matrix of a simple Lie algebra.
Let V' be a vector space over a field F'. For s, t € End(V'), we define
[s,t] = st —ts.
We have the Jacobi identity:

(s, [t, u]] + [t, [u, s]] + [u,[s,t]] = 0.

Definition 1.1. A Lie algebra L is a vector space over F' with a bilinear map
[—,—]:LxL—L

such that [z, 2] = 0 for each x € L and [—, —| satisfies the Jacobi identity.

A Lie algebra homomorphism ¢ : L. — L' is a linear map over F satisfies

e([z,y]) = [p(x), 0(y)].

A subspace K C L is a subalgebra of the Lie algebra L if for each z, y € K, [z,y] € K.
A subspace K C L is an ideal of L, denoted by K < L, if [z,y] € K for each x € K and
ye L.

If K is an ideal of L, we can define the quotient Lie algebra L/K with the natural
Lie bracket [z,7] = [z,y]. For a Lie algebra homomorphism ¢ : L — L', ker ¢ is an ideal,

and there is a Lie algebra isomorphism L/ kerp = Ime C L.
(Classical Lie algebra:

For a vector space V', we define gl(V') = (End(V), [—, —]), where [z,y] = 2y — yz. If
V = F", we write gl(V) = gl(n, F') = My,xn(F).

There are 4 special types of classical subalgebra of gl(V):
» Ay special linear Lie algebra. dimV =0+ 1, Ay =sl(V) = {x € gl(V) | trz = 0}.

e By orthogonal Lie algebra. dimV = 20+ 1, B, = {z € gl(V) | 2TA + Az = 0},

where A is the bilinear form

I,




o Cy: symplectic Lie algebra. dimV = 2¢, Cy, = {x € gl(V) | 2T A + Az = 0}, where

(0 ")

o« D, orthogonal Lie algebra. dimV = 2¢, D, = {z € gl(V) | 2T A + Az = 0}, where

(")

Note that for z, y satisfying 27 A + Az = yT A + Ay = 0, we have

A is the bilinear form

A is the bilinear form

[z, y]"A + Alz,y] = 0.

Remark 1.2. Let T : R”™ — R" be a orthogonal transformation. Then (T'a, Tb) = (a, b).

An infinitesimal orthogonal transformation then satisfies
(xa,b) + (a,zb) =0,

which is equivalent to 27 +z = 0

A representation, or a module, of a Lie algebra is a Lie homomorphism
o: L — gl(V).

Can you find one? Yes, the adjoint representation

L —=24 5 gl(L)

x—— adx = [y — [z,9]].

Definition 1.3. The center of a Lie algebra L is

Z(L):=kerad={y € L|[r,y] =0, Vo € L}.

There is an embedding L/Z (L) < gl(L).

Definition 1.4. For a Lie algebra L, define L® = [L0=D LO-V] recursively, where
L? = L. The sequence
L=LO>r®>r®@ ...




is called the derived series of L.

We say L is commutative (or abelian) (resp. solvable) if L") =0 (resp. L™ =0

for some positive integer n).

Note that L™ is an ideal of L and L/L® is commutative.

Definition 1.5. For a Lie algebra L, define L' = [L, L*~!] recursively, where L' = L.

We say L is nilpotent if L™ = 0 for some positive integer n.

2 Three giants, 9/7

From now on, we will assume that the Lie algebras are finite dimensional.
Let
t(n, F) = {z € gl(n) | x is upper triangular },
n(n, F) = {x € gl(n) | x is strictly upper triangular },
o(n, F') ={z € gl(n) | = is diagonal }
Then t(n, F) is solvable, n(n, F') is nilpotent and d(n, F') is commutative.

We say a Lie algebra L is ad-nilpotent if ad x is nilpotent for each L.

Theorem 2.1 (Engel). An ad-nilpotent algebra is nilpotent.

Theorem 2.2 (M). Let L C gl(V) be a Lie subalgebra. If a is nilpotent for each a € L,
then there exists a (simultaneous) 0-eigenvector of L.
Proof. Induction on dim L for all V. The base case dim L = 1 is trivial.

If dimL > 1, take any K ; L subalgebra. Consider the adjoint representation
ad : K — gl(L). Then ad z is nilpotent for all z € K (also on gl(L/K)). Indeed,

2n—1 __

" =0 = (adx) = (v —ar)™ ' =0.

The induction hypothesis tells us that there exists a zero eigenvector 7 = z + K of “K”

4



(under ad), i.e., [y,z] = (ady)x € K for each y € K, or equivalently, K is a proper ideal
of NL(K)

Pick K to be a maximal proper Lie subalgebra of L, we see that N (K) = L, i.e.,
K < L. Note that dim(L/K) = 1 (otherwise K is not maximal). Say L = K + F'z.

Let W ={v € V' | Kv = 0}, which is nonzero by induction. Then LW C W
y(zw) = z(yw) — [z,ylw =0

forx € L,y € K and w € W. Hence, z is a nilpotent element that acts on W. So there

exists a nonzero element v € W such that zv = 0. Thus, Lv = 0. [ |

Proof of (2.1). Let L be an ad-nilpotent Lie algebra. Apply (2.2) to the embedding
ad L C gl(L). There exists a nonzero element x € L such that [L,z] = 0. Hence
Z(L) #0.

The dim(L/Z(L)) < dim L and is also adjoint nilpotent. By induction on dimension,
it remains to show that L/Z(L) is nilpotent implies L is nilpotent, which follows from
the observation:

L™WczlL) = LY=o |
Corollary 2.3. Under the setting in (2.2), there exists a flag
V=WoViD---DV,=0
such that LV; C V4, i.e., there exists a basis of V such that L C n(n, F).

Proof. Induction on dimension. Pick v € V' such that Lv = 0 then consider the action of

Lon W =V/Fuv. [

From now on, we assume that F' is algebraically closed and char F' = 0.

Theorem 2.4 (Lie). If L C gl(V) is a solvable Lie subalgebra, then there exists a
common eigenvector of L.
Proof. This is clearly true when dim L = 0 or 1. Induction on dim L.

Consider the quotient

L — LJ|L, L.




Since L/[L, L] is abelian, any subspace of it is an ideal. Take K < L/[L, L] with codi-
mension 1 (note that L/[L, L] is nontrivial since L is solvable) and consider its preimage

K < L. Since K is also solvable, the subspace
W={weV|zw=\Nz)w,Ve € K} CV

is nonzero. Let us fix this A as a function on K.
Claim (Dynkin). The subspace W is fixed by L.

Proof of Claim. Let x € L and w € W. Then for each y € K,

y(aw) = z(yw) — [z, yJw = My)zw — Az, y])w.
So our goal zw € W is equivalent to \([x,y]) = 0.

Consider

W; = (w, 2w, 2w, ..., 2" w) C V.

Let r be the smallest integer such that W, = W,;. Then W,,; = W, for all positive

integer j. We claim that yz/w = A(y)a/w (mod W;):

Induction on j. The base case j = 0 is true. For j > 0,

yriw = vy’ tw — [z, y]2?tw

= (Ay)2’ " w +w') = M[z, y))a”w,
where w' € W,_;.
Hence, y € K acts on W, has
trw, y = rA(y).
This shows that for [z,y] € K,
rA([z,y]) = trw, [z, 4] = 0,

which implies A([z,y]) = 0 if char ' = 0. O

Say L = K + Fz, then we can find a nonzero element vy € W such that zvg = v,

this v is expected! [ |




Corollary 2.5. Under the setting in (2.4), L stabilizes some flag in V| i.e., there exists
a basis of V' such that L C t(n, F).

Proof. Using the theorem and induction on dim V. |

Corollary 2.6. If L is a solvable Lie algebra, then there exists a chain of ideals
O=LyCclLiCc---CL,=1L
such that dim L; = 1.
Proof. Consider
¢p=ad: L —gl(L).

Since ¢(L) is solvable, a flag is simply a chain of ideals. [ |

Corollary 2.7. If L is solvable, then ady x is nilpotent for x € [L, L]. In particular,
[L, L] is nilpotent (by (2.1)).

Proof. Since ad L C t(n, F'), we have ad[L, L] = [ad L,ad L] C n(n, F'). |

Theorem 2.8 (Cartan’s criterion). Suppose L C gl(V') is a Lie subalgebra such that
tr(zy) =0, Vexel[L,L], ye L.

Then L is solvable.

Proof. It is enough to prove adj )« is nilpotent for all € [L, L]. (This implies that
[L, L] is nilpotent by (2.1), which gives us the solvability of L. )

Let
M={zegl(V)| [z L] C[L, L]} O L.

Then for all z € M, x € [L, L], we have tr(zz) = 0: assume that x = [u, v], then
tr(zz) = tr(uvz — vuz) = tr(uwvz — uzv) = tr(ufv, z]) =0
by the assumption.

Now, let x = x4 + z,, be the Jordan decomposition, where x is the semi-simple part
and x, is the nilpotent part. Recall that z,, x, are uniquely determined and there exists

p(T), q[T] € F[T] with p(0) = ¢(0) = 0 such that x5 = p(x), =, = q(x).




Write

ai
[25]5 =
Am
with a; € F O Q. Let £ = > Qa; C F. We want £ = 0. In fact, we will show

Hom(F,Q) = 0.

Let f € Hom(F,Q) and consider

fla1)
Yy = e gl(V).
f(am)

It is easy to get

adxy(e;) = (a; —a;) -e;; and  ady(e;) = (fai) — flay)) - ey5. (7)
Find +(T) € F[T] such that
r(a; —aj) = fa;) — f(aj), Vi,j.
We see from (P that
ady = r(ads) = (r o p)(ad ).
Since (adz)L C [L, L] and (r o p)(0) = 0, we must have (ady)L C [L, L], i.c., y € M.
Then

0=tr(ey) = > afl@) L Y fa)r-0 "EL =0 .

3 Simple Lie algebra and Weyl’s theorem, 9/12

Definition 3.1. A Lie algebra L is simple if the only Lie ideals of L are 0 and L also

L is not abelian.

A Lie algebra L is semi-simple if Rad L, the maximal solvable ideal in L, is 0, i.e.,
L has no (nonzero) abelian ideal. (If I < L is solvable with I"~1) 2£ 0 and 1™ = 0, then

IV is abelian.)

Definition 3.2. The Killing form of L is
k=kr: LXL ——— F

(z,y) — tr(adxady).

This is a symmetric bilinear form on L.




e K is “associative” (anti-symmetry), i.e.,

K(x, [y, 2])

—r(ady(z),z) kK(z,ady(z)).

k[, 9], 2)

The “null space” radk = {x € L | k(x,y) =0, Yy € L} is an ideal of L. Indeed,

k(lz, 2], y) = Kz, [2,9]) = 0
for every x € rad k and y, z € L.

Fact. If [ is an Lie ideal of L, then xy, the Killing form of I, is equal to k1 |7xs-

This is easy by completing a basis from I to L via L/I.

Theorem 3.3. The followings are equivalent:

1. L is semi-simple;

2. Ky is non-degenerate;

3. L =P I; as Lie algebra, where each I; is a simple ideal of L.
Proof. 1. = 2. : Let S =rad k. Then tr(adzady) =0 for x € S and y € [S,S] = 0. By
Cartan’s criterion, ady S is solvable. Since ad : L — gl(L) is an embedding (otherwise

the center Z(L) is nontrivial, which is an abelian ideal), S is solvable, which implies

S CRadL =0.

2. = 1. : It is enough to show that every abelian ideal I of L lies in S = rad k. Let
x €l and y € L. Then

(adrady)*(L) Cadzady(l) Cadz(l) C [I,1] =0.

This implies tr(ad x ad y) = 0. Since this is true for all x and y, I C S.

1.2. = 3. : Let I be any Lie ideal of L. Then I+, the orthogonal complement of I
with respect to &, is an ideal of L by the associativity of k. Let J = I N I+. Our goal is
to show that J = 0 (this gives us the decomposition L = I & I*).

Since Ky = K|jxj, for each z, y € J we have k;(z,y) = 0. By Cartan’s criterion, J

is solvable, and hence equal to 0.




Now, for an ideal K < I, we have K < L since
L K] = [1®I*, K] = [IK] C K.

(Note that [[*+, K] C [I+,I] C J = 0.) This gives us the desired decomposition by

induction on the dimension of L.

The uniqueness of decomposition: Let I < L be a simple ideal. Then [I, L] QT and

is nonzero since Z(L) = 0. So

I=[I,I) =PI 1.
Then I = [I,I;] C I; for some i, which shows that I = I; by the simpleness of I;.

3. = 1. : If L is simple, then Rad L = 0 or L. The latter case implies [L, L] & L, so

[L, L] =0, i.e., L is abelian, which is a contradiction. Hence, L is semi-simple.

Also, we know that direct sum of semi-simple Lie algebras is semi-simple. |

Corollary 3.4. Let L be a semi-simple Lie algebra. Then L = [L, L].

Recall: ad L <Der L = {6 € gl(L) | 6[z,y] = [0z,y] + [z, éy]}. This comes from the
Jacobi identity and the formula [§, ad 2] = ad(dz).

Theorem 3.5. Let L be a semi-simple Lie algebra. Then ad L = Der L.

Recall that an L-module, or a representation of L, is a Lie homomorphism
where V' is a (finite dimensional) vector space over F.

A representation ¢ is irreducible if the only sub L-modules are 0 and V.

For a L-module V', we define the Lie action on V* = Hom(V, F') by
(- f)v) = —flz-v), VfeV"
For two L-modules V' and W, we define the Lie action on V' ® W by the Leibniz rule

r-(v@w)=(r-v)QuW+v& (- w),

10



and define the Lie action on Hom(V, W) by

(@ f)v) =z flv) = fz-v).

Theorem 3.6 (Weyl). Let L be a semi-simple Lie algebra and ¢ : L — gl(V) be a
representation. Then ¢ is completely irreducible, i.e., ¢ is a direct sum of irreducible

representations.

We represent Serre’s proof here.

Fact. (L) C sl(V) and hence = 0 on 1-dimensional L-module: since L = [L, L] and
si(V) = [gl(V), gl(V)].

May assume ¢ is faithful.

Definition 3.7 (Casimir element). Let §: L x L — F be a non-degenerate symmetric
bilinear associative form. For a basis x1, ..., =, of L, there exists a basis y1, ..., y, of L

such that f(z;,17) = 6/. For each z € L, write

w,a) =Y alzy, [ey’] =) by,
then the associativity of  gives us a! = —b!. We define the Casimir element of 3 to be
co(B) = plw)p(y’) € gl(V),
We see that
[o(x), co(B)] =D _(plalzy)e(y') + ela:)e(bly')) =0,

i.e., it is ¢(L)-linear.
For B(x,y) = tr(p(z)e(y)), we get the Casimir element of ¢: ¢, = c,(5), with
tre, = Zﬁ(xi,yi) = dim L # 0.
If o : L — gl(V) is irreducible, then Schur’s lemma implies that

~ dim L
%~ dimV

idy .

To prove (3.6), let us consider the special case first: suppose that there exists a

L-submodule W C V of codimension 1.

0 > W >V > V/W —— 0

11



The space V /W = F has a trivial action by L. Now, we induction on dim W. If W is
irreducible, then c,|w is a nonzero scalar, but ¢, = 0 on F, i.e., the kernel of ¢, : V. — W
is 1-dimensional and its intersection with W is 0. Thus, ¢, gives us the desired splitting

map.

If W is not irreducible, then there exists a nonzero proper L-submodule W’ of W

and we get the exact sequence

F > 0.

g

0 —— W/W —— V/W'
By induction, V/W' = W /W' @& W /W’ for some W and we have the exact sequence

0 s W/ s W s F

e

Induction hypothesis tells us that W = W’ @ X for some X. Hence, V = W @ X since
WnX=0.

For the general case, let W be a nonzero proper L-submodule of V.

0 > W % > V/W —— 0.

Define
vV ={f € Hom(V,W) | flw = aidw, for some a in F'}

and # its codimension 1 subspace corresponds to a = 0. Then for x € L, f € ¥, and

w € W we have

(@ flw) =z f(w) = flzw) = z(aw) — a(zw) = 0.
So there is a exact sequence of L-modules:

0 s W 4 s s 0.

The special case tells us that ¥ = # & % for some % . Let % be spanned by f such
that f|lw = 1|w. Again, L acts on % trivially, so

0=(z-f)v) ==z flv) = flz-v),

i.e., f is an L-homomorphism. Hence, V =W & ker f.

12



4 sl(2, F)-representation, 9/14
The Lie algebra sl(2, F') is spanned by 3-elements:

() ) )

Note that h is a semi-simple matrix. It is easy to see that

[h,a] =2z, [hy]=2y, [z,y]=nh

Let V' be an sl(2, F')-module. Then h acts on V semi-simply, which gives us the

decomposition V' = @, V), called the weight decomposition, where

Ww={veV|h v= v}

For v € V), we see that

he(y-v)=y-(h-v)+ -2y -v=(A=2)(y-v),
ie, y-v € Vy_o Similarly, z-v € V) o.

Consider v € V) such that x - v = 0 and the subspace
V= (v,yv,...,y"v £ 0,y v =0) C V.
To show that V,, is irreducible, it remains to show that x acts on V.
Lemma 4.1. Let v = vy, v; = y'vp/i!. Then for each i > 1,
rov;=AN—i+ 1.

Proof. By induction (as before). [

Taking ¢ = m + 1, we see that

0=z vVp1=(A—m)u,.

Hence,

Corollary 4.2. The eigenvalue A of v is equal to m.

13



Denote by V' (m) the space
Vm@vm—2@"'@v—ma

where each Vj is a 1-dimensional subspace. Then each irreducible representation of sl(2, F')

is of the form V(m), where m is a non-negative integer.
Let L be a semi-simple Lie algebra such that ad : L — gl(L) is an embedding.

Definition 4.3. A subalgebra T of L is a toral subalgebra if all its elements are semi-

simple.

Fact I. T is abelian: for x € T, take a A-eigenvector y € T of adr x(y), i.e., adr z(y) =
Ay. Suppose that A # 0. Note that y is a 0O-eigenvector of adry. Write x as a linear

combination of eigenvectors of adry. Then adry(z) = —Ay gives us a contradiction

(adry(y) = 0).

Fix such a T, call it H. Then ad; H is simultaneously diagonalizable (since H is

abelian). Hence,

L=@PL.® Lo,
where o € HY := Hom(H, F)
L,={zeL|adh(z)=a(h)x, Yh € H}.

This is called the Cartan decomposition of L, elements in ® are called roots of L.

Fact II. For all o, B € HY, [Ly, Lg] C Loip: forany h € H, x € L, and y € Lg,

ad hlz,y] = [ad h(z),y] + [z,ad h(y)] = (a + B)(h)[z,y].

Hence, if = € L, for some « # 0, then ad z is nilpotent (since @ is a finite set).

Fact III. L, L Lgif a+ 3 # 0 with respect to the Killing form «: for any h € H, x € L,
and y € Lg,

0 = w([h, z],y) + Kz, [h, y]) = (a + B)(h)k(z,y).

Since o + 8 # 0, we take h € H such that (a + 8)(h) # 0, then k(x,y) = 0.

14



In particular,

Lo L P L.

acd

If z € Ly Nrad k|r,, then z € rad kK = 0. Hence, k|, is nondegenerate.
Proposition 4.4. If H is a maximal toral, then Ly = C(H) = H.

Proof. Reading. [ |

So k|g is nondegenerate and induces the isomorphism

HY — H
Qo — t,,

where t, € H is the unique element such that x(t,, —) = ¢.

5 Root system, 9/19
Proposition 5.1. Let
L=PL.oH
be a Cartan decomposition of a semi-simple Lie algebra L. Then
(a) ® spans HY;
(b) a € ® implies —a € ;
(c) forx € Ly and y € L_,, [x,y] = k(z,y)ta;
(d) « € ® implies [Ly, L_o] = F - t, is 1-dimensional;
(€) alta) = klta,ta) # 0;
(f) for each non-zero x,, € L,, there exists y, € L_, such that there is an isomorphism

(Ta,Yar ha = [Ta,Ya]) — sI(2, F) = (z,y,h)
Tas Yo, P b > x,9, h.

(g) hoo = —ha.

Proof. (a) If not, dually, there exists a non-zero h € H such that for each a € &, a(h) = 0.
Then [h, L,] = 0, which implies h € Z(L), a contradiction.

15



(b) If &« ¢ @, then o + 5 # 0 for each § € ®. Then L, L L, contradicting the

nondegeneracy of k.

(c) For each h € H,

K“(h7 [l’,y]) = ’%([hwf]v y) = Oé(h)li(m, y) = /i(talﬁ(l', y)> h)

(d) Asin (b), if x € L, is a non-zero element, with [z, L_,| = 0, then x(x, L_,) = 0.

Hence, k(z, L) = 0, a contradiction.

(e) If a(ts) = 0, then [t,,x] = 0 = [ty,y] for any © € L, and any y € L_,.
From (d), we can fix x, y such that [z,y] = t,. Then S := (x,y,t,) is solvable and
S = adp S — gl(L). It follows that ad[S, S] is nilpotent. This tells us that ady ¢, is

both semi-simple and nilpotent, which is 0. Hence, t, € Z(L) = 0, a contradiction.

(f) Find vy, such that k(z4,va) = m £ 0 and set h, = %ta. Then

tasta)

[xomya] = "i(xomya)ta = hom

2 2
[N, To] = m[tm:{;a] = a(ta)a(ta)xa = 27,,
2 2
[Pas Ya] = m[tmya] = m(_a)(ta)ya = —2Yq-
(g) By t_o = =ty and k(tqa, ta) = K(—ta, —ta). ]

For a € ®,let M = M, := H® P .px Lea- Then S, = (2o, Yo, ha) = sl(2, F) acts
on M by adjoint representation. M has weights (for h,) ca(h,) € Z. Since a(h,) =
ma(t(x) = 2, we see that ¢ € %Z. Note that M contains S, as an irreducible S,-

submodule. The weight 0 part of M is
H=kera® F -h,.

Hence, V(0) € M occurs dim H — 1 times, V(2) = S, C M, and there is no other
even weights. This shows that 2« ¢ & and %a ¢ ® neither. Hence, 1 is not a weight
of « € M and M = kera ® S, = H + S,, which implies that dim L, = 1. Also,
Sa =Lo® L_o ® [La, L_,] is unique.

Next, consider the action of S, on Kz := > .., Lgyia, Wwhere 8 # +a. Each 1-

dimensional space Lg;, has weight 5(h,) + 2i. Hence, K is irreducible. Let g and 7 be
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the largest integers such that g 4 qa and 8 — ra are roots. Then

K(tg, ta
Blha) + 24 = —(B(ha) —2r) = 2~% — B(ha) =1 —q €L
On HY, put an inner product (A, ) := k(ty, t,) for A, p € HY. For any basis oy, ...,

ap € @ of HY, we have & C Eg := @ Qa; (by the integrality of S(h,)) and
(A ) = k(s t,) = > alty)al(t,)
acd

is positive definite (on Ejp).

Theorem 5.2 (Root system). For the root system @,
(R1) @ spans E, and |®| < oc;
(R2) if « € ®, then ca € @ if and only if ¢ = +1;

R3) for a, § € P, the reflection 5 — B oy of B with respect to o™ lies in ®;
(

a7a)

(8,2)

(a,@)

(R4) for o, p € @, (B,a) :=2 € 7.

Now, we study the abstract root system ® C (F,(—,—)), i.e.,  satisfies (R1) {R4).

Lemma 5.3. For 0 € GL(F) with o(®) = ¢, o(a) = —a for some o € ¢, and 0 = id

on some hyperplane, we have o = o, the reflection § — 8 — (f, a)a.

Proof. Define 7 = 0 0 04. Then 7(®) = &, 7(a) = «, and 7 = id on E/Qa. So all
eigenvalues of 7 is 1. The minimal polynomial P of 7 satisfies P | (T — 1)*=4m ¥ Choose

K > 1 such that 75| = id, then P | T® — 1. Hence, P =T — 1. |

Definition 5.4. Let # C GL(FE) be the subgroup generated by o, a € ®. # is called

the Weyl group of ®, and is a subgroup of Sg|.

Lemma 5.5. Let 0 € GL(E) with o(®) = ®. Then 00,0~! = 04(a) for cach o € ® and
(8,a) = (a(B),0(a)).

Proof. 00,07 Y(®) = ® fixes o(P,) (P, is the hyperplane fixed by o,) pointwisely and

maps o(a) to —o(a). Applying the previous lemma, we see that co,0™! = 0,(a).
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Now,
o(B) = (a(B),0()o(@) = g (0(F)) = a(0a(B)) = a(B — (B, q)a). u

Corollary 5.6. If (¢, F) = (9, E'), then # = #”. In particular, # C Aut ®.

Definition 5.7. The dual root system ®" = {a" = 2% | a € ®} is a root system with

(a,@)

the same # .

Example 5.8. Some root systems:

Ag:
A x Ay
Ay
By:
Go:
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Since

_2(B,a) _ 2|B|cost
C(wa)) o
where 6 is the angle between a and 8, (8,a)(a,8) = 4cos*0 € Z. We get the table
(v # £ and WLOG let || > |a):

(8, )

Y

(. 8) | By | 0 | BP/laf
0 0 | 90° ?
1 1| 60° 1
-1 1| 1200 1
1 2 | 45° 2
-1 2 | 135° 2
1 3 | 30° 3
-1 -3 | 150° 3

Lemma 5.9. For «, f € &, we have
(, ) >0 = a—pecd.

Similarly,

(,8) <0 = a+ped.

Proof. Suppose that («, ) > 0. From the table, (o, 3) = 1 or {(a, ) = 1. The former
case together with (R3) gives us og(a) = a — (o, ) = o — f € ®. Similarly, the latter
case gives us § — «a € ®, which implies a« — 5 € ® by (R2). [ |

Corollary 5.10. For § # +a, all roots 5 + i, i € Z is unbroken of length < 4.

Proof. If B+ pa, f+ sa € & with p < sand S+ (p+ 1)a, B+ (s — 1)a ¢ ®. The lemma
implies (o, 8+ pa) > 0 and (o, f + sa) < 0. Then

(s —p)(a,a) = (a, B+ sa) — (a, B+ pa) <0,
a contradiction.

The length it at most 4: if ¢ and r are the largest integers such that f+qa, 5—ra € P,
then ¢+ r = (B + pa, a) < 4. [
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6 Weyl group, 9/21

Definition 6.1. We call A C & a base if
(B1) A is a basis of E;

(B2) for B =3 ca ko € @, either all k, € Z>¢ or all k, € Z<.

Fact. For distinct «, f € A, we have (a, ) < 0, and a — § ¢ ®: if (a,f) > 0, then
a— € ® by (5.9), which contradicts (B2).

Theorem 6.2. Every root system has a base. In fact,

(1) let v € E\ U,cq Pa; where P, is the hyperplane fixed by o,. Then
A(7) := {indecomposable roots in ®*(v) }

is a base, where ®*(v) = {a € @ | (a,7) > 0} (a root « is said to be indecom-
posable if « cannot be written as a; + as for some ay, as € ®7(y)). Elements in

A(~) is called a simple root relative to A(7).
(2) Any base come from such a way.

Proof. Since A(7) spans ®*(v) in Zsg, hence spans E. If o, § € A are distinct, then

(v, B) < 0, otherwise

a-fed() = a=F+(a-p),

B—aedt(y) = pB=a+(B-a).

Hence, A(7) is a linearly independent set: suppose that e = > s, = Y t50 with s,,
tg > 0. Then

0<(5.6) =) satp(a, ) <0
a7ﬂ
tells us that € = 0.

(2) is left in Exercise 7. |

Definition 6.3. The set E'\ |, Po is a union of (connected) open cones, each open

aced

cone is called a Weyl chamber.
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Every element in a Weyl chamber defines same base. Conversely, every base deter-

mines a Weyl chamber.

Lemma 6.4.

(a) For a € &\ A, there exists § € A such that « — f € ®T. Hence, we can write
a =% o where a; € A, such that 337_, € ®F for all j < k.

(b) For a € A, o, permutes &\ {a}. In particular, 0(0) =6 — a for § = 33" 5.4+ S

(c) (Cancellation lemma) Let 0; = 0,,. If
o1 op10(ay) = 0,

then there exists s < t such that oy---0, =01+ 05_10411---04_1. Here a = [ if

a—fedt.

Proof. (a) Suppose that («, 8) < 0 for each § € A, then AU{«a} is a linearly independent
set (cf. Proof of (6.2)), a contradiction. So there exists 5 € A such that (o, ) > 0, and
hence o — f € &t (Note that a — f € &~ — S =a+ (8 — a)).

(b) For 8 € @\ {a}, B = > cakyy with k, > 0 for all v and k,, > 0 for some
Yo # a. The element

0a(8) =B — (B, a)
has the same k., so 0,(8) € ®*\ {a}.

(c) Let

Bi=0iy1--o1(oy), 1=0,...,t—2.

Then ;1 = oy = 0, By < 0. So there exists smallest s such that 5, = 0. Since 5,_1 < 0,

we must have 8, = a,. Therefore
Os = (Us+1 ce Ut—l)Ut(Ut—l T Us+1)7
1€, 01+ 05 105051104 =01+ 05 10541" " O¢_1. u

Theorem 6.5. The group # acts on { base of ®} simply and transitively, and % is
generated by o,, a € A, for any base A.
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Proof. Let W' C W generated by 0,, a € A. If v is regular, choose o € #' with (o(7), d)
largest. Then

(0(7),0) = (00 - 0(7),0) = (0(7),0a(0)) = (0(7),0) = (a(7), @),

i.e., (o(7),a) > 0. Also, (6(7),a) # 0, otherwise v L. 0~ 'a, a contradiction. Hence, o(7)
lies in the Weyl chamber %' (A) corresponds to A and o: €(v) — € (A).

Any « €  lies in some base: take any v € P, \ Uﬁiia Pg. Let v “close to” « such
that (7/,a) = >0, |(7/,5)] > . Then a € A(Y).

In particular, there exists ¢ € #” such that § = o(a) € A. Then 03 = 0, =

00,0 ! tells us that o, = 0~ togo € #'. Hence, #' =W .
It remains to show that the action # on { base of ® } is simple. If o # id with o(A) =

A, write 0 = oy - - - 0y (minimal length). Then o(a;) < 0 by (6.4, ¢), a contradiction. W

Definition 6.6. For o € #/, let {(0) be the minimal length of the expression o =
o1+ oy (relative to a base A). For a oot o =} 5\ kg € ®, we define the height of
to be ht(a) = > 5.0 kp € Z.

A root system @ is called irreducible if & = &, P, with ®; L P, (this is equivalent
to A = AjUA, for some base A). Otherwise, ® is called reducible. For example, A; x A;
is reducible.
Lemma 6.7. Let ® be an irreducible root system. Then
(a) there exists a unique element § € & maximum with respect to >;
(b) the action # on E is irreducible;

(c) there are at most 2 lengths “|a|” YVa € ® (by key table), and |o| = || = [ =

w(a) for some w € #'.

(d) The unique maximal element £ is the longer one.

7 Classification of root systems, 9/26

Let ® C E be a root system, # be its Weyl group, A = {a1,...,a,} be a base.
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Proposition 7.1. The Cartan matrix ({a;,a;))i,—; € My(Z) determines ® up to an

isomorphism.

Proof. For a vector space isomorphism ¢ : E — E’, where ¢(«;) = o, the diagram

E—* g

ol

E—,F

commutes when ({a;, ;)i i_; = ((¢(as), d(;)))} —;. Indeed,

To(a) (9(B)) = (B) — (&(B), () d(a) = ¢(B — (B, ) ).
Hence, ¢# ¢~1 = #' by (6.5).
For each 8 € @, 8 = o(«) for some 0 € #', 50 ¢(8) = (pop ™ )p(a) € #W'A'=3'. N

Definition 7.2. The Coxeter graph I' = I'y of ® is a weighted graph (V| E) with ¢

vertices V' = {ay, ..., s} and edges
E = {(@aj, {0, o) {ay, i) # 0) }.

The Dynkin diagram of ® is the directed weighted graph I' with &;a; replaced by

Q0 if |OéZ| > |Oéj|.

Fact. There is a one-to-one correspondence between the irreducible components of ® and

the connected components of I's.

Theorem 7.3. If ® is irreducible, then the Dynkin diagram I'g is isomorphic to one of

followings:
Ag: e o - --—-o—»
1 2 3 (—1 ¢
Be: L R —————
1 2 3 C—1 ¢
Cg:
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Dg:

E, ((=6,7,8):
D—O—IQ—Q
i
1 3 4 d 14
F4Z
o e ——9 o
1 2 3 4
GQI
—
1 2
Proof. Let &; = «;/|cy|. Then
o0 5) 9(05,08) _ s 32

(i, ai)  (aj, )
Hence, we call a set of unit vectors A = {e1,...,,} admissible if 4(¢;, ¢;)* € {0, 1,2, 3}

for all i # j.
(1) The admissible property is preserved under removing a vertex.

(2) The number of edges is at most #A — 1. Let n = #A and ¢ = ) ¢;. Then

0<(e,e)=n+ 22(52-,5]).
i<j

Since for an edge (¢, 7), we have 2(¢;,¢;) < —1. The number of the edges is at most

n — 1.

(3) There are no cycles in I'. Take any cycle IV C T". Then the correspond A" C A is
admissible, but it has # A’ edges, a contradiction.

(4) At any € € A, the number of edges that connects with ¢ is at most 3 (counted with

multiplicity). Suppose 71, ..., ni € A are connected to ¢, then (n;,n;) = d;; by (3).
Find a unit vector ny € (g,m1,...,nx) that is perpendicular to (r,...,n%). Then
k k
e=> (e = 1=(e,8)=)Y 4, m)* <A(e,e) — 4(e,m0)* < 4.
i=0 1=0

24



(5) The only case with a weight 3 edge is G itself.
(6) Shrinking a simple chain to a point is OK.

(7) Hence, there is no subgraphs of the form

(8) I' belongs to 4 types:

(i)

o - - —-o—o
(i)
o - --—-e—»%--—-—-o—=e
€1 €9 €p g e M
(iii)
«—
(iv)
Crfl C2 Cl

(i) and (iii) corresponds to A,,_; and Ga, respectively.

(9) For (ii), consider € = > ig;, n =Y jn;. Since 2(g;,€i41) = —1 = 2(nj,mj41), we get

p p
. L —-1) _plp+1)
(g,¢) ;:1 i ;:1 i(i+1)=p 5 5
Similarly, (n,n) = w. By definition and Cauchy-Schwarz inequality,
2 2
prqg” _plp+1) qlg+1
(e,n)* = 5 < ( 5 ) 5 N (p—1g—-1)<2

If one of p or ¢ is 1, then I' is isomorphic to By or Cy. Otherwise, p = ¢ = 2, in this

case we get Fj.
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(10) For (iv), consider € = > ig;, n =Y jn;, ¢ = > k(x. Asin (4), let 6y, 65, 65 be the
angles between v and ¢, 1, ¢, respectively. Then > cos? 6, < 1. As in (9),

2g _ ¥ o, b2 1/ 1
o 91_(5,8)(¢,¢) P=177 p(p—1) 2<1 p)'

1 1 1 1
—(3-—=-—-=—-=Z <1,
2 P q q

ie., ]% + % + % > 1. Say r = 2, then ¢ = 2 gives us D,,, while ¢ = 3 gives us E,.3
(p=3,4,5). [ |

Hence,

Remark 7.4. The automorphism group Aut ® is isomorphic to v x %', where v = {0 €
Aut @ | o(A) = A}, which can be related to Aut .

Definition 7.5. Given a root system ® C E, we define the weight lattice to be

A={ e E|(\a)€Z, Vacd} D

It is clear that we only need to check the condition (A, a) € Z for a € A. Given A =
(aq,...,ap) (an ordered base), we get \; such that (\;, ;) = d;;, called the fundamental

weights. Then A is a lattice generated by Ay, ..., A\,. Hence,

o = Z(ai,ak)kk.

k
Let A, be the lattice generated by ®. Then A, C A and |A/A,| = det C, where C' =

({a;, o)) is the Cartan matrix.

Examples. For Ay,
C . 2 —1 )\1 _1 2 1 (05}
A2\ 2 ) 3\ 2) \ay)-
C . 2 -1 )\1 o 21 a1
2= \-3 2 ) \3 2) \aw)

Note that #'(A) = A: o;\; = A\j — §; jo; € A. So any weight A can be conjugate to a

For G,

dominant weight, i.e., it lies in the dominant set

At ={reA|(\a)>0}=F(A)NA.
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The strictly dominant set is defined to be

(AeA|(\a) >0} =F(A)NA.

Although X\ = p with € AT does not imply A € AT, but A € A" implies that there

are only finitely many u € AT with A = p.
Example. The vector 6 =3 o= 2521 A; is a strictly positive weight.

Lemma 7.6. Let p € A" and v € # (). Then |v+§] < |u+ d], and the equality holds
if and only if v = pu.

8 Final step I, 10/3

Recall: For a semi-simple Lie algebra L, we choose a maximal toral subalgebra H, which
induces a root space decomposition L = H ® @ .4 La. Note that H is self-normalizing

(in L), i.e., N.(H) = H.

In fact, any 2 choices of maximal torals Hy, Hy are conjugate by some automorphism.

This gives us the classification of semi-simple Lie algebra as A ~ G.

Let V' be a finite dimensional vector space over F' and A : V' — V be a linear map.
Consider its characteristic polynomial f4(T) = [[(T — \)™ = [[p:(T). We get the
decomposition V' = @ V;, where V; = ker p;(A).

Take V' = L, the action adx : L — L gives us the decomposition L = @, La.(ad ),
where L,(adz) =, ker(ad z — a)™.

Fact. [L,(adz), Ly(ad z)] C L,yp(ad x):

(adx —a —b)[y, 2] = [(adx — a)y, 2] + [y, (ad x — 1), 2]

= (adz—a—0)"y, 2] = Z <m) [(adz — a)'y, (adz — b)"'z] =0

- 1
=0

fory € L, and z € L, with m > 0.

This tells us that Lo(ad z) is a Lie subalgebra, called an Engel subalgebra, and
L.zo(ad x) is ad-nilpotent.
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Lemma 8.1. Let K be a Lie subalgebra of L that contains Lg(adx). Then K is self-
normalizing (in L), i.e., No(K) = K.

Proof. Consider the action adz : Ni(K)/K — Np(K)/K. All the eigenvalues of the
action is nonzero. Note that z € K, so [N(K),z] C K, which means that the action is

0. |

Lemma 8.2. Let K be a Lie subalgebra of L, and let Lg(ad z) be minimal among all

such z € K. If moreover, it contains K, then it is totally minimal.

Proof. Fix an arbitrary « € K and consider the pencil {ad(z+cz) | ¢ € F'}. Since x € K,
these elements all stabilize Ky = Ly(ad z), hence stabilize L/K, as well.

The characteristic polynomial f.(T) = f(T,c)g(T,c), where f(T,c) is the char-
acteristic polynomial of ad(z + cx)|k, and ¢(T,c) is the characteristic polynomial of

ad(z + cx)|1/Kk,. Write

F(Te) =T + fr(e)T" '+ + file)

9(T,0) =T + () T" "+ + g (c).
We know that each f;, g; are polynomials in ¢ of degree at most <.

For ¢ = 0, the 0-eigenspace of ad z lies in Ky, so ¢,,—(0) # 0. So we can find ¢y, ...,
¢r41 € F such that g,_,(¢;) # 0 for all i. Then 0 is not an eigenvalue of ad(z + ¢;z) on
L/Ky, and hence Lyo(ad(z + ¢;z)) C K.

Since Kj is minimal, Ky = Lg(ad z) = Lo(ad(z + ¢;x)), i.e., ad(z + ¢;x) has only
O-eigenvalue on Ky. So f(T,¢;) = T", ie., f; = 0. Hence, Lo(ad(z + cz)) D K, for all

c € F. Since z is arbitrary, K is totally minimal. [ |

Definition 8.3. A Cartan subalgebra (CSA) H of a Lie algebra L is a self-normalizing

nilpotent subalgebra.

For example, a maximal toral of a semi-simple Lie algebra is Cartan.

Theorem 8.4. Let H be a Lie subalgebra of L. Then H is a CSA if and only if H is a

minimal Engel subalgebra (hence it exists).
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Proof. (<) H is self-normalizing by (8.1). Also, by (8.2), H = Lo(ad z) C Ly(ad z) for
all z € H, i.e., ady z is ad-nilpotent for all x € H. Hence, by Engel’s theorem (2.1), H is

nilpotent.

(=) Let H be a CSA. The nilpotency of H implies that H C Ly(ad z) for all x € H.

We claim the equality holds for some minimal one.

If not, take Lo(ad z € H) be a minimal one. By (8.2), Ly(adz) C Lo(adx) for all
x € H. So the action of H on Ly(ad z)/H acts as nilpotent endomorphisms. By some
ancient theorem, there exists a 0-eigenvector y + H, y ¢ H, such that [H,y] C H. Since

H is self-normalizing, y € H, a contradiction. [ |

Corollary 8.5. Let L be a semi-simple Lie algebra over F'. Then CSA = maximal toral

(= CL(s) for some semi-simple element s).

Proof. (<) is already done. (=) Let H be a CSA. Then H = Ly(ad z) for some z € H.
Write = 24 + z,, then H = Lo(ad x) = Lo(ad zs) = Cp(z). Since Cp(xs) contains Fz
and Fz, is contained in some maximal toral C', which is abelian, we have H O C. Since

Cisa CSA, H=C. [ |

Remark 8.6. Functorialities:
(a) If ¢ : L — L’ is surjective, then the image ¢(H) of a CSA H of L is a CSA of L.

(b) Let H' C L' be a CSA. Then any CSA H of ¢~!(H’) is also a CSA of L.

Definition 8.7. An element z € L is strongly ad-nilpotent if + € L,z(ady) for some
y € L.
Let N (L) = { strongly ad-nilpotent }, and let
E(L) = (""" |z e N(L)) < Aut L.
For a subalgebra K of L,

E(L;K) = (""" |z e N(K)).

Idea. £(L) is “better than” Int L.
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Facts. K C L implies N (K) C N(L), hence £(K) = E(L; K) .

For a surjective homomorphism ¢ : L — L', ¢(N (L)) = N(L'). Moreover, for each

o' € E(L), there exists o € (L) such that the diagram

L -2

Pk

L -5

commutes: say o/ = e*4'* where 2’ = ¢(z) for some 2 € N'(L). Then for each z € L,

(¢oe™ ) () = ¢ <z+ [z, 2] + %[m, [z, 2] +>

1

= 0(2) + 2, 9(2)] + S [, [, 0(2)]] + -

= (7 0 0) (2).

Theorem 8.8. Let L be a solvable Lie algebra. Then any two CSA’s Hy, H, are

conjugated under £(L).

Proof. Introduction on dim L. If dim L = 1 or L is nilpotent, CSA = L, done!
If L is not nilpotent, take A < L to be an abelian ideal with smallest dimension.

Let ¢ : L — L' = L/A be the quotient map. Then the images H| = ¢(H;),
H) = ¢(H,) are CSA’s of L. By induction hypothesis, there exists ¢’ € £(L’) such that
o'(H}) = H}. Take o € E(L) such that ¢’ o ¢ = ¢poc. Then o maps K; = ¢ '(H;) to
Ky = ¢7'(H,) and o(H;), Hy are CSA’s of K.

If Ky # L, then by the induction hypothesis there exists 7 = 7| € E(K3) =
E(L; Ks)|k, such that Hy = 7/(0(Hy)) = (170)(H,), as desired.

Otherwise L = Ky = o(K;) = K, and hence L = Hy + A = H; + A. Write
Hy = Lo(ad x). Since A is ad z-stable,
A= Ap(adzx) @ Ai(adx) = Ay @ A..
Then both Ay and A, are L = H, + A stable. It follows from the minimality of the

dimension of A that A = Ay or A = A,.

If A= Ay, then A C Hy. Then L = H, is nilpotent, a contradiction. Hence A =
A,(adz). But L = H; + A shows that x = y + z for some y € H; and z € A = A,(ad z),

i.e., z = [z, 2] since ad z is invertible on it.
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Since A is abelian, (ad 2')*> = 0. So
e =(1+ad?)(z) =2 —[z,7] =y.

So H = Ly(ady) is also a CSA that contains H;, which implies H = Hy, i.e., ¢*¥* maps

Hy to Hy. Write 2 = 3, 2, 2, € Au(ad x), we see that all z;, commutes. So

e = Headz‘ll € &(L). |

9 Final step II, 10/5

Theorem 9.1. For a Lie algebra L over an algebraically closed field F' with char F' = 0,
any CSA is conjugate to each other.

The case F' = C is proved by Cartan and Weyl using analysis (differential geometry).
For a general field, it is proved by Chevalley and Bourbaki using algebraic geometry. A

purely algebraic proof was given by Winter.

We do the case ' = C first. Let n = dim L. For each element = € L, consider the

characteristic polynomial
fo(T) :==det(adz = T) = (=1)"T" + g1 ()T " + -+ + gn_p(2)T7,

where r is the smallest integer such that the polynomial g,,_.(x) # 0. We define the rank
of L, denoted by rank L, to be such r, and call = € L regular, or generic, if g,,_.(z) # 0.
Then a CSA H = Ly(ad z) has dimension k > r.

Fact. Regular elements form a Zariski open subset in L = C”, hence it is path connected

and dense open.

Given CSA’s Hy = Lo(ad zg), H1 = Lo(ad x;), and take any path z_ in the Zariski
open subset connecting xy and x;. Then for any ¢ € [0,1], Lo(ad z;) is a CSA. If we can
prove that any point y near x = x;, Ly(ad y) is conjugate to Lo(ad x), then the statement

holds by applying compact argument.

To do this, apply IFT to

HxCrb —* [~

(hyt) —— TTof exdwilp,
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where y; are the generalized eigenvectors of ad x.

Exercise. This is invertible!

Definition 9.2. A subalgebra B C L is Borel if it is a maximal solvable subalgebra.

(A)

(B)

A Borel subalgebra is self-normalizing: if [z, B] C B, then [B 4+ Fz, B+ Fz| C B,
which implies B + F'z is solvable. By maximality of B, x € B.

If Rad L C L, then the set of Borel subalgebras in L is 1-1 corresponds to the set
of Borel subalgebras in L/ Rad L. Indeed, the sum of a solvable subalgebra and the
solvable ideal Rad L is a solvable subalgebra.

For a semi-simple Lie algebra L, H a CSA with base A C &,

B(A)=He € L

a€DH(A)

called a standard Borel relative to H, is Borel. Any standard Borel subalgebra
is conjugate to each other via £(L). Indeed, let N(A) = D, cp+a) La- Then
[B(A), B(A)] = N(A), which is nilpotent, so B(A) is solvable. If B(A) is not
maximal, say K 2 B(A) is also solvable, then K O L_, for some o € &*. Then
K contains a semi-simple Lie algebra S,, a contradiction. Now, for a root a € P,
the action o, on H extends to 7, € £(L): take z, € Lq, yo € L_, that defines
S,, and define 7, = ¢4~ advacadza Then 7, maps B(A) to B(o,A). Hence, any
standard Borel subalgebra is conjugate to each other since the Weyl group #  acts

on the bases transitively.

Theorem 9.3. All Borel subalgebras (BSA) are £(L)-conjugate. In particular, all CSA’s

are £(L)-conjugate.

Proof. We prove the latter statement first (using the former statement): for CSA’s H

and H', we can put them in BSA’s B and B’, respectively. Take any o € £(L) such that

o(B) = B', then 0(H), H" are CSA in B’. The statement now reduce to the solvable case.

For the former statement, induction on dim L. The base case dim L = 1 is trivial.

Using (B) together with the lifting of £(L) under L — L’ = L/Rad L, we may assume

that

L is semi-simple. And it suffices to prove that any Borel subalgebra B’ of L is
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conjugate to a standard Borel subalgebra B = B(A) relative to some CSA H.

Next, we induction on dim(B N B’) downward. The base case BN B’ = B, which is
equivalent to B = B, is trivial. Solet B2 BN B'.

(1) If BN B"# 0, then

(i) 1. all nilpotent elements N' in B N B’ is nonzero. N’ is an ideal in BN B’
(using [B, B] = N(A)), but not in L. So K := Np(N') C L.

2. BN B"C BN K: consider the adjoint action N' on B/B N B’ # 0. Then
there exists a 0-eigenvector y + BN B’, but « € N’ implies [z,y] € [B, B],
and thus in V', i.e.,, y € Ng(N') = BN K.

3. Take BSA’s C, C' of K C L that contains BN K, B’ N K, respectively.

By (first) induction hypothesis, there exists o € £(L; K) such that o(C") = C.
By (second) induction hypothesis, there exists 7 € £(L) such that 7(B;) = B,
where B; is some BSA that contains o(C”). Then

BNro(B') 2710(CYN710(B) 2 710(B'NK) 2 T10(BNB).

By (second) induction hypothesis, B is conjugate to 7o (B’).
(ii) If N' =0, left for reading.

(2) BN B =0, left for reading. |

10 Existence theorem I, 10/12

Definition 10.1. For a vector space V' over F', we define the tensor algebra
T(V):=a2,T(V), T(V)=V®.
For a Lie algebra, the universal enveloping algebra of L is defined to be
U(L) :=T(L)/J,

where J is the 2-sided ideal generated by x @ y —y ® x — [z,y], =, y € L.
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The universal enveloping algebra (L) satisfies the following universal property: for a
linear map j : L — 2, where 2 is an associative F-algebra, such that j[z,y] = j(z)j(y) —
J(y)j(x), x, y € L, there exists a linear map (L) — 2 that completes the diagram:

L—1 >«
3

T(L) — $(L)

Definition 10.2. Let 7, =T°®--- & T™, U,, = 7(T),). We see that U; - U; C U,;,
Define G™ = U, /Un_1, & = D=, G™.

Theorem 10.3 (PBW, Poincaré-Birkhoff-Witt). There is an isomorphism w : S(L) —
&, where S(L) is the symmetric algebra of L.

The surjectivity is easy: T™ — U,, — G™ is onto, so ¢ : T — & is onto. Also,

¢(I) =0, where I is the 2-sided ideal generated by z ® y — y ® «.
This defines a surjection from w : S(L) — &. The injectivity is hard (left for reading).
Corollary 10.4. (A) For W C T™ — S™ satisfying 7 : W = S, 7(W) is complement
to Uy—1 in Up,.
(B) i: L — $I(L) is injective: taking W =T = L (m = 1).

(C) For any ordered basis, 1, ..., @, of L. @;q)- - @j@m) with i(1) < --- <i(m) form a
basis of U(L): Take W = (z;1) @ - - ® Tj(m)) S T™

Definition 10.5. Let X be a set. The free Lie algebra generated by X over F'is defined
to be the Lie subalgebra X in 7'(V') generated by X, where V' is the vector space over F’
with X as basis.

Let L be a semi-simple Lie algebra, H a CSA of L. Let ® be the root system induced
by H, A ={ay,...,a.} a base of &, A = (¢;;) = ((ov, ;) the Cartan matrix. For each
i, let S,, = (x;,y;, h;) be the Lie algebra generated by L, and L_,,.

Proposition 10.6 (Serre relations). (S1) [k, hj] =0,
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(52) [24,y5] = dihi,
(S3) [hix;] = cjizy, [hay;] = =5,
(Si) (ad @)~ *a; =0 (i # j),

(S5) (adys) o +y; =0 (i # ).

Proof. We only prove (S;';) Since a; — oy ¢ O, we get the aj-string o, a; + ay, ...

@; + qa;. Since 0 — g = ¢j;, we get (ad x;) "% x; = (adz;)a; = 0.

Theorem 10.7 (Serre). These relations are complete (for semi-simple Lie algebra L).

Proof. Step 1. Let L be the free Lie algebra generated by X = {z;,y;, hi}‘_,, K the 2-
sided ideal generated by (S1), (S2), and (S3), Lo the quotient L/K. Then Ly = HHX @Y,

where H, X, and Y are lie subalgebras generated by {h;}, {z;}, and {y;}, respectively,

and H = ©Fh,;.

Let V = T(F*). Fix a basis vy, ..., v, of F* and define the representation ngS L —

gl(V)byhj-1=2;-1=2;-v; =0, y;- 1 =v;, and

;

hj'vi1®..'®/0it:_(C’i1j+'..+citj)vi1®...®vit7

Ty 0y © o QU = 0y ® (T V5, @+ ®04) = iy (g Cing) Vi @ -+~ ® 0y,

45 00 @ @ =1 ® v, B B,
We check that Ky :=ker¢ D K, i.e., the gl(V) is in fact an Ly-module.
(1) [hs, h;] € Ko: since h; acts diagonally, [¢(h;), ¢(h;)] = 0,
(2) [z4,y;] — 650 € Ky

t
TiYlj - Vig @ =+ @ Uiy — Y3y - Vi @ -+ Q 03, = =0y (Zcm‘) Viy @ -+ - Q@ vy,
k=2

= 5ijhjvi2 ® v ® Vi, -
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(3) [hi,y;] + iy € Ko

(hiy; — yihi) - 1 = hivj = —cjiv; = —cjiy; - 1,
(hiyj —yjhi) * Uiy ®"'®’U¢t = hi'Uj(X)Uil ®"'®’U¢t
+ (€ii -+ €3,0)v; Uiy, ® - @y,

= €jiY;jViy @+ Q.

(4) [hi,xj] — G4y S Koi

Claim. hl . (I‘j * U4y & ®Uit) = _(Cili 4+ -+ Ciyi — cji)xj - U4y R R (U

Induction on ¢. The base case t = 0 is trivial. For simplicity, let v = v;, ® - - - ® v;,.

By induction hypothesis,
hi - (@7 - v) = —(Cigi + -+ + Ciri — ¢ji)T; - v.
Since
Yir hizy = (hi + ciyi)yi vy = (hi + cii) (096 — 0jihy),

we get

hi - (x; - vy, @v) = hizy:, - v,
= i, (hizj - v) — ciyitiYiy - v+ 0jiy (hi 4+ i) by - v
= —(Ciy, + F Ciyi — i)Y Tj -V — CTj -V, DU
+ 0jiy (= Ciyi + Cigi + -+ F Cii) (Cigj + -+ F+ Cij )V
= —(ciy + -+ Ciyi — i) (@Y, + 0jihy) - v — ¢ T vy QU
+ 0jiy (—Ciyi + Cigi + -+ F Cipi) (Cigj + -+ F Cij)U
=—(ciyi+ -+ iy —cji)T v, QU
+ iy (Cigi + -+ -+ Ciyi — i) (Cigj + -+ + Ciyj)U
+ Gjiy (=Ciyi + Cini + -+ + Ciyi) (Cinj + €V

= _<Ci1i + -+ Cii — Cji)xj * U4y X v,
as desired.

Hence, (h;z; — xjh;) -1 =0 and

(hifl,’j - Ijhz) * Uiy K- ® Uiy = CjiTj5 - Ugy X Uiy -

()
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11 Existence theorem II, 10/17
So there is a nontrivial Lo-module gl(V). Then Ly = H + X + Y, where H = ), Fh;,
X =(z;), Y = ().
Exercise. Prove that X (resp. Y) is generated by {z;} (resp. {y;}) freely.
o For all h;, [hi, H] = 0, [hs, [z, zk]] = (¢ji + cri)|zj, x|, induction get the main
calculation:
Py (i, [ (@i ] - )] = (G + - F i) [T [0 [T @] - ] € X
A similar result also holds for Y.
o Forall x;. [z;, H + X] = X,
i, [yi, ynl] = i, 5]yl + (w5, [, v
= 0ijlhi, yr] + ir[ys, he] = —ijcriye + dincjiy; €Y.
By induction, we get [z;, Y] C Y.
o For all y;, we get [y, Lo] C Y similarly.
Claim. ¢(h;) are linearly independent and the sum Lo = H + X + Y is direct.

If > a'¢(h;) = 0, then for each j,

0= Zazqzﬁ(hl)vj = — Z(ZZ’Cﬂﬁj — Zaicﬂ = 0.
Since j is arbitrary, a* = 0 for all 7.

By the calculation above, Ly = H+ X +Y is a decomposition of L into eigenspaces of
ad H. Indeed, the eigenvalue is A = >~ kja; > 0 on X (< 0onY), any iterative [...] in X
of z;,, ..., x;, has eigenvalue ) , ¢;, . Evaluate at h;, this eigenvalue is of the form )  m;cj;,
where m; > 0 and > ,m; =t. So X NY = 0. (Otherwise, we get > mjc;; = — > n;cj
for some m;, n; > 0, then Y (m; + n;)c; = 0. Since C is nondegenerate, this leads to a

contradiction.)
Step 2. Adding relations (S}}), (S;):
1= (2 = (ada) 1y i # ) S X,

J = <yz~j = (adyi)fc’”“yj }’L 75 ]> Y.
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Then J, and hence I, K = I + J, is an ideal of Lj.
Lemma 11.1. [z, y,;;] = 0.

Proof of Lemma. If k # i, then [z, y;] = 0 implies that

ad z(y;;) = (ady;) "9 ad a4 (y;) = 0.

If Kk =1, then
ad zy(ad yi)'y; = t(e; —t+1)(ad ) ™ 'y;

by induction on ¢. The result now follows by letting t = —c;; + 1. U

Now we check that J < Ly: As the calculation above, we have
(ad hy)yij = (—cje + (cji — L)cin)yij-
Together with ad hi(Y) C Y, we get ad hy(J) C J by Jacobi’s identity. Using the Lemma
and the fact ad z,(Y) CY + H, we get adz,(J) C J (again by Jacobi’s identity).

Step 3. Hence, L := Ly/K = H@® NT @® N~, where N* := X /I and N~ :=Y /J, and
this is the semi-simple Lie algebra we want!

For A € HY, Ly := {x € L | [h,z] = A(h)x} as before. We had seen H = Lz,
Nt =,.oLr, N~ =&, , L, and each piece has finite dimension.

The operators ad x; and ad y; are locally nilpotent, i.e., for each z € L, there exists

k > 0 such that (ad z;)*z = (ad y;)¥2 = 0: let
M; = {all such z }.

Then x; € M; by (S}}), hence h; € M; by (S3), and hence y; € M; by (S2). Note that M,
is a Lie algebra:
(ad:)"[y, 2] = (”) [(ad )y, (adz)" 2] = 0
, J
Jj=0

by taking n large enough. We get M; = L.

Now, 7; := eM@igmadvigadzi ¢ Ayt [ is well-defined. In fact, if o;A = pu, where
0; = 04, is the reflection, then 7; = 0; on Ly @ L, as a reflection. So dim Ly = dim L.

This result also holds for o\ = u, where o € #'.
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It is clear that dim L,, = 1 by the main calculation and Ly,, = 0 if k # —1, 0, 1
(since [z;,...,2;] = 0). By some exercise before, Ly # 0 if and only if A € ® or A = 0.
In particular, dim L = dim H + |®| < oo. L is semi-simple: let A < L be an abelian
ideal, A= (ANH)® @, co(ANLy). We see that AN L, = 0 for all @ € ¢ (otherwise
A D (Ly, L_y)). Hence, A C H and [L,, A] =0 for all a. So A C (.o kera = 0.

Now, H is abelian and self normalizing, so H is a CSA with root system ®. The

proof is complete. [ |

For the classical case Ay, By, Cy, D,, we want to show that they are simple.

Definition 11.2. A Lie algebra L is reductive if rad L = Z(L).

If L is reductive, then L' = L/Z(L) is semisimple. So there is a (completely) action of
adL=adL'on L = M®Z(L), where M <L isanideal. Then [L,L] = [M,M]C M = L.
Hence this inclusion is an identity, so L = [L, L] & Z(L).

Proposition 11.3. Let L C gl(V). If the action of L on V is irreducible, then L is

reductive and dim Z(L) < 1. If moreover L C sl(V'), then L is semi-simple.

Proof. Let S = rad L, and let v be a common eigenvector v (exists by (2.4)). Then

s-v=M\(s)v for all s € S for some \. For x € L, we have
s-(z-v)=a-(s-v)+[s,z] - v=As)x v+ A(s,z])v.

Since L - v = V, all matrices of S is upper diagonal in some basis with diagonal entries

A(s).

Since tr[S, L] = 0, Aljs,; = 0, so the calculation above shows that the action of S on
V' is just scalar. So S = Z(L) and dim S < 1. Also, if L C sl(V), then S = 0. |
Example 11.4. L = A,, By, Cy, D, are semi-simple: it suffices to check that the actions
of By, Cy, Dy on V are irreducible.

Let W C V be an L-invariant subspace. Then W is invariant under (id, L, +,0) C
EndV. For L = By, Cy, Dy, we get all End V.

In fact, L = Ay, By, Cy, Dy are simple with H = C(H).
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12 Representation theory of semi-simple Lie

algebra, 10/19
In this section, we fix a Lie algebra L, its CSA H, root system ®, base A, and Weyl group
W

Facts. Let V be a L-module. Then H acts on V diagonally and for each A € HY, V) is

defined. It is easy to see that

(a) Lo : Vi = Viias

(b) V':=> V) is direct (A: V' could be 0);

(c¢) if dimV < oo, then V =V".
Definition 12.1. Suppose a maximal vector v exists, i.e., v" € V and L,v*t = 0 for
all @ > 0. (For example, when dim L is finite, then Lie’s theorem tells us that there exists

a common eigenvector v+ of B = B(A).) We may further assume that v € V, for some

A. We call X a highest weight and call v+ a highest weight vector.

If V=S8(L)-v", then V is called a standard cyclic (or irreducible) L-module.

Notation. Let &+ = {f;,...,5,}. Then PBW theorem tells us that ${(L) has a basis
{z . 2F i < - <y}, where {2} = {he, T.,ys} and the order is given by

11

yg < <yg, <h <---<hy<uxg <---<uxg,.

Proposition 12.2. Suppose V is cyclic.

(i) Then V is spanned by ygl - -ygjnv* (i; > 0), hence V = @, v Vi. V has weights
of the form pu = )\—Zle kicy, ki > 0. Each V), has finite dimension, and dim V) = 1.

(ii) Every L-submodule W of V' is the direct sum of its weight spaces. Hence

o V is indecomposable with unique maximal proper submodule and unique irre-

ducible quotient module.

o In particular, if there is a surjective map V' — V', then V' is also standard

cyclic of weight .
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Proof. (i) Consider the (vector space) decomposition L = N~ @& B. We have H(L) =
U(NT) @ U(B) (as vector space). Then V = U(N~) - vt. The last assertion follows from
the fact that the solutions of > i,;8; = > ki is finite for each fixed {k;}.

(ii) Let w = Y"1, v; € W with v; € V,,. We claim that v; € W for each 7. If not,
then there exists a w with smallest n > 2 such that v; ¢ W for all i. Find h € H such
that p1(h) # po(h). Then

hhew =37 o = 0w’ = (h= pua(h) - w =3 (u(h) = pu(h))vs.

a contradiction.

Now, if V.= W, @& Wy, then V) € W;. This implies W; & W, C V' a contradiction.

This shows that > .-, W C V is the unique maximal proper submodule. [ |

Theorem 12.3. For each A € HY there exists a unique (up to isomorphism) irreducible

standard cyclic L-module of highest weight A (may be infinite dimensional).

Proof. If V is an irreducible module, then the maximal vector v is unique up to scalar.

Indeed, for w € L, $(L) - w C YU(L) - v* and the equality holds if and only if A\ = p.

Given irreducible modules V' = Y(L) - vt and W = (L) - wt. Let X =V @ W.
Then (vh,w') € X, is a highest vector. Let Y = 4U(L) - (v, w") C X and consider the
projections p and ¢ to V and W, respectively. We see that p(Y) =V and ¢(Y) = W.
Since V and W are irreducible quotient modules of Y, they are isomorphic. This proves

the uniqueness.

We prove the existence via induced module technique. Notice that V' = (L) - v

has a 1-dimensional B-submodule V. Thus, we define Dy = Fv™ as B-module via

<

(h+ Y ) vt = hewt = AT,

Then D is also a {(B)-module. Define Z(\) = U(L)®gp) Dy, which is a left £{(L)-module.
The vector 1 ® v € Z(\) is nonzero by PBW theorem.

Since U(L) = UW(N7) ®@p U(B), we get Z(A) = U(N7) ® F(1 ® v). Now take
Y(A) € Z(X\) be the unique maximal proper submodule. We define V(\) = Z(\)/Y ()),
which is the desired module. n
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13 Existence theorem, 10/24

Definition 13.1. An element A € H" is integral (resp. dominant, (A € A)) if A(h;) €
Z (resp. A(h;) € N) for all 4.

Theorem 13.2. There exists a one-to-one correspondence between A € AT and finite
dimensional irreducible L-modules V' ()A). Also, the set II(\) of weights of V() is permuted
by # .

Proof. Similar as in Serre’s theorem. Let m; = A\(h;) € Z>o, ¢ : L — gl(V') the represen-
tation, and v™ € V() the highest weight vector.

Lemma 13.3. In (L), we have
(a) [wj, 5] = 0,5 #3;
(b) [hy, 971 = —(k + Dalhy)y ™

(©) [wi,yil"*t = —(k + Dyi(k — h)
Proof of (13.8). (a). Since [Ry,, L,,] = 0, we have
[0 7] = (R = Ly )y = (Ry 44 Ly ) (Ry, — Ly )y = (Ry -+ Ly [z, 5] = 0.
(b) Induction on k. The case k = 0 follows from the definition. For k£ > 0, we have

[y, yf Y = (hyyl — yihy)yi + vl (hyys — yihy)

= —ka(hy)yi ™ — yla(hy)y; = —(k + 1)a(h)yl+.

(¢) Induction on k. The case k = 0 again follows from the definition. For k > 0, we have

i,y = g, vl "y + [, il
= —kyf (k= 1= h)yi +yihi = —(k + Dyi(k — hy). O

7

Now, for each 4, ¢/ - vt = 0: Let w = y/"'v*. Then z; - vt = 0 implies that

zj-w =0 for all j # i (by (a)). By (c),

zi-w =y 0T — (my 4 Dy (my — hy)vt = 0.
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If w # 0, then it is a highest vector whose weight is not equal to A, a contradiction.

Hence, V' contains a finite dimensional S; := S,,-module (v*,y; - v*, ...,y - vT).

Note that this is S;-stable since it is y;-stable, h;-stable by (b), and z;-stable by (c).

For any fixed i, let V' := V; be the sum of all finite dimensional S;-submodule in V.
Then V' = V: say W is a finite dimensional S;-submodule. Then z, - W, o € ® is still a
finite dimensional S;-module. Hence, V' is stable under S,,. Since V' # 0, V! = V.

So any v € V lies in a finite (sum of) finite S;-module. Therefore ¢(z;) and ¢(y;) are
locally nilpotent, and hence s; := e?@)e=9We?@) ¢ Aut(V) and s;V,, = V,,,. This tells
us that # maps II()) to itself and II(\) is finite. Indeed, for each p € TI(\), there exists
w € # such that wu € AT. Then wp < X and thus

TN < |#]-{r e AT | v < A} < .
Since each weight space V), is finite dimensional, V' is finite dimensional. [

Definition 13.4 (weight string). For p € A and o € ®, the a-string through p is the
set

{u+ia € II(N) | i € Z} CII(N).

Sa acts on € V,,1ia, so it must be connected, i.e.,

{p+iat={p—ra,....p+qa}

As before, r — ¢ = (i, ) and o, reverse it.

Corollary 13.5. Let € A. Then p € II(\) if and only if wu < A for all w € #'.

Proof. TI(A) is saturated, i.e., p € II(\) and a € ® implies p—ia € II(\) for all i between
0 and (u, a).

Choose wA € A", then we may obtain wu from A\ by saturated roots. [ |

Main questions on representation theory: In terms of Euclidean system, what’s
deg A := dim V(A)? What’s my(p) := dim V' (A),? What’s the irreducible decomposi-
tion of V()\l) X V()\g)?
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Definition 13.6. Let {k'} C H be the dual basis of {h;} (with respect to the killing

form). For each o € @, let 2z, = (aéa)ya so that [z,,2%] = t, = ((o,@)/2)he. We define

the universal Casimir element c;, := Zle h;kt + Za@ rez® € U(L).

Let ¢ : L — gl(V') be a nontrivial representation. For L simple, we get the ordinary
Casimir element ¢, = a - ¢(cy) for some a € F. Indeed, ¢(z,y) = tr(p(z)p(y)) is

nondegenerate and associative, and hence proportional to k(z,y) by Schur’s lemma.

For L = L1®- - -® L, semi-simple, ¢;, = ¢1+- - -+¢4, ¢(cr) is not necessary proportional

to ¢4, but it commutes with cy. So if ¢ is irreducible, ¢(cy) is scalar.

Proposition 13.7 (traces on weight spaces). Let V = V() for some A € AT with
representation ¢ : L — gl(V'). Then for each p € II()),

(0(@a)0(za)i V) = D ma(u+ i) - (u + i, )

Proof. For « fixed, an irreducible S,-module V(m) of highest weight m has a basis
{vo, -+, Um }, where vy € Vi, v; = 4 - vp/i!. Now we scale v;: let w; = ((o, ) /2)%! - v; =

24 - vp. Then

to - W = (m—2i)(a’Ta)-wi,

Zo Wiy = Wi41,

(o, )

2

To - w; =1i(m—1i—1) CWi_q.

Hence

Let p € TI(A\) with p 4+ « ¢ II(\). We get the a-string through p: p—ma, ..., u,
where m = (u, ). For ¢ between 0 and |m/2].

Consider the S,-module W =V, @ --- @ V,. Write W = @}Z”Om V(m — 2i)™.
Let 0 <k <m/2,0<i<k. Wesee that

(@, @)

2

O(r0)P(za)wp—; = (k—i+1)(m—1—k)

cWg—j-
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Using the relation Y>7_ n; = ma(u — ja), we get

(@, )

t1(0(20)0(2a); Vieka) Z ni(k—i+1)(m—1i—k)

- Zm)\(,u — i) (m — 2i) (aéa)
= ka(,u —ia) - (p—ia, ).

Reflection by o,, we get the case m/2 < k < m:

m—k—1
tr(qb(xa)gb(za), Vu—k:oz) m}\(lj’ - 204) (M — O-/)
=0
k
=3 malu—ia) - (4 — o)
i=0
by (@ —ia,a) = —(pu — (m — i)ar, ). This completes the proof. |

Proposition 13.8 (Freudenthal’s formula). The number m(u) := my(u) is given recur-

sively by
(A +3,X+0) — (u+ 6,1+ 96)) —QZZm,u—i—m (1 + i, a).
a0 i=1

Proof. Since V is irreducible, tr(¢(cr); V) = ¢ - m(u), where ¢ is independent of p. By

the definition of ¢y,

/ 0o
tr(g(er); V) = 3 o(ha)o(K) + D > mlpu+ia) - (s + i, )

acd =0

(t, po +ZZ m(p +ia) - (1 + i, @),

aed =1
where the ¢ = 0 term is cancelled for a, —a.
Claim. For each a € ® and p € A,
Z m(p +ia) - (p+ic, ) = 0.
Indeed, let p — 7o, ..., p+ qa be the a-string through p. Since - = —Eggg and




m(p = (r = j)a) =m(p+ (¢ = ja),

S mutia)- (u+ic,a) = 3 mip+ia) - (4+ia,a)

1=—00 i< q;'r'

+ Z m(p+ia) - (1 +ia, @)

. _gq—r
1>

=0.

By the claim,

com(p) = (u wym(p) + > () -m(p) +2 Y m(p+ia) - (n+ia, )

a>0 a>0 i=1

= (p, b+ 26) - —I—QZZm +ia) - (p+ i, ).

a>0 =1

For = A, we get ¢ = (A, A+ 20). So the statement now follows from the identity
(A+26,N) — (p+20,p0) = A+0,A+0) — (n+6, 1+ 9).

Also, wp < A for all w € # implies that (u+ 0, +0) < (A+ 5, A+ 0). [

14 Character theory, 10/26

Let A € AT be a weight, and let V() = @#GH(A)V(A)??M(“) be the corresponding

irreducible module. We define its formal character to be

chy = ChV Z m,\ G Z{A]

HeIL(N)

where {e(u)} is a free basis of the group ring.

For a finite dimensional module V' € Rep L, we define chy similarly. Then chy gy =

chy + chyr, and chy gy = chy - chyr. Hence, there is a homomorphism ch : Rep L — Z[A].
Under the correspondence
Z[\] < Z% ={f:A— Z| f has finite support },
e(p) corresponds to e, (or €,), where
1, it A=p,

0, if \# pu.

eu()‘) =
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Definition 14.1.  (a) The Kostant function p(\) is the number of ways to write
A= 0kaa with £, > 0.

(b) The Weyl function g =[], j(eaj2 —€—a/2), Where we view eq/2 = e(a/2), e_q/2 =
e(—a/2) € Z[A/2], and
g=Y (~1)le,s € Z[A]

oW

~ 1
since § = 5, o €A

Theorem 14.2 (Kostant). For A € AT,

ma(p) = > (1) lp(p+ 6 — o(A+9)).

oW
Theorem 14.3 (Weyl character formula). For A € AT,

q-chy = Z (—D)le,rps)-
oeW

Corollary 14.4. The degree of A, i.e., dim V()), is equal to

[IooA+0, )
[[0(da)

Theorem 14.5 (Steinberg). For X', X" € AT, if we write V(X)QV(N) = @, cps V(AN
then
dy= Y (=DITIp(A 426 — (X +6) — (X" +6)).

o, TEW

Theorem 14.6 (Weyl). Let G be a compact Lie group. Then a two G-representations
(V.p), (V',p') are isomorphic if and only if x,

Harish-Chandra proved this result for semi-simple Lie algebras.

For a L-module V', let P(V) = S(V*). For example, P(H) is spanned by pure powers
A (exercise). For an element f, we define its symmetrization Sym f = > __,, f7, where

fo(x) =0 f(x) = f(o~tz). Then P(V)” is spanned by Sym \*’s.

Let G = Int L = (e*® | x nilpotent) acts on P(V) in the obvious way. We get

P(V)9, the G-invariant polynomial functions.
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Theorem 14.7 (Chevalley). The map
0: P(L)YY — P(H)”

is surjective, where 0(f) = fl|u.

Definition 14.8. For A € HY, the character y, : Z = Z(U(L)) — F is defined by
mapping z € Z to z - vt /vT. Note that z - v = a - v' for some a since h -z - vt =

z-h-vt =z ANh)vt and zo - 2z-vT =2 24 -0 =0.

Proposition 14.9 (Linkage). For A\, u € HY, we say pu is equivalent to A\, denoted by
p~ A A A4+ 0 =w(p+ 9) for some w € #. Then A ~ p implies x» = X,
Proof. We have, by PBW bases, that
Z(A) = "U(L)/I(N),
where I(\) = ML) {(zq, ha — A(ha) - 1).

If m:= (A a) >0, g7 is still a maximal vector, and is not 0 if A(;) < 0 for some

j. For

p=0q(A+9)—19
= A=A aa) = (6 (6 —-a))

=A—(m+1)a,
Z(\) contains image of Z(). This implies that x» = x,-
If m <0, then
(, ) = (A, a) =2((A\,a) + 1) = =(\,a) — 2.

m = —1 is equivalent to = A, and m < —2 implies that (u, a) > 0, which reduce to the

case m > 0. |

15 The proof of Harish-Chandra’s theorem and
Kostant /Weyl formulas, 10/31

Theorem 15.1 (Harish-Chandra). For A, p € HY. If x» = x,, then A ~ p.
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Proof. Let & : (L) — U(H) via PBW bases. Let v be a maximal vector of V(\). Then

[T ITw ] wicet =0

a>0 a0

if there exists j, > 0, or maps to lower weight vector if there exists i, > 0. Hence, the
only bases contribute y,(z) are from U(H), i.e., xa(z) = A(&(2)) for z € Z. Here, we
extend A € H' to A\ : U(H) — F.

Consider the Lie algebra homomorphism
H —— $(H)
n]\hi'—)hi—l

SU(H).

i

Let
Z — (L) — U(H) —1 SU(H).
\w_/
Since § =13 a =3\,
A+6)(hi—1) = Ah) +1—(A+0)-1=A(hy).
So
(A +0)((2)) = ME(2))) = xa(2)-
If A € A, all #-conjugates of 1 = A+ are equal at 1)(z), so # fixes 1)(z) for each z € Z.

Hence, there is a homomorphism 1 : Z — S(H)”". Thus, if A ~ u, then y, = x, for all
A p€ HY.

Conversely, let x» = x,. Then A+ =p+d on ¢(Z) C S(H)”. If (Z) = S(H)”,
then
A+ =w(p+0)

for some w € # and done!

Let G = Int L. Recall that S(L) = (L) only as G-module (not algebra). So we

have a diagram via the isomorphism HY = H induced by the killing form:

WL —— S(H)”

! !

P(L)% —— P(H)”,

where P(—) is the polynomial function functor.
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Lemma 15.2. The center Z = Z(4U(L)) is equal to U(L)%.

Proof of Lemma. Let z € Z. We see that €%z = 2 and hence o(z) = z for each o € G.
Conversely, let x € (L) and let n = ad z, with n! # 0, n**! = 0. Take distinct numbers

as, ...,at+1€F. Then

¢
at
e“inzl—i—am—i—---—l—t—:ntEG,

and

n = blealn + -+ bt+16at+1n
for some b;’s. So
t+1
(ad z,)(x) = <Z bi) T
i=1

and »_ b; = 0 since n is nilpotent. Hence, [z,,x] = 0. Since « is arbitrary, z € Z. O
|

To apply it, let X be the space of functions f : HY — F supported on region of the

form A =>"_. ,Z>oc.

a>0

Let 0(\) ={pne€ HY | p < A\~ A}

Main example. chz,) € X. We compute chy = chy() via chzq,y’s within X. By
Harish-Chandra’s theorem, an easy induction shows that Z(\) has a composition series

with factor of the form V(u), u € 6(\). Reversing it! By triangular system, we write

chyy = Y e(p) chyg,
Heb(N)

where ¢(u) € Z and ¢(\) = 1. For A € AT, o(chy) = ch, for each 0 € #". We have
o(q*chy) = o(q) * o(chy) = (=1)!lg * chy .
Also,

o chzoy(p) = P(p—A) = (Px*ex)(p);

o gxpre_s=es*x]][,. oleo—e—a) xpre_s

= [lasoleo —e—a) [Tasoleo +ea +e0a+--) = eo.
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Hence, q * chz(y) = exys, and thus

q * chyy = Z c(p)epts-
peD(N)

Since # acts on {u+ 0 | u € O(\)} transitively, c(u) = (=1)I°I, where o(u + &) = X + 4.

So we get

q % chy = Z(—l)l"‘ea(,\Jr(;).
oW

Definition 15.3.  (a) A Lie group G is a (C°°) manifold such that its group law

Gx(G —@d

(9,h) —— gh™
is C°.
(b) f:G — H is a Lie group homomorphism if it is a group homomorphism and C°.

(c) If f is an immersion, i.e., the tangent map df,: T,G — Ty H is injective, we call

G — H an (immersed) Lie subgroup.

If f(G) C H is closed, then Top(G) is diffeomorphic to Top(H)| ).

Main example. GL(n, F) C M., (F) = F". Since y~' = adjy/dety, y~' is a rational

function in y]’s, which is C* outside det™'(0). Hence, GL(n, F') is a Lie group (in fact
an algebraic group).

For the quaternion numbers H, we define

M sn(H) = {g : H" — H" (right) linear over H },

GL(n,H) = {g € M,,x,,(H) invertible }.
If we write H = C & jC:
a+bi+cj+dk = (a+bi)+ j(c—di),
then we can view GL(n,H) as a subgroup of GL(2n,C): since
R R ORG)
g € M, ,,(H) if and only if

g€ GL(2n,C)g = {Y € My (C) | Y = JV} = {y _ (g :g)} |
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Compact Lie groups.
O(n) = {g € GL(n,R) | g"g =id} 2 SO(n) = {g € O(n) | det g = 1},
U(n) = {9 € GL(n,C) | g*g =id} D SU(n) = {g € U(n) | det g = 1},

where g* = g'. Since O(n) and SO(n) are defined by polynomials, we can define O(n, F)
and SO(n, F') over every field F.

The symplectic group is defined by

Sp(n) = {g € Myxn(H) | g"g = id} € GL(n, H),

where a + bi +c¢j +dk = a — bi — ¢j — dk, i.e., g € Sp(n) preserves the inner product
(z,w) = > Z;w;. Under the identification HH = C @ jC, we have

Sp(n) = SU(2n) N Mayx2,(C)r = SU(2n) N Sp,,,,
where
Spa, == {9 € GL(n,C) | g"Jg = J}.

(Note that under the condition g*g = 1, gJ = Jg if and only if g".Jg = J.)

By definition, Sp(1) = SU(2) & 3, where (g _EB> is mapped to (a,b) € C* = R

In fact, there is a 2-1 cover from Sp(1) to SO(3). Moreover, since m(SO(n)) = Z/27Z for
all n > 3, there exists a simply connected double cover Spin,, (R) — SO(n) called the spin

group. When n = 3, Sping(R) is just Sp(1).

Definition 15.4. The Clifford algebra on V = (R", (—, —)) is
CL(R) = CLIV) :==T(V)/{z @z + (z,2)),

e, zy 4+ yr = —2(z,y).

Examples. Clj(R) = R, C;(R) = C, Cly(R) = H.

Let ey, ..., e, be a basis of V. Then CI(V) has basis {e;, ---€;, | i1 < -+ <ip}. As
a vector space, Cl(V) is isomorphic to A V.

Definition 15.5. Clifford module structure on AV: for x € V| ¢(x) = €(x) — 1(z) =

(xA) — (zd). Here,

T A Ay) =Y (DT @y A ATA
1=1
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By checking on standard basis, we can show that c(z)? = —(z, z).

Definition 15.6. We define the homomorphisms
d: ClIV) —— End(AV)
1wy — () o(Ty)

and
v: Cl(V) — AV

v — v- 1.

Now, we construct Spin,,(R):

Facts. Sp(n) for n > 1 and SU(n) for n > 2 are simply connected. m(SO(2)) = Z,
m1(SO(n)) = Z/27Z for n > 3. Indeed, for a Lie group G and its Lie subgroup H, we can
consider the homogeneous space (coset space) G/H. There is a fiber bundle
H——G
lw
G/H,
so hence an induced long exact sequence

—— mp(H) —— m(G) —— m(G/H) —— w1 (H) —— -+ .

For the case G = SO(n) and G/H = S"', H = Stab(z) = SO(n — 1) for all z € G/H.
Thus, the statement 7 (SO(n)) = Z/2Z for n > 4 is equivalent to m(SO(3)) = Z/2Z.

To show that SO(3) = S3/{+1}, we note that SO(3) = O(ImH)°. So the adjoint
map
Ad: Sp(1) — SO(3),
where
Ad(g)(u) = gug™" = gug,
is well-defined. For {i,7, k} is an orthogonal basis of ImH. By checking on this basis,

Ad(cos @ + vsin@) is equal to the rotation Ry in i-j plane. We see that Ad is surjective
and ker Ad = {+1}. Hence, Sping(R) = SU(2) = Sp(1) = S°.

Definition 15.7. Write CI(V) = CI(V)" @ CI(V)~ (under the identification AV =
(AV)T @ (AV)7). There is a main involution « defined by

Oé<$1"'l’k):x1"'l’k‘
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It is easy to see that « is a homomorphism. The conjugation on Cl(V') is defined to be
(21 2)" = alazg - 11).
The spin group and the pin group are now defined to be
Spin(V) = {g € CLV)" | gg" =id, gVg" =V}
Pin(V)={g € CI(V) | g9* =id, gVg" =V}.

These groups lie in C1(V)*, and hence are Lie subgroups.

Theorem 15.8. There are exact sequences

1 —— {£1} —— Pin,(C) —>— O(n) —— 1,

1 —— {#1} —— Spin,(C) —— SO(n) — 1,
where p(g)(v) = a(g)vg*. Moreover, Pin,(R) has 2 connected components and Pin,(R) =
Spin,,(R)°.

Proof. For Pin,(R),

* Kk %

p(g)x|* = —alg)zg"(alg)rg™)" = alg)rg"g™ 2" a(g)" = alg)lz|*a(g)"
o p surjects reflections: r, 1= p(z).

o kerp = {£1}: it suffices to show ker p C R. Let g € ker p, so that a(g)x = zg for

all x € V. Write g = e;a+ b, where b has no e; in its products. Take x = ey, we get
—eja(a)e; + a(b)e; = —a + eqb.

Since —eja(a)e; = a, a(b)e; = e1b, we get a = 0. By symmetry, there is no e;

component in g for each 7. Hence, g € R.

S0
Pin,(R) = {x1 x| |z:] =1, k < 2n}

and
Spin, (R) = {x1 -z | |2;| = 1, k even }.
Finally, Spin, (R) is connected (for n > 2):
v(t) = cost + ejegsint = ey (—ej cost + egsint) € Spin,, (R)

connects ker p = {£1}. Also, Pin,(R) = z Spin,,(R) U Spin, (R) for any = € S"!. |
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16 Integration, 11/7

Proposition 16.1. Let G be a connected Lie group. Then G = Un21 U™, where U is

any neighborhood of the identity e € G. In particular, G is second countable.

Proof. Let V = U N U™}, which is open, H = U, V" € G. For each g € G, gH is also
open. Hence, G = |_|a€G/H goH. Since G is connected, G = eH = H. [ |

Proposition 16.2. Let H be a discrete normal subgroup of a connected Lie group G.

Then H lies in the center of (.

Proof. For h € H, consider the set Cy, = {ghg™ | g € G} C H. Since G is connected, Cj,
is connected. Since H is discrete, Cj, = {h}, which implies h € Z(G). |

Theorem 16.3. Let G be a connected Lie group. The universal cover G of G is a Lie
group, such that the canonical map 7 : G- Gisa group homomorphism. In particular,

K = ker7 is a normal discrete subgroup of GG, hence abelian.
Proof. We only need to define the Lie group structure on G. Fix¢ e n~1(e). Consider

M GxG — 5@

G.h) — m(@)m(h)".

There exists a unique map s: M — G such that m 0§ = s. This 3 defines the group

structure on G (and that 7 is a group homomorphism). [ |

Example. Let G be a Lie group. Then 74 (G) is abelian for each k > 1, mo(G) = G/G°,
where G° is the connected component of G. The composition law in 7 is equal to the

group law in G.

Indeed, let ¢1, ¢o : (I¥,01%) — (G, e) be 2 continuous maps. Then

G1 % Gg ~ (D1 % Po) * (Po * P2) = P1 - Po,

where the - is the group law in G.
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To show that 7 is abelian for k£ > 2, simply note that

¢ | id id | ¢
1 O2 ~ ~ ~ G2 1
id | o2 o2 | id

Fact. The tangent bundle T'G is trivial, i.e., TG =Z¢c~ G x T,G, for example, via left
invariant vector fields. For v € T, G, let ¥(g) = {,4.v, where £, is the left translation, while
14 is the right translation. v is a left invariant vector fields by its value at T.G. Using this
construction, we can also define left invariant metric (—, —), left invariant volume form,

denoted by w, = dg, unique up to scalar. If G'is compact, we can choose a unique dg

/dgzl.
G

Theorem 16.4. If G is compact, then dg is also right invariant and inversion invariant.

such that

Proof. Since dg is left invariant,
lo(ridg) = rldg = r,dg

is also left invariant, and hence there exists c(h) € R* such that rjdg = c¢(h)~' dg. Then
¢: G — R* is a homomorphism. Since G is compact, Imec C {£1}. Note that ¢(h) = —1

if and only if rj, is orientation reversing.
Now,

/G f(gh)dg = /G F(gh) d(gh) - c(h) = /G £(g)dg. n

Theorem 16.5 (Fubini). Let G be a compact Lie group, H C G a closed subgroup.
If ¢; =id on A\*P(G/H)e, then G/H has a unique left invariant volume form wg/y =
d(gH) = dg such that

| FPag= [ (Foma,
G/H G

where 7: G — G/H is the quotient map. Moreover,

/Gf(g)dgz/G/H/Hf(gh)dhd(gfl)-
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17

Representation of Lie groups, 11/9

A group representation (m,V) of G is a (continuous) homomorphism 7 : G — GL(V),

where G is a Lie group and V is a finite dimensional vector space over C. For two

representations (7, V), (7', V"), the set of morphisms between them are

Homg(V, V') ={T:V = V' |Ton(g) =7'(g)oT, Vg € G}.

Examples.

1)

Standard representation: If G is a subgroup of GL(n,F), F = R, C, then the
inclusion G — GL(n, F') is a representation, where V' = C". Also, G acts on

functions on V by (g- f)(v) = f(g'v).

Let Vi,,(R™) = Rz, ..., Zp|m, the space of homogeneous degree m polynomials. We
see that dim V;,(R") = ("*"~"). Let G = O(n) C GL(n,R). Then elements in G
commutes with the Laplacian A = >~ 92 i.e.,

Alg- f)=g(Af).

Hence, G acts on the harmonic polynomials 7, (R™) = {f € V,,(R") | Af = 0}.

Consider the action of G = SU(2) on V,(C?) = C[z, 23]o. This is an irreducible

representation. In fact,

g f= (g D) st = o (1) 1) = @ Bt

a

and it is easy to see that every nonzero element in V,(C?) generates V,,(C?) under

G.

Alternatively, consider V! = Holy(C)<,, = {ap+a1z+---a,2"}, which is isomorphic
to V,,(C?) as an vector space via Mébius transformation. Hence, the action of G on

;s
V. is

—bz+a

(9- (=) = (<bz + )" ( az+b ) |

Since holomorphic functions on C corresponds to harmonic functions on R2?, we

know that %, (R?) = 2.
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4) Consider the 2-1 cover G = Spin,(R) — SO(n). A genuine representation is a
representation not from SO(n). Let V = (R, (—, —)) ® C, where (z,w) = > zw;.
Let m = [5]. We can write V=W @ W' ifn =2m and V = W & W’ @ Ce, if

n = 2m + 1, where

W ={(z1,..,2m021,- -, iz2m)}, W ={(21,. ., 2m, =121, ..., —i2m)}.

Theorem 17.1. Let S = A*(WW) be the spinor. Then

End S, if n = 2m,

12

Cl(V)
EndS @& EndS, ifn=2m+1

as an algebra. Since Spin(R) is a subset of Cl(V'), we get a faithful representation of
Spin,, (R).

Proof. For n even, define ¢ : V' — End S by ¢(z) = ae(w) — fe(w'), where z = w = o'

with w € W, w' € W’ and «a, 8 are two numbers such that a8 = 2. We see that
p(2)? = =2(e(w)(w’) + v(w)e(w)) = =2(w, w') = —(z,2),

and hence ¢ defines a map Cl(V) — End S. Note that dim Cl(V') = dim End S. Hence,
to show that it is an isomorphism, it suffices to show that it is surjective.

Take a basis {w;} of W and a basis {w;} of W' such that (w;, w}) = d;;. Note that

/

wy, - wi,wi - --wj, maps A"W to 0if p < k, onto w;, A- - -Aw, if p = k, and an induction

shows that it is surjective it p > k.

For n odd, write z = w 4+ w’ + (e,, and define
p*(2) = ae(w) = Bu(w') £ (~1)"i¢

on APW. Again, these defines maps ¢*: CI(V) — End(S) and these maps are surjective.
|

Theorem 17.2. As an algebra,

End ST ®EndS—, ifn=2m,
Cl(V) =
End S, ifn=2m+ 1.
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Proof. For n even, ¢ preserves ST on C17(V). So ¢ : C1"(V) < End S* ® End S~. Since

they have same dimensions, ¢ is an isomorphism.

For n odd, the definition of ¢* mixes degree. So p* does not preserve S*. But take

one piece T and dimension count, we still get an isomorphism. |

Example. For n = 3, m = 1, Sping(R) = SU(2) = S3. S = AW = C? and there is a
map Sping(R) — End S = Msy»(C).

Since —1 € Spin, (R) € CI" (V) maps to 1 € SO(n), and —1 is nontrivial on S, S is

a genuine module.

18 Representation of Lie groups II, 11/21

Let G acts on finite dimensional C-vector spaces V, W. There is a natural action on

V ®c W by Leibniz rule:

g-(v@w)=gv@w+v&® guw.

Let p: G — GL(V) be the representation, B = {vy,...,v,} a basis of V. Write

M, = [p(g)]5. Then (M,)! = vI(gv;), where BY = {v'} C V" is the dual basis of B.
Hence,

(M))T)] = vilge) = v/ (g7 o) = (My-1)] = (M, )]

e, My = (M;"T.

g

For V, the same abelian group as V' but with different G-module structure: z ® v =
Z - v, where ®, - denote the multiplications on V, V, respectively. Then there is a

representation p: G — V.

For G compact, there exists a G-invariant inner product (—,—) on V' by taking
(vrw) = [ gv.gw) dy
G
where (—, —) is any inner product on V. We may choose v; to be an orthonormal (unitary)

basis. Then p maps G into U(n) C GL(n) =& GL(V). Hence, p(g)"! = p(g) and as
G-modules, V¥V = V. Also, we get Weyl’s completely reducibility theorem: for a G-
submodule W C V, we see that W+ C V is also a G-module. We say that a G-module V/

is irreducible if every G-submodule of V' is either {0} or V.
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Theorem 18.1 (Schur’s Lemma). Let V', W be irreducible finite dimensional G-modules.
Then

C, VW
Homg(V, W) =

0, else.
Proof. For a nonzero G-homomorphism 7' € Homg(V, W), kerT'=0 and ImT = W. So

V =2 W as G-modules. Fix a G-isomorphism Ty: V' — W. For any T: V — W, since
det(TTy; ' — M) # 0, we get TT, ' = A for some A. |

Corollary 18.2. Let GG be a compact Lie group. Then a finite dimensional G-module V/
is irreducible if and only if Homg(V, V) = C. In this case, the G-invariant inner product

(—, —) is unique up to scalar.
Proof. If V' is not irreducible, say V = V; & V, with V4, V4 # 0, then

dim Homg(V, V') > dim Homg (V3, Vi) + dim Homg (V2, Vo) > 2.

Given two G-invariant inner products (—,—)i, (—, —)2. These give us two isomor-

phisms

T; € Hom(V,VY) = C

by sending v € V to (—,v);, i = 1, 2. Then T} = ¢T} for some ¢ # 0. |

Corollary 18.3. Let Vj, V5 be irreducible G-submodules of (V) (—, —)), where (—, —)

Y

is a G-invariant inner product. If V; and V5 are non-isomorphic, then V; L V5.

Proof. 1f not, then W = {v € V; | v; L vy} is a proper submodule of Vj, which is 0 by
the irreducibility of Vi. Hence, (—,—): V; ® V3 — C is a nondegenerate pairing, and thus
Vi=Vy 2V, u

Let G be the set of equivalence elements of irreducible (unitary) representation
(7, Ex)’s. For a finite dimensional G-module V', let Vi, be the m-isotropic component,

i.e., the largest subspace of V' which is isomorphic to E]'* for some m, > 0.

Theorem 18.4. There is an isomorphism ¢r: Homg(Er, V) ® E;x — Vig by sending
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T ®v to Tw. Hence

@Homg(Eﬂ, V)@ E, — GBV[W] =V,

reG el

called the canonical decomposition of V.

Proof. Let T € Homg(E,,V) be a nonzero element. Then ker7 = 0 and therefore
E. 2 T(E;). By the definition of Vi, T(E;) C Vj5. Since i, is a G-morphism, onto, so

we only have to check that it is injective.

Since

dim Homg(Er, V) = dim Homg(Er, Vig) = m,
by Schur’s lemma, dim LHS = m, - dim £, = dim V5.

Finally, V = Z[ﬂ]ea Vin) = @[ﬂ]eé Vim- "

Examples.
(1) The action of SU(2) on V,,(C?) is irreducible.

(2) The action of SO(n) on 4, (R") is irreducible for n > 3. For n = 2, only O(2)

irreducible.
Fact 1. Under the algebra isomorphism

V(R") —— D(R")

T; —— 8931,,

where D(R") is the space of differential operator with constant coeflicient, define
(p,q) = O,p, which is a hermitian inner product on V,,(R"). There is an orthonormal

’fl co-xPn with ST k; = m. Also,

basis x -

A (R™) = (|2[2V_o(R)

Indeed,

(p, [22q) = Op2gp = 920 = (Ap, q).

As a consequence,

Vin(R™) = ,(R™) &+ |2]*V;_o(R™) = S, (R™) © 5, o(R") & - -
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as O(n)-modules.

Fact 2. Under O(n —1) = O(n), g (6 5),

(R om-1) = Hn(R* ) @ S (R & A o (R - - -

Write V,,(R™) 3 p = > a¥pg, where p, € Vi, (R"™!). Then V,,(R") = @ V,,_(R"1)
as O(n — 1)-modules. So

12

Vm(RnNO(nfl) %(RRHO(nfl) S Vm—Q(RnMO(nfl)

<%(]RnNO(n—l) S¥ @ Vm_g_k(Rn_l)_

12

On the other hand,

Vin(Rogn-1) = @ Vit (R"™) & P Vina-1(R™).

So it suffices to show the “cancellation”: if GG is a compact Lie group and V ¢ U =

W & U, then V = W. This is true by the canonical decomposition.

Now, we show that .77,(R™) is an irreducible SO(n)-module. If f € ,(R") is
SO(n)-invariant, then f = c¢|z|™ and Af = 0. which implies that m = 0 or
c = 0. It follows from Fact 2 that J#,(R")|so(n—1) has a unique SO(n — 1)-invariant

function, up to scalar.

Claim. For an SO(n)-invariant finite dimensional subspace V' of C°(S™™!), there

exists a (nonzero) SO(n — 1)-invariant function f € V.
Indeed, there exists f € V such that f(1,0,...,0) # 0 (otherwise V' = 0). Let
fr= [ fos)as,

SO(n—1)
{f;} a basis of V. Since gf = 3 ¢(g)f for some functions ¢: G — C, f =
3 (fSO(nq) (9) dg) fi € V. So f is the desired function since f(1,0,...,0) # 0.

Now, if 72, (R") = V; &V, with V; being SO(n)-invariant, V;|s»-1 contains a nonzero
SO(n — 1)-invariant function f;, i = 1, 2, which contradicts the uniqueness of such

functions (up to scalar).

For n even, the action of Spin, (R) on S* is irreducible. For n odd, the action of

Spin,,(R) on S is irreducible.
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19 Character theory, 11/23

Let G be a compact Lie group. Then there is a G-invariant metric on G and hence a

G-invariant volume form (Haar measure) dg. We normalize the form so that

\G]:/ dg—1.
G

Let p: G — GL(V), p': G — GL(V') be representations, where V, V' are finite
dimensional C-vector spaces. Consider p"”: G — GL(Hom(V, V")), p"(g)(e) = p'(g) o eo

p(g™").

Lemma 19.1 (Symmetrization). For a homomorphism e : V' — V| the element n(e) =

Jo P (9)(e) dg lies in Homg (V, V).

Proof. By defintion
o (hyn(e) = /Q/f<hg>ep<g1>dg:: /Q,f<g>ep<h1g>1d<hlg>

- /c;P’(g)ep(g)‘1 dg p(h) = n(e)p(h). .

Corollary 19.2. If p, p/ are irreducible, then
(i) p 2 p' implies n(e) = 0 for all e € Hom(V, V’);

(i) p = p' implies n(e) = cIy under an identification V' = V.

Theorem 19.3 (Schur’s orthogonality relations). Let (p, V), (o', V') be irreducible rep-
resentations. Write p(g) = (T}(g)), ¢'(9) = (T"5(g)) in some basis B ¢ V, B' c V.
Then

0, if p 20,

Gl sk, ifp=yp, B=8.

/GT}(Q)T'?(gl) dg =

Proof. Let e = e? be the elementary matrix. Then the integral
| orte s = [ o ebnlo)ds = n(eh))
G G
When p % p/, this is 0. For the case p = p/, (n(e})); = ¢} - §; for some ¢¥. So

1 . 1 |
k _ g k -1 — 4 k -1 dg = . (5k [ |
&= /G ;:E:(Tj(g)Te (9)7)dg = 7 /G Ti(9)T;(9)" dg = |G| - 5
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Now we set x, = xv := trop: G — C, called the character of (p,V). Then x, €
C>(G) and x,(e) = dim V.

Let C be the trivial representation, i.e., G — {id} € GL(C). Then x¢ = 1.

X defines a map from Rep G to C*°(G). We see that xyev = xv + xv’ and xygy =
Xv - Xv. Since xy(hgh™) = xv(9), xv is a class function. Also,

xvv(9) = xv(9) = xv(g) = xv(g™")

by taking a unitary basis.

Theorem 19.4. Let V, W be finite dimensional G-representations over C.

(1) (v, xw) = Joxv(g)xw(g) dg = dim Home(V, W).

(2) V=2 W if and only if xy = xw.

Proof. Choose a unitary bases of V., W, etc.. If V., W are irreducible, we get T/(g) =
T'"(g7Y). So

0, itV 2w,
<XVaXW> =

Loiskelo =1, V=W

In general, write V=@ E™ W = @ EM . Then XV =D MaXas X = 2 M- Xr. SO
{(xv,xw) = Hom(V, W).

Since {m,} (resp. {m.}) determines the isomorphic type of V' (resp. W) and

my = <X7T7XV>7 m; - <X7FJXW>7

we get (2). |

Corollary 19.5. Let V& be the G-invariant vectors in V. Then

/GXV(Q) dg = (xv, xc) = dim V¢

since V¢ = Homg(C, V). Also, V is irreducible if and only if ||xv|| = 1.

Theorem 19.6. For compact Lie groups G, G5, a finite dimensional representation
W of G7 x Gy is irreducible if and only if W = V; ® V5, where V; is a irreducible G;-

representation, ¢ = 1, 2.
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Proof. Let V; be a irreducible G;-representation, ¢ = 1, 2. The invariant measure on

G x Gg is given by dg; A dgs. So
XVi®Vs (9192> = Xw (91) " XVa (92)

implies that [[xviev,ll = [xv [l - Ixwl = 1.

Conversely, let W be an irreducible G; X Ga-representation. Write
W= @ Homg,(E., W) ® E,
[7’1’]662

as G-modules. The equation above is in fact a G X Ge-morphism, since Homg, (E,, W)

has a natural G action. Since W is irreducible, W = Homg, (E,, W)® E, for some 7. W

Be more concern with your character than your representation!

20 Peter-Weyl theorem, 11/28

Let G be a compact Lie group. Then C(G) is a Banach space with respect to

| fllc@ =sup |f(9)l;
geG

L*(G) is a Hilbert space with respect to

1/2
i fo) = /G fFadg |l = ( /G |f|2dg) .

Since G is compact, C(G) is dense in L?(G). There are two natural action of G' on C(G),
L*(G):
(: GxCG) — C(G)

(9, f) —— Lyf = [h= f(g~ D)),
ri GxCOG) —— C(G)

(9, f) = 1rof = [h = f(hg)].

The action of G on C(G) is continuous: for each h € G, since f; is uniformly continuous,

[£g, J1(h) = g, fo(R)] = | fr(gr ') — falgs h)|
< |filgrth) — filgy "W+ [ f1(g2 'h) — falgy th)] — 0
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as (g1, f1) tends to (g2, f2). The action of G on L*(G) is also continuous:

1€g. 1 = Lo follr2(c) = 11 = €y, ol L2(c)
< v = Fllexe) + e = Loy, follrzay + 4oy f2 = oo foll 26
< g f2 = Co flirzay + 1gu f = Loy fllz2e) + oo f — Lo follz2(0)
< |fe = flle2ey + o f — Lo fllz2) + 1 f2 = fllz2o)
< |[lg, f = Lo, [

where f € C(G) is an element such that f — f; in L?-norm.

Definition 20.1. Let {V, },ca be a family of Hilbert spaces with inner product (—, —),
on V,,. We define

@Va = {(va)

acA

Vo € Vo > [Jall? < oo}

acA

and

Then @, V, is dense in @a Vo and V,, L Vp for all a # 3.

Let T be a bounded self-adjoint on operator on V. The spectral projection of T is

the family {Pn = xo(T)} where xq is the indicator function of the Borel measurable set
(2 such that

(1) Pq is an orthogonal projection;

(2) Py =0, P4 = id for some a > 0;

(3) If Q =2, Q, then limy oo SN | Py, = Po.
(The spectrum of T is the set

{A € C| M — T is not invertible },

and P)\ = X)\(T)>

For each v € V', A — (v, P\v) is a measure. Since T is self-adjoint,

(v, Tv) = /RAd(@,Pm).
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Fact. There is a one-to-one correspondence

{ projection valued measures } —— { bounded self-adjoint operators }

{Pa} > (v, Tw) =[5 Ad((v, Pw)).

Lemma 20.2 (Schur’s lemma for Hilbert spaces). If V isirreducible, then Homg(V, V) =
C-id.

Proof. For a G-operator T', write

T+17 T-T"
= —1 :
2 2

T

Since T is a G-operator, then T™ is also a G-operator. So we may assume that T is
self-adjoint. For each g € G, goT = T o g implies that go P, = Py o g, so kerg and Im g

are G-submodules. Hence, Py, = id or 0.

Now, P_qq = id for some a > 0. So there exists A such that P, = id. Hence,
T=X\-id. [ |

Theorem 20.3. Let V' be a Hilbert space and p: G — GL(V') an irreducible represen-

tation. Then there exists finite dimensional irreducible G-submodules V,, C V such that

—~

V=,V

This shows that every irreducible unitary representation of GG are all finite dimen-
sional, and the set of G-finite vectors (i.e., v € V such that dim(Gv) < oo) is dense in

V.
Fact. Let (p,V) be a unitary representation of G on V. Then there exists a nonzero

G-subspace of V' with dim W < oo.

Proof. Let Ty be a nonzero finite rank projection (self-adjoint, positive, compact) in

Hom(V, V),

T = /Gp(g) oTyop(g)tdy.

Then T is G-invariant. Since Tj is positive,

(T, v) = /G (T o plg) (). plg)"v) dg
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shows that T is positive. Since Ty is self-adjoint, T is self-adjoint. If T is compact,
self-adjoint, then there exists A € C such that dimker(7 — AI) < oo and we know that
ker(T'— AI) is a G-submodule. |

Now, consider
S={{Valac A, dimV, < oo, V, L V;for a# p}}.

By Zorn’s lemma, there exists a maximal element {V,, | « € A} in S.

—~

Claim. @,_,Va = V.

If not, the orthogonal complement of @ae 4 Va is closed and G-invariant. So it

contains a finite dimensional subspace V,,, a contradiction.

Consider the m-isotypic component Vi of V. Homg(E,, V) forms a Hilbert space:
<T17T2>H0m id = TZ* o) Tl- For T1, T2 € Eﬂ-,

(T, Toxe)y = (TyThxr, x0) g, = ((T1, T2)Hom®1, T2) = (11, T2)Hom (T1, T2) B, -

Definition 20.4. For Vi, V5, we define V; ® V5 to be the completion of V; ® V45 with
respect to

(v1 ® v, 01 ® vy) = (v1, V1) V2, 05).

Hence,

V=P Vig = @ Home(E,, V) ® E..
[r]eG [rleG

21 Peter-Weyl theorem II, 11/30
Theorem 21.1. As G x G-modules,
L*(G) = @ E'®E,.
[x]eG

Proof. Recall that

—_

L*(G)= P L(G)m = @ Homg (E,, L*(G)) ® E;.

[x]eG []eG
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Consider C(G)a.an € C(G) C L*(G), where C(G)g.gn contains the elements that has

finite dimensional G-orbit.

Lemma 21.2. We have
(1) Homg(Er, C(G)esm) = EY, and

(2) C(C)gutn = Do BY © By

Proof of Lemma. We see that C(G)g.gn is equal to MC(G), the set of functions of the
form
ot 9 (gu,0),

where V is a finite dimensional unitary representation of G. Indeed, via the left action

0: G — GL(C(G)),

(ofun)(h) = fuo(g™ h) = (g7 hu,v) = (hu, gv) = [y 4, (R).

u,gu

So
(ofY, | g€ GY C(fY, | v €V) € Ob(Vectsy),

u,v’

and hence va € C(G)g.fin. Conversely, if f € C(G)gpin, say dimV < oo and f € V.
Consider V' = {f | f € V} with action g- f = g- f. Then V is a G-submodule of C(G)
and V has an induced norm from L?(G). Now, for each f € V, f(e) € C, so there is exist

an f, € V such that f(e) = (f, f,) for all f € V. Hence,

implies that

fu7(9) = {gfo. F) = Flg) = f(9),

ie., feMC(G).

From the proof above, we also see that C(G)q.gn With respect to £ is equal to C'(G) ¢-fin
with respect to r. Indeed, for f € C(G)g.an With respect to r, there exists V € C(G)
with dim V' < oo and f € V. Similarly, there exists fy € V such that f(e) = (f, fo) for
all feV. So f(g)=ryf(e) = (ryf, fo) implies that f = f/, € MC(G).

Now,

C(@)cin = @ Homg (B, C(G)gepin) ® Er

reG
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as left G-modules. In fact, C(G)g.qn is @ G X G-module by

(91, 92) ) (h) = (rg, g, f)(h) = (g5 " han)-

The second G-action on Homg(Er, C(G)gqin) @ Er is trivial on the second component

and is defined by
(9T)(z) = rg(T(x))

on the first component (¢, (Tg)(z) = Lyr,T(x) = r,T(lyx) = (T'g)(lyx)).

Recall that EY is a (left) G-module: for A € EY, (Ag)(x) = Mg~ 'z).

Consider
Homg(Er, C(G)eom) 2 : > B
T > Ar:x = (Tx)(e)
Ty:x— [h—= ANh'2)] < DY

We see that ¢ is a G-morphism:

(Arg)(z) = Ar(g~ " a) = T(g~ ') (e) = (ly-1(Tx))(e)
= (Tz)(g9) = (T'x)g)(e) = (T9)(x))(e) = Ary().
T, € LHS:
Ly(Ta(@))(h) = Ta(x)(g~h) = A(h™ gz) = (Ta(g2))(h),
s0 £y(Tx(x)) = Tx(g). Similarly, ¥ is a G-morphism.
It is easy to check that ot = id and ¥ o ¢ = id: A, (z) = (Th(2))(e) = (),
(Tay (2))(h) = Ar(h™'a) = (T(h™"z))(e) = (1 (T(x)))(e) = T(x)(h).

This proves (1). For (2), consider

@ E'® E, ——— O(G)¢ fin
[r]eG

ARV ——— fagw: 9 Mg ).

This is a G x G-morphism.

First, we check that ¢ is surjective. Since MC(G) = C(G)g.n is generated by
L », where {vT} is a basis of F, it suffices to show that f%7 . lies in the image. Pick
A 1777

A= {(—,u) € EY. Then

Hao(g) = Mg ') = (g7 v, u) = (v, gu) = [ (9),
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as desired.

Suppose that ¢ is not injective, say 0 # > \; ® v; € kerp. We may assume that
YAN®u; € Zjvzl EXJ_ ® By, for some 7; € G. Then O Ni ®vji)exa C E)r/j ® Er,. But
for 0 # A®@v € E) ® E,, there exists h such that fig.(h) # 0, a contradiction. O

We claim that C'(G)g.ga is dense in C(G) and thus in L?(G). By Stone-Weierstrass

theorem, we only need to show that C(G)q.a, separates points, i.e., for each go € G, there

exists f € C(G)g.n such that f(go) # f(e).

Choose e € U C G such that U N goU = @. Let xy be the characteristic function of
U. Then lyyxu = xgov implies that (€4 xu, xu) = 0. Since (xv, xv) > 0, ly, # idr2c).
Also, L*(G) = @Va implies that there exists V,, and = € V,, such that {,x # z. So
there exists y € V,, such that ((y x,y) # (z,y). Pick f = fXZO. We get f(g0) # f(e), as

desired.

Let

L @ Homg(E,, L*(G)) ® E, = L*(G).
[W}Ga

We need to show that the inclusion k: EY — Homg(E,, L?(G)) is an isomorphism.

If not, Im x G Homg (Ex, L*(G)). Since ¢ is an isomorphism and dim E < oo, so the

inclusion

Wk(E)) ® Er) S «(Homg(Er, L*(G)) ® E,

is closed. Pick f # 0 lies in the orthogonal complement of the LHS in the RHS. Then

fe (@ Wk(E)) ® Eﬂ)) = (C(@)asin)
[

W’]Gé\

a contradiction. [}

22 Applications of Peter-Weyl theorem, 12/5

Let G be a compact Lie group. Then there is a decomposition (21.1)

[*(G)= P EY ® E. = P End E,.
[x]eG [x]eG
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For f € L*(G), what is the corresponding element in End E,? For G = S', this is Fourier
series (note that = Z). What is the algebra structure in the RHS corresponds to the

algebra structure (via convolution) in the LHS?

1. Let fg” be the matrix coefficient of E,. Then

{Vdim E, ff-

] € G}

is an orthonormal basis of L*(G).

2. There exists a finite dimensional faithful representation p: G — GL(V'), and hence

G is isomorphic to a subgroup of U(N) (N = dim V).

If dimG > 0, take e # g € G°. Then there exists a representation (p1,V;) such
that m1(g1) # Iy (by P-W). Then G := ker 7 is a closed subgroup of G' (and hence
a compact submanifold) that contains g;. Since G; cannot contain a neighborhood
of e, dimG; < dimG. If dim G; > 0, then continue this process to get (p;, V;)¥,.
Then dimker(py @ - - ® pn) = 0, so ker(py @ - -~ ® py) = {h;}}L, is a finite group.
For each i =1, ..., M, choose pyyi(h;) #id. Then p; & -+ ® pyar is the desired

representation.
3. Let x be the set of irreducible characters X, ™ € G.
(3.1) (x) = Ca(G)q-fin, the set of G-finite class functions.

Indeed, there is an isomorphism
Ca(Q)pin = @ (End Ex)a.
[r]eG

For f € C(G), f € C(G)q if and only if the diagonal action g - f = f, where
g- f(h):== f(g'hg), i.e., f corresponds to {T, € Endg Eﬂ}[ﬂea. By Schur’s
lemma, T, = A\ (9)IE,.

Note that I, =) (—, ) ®e; € EY ® E; maps to

g Z<g_1ei>€i> = Z(ei,96i> = Z (gei, €i),

)

Le., Xnp-

(3.2) (x) is dense in Cy(G).
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(3.3)

Indeed, for f € C(G) and for each € > 0, there exists ¢ € C(G)g.gn such that
the sup norm || f — ¢|lo < €. Let

B(h) = /G r(g"hg) dg € Cal(G),
then
If—&llo < sup/ |f(g " hg) — o(g " hg)|dg < || f —¢llo <e.
heG JaG

Now, ¢ is G-finite: write

p(h) = Z(hxi,?/z‘%

%

where z;, y; € E;, and the sum is finite. Then
=> / (g7 hgxi, yi) dg
= </ 9 thgdg - xy>
, G

2

where x; = X, = trm;. Here, we use the fact that

/ (g 'hg)dg € Endg E, = C -id
G

and that

tr (/Gﬂ(g‘lhg) dg) Z/Gtm(g‘lhg) dg:/ctrﬂ(h) dg = x(h).

X is an orthonormal basis of LZ(G), i.e., for f € L3(G),

F="(f:xa)x

[r]eG

Indeed, choose ¢ € C(G)g.gin such that ||f — ¢lla < € by P-W theorem. As
above, ¢ € (x). Also,

1/2
I =Gl = ( [ s Pdh)

= ( (97 'hg) — (9~ hg) dg 2 dh) "

1/2
<[ ( / F(g~"hg) — o(g~ho)|? dh) dg = IIf = ol < <.
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4. As a corollary, we have N 2 SU(2) by mapping n € N to V,(C?).

The isomorphism
[*(G) = P End E,
[w]ea

can be extended to an unitary/algebra isomorphism. The inner product on L?*(G) is the

natural one, and the product structure on L?(G) is the convolution:

(fr % o) g) = /G F1(gh~") fo(h) dh.

The inner product on the RHS is the Hilbert-Schmidt inner product:

((T%), (Sx)) = Ztr(s;kr oT5).

The product structure on L?(G) is the operator product structure:

Tﬂ'OSﬂ' )

(1) (50) = (E

On one component [7] € G, let 7: L2(G) — End E, be

m(f)-vi= /Gf(g) - g dg.
Then in fact
(1) w(f1* f2) = w(f1) e w(f2), and
(2) w(f)* =n(f), where f(g) = f(g~D)

Indeed, this follows from

7(fo* fo) v = /G /G fi(gh™) fo(R)g - v dhdg
- [ 7t (g g fz(h)hv> dhdg = w(fy) o n(fs) v,

and

(n(f1)o, w) = / F(9)lgv,w) dg = /G (0, F@)g~"w) dg = (v, 7(F) - w).

Definition 22.1. The operator valued Fourier transform is

L3(@G) 7= 0p(@),
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where Op(@) is just @ End E, with the inner product structure and the product structure,

Ff = (VAmE -x(f) _.

TeG

G(T,) = Z dim B, - tr(T, o (g™ 1)).

Theorem 22.2 (Plancherel). The maps F and G are unitary, algebra, G x G-isomorphisms

and inverse to each other.

Corollary 22.3. We have
(1) [1f11* = >0 dim Ex - [l ()%
(2) Glp, = VAm E; - x5 ;
(3) f =2 dimEr - fx xx;

(4) (f1, fo) = S dim E, - trw(fa * f1).

Definition 22.4. For f € L*(G), its scalar valued Fourier transform is

fim = () = (o) = [ 1) Yl dg = (fox)

Corollary 22.5. There is an isomorphism

L4(G) — €(G)

23 Lie algebras coming from Lie groups, 12/7

Let G be a Lie group. Then the Lie algebra of G, denoted by LieG or g, is the left

invariant vector field on GG under Lie bracket:
(X, Y]|f=XYf-YXf.

X =a2 and Y =#-2 then

Ox OxI )

I X2

oxt OxI o Ozt

X,V] = XY —yX =20 0 00 9
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Since X, Y are left invariant, [X, Y] is also left invariant.

Fact. gl(n,R) = GL(n,R), ie., [A, §]e = AB — BA, where A (resp. E) is the left
invariant vector field determined by A € T, GL(n,R) (resp. B). Indeed, let h be a curve
on G = GL(n,R) such that 2/(0) = A. Then (gh(t))’ = gh/(t). So in particular ¢, A = gA.
Write A = (ai g >, g = (2%(g)). Notice that

i 9t
]ax]-

O (k) = skl b = 6.

o’
So
~ ~ . 0 0 . 0 0
A, B|. = a': = (gB)} i K
[ ) ]6 a] ax; (g )Z axlz b] 855; (g )f al,]g
g=e
0
= (AB — BA),—| .
( >£8$2 .
Consider the (unique) curve v with v(0) = e, 7 (0) = X € T.G, ~/'(t) = Ny(t). If

G C GL(n,C), then in fact y(t) = e*:

Y (t) =X =y()X = X,@).

This says that X determines an one parameter group of diffeomorphism on G by right

translations.
Fact. The exponential map exp: X + (1) = eX is complete, i.e., (t) is defined for all

t € R and is a diffeomorphism.

d tX _ : : 3
f. e — 0)o = .
Proof. Notw that dte X 1mphes (d exp) )0 id. The result then follows from the

-

inverse function theorem. [ |

Caution: exp g generate a neighborhood of GG, hence generate G°. But it may not be onto.

True if G is compact!

Example 23.1. sl(n, F): dete® = et X, So det e!X = 1 for all ¢ if and only if tr X = 0.
su(n) = u(n) Nsl(n, C): eX(eX)* = XX =1 for all ¢ if and only if X* = —X.
Note that dimg sl(n, R) = dimg su(n) = n* — 1. In fact, sl(n,C) = su(n) @k C.
so(n) = o(n): we have XT = — X, and note that this implies tr X = 0 automatically.

sp(n): reading.
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Proposition 23.2. Let ¢: H — G be a Lie group homomorphism, i.e., a C'* group

homomorphism. Then dy:  — g is a Lie algebra homomorphism, the diagram
h —“

lexp exp

H _?

—= G

©

commutes, and if H is connected, then d: Hom(H,G) — Hom(b, g) is injective.

Proof. dp([X,Y]) = [dp(X),de(Y)] follows from the C°° structure. Since ¢(gg’) =

©(9)e(g'), poly = Lyg) o p. By chain rule,
dpodly = dlyg odp,
i.e., left invariant vector field are compatible with dp, hence also integral curve. This

implies that the diagram commutes by the construction of exp. Then the injectivity of d

follows from the commutative diagram. [ |

Consider the inner automorphism I, = {,r,-1. The adjoint representation is

G 29, Autg

g —— dl,

this is a Lie group homomorphism. If Z(G) is trivial, then G < GL(g), and hence G is

a matrix group. We define

ad = dAd: g — gl(g).

Fact. Explicit formulas for matrix groups. They are all as expected.
Ad(g)(X) = (ge"*g7")'(0) = gX g~
ad(X)Y = (eYe ™)(0) = XY - Y X = [X,Y].

Also, Ade® = 24X,

Theorem 23.3. There is a one to one correspondence between subalgebras § of g and

connected Lie subgroup H of G.

Proof. Fix a basis {X;} of h. We get a distribution 7, = <)?7;g> for each g € G. Let

I =], e 7, We show that this distribution is integrable:

geG

X0 ¢ X;] = 91X, X + (X)X — ¢ (X5 ) Xs € A
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Take H to be the maximal integral submanifold that contains e. It is easy to check that

H is indeed a subgroup. [

Corollary 23.4. If H is simply connected, GG is connected, then there exists natural

bijection between Hom(H, G) and Hom(b, g).

Proof. Let p: H — G. Then the graph I'; € H x G is a group and I', — H is a bijection.

Then it can be reduced to the previous case. [ |

24 Exponential map, 12/12

Consider G C GL(n,C). Then [X,Y] = 0 if and only if eXe®Y = T for all ¢, s € R.
Indeed, if the latter condition holds, then

etXesY _ GSYGtX.

Applying 050 |s—¢—o on the both sides we get XY = Y X. Hence,

Corollary 24.1. If A C (G is connected, then A is abelian if and only if a := Lie A is

abelian.
Definition 24.2. A (k-)torus is a Lie group T* := (S')* = R*/Zk.

Proposition 24.3. A compact abelian Lie group G is isomorphic to T% x F for some

k, where F is a finite abelian group.

Proof. Consider the exponential map exp: g — G°, which is a group homomorphism, and
hence surjective. Since exp is locally diffeomorphic near 0, its kernel ker exp is discrete,

and thus is isomorphic to Z4™¢ (since g/ ker exp = G°).

Now, G/G° is a finite abelian group F' = [[Z/n;Z. Let g; € G with g; = 1 +
nZ € Z/n;,Z. Then g € G° implies that there exists an z; such that €™ = g". Let
hi = gie”™ € ¢;G°. Then h]" = e and

G x[]Z/niZ2 — G

(9, (Mi)i) ——— gITh"
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is the desired isomorphism. [ |

Definition 24.4. A maximal torus of a compact Lie group G is a maximal connected

abelian group. A Cartan subalgebra of g = Lie G is a maximal abelian subalgebra.

Corollary 24.5. Let T be a connected subgroup of a compact Lie group G. Then T is
a maximal torus of G if and only if t := LieT is Cartan. In particular, t (and hence T)

always exists!

Example 24.6. (1) Let

T = {diag(e™, ... e")} C U(n)
t = {diag(ify,...,i0,)} C u(n).

Then T is a maximal torus of U(n), t is a Cartan subalgebra of u(n). A similar

results holds for SU(n) and su(n) with additional condition ) 6, = 0.

(2)
. cosf; —sinb;
= {dlag ((Sin 0; cosb; ))} & S0@n),

t= {diag ((gz _Oei) )} C s0(2n).
. cosf; —sind;
T = {d1ag <(sin 6 cosd, ) ,1)} C SO(2n+1),

Theorem 24.7. Let G be a compact Lie group, t a Cartan subalgebra. Then for each
X € g, there exists g € G such that Ad(g)X € t.

Proof. Any finite dimensional representation (p,V’) has a G-invariant inner product, in

particular for (Ad, g), we call it (—, —).

Lemma 24.8. Let t = 3(y) for some regular element Y € g.
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So we want to find g € G such that [Ad(¢g)X,Y] =0, i.e.,
([Ad(9)X,Y], Z) = =(Y,[Ad(g), Z]) = 0
for all Z € g. Let gy achieves the maximal of the C* function
f(g) = (Y, Ad(g)X).
Then t — (Y, Ad(e?) Ad(go) X ), t € R, has maximum at ¢t = 0 for each Z € g. Hence,
d

0= G| (VAL Ad()X) = (¥,0d(2) Ad(gn) X) = ~(¥, [Ad(g0)X. Z]).

Corollary 24.9. (a) Ad(G) acts transitively on the set of Cartan subalgbras.
(b) G acts transitively on maximal tori of G by conjugation.
Proof. For (a), let t; = 3(X), and let g € G such that Ad(g)X € t;. Then
Ad(g)t = {Ad(g)Y | [¥, X] = 0}.
Write Y’ = Ad(g)Y. Then
[Ad(9)"YV", X] =0 = [Y',Ad(g)X] = 0.
So t2 C 3(Ad(g)X). By the maximality of t5, Ad(g)t; = to.
For (b), let T; = expt;. Then

gTig™" = gexp(ti)g " = exp(Ad(g)t)) = exp(tz) = T». n
Recall that if G is connected, then Ad(g) = id if and only if g € Z(G).

Theorem 24.10. Let G be a compact connected Lie group. Then expg = G and for
each gy € G, there exists g € G such that ggog~* € T

Proof. Indeed, gy lies in some maximal torus 7", and ¢7"¢~' = T for some g € G. [

Theorem 24.11. Let G C GL(n,C), v: R — g a C* curve. Then

d e2d () _q 1 — ¢~ ady()
o= [ ) @) O = O .
i ( ad (1) )7() o adrm )70

Note that (e* — 1)/z and (1 — e~#)/z are invertible power series in z.
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Proof. Consider the C* function ¢(s,t) = e=*2e7")_ Then ¢(0,t) = 0 and

(5,1) = —e" o e+ (367) = Ad(e )y = "My

Os ot

So

1
e 7 0 —e"® = (1,1 / (s,t)ds = / e ¥4/ ds
ot 0

(/Z (ad ) >7_ﬂ7/. ]

ad vy
Corollary 24.12. The tangent map (dexp)y is nonsingular if and only if

Spec(ad X) C (C\ 2miZ) U {0}.

Proof. Simply take v(t) = X +tY with (ad X)Y = AY. Then

1—e?

1 — e adX Y, ifA#0,
<6—) — A [

ad X Y, if A= 0.

Theorem 24.13 (Dynkin’s formula). For any X, Y € gl(n), we have eXe¥ = ¢Z, where
[X(il)y(jl) .. .X(ik)y(jk)]

( 1)n+1 1
Z = : : N N N . : . . . .
g1l (i1 + j1) -+ (i + Jk) 1lg1! gy

Proof. There exists a unique C* function Z(t) such that e?® = e!Xe!Y near t = 0. Then

eadZ 1 ) B ,
< ad Z >Z 7= Xe” +e"Y.
Hence,
ad Z
Z/ - (eadZ _ 1) (X + Ad(eZ)Y)
dz dz
= —ajz — (X + Ad(etX)Y) = a(?Z—_ (X + 6tade).
e 1 e 1
Note that
ad Z = log(1 + (e™% — 17 _ )
n=1
So
adZ a 0 (_1)n—1 . . . .
(etadZ — 1) (X + YY) = " (ehadXetadY _ yn-l(x 4 tadXyr)
n=1
The result now follows by an easy calculation. n
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Corollary 24.14. Let N C GL(n,C) be a connected subgroup such that n := Lie N is

contained in the set of strict upper triangular matrices. Then N = expn.

Proof. Consider the equation eXe¥ = ¢Z near 0 (so that exp is one-to-one). The matrix

coefficients of Z are polynomial in X = (z%), Y = (y}) by Dynkin’s formula. So the
equality holds everywhere. Hence, (expn)? C expn. Since expn generated N, expn =

N. [ |
Theorem 24.15. Let G be a compact Lie group. Then g is reductive.

Proof. Let (—,—) be a Ad-invariant inner product on g. Then a C g implies at C g.
Hence,

0g=51D - - DS D31D "3k,

where dims; > 2 and dimj, = 1. It is easy to check that [s;,s;,] = 0 if ¢ # j and
Z(g) = D3 n

Theorem 24.16 (Structure of compact Lie group).  (a) Let G’ be the normal sub-
group generated by commutators [g,h] = ghg~'h™!. If G is compact connected,
then G’ is connected, closed in G and Lie G’ = |g, g].

(b) G =G x Z(G)°/F, where F' = G' N Z(G)° is a finite abelian group.

(¢) For g = @ s, S; = exp(s;) I G is connect, closed, with only proper closed normal

subgroup being finite central in G.

25 Reduce Lie group representations to Lie algebra
representations, 12/14

Let G be a Lie subgroup of GL(n,C), p: G — GL(V) a finite dimensional representation.
Then p(eX) = e®X) so dp determines p|ge. Also, p determines dp. Hence, for G
connected, W C V' is p(G)-invariant if and only if W is dp(g)-invariant. For G compact

connected, V' is irreducible if and only if V' is irreducible as a gc-representation, where

gc=gor C=gdig.

Observation. We can put g C u(n) C gl(n,C) = u(n) @ iu(n) = u(n)c. So there is a
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natural inclusion gc — u(n)c.

Note that elements in u(n) are skew-Hermitian, while elements in iu(n) are Hermitian.

So elements in u(n) Uiu(n) are normal.

Example 25.1.

su(n)c = sl(n,C)
so(n)c = {X' = —X},

sp(n)c = (u(2n) Nsp(n,C))c = sp(n, C).

We see that SU(n), Sp(n) are real compact Lie groups, while SL(n), Sp(n) are non-

compact.

Theorem 25.2. For any semisimple Lie algebra L over C, there exists a compact real

form, i.e., there exists a real compact Lie group G such that L = g ®g C.

Let G be a compact Lie group that acts on V' by p, (—, —) a G-invariant inner product
on C, t C g a Cartan subalgebra. Then {¢ acts on V as a family of commuting normal
operators, and hence simultaneously diagonalizable. So the Cartan subalgebra defined

here is same as the Cartan subalgebra defined in the theory of Lie algebra.

Now, fix a maximal torus 7' C G, t = LieT. For a G-module (p, V'), consider the

weight space decomposition

V=P Va, H-v=dp(H)-v=0oH) v, VHE, veVa
acd(V)
Take (p, V) = (Ad, gc). Then we have the root decomposition

gc =tc® @ Ja-

a€®(gc)*

Then ®(gc)* could be decomposed into the positive part &+ and the negative part .

Example 25.3. Let G = SU(n),

t = {diag(ify,. .., i0,)

Zeizo}, tc = {diag(zl,...,zn) Zzizo}.

Then ® = {%(¢; —¢;) | i < j}, where ¢;(diag(z;)) = z;. This is indeed A,,_;.
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As in the Lie algebra representation, an element v € V), is a highest weight vector if

X v =0 for all X € n™. New feature: analytically integral weight,
A=AT)={)e (it) | \(H) € 2miZ, Ve =id}.

We see that A is isomorphic to the character group x(7T") = Hom(T, C*) of T by &y (efl) =

ACH)

Theorem 25.4. Let G be a connected compact Lie group, V' a finite dimensional irre-
ducible representation. Then there exists a unique highest weight Ay which is dominant,

integral, and analytically integral.

Definition 25.5. An element g € G is regular if Z5(g)° is a maximal torus. The set of

regular elements in GG is denoted by G**¢, and is open dense in G.

Fort € T, define d(t) = [[,ce(1 —&-a(t)), which is nonzero if and only if ¢ is regular.

Theorem 25.6 (Weyl integral formula). For f € C(G),

1 -1
[ 0o =y faw [ storawrya

where W(G) = Ng(T')/T, which is in fact isomorphic to the Weyl group of gc with respect

to t(c.

Proof. Consider
v G)T x T — G

by multiplication. This map is surjective, and is a |W(G)| to 1 local diffeomorphism. Now
use

l/}*wG = d(t)ﬂik(JJG/T VAN ﬂ'sz. [ |

Theorem 25.7. Let V = V(\) be the representation with highest weight A. For g €

G™8, g is conjugate to e € T for some H € t, then

2wew(c) detw - e

Xx(g) = @)\(9) = H (ea(H)/2 _ e—a(H)/z) ’

acedt+

_1
where ® = 53" a.
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26 Borel-Weil theorem, 12/19

Definition 26.1. Let GG be a compact connected Lie group, T a maximal torus of G.
Then we can embed G into U(n) € GL(n,C). Fix ®*(gc), we get a Borel subalgebra
b=tc®nT and gc =n" ®tc ®nt. Let N, B, A, G¢ be the connected Lie subgroup in
GL(n, C) correspond to n™, b, a = it, gc C gl(n,C) = u(n)c.

The Cartan involution # (an abstact version of complex conjugation) is defined to be
0(x®z) = r®Z. Hence, gc = gdig is the eigenspace decomposition of # (with eigenvalue

1, —1, respectively). Since g C u(n), 07 = —Z*:

Z=X+1Y¥Y = —ZI'=-X"4+iYV"=X-4Y

Proposition 26.2. Let a € ®(gc) be a root. Then « is purely imaginary on t, equiva-

lently, « is real on a. In particular, g, = g_,.

Proof. The first statement follows from the facts that o skew-hermitian on t and hermitian

onit. For H et Z =X +1Y € g,,
a(H)(X +1iY) = [H,X]|+i[H,Y]
implies that a(H)X =i[H,Y], o(H)Y = [H, X]. Hence,

ad(H)(0Z) = [H, X] — i[H,Y] = —a(H)(X —iY) = (—a)(H)(0Z2). n

Remark 26.3. For G compact, g semisimple, the Killing form B(X,Y) = tr(ad X adY)

is negative definite on g since
B(X,X) =) a(X)’ <0
acd

So we prefer to consider a € a*, so that a(H) = B(H, u,) for some u, € a, and get

2
he = ———uy,  a(hy) = 2.
B(ug, tq) b a(ha)

These give us the standard sl(2,C) triple: take e, € gqa, fo = —0eq, then [eq, fol || ha

and we may assume that [eq, fo] = ha.
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Let M be a C* manifold, V — M a complex vector bundle of rank n. Assume that
a Lie group G acts on V fiberwisely, i.e., g -V, C Vg, for some g(z) € M. We say that
V is a homogeneous vector bundle if V, % V(@) is a linear isomorphism. Then G

acts on M and on T'(M,V) by (g-s)(x) =g-s(¢g 'z).

Let H C GG be a closed subgroup, V a finite dimensional representation of H. Then
V=GxyV=0xV/  _ M=G/H

is a homogeneous vector bundle, where (gh,v) ~ (g, hv) and ¢ - [(g,v)] = [(¢'g, v)].

Proposition 26.4. There is a 1-1 correspondence between homogeneous vector bundles

over G/H and finite dimensional representations of H.

Proof. Indeed, V. g is a representation of H. [ |

Definition 26.5. Let H be a closed subgroup of G, p: H — GL(V) a representation.
The induced representation Ind%(p) = Ind$ (V) of p (or V) is

{f:G=VI|flgh)=n""flg)}

with action (¢"- f)(g) = f((¢')"9).

Proposition 26.6. There is a natural G-isomorphism
I(G/H,G x5 V) —= Ind5(V).

Proof. Identify (GgxV)eg 2 V: (h,v) — h™lv. For s € I'(G/H,G x5 V), it corresponds
to f.(g) = g 's(gH). For f € Ind%(V), it corresponds to s¢(gH) = (g, f(g)). |

Theorem 26.7 (Frobenius reciprocity). Let H be a closed subgroup of G, V an H-
module, W a G-module. Then

Home (W, Ind$ (V) = Hompy (W g, V)
as C-vector spaces.

Proof. Reading. |
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Lemma 26.8. The exponential maps exp: n* — N, a = it — A are bijections, N, B,

A are closed subgroups of G¢, and

Txaxnt ——— B

(t,iH,X) —— tetfleX

is a diffeomorphism.

Proof. This follows from Dynkin’s formula. [ |

Theorem 26.9. We have G/T = G¢/B, hence it is a complex (homogeneous) manifold.

Proof. Since g = {X + 60X | X € gc}, g/t and gc/b both are spanned by the image of
Xo + 0X,, where X, € g,, « € . So p: G — G¢/B has dp surjective at e € G. Then

Im p contains a neighborhood of eB and hence open and closed. Thus, p is surjective.

We claim that GN B =T. First of all, gNb = tis known. Let ¢ € GN B. Then
Ad(g) preserves t = gNb, hence T, i.e., g € Ng(T). Let w be the image of g in the Weyl
group. Then ¢ € B implies that w preserves AL, hence preserves the fundamental Weyl

chamber. Thus, w =1 and g =T. [

Definition 26.10. For A € A(T), let C, be the T-module corresponds to the character
&:T — C* and Ly = G xp C, the homogeneous line bundle over G/T. We extend &,
to £&$: B — C* by

& (tee™) = & (1),

and still denote the corresponding B-module by C,. Let LE = G¢ X g Cy be the homoge-

neous (holomorphic) line bundle over G¢/B.

Lemma 26.11. We have
Indf (&) 2 T(G/T, L) 2 T'(Ge/B, L) = Ind§° (£5)

as C*°-sections.

Since LY is holomorphic over G¢/B, we have Ty (G/T, Ly) = I'vo(Ge/B, LY).
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Theorem 26.12 (Borel-Weil). The space

V(=2A), if =\ is dominant,
Ihot(G/T, Ly) =

0, else.
Proof. Use
C¥(@am= P VM) @V(y)
YEA(T)
dominant
to read out holomorphic property in this decomposition. |

Theorem 26.13 (Bott-Borel-Weil). Let A € A(T), § = 2> g . If A4 6 lies in a
Weyl chamber wall, then

HP(G/T = G¢/B,LY) =0, p>0.

Otherwise, let w € W(®™) such that w * A = w(\ + d) — 0 is dominant, and ¢(w) be the
length of w, which is equal to the number of @ € ®* such that B(A + 6§, ) < 0. Then

HP(GT, LY) = V(wxA), if p=~L(w),

0, else.
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