
Chapter 8

ATIYAH–SINGER INDEX THEOREM

8.1. Index of an Elliptic Operator and Heat Kernel

Let E, F ! M be real or complex vector bundle over a compact
manifold M, P : C•(M, E) ! C•(M, F) be an elliptic differential
operator (cf. section 4.3). We denote P⇤ : C•(F) ! C•(E) by its
formal adjoint. Then P⇤ is also an elliptic operator (cf. Exercise 4.7).
We define the index of P by

indP := dim ker P � dim cokerP 2 Z,

where cokerP := C•(M, F)/ImP. We first see that the index of an
elliptic operator is well–defined.

Exercise 8.1. Adapt the proof in theorem 4.13 to show that ImP =

(ker P⇤)?.

Hence, cokerP = C•(F)/ ker(P⇤)? ⇠= ker(P⇤). Since P and
P⇤ are both elliptic, by compactness theorem, we know that both
dim ker P, dim ker P⇤ are finite. Therefore, indP is well–defined. More-
over, if s 2 ker P⇤P, then 0 = (P⇤Ps, s) = (Ps, Ps) = kPsk2 implies
that s 2 ker P. Thus,

ker P = ker P⇤P; ker P⇤ = ker P⇤P.

Notice that P⇤P : C•(E) ! C•(E) and PP⇤ : C•(F) ! C•(F) are
self–adjoint and elliptic, we see that
(8.1)

indP := dim ker P � dim cokerP = dim ker P⇤P � dim ker PP⇤.

Thus, to calculate the index of an elliptic operator P of order d, it
suffices to calculate the dimension of kernels of self–adjoint, elliptic
operator PP⇤ and P⇤P of order 2d.
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322 8. ATIYAH–SINGER INDEX THEOREM

To see the connection between index and hear equation, let us
consider a self–adjoint elliptic operator L : C•(E) ! C•(E) and its
”heat equation”:

(*)
∂

∂t
f + L f = 0.

First, we observe that the problem 4.7 can be generalized to any self–
adjoint elliptic operator L of order d, and we get the following con-
clusion:

Proposition 8.1 (Spectrum for Elliptic Operator). Let L : C•(E) !
C•(E) be an elliptic self-adjoint operator of order d > 0.

(1) We can find a complete orthonormal basis {fn}•
n=1 of L2(E) of

eigenvectors of L.
(2) The eigenvectors fn are smooth.
(3) The eigenvalues li of L are discrete and limn!• |ln| = •.

We then define the heat operator of e�tL : C•(E) ! C•(E) by

e�tL(g)(x) =
Z

M
H(x, y, t)(g(y))dnM(y)

where dnM is the volume form on M and H(x, y, t) 2 Ex ⌦ E⇤
y is

called the heat kernel of L:

H(x, y, t) =
•

Â
k=1

e�lktfk(x) ⌦ f⇤
k (y).

Exercise 8.2. Let L : C•(E) ! C•(E) be an elliptic self-adjoint
operator of order d > 0.

(1) Show proposition 8.1.
(2) Show that H(x, y, t) 2 C•(M ⇥ M, E ⇥ E) by showing that

there exists constants C, d > 0 such that ln � Cnd, for n ⌧ 0,
where E ⇥ E = p⇤

1E ⌦ p⇤
2E and pi : M ⇥ M ! M is the

projection, for i = 1, 2.

Hence, we can exchange the summation and integration legally
such that

e�tL(g)(x) =
•

Â
k=1

e�lktfk(x)
Z

M
f⇤

k (y)(g(y))dnM(y).
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Then observe that

∂

∂t

⇣
e�tL(g)

⌘
=
Z

M

∂

∂t
H(x, y, t)(g(y))dnM(y)

= �
Z

M
LxH(x, y, t)(g(y))dnM(y)

= �L
✓Z

M
H(x, y, t)(g(y))dnM(y)

◆
= �L(e�tL(g)),

and limt!0 e�tL(g)(x) = Â•
k=1(g, fk)fk(x) = g(x) since {fk(x)}•

k=1
is a complete basis on L2(M, E). This shows that e�tLg is the solution
of (*) with integrable initial condition g.

Now, we define the trace of heat kernel by

tre�tL :=
•

Â
k=1

e�lkt =
Z

M
trEx H(t, x, x)dnM(x),

and notice that Â•
k=1 e�lkt = dim ker L + Âlk 6=0 e�lkt.

Now, back to the case when L = P⇤P. Observe that for li 6= 0,
P⇤Pfi = lifi, then

(PP⇤)(Pfi) = P(P⇤Pfi) = P(lifi) = liPfi (note that Pfi 6= 0).

This establishes a bijection between li-egienspace of PP⇤ and P⇤P
and thus

tre�tP⇤P � tre�tPP⇤
= dim ker P⇤P � dim ker PP⇤.

Combining with (8.1), we then get the McKean–Singer formula:

Corollary 8.2 (McKean–Singer Formula).

indP =
Z

M
(trEx HP⇤P(x, x, t) � trFx HP⇤P(x, x, t)) dnM(x).

Alternatively, we can define an operator D : C•(E
L

F) ! C•(E
L

F)

by D =

 
0 P⇤

P 0

!
. Then clearly, D is self–adjoint and

D2 =

 
P⇤P 0

0 PP⇤

!
.
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If we regard V := E
L

F as a Z2-graded vector bundle with V+ =

E, V� = F, then the heat kernel kt(x, x) := HD2(x, x, t)dnM(x) 2
(EndEx

L
EndFx) ⌦Vn T⇤

x M is of the form
 

HP⇤P(x, x, t) 0
0 HP⇤P(x, x, t)

!
dnM(x).

We then define the supertrace1 of kt(x, x) by

strkt(x, x) := (trEx HP⇤P(x, x, t) � trFx HP⇤P(x, x, t)) dnM(x)

and the supertrace of e�tD2 by

str
⇣

e�D2
⌘

:= tre�tP⇤P � tre�tPP⇤
.

Then the McKean–Singer formula can be written as

(8.2) indP = str
⇣

e�tD2
⌘

=
Z

M
strkt(x, x)

Notice that the left–hand side is independent of t 2 R+ while kt(x, x)

is dependent on t. Therefore, the computing index of an elliptic op-
erator via heat kernel lies in the same circle of idea as Witten defor-
mation discussed in problem 4.13, namely the ”supersymmetry”2.
When we let t ! 0+, the index of P is robust under the deforma-
tion of t, while we can asymptotically exapnd kt(x) into explicitly
computable differential forms. This is the central idea of local index
theorem, which we will carry out in section 8.4.

8.2. Heat Kernel for Harmonic Operator in Euclidean Spaces

In this section, we construct explicitly the heat kernel for gener-
alized Harmonic oscillator on Euclidean space V = Rn, which will

1In general, for a Z2-graded vector space V = V+LV�, T 2 EndV can be
decomposed into Teven : V± ! V± and Todd : V± ! V⌥. We then define the

supertrace of T by strT =

8
<

:
trT
��
V+ � trT

��
V� T is even

0 T is odd
2In fact, Alvarez-Gaumé gave a physicists’ ”proof” of Atiyah–Singer theorem

by supersymmetry in 1983 and the proof we will present in section 8.4 due to
E.Getzler [Get83] is also inspired by this physical proof.
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be our ”local model” for differential operators on compact manifolds
considered in the later sections.

Let R be n ⇥ n skew–symmetric matrix and F be N ⇥ N matrix
with coefficients in a commutative algebra3 A. The generalized har-
monic operator H acting on C•(V, A ⌦ CN) is given by

H := � Â
i
(∂i +

1
4

Rijxj)
2 + F.

To begin, let us start with the one–dimensional case ”without po-
tential”, i.e. V = R and H = �∂2/∂x2. The starting point is the
Gaussian integral in elementary calculus:

A =
Z •

�•
e�x2

dx =
p

p =
Z •

�•
e� x2

4t d
✓

xp
4t

◆
,

for A2 = 2p
R •

0 e�r2rdr = 2p
⇣
� 1

2 e�r2
⌘ ���

•

0
= p. Thus, the scaled

Gaussian integral is given by

1p
4pt

Z •

�•
e

�x2
4t dx = 1.

Also, notice that limt!0+
1p
4pt

e�x24t = d0(x). Therefore, let

p(x, y, t) :=
1p
4pt

e
�(x�y)2

4t .

Lemma 8.3. p(x, y, t) is the heat kernel for H = � ∂
∂x2 .

PROOF. First, for t > 0, by direct computation, we see that

pt =
�1
2

(4pt)� 3
2 · 4pe

�(x�y)2
4t + p · 1

4
(x � y)2

t2 = � p
2t

+ p
1
4

(x � y)2

t2 ,

px = �p x�y
2t , and thus pxx = p (x�y)2

4t2 � p 1
2t .

Hence, we see that pt � pxx = 0, for t > 0. On the other hand, we
define the heat operator e�tH by

e�tH(g)(x) :=
Z

R
p(x, y, t)g(y)dy.

3In the application, A will be the even part of exterior algebra.
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We leave readers to verify4, that limt!0+ e�tH(g)(x) = g(x), for
bounded g 2 C0(R). ⇤

Exercise 8.3. Show that limt!0+ e�tH(g)(x) = g(x), for g 2 C0(R).
(Hint: let K(x, t) = Kt(x) := p(x, 0, t) and note that Kt(x) is a molli-
fier in t.)

Remark 8.4. The computation in the above lemma works for n-dimension

and shows that p(x, y, t) = (4pt)�n/2e� |x�y|2
4 is the heat kernel for

H = � Ân
j=1

∂2

∂x2
j
.

Next, we consider the heat kernel of harmonic oscillator H =

� ∂
∂x2 + x2, i.e. pt(x, y) such that

⇣
∂
∂t + H

⌘
p = 0 with the initial con-

dition

lim
t!0+

Z •

�•
pt(x, y)g(y)dy = g(x).

First, observe that H is self–adjoint, one must have pt(x, y) = pt(y, x).
We try to solve pt(x, y) by the following ansatz

pt(x, y) = eA x2
2 +Bxy+A y2

2 +C,

where A, B, C are functions of t only. Then one directly computes
✓

∂

∂t
+ H

◆
p =


A0 x2

2
+ B0xy + A0 y2

2
+ C0 � (Ax + By)2 � A + x2

�
p.

From above, we see that
⇣

∂
∂t + H

⌘
p = 0 is equivalent to the solving

the following ODE

A0

2
� A2 + 1 = 0, B0 � 2AB = 0,

A0

2
� B2 = 0, C0 � A = 0.

4Notice that e�tH g is well–defined for g 2 L1(R), yet we need g 2 C0(R) to
prove this.
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One can solve directly that A(t) = � coth(2t + c) and B2 = A0
2 =

csch2(2t + c). Thus, we have

B(t) = csch(2t + c),

C(t) =
Z

A(t)dt + d = �1
2

log(sinh(2t + c)) + d,

where c and d are some constants. To fix c and d, we put x = 0 and
as t ! 0+, the initial condition implies pt(0, y) should ”converge”

to 1p
4pt

e� x2
4t . Therefore, we see that the asymptotics of A(t) and C(t)

are given by

A(t) = � coth(2t + c) ⇠ �1
2t

; eC(t) = (sinh(2t + c))�1/2ed ⇠ (4pt)�1/2.

One has c = 0, d = � 1
2 log(2p).

Exercise 8.4. Solve the ODE A0 � 2(A2 + 1) = 0 and fill in the detail
that the initial condition determines c = 0, d = � 1

2 log(2p).

In conclusion, we obtain the Mehler’s formula

(8.3) p(x, y, t) = (2p sinh 2t)�1/2e� x2+y2
2 coth 2t�xy csch 2t.

In particular, let y = 0 and change of variable t 7! tr
4 , x 7!

p r
4 x,

Mehler’s formula shows the equation

(*)
✓

∂

∂t
� ∂2

∂x2 +
r2

16
x2 + f

◆
pt(x) = 0

has a solution

(8.4)
1p
4pt

"✓
tr/2

sinh(tr/2)

◆1/2
#

e� tr
2 coth( tr

2 ) x2
4t e�t f .

Finally, we tackle the case of generalized Laplacian mentioned in the
beginning of this section.

Theorem 8.5. Let H := � Âi(∂i +
1
4 Rijxj)2 + F on Rn.

p(x, t) =
1

(4pt)n/2

✓
det

tR/2
sinh(tR/2)

◆1/2
e

�1
4t

D
x
�� tR

2 coth tR
2

��x
E

e�tF
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is the formal heat kernel5 for the equation ∂t + H = 0, i.e. ( ∂
∂t + H)p(x, t) =

0 and limt!0 p(x, t) = d(x).

PROOF. Observe ∂t p = �Hp is a purely algebraic formula and
both sides are analytic functions in Rij, we may assume that Rij 2 R.
Moreover, since R is a skew–symmetric real matrix, we can choose a
basis of V such that R is of the block form:

0

BBBBBB@

0 �r
r 0

0 �s
s 0

. . .

1

CCCCCCA
.

We then reduce the problem to the 2-dimensional case, which H is
given by

H = �(∂2
1 + ∂2

2) � r
2
(x2∂1 � x1∂2) � r2

16
(x2

1 + x2
2) + F

and

pt(x1, x2) =
1

4pt
tr/2

sin(tr/2)
e� tr

2 cot tr
2

kxk2
4t e�tF.

We then see that ∂t + H is just (*) with addition term � r
2(x2∂1 � x1∂2)

while pt(x1, x2) is just (8.4) in two variables case with r replaced by ir

and an addition term e
kxk2

4t . This additional term kxk2 is annihilated
by x2∂1 � x1∂2. Therefore, we have proved that pt(x1, x2) is the heat
kernel of H. ⇤

8.3. Clifford Algebra and Dirac Operators

In this section, we introduce Clifford algebra and Dirac opera-
tors which are essential in the formulation of local index theorem
presented in the next section.

5The hear kernel here is the formal sense since
⇣

det tR/2
sinh(tR/2)

⌘1/2
and

coth(tR/2) are defined in terms of power series in Rij which converge for tR, for
some |t| ⌧ 1.
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Definition 8.6. Let V be a real vector space6 with a quadratic form Q.
The Clifford algebra C(V, Q) of (V, Q) is defined by

C(V, Q) = T(V)/I,

where I is the 2-sided ideal generated by v ⌦ v + Q(v).

For v, w 2 V, we denote v · w or just vw by the image of v ⌦ w in
C(V, Q). Then v2 = Q(v) by construction. Also, for any v, w 2 V,
we have

vw + wv = �2hv, wi,

where hv, wi = 1
2 [Q(v + w) � Q(v) � Q(w)] is the symmetric bilin-

ear form associated to Q given by the polarization.

Exercise 8.5. Show that C(V, Q) has the universal property of the
following: let A be an R-algebra and c : V ! A be a linear map
satisfying v · w + w · v = �2Q(v, w). Then there exists a unique
algebra homomorphism C(V, Q) ! A extending c.

The Clifford algebra C(V, Q) has an induced Z2–grading induced
from T(V) and we write C(V, Q) = C+(V, Q)

L
C�(V, Q), where

V ⇢ C�(V, Q).

Example 8.7. If Q = 0, then C(V, Q) is just exterior algebra
V⇤ V.

In other words, C(V, Q) is the deformation of exterior algebra
V⇤ V. When Q is positive definite, we denote C(V) for simplicity.

Definition 8.8. A Z2-graded vector space E = E+L E� is called a
Clifford module if E has a C(V)-module structure which is compatible
with Z2-grading, i.e.

C+(V) · E± = E±; C�(V) · E± = E⌥.

For v 2 V, we denote c(v) by the Clifford multiplication of v on
a Clifford module.

6The definition and the general results for Clifford algebra work for any vector
space over a field F with charF 6= 2
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Example 8.9. Let E =
V⇤(V). By the universal property, it suffices to

define c : V ! E. For a 2 V⇤ V, we set c(v)a := v ^ a � iva, where iv
means the contraction with hv, ·i 2 V⇤. Then from

v ^ iw + iw(v ^ ·) = v ^ iw + Q(w, v) � v ^ iw = Q(v, w),

we see that this defines a C(V)-module structure on
V⇤ V since

(c(v)c(w) + c(w)c(v))a = �v ^ iwa � w ^ iva � iv(w ^ a) � iw(v ^ a)

= �2Q(v, w)a.

Also, E has a natural Z2-grading E+ :=
Vev V, E� :=

Vodd V, it is
clear that c(v) : E± ! E⌥.

We now define the symbol map s : C(V) ! V⇤ V by

s(a) = c(a)1 2
^⇤

V,

where 1 2 V⇤ V is the identity in the exterior algebra
V⇤ V. Then s

has an obvious inverse c :
V⇤ V ! C(V, Q) given by

c(ei1 ^ · · · ^ eik) = ci1 · · · cik ,

where {ei} is an orthogonal basis for h , i and ci is the element of
C(V, Q) corresponding to ei. The map c is called the quantization
map.

Exercise 8.6. Write s(v1v2), s(v1v2v3) and c(v1 ^ v2), c(v1 ^ v2 ^ v3)

explicitly. Also, for v1, . . . , vk 2 V, show that

c(v1 ^ · · · ^ vk) =
1
k! Â

t2Sk

(�1)signtvt(1) · · · vt(k)

Hence,
V⇤ V ⇠= C(V, Q) as a vector space (but with different alge-

bra sturcutre). Particularly, this shows dim C(V, Q) = dim
V⇤ V =

2dim V .
On the other hand, observe that both

V⇤ V and C(V, Q) have nat-
ural filtrations:

C0(V, Q) ⇢ C1(V, Q) ⇢ · · · ⇢ Ci(V, Q) ⇢ · · ·
^0

V ⇢
^1

V ⇢ · · · ⇢
^i

V ⇢ · · · ,
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where each Ci(V, Q) is spanned by elements of the form v1 . . . vk,
where vj 2 V and k  i. Obviously, the filtration is compatible with
Clifford multiplication: Ci(V, Q) · Cj(V, Q) ⇢ Ci+j(V, Q). We can
then define an associated graded algebra

grC(V, Q) :=
M

i�0
griC(V, Q)

with griC(V, Q) := Ci(V, Q)/Ci�1(V, Q). Obviously, grkC(V, Q) ⇠=
Vk(V). We then define sk : Ck(V) ! Vk(V) by the composition of
the isomorphism with the quotient Ck(V) ! grkC(V, Q).

Exercise 8.7. Show that grC(V, Q) ⇠=
V⇤ V as algebra and s extends

sk in the sense that if a 2 Ck(V), s(a)[k] = sk(a).

Now, we are in place to study the complex representation of C(V).

Theorem 8.10 (Spinor Module). Let V be an even dimensional, oriented
vector space, Q be a positive definite quadratic form induced from an inner
product h , i on V.

(1) There exists a unique Clifford module S = S+ � S� such that
C(V) ⌦ C ⇠= End(S).

(2) For any finite-dimensional Clifford module E over C, there exists
a Z2-graded vector space W with trivial C(V)-action such that
E = W ⌦ S.

The module S is called the spinor module or (half)-spinor represen-
tation and (2) implies that it is the building block for any complex
representation of C(V). The space W in (2) is called the twisting space
for the Clifford module E.

SKETCH OF PROOF. For (1), we endow V with an almost complex
structure J such that J is h , i-invariant. As in section 6.5, we know
that

V ⌦R C ⇠= V1,0MV0,1.

We define S =
V⇤(V1,0) and notice that S = S+ � S� where S+ =

Veven V and S� =
Vodd V. We next define a C(V)-action on S by: for
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v 2 V ⌦R ⌦C, v = w + w̄ with w 2 V1,0, w̄ 2 V1,0 ⇠= V0,1,

c(w) · s =
p

2w ^ s

c(w̄) · s = �
p

2iw̄s.

Observe that C(V, Q) ⌦R C = C(V ⌦R C, Q ⌦R C). Combining with
the calculation in example 8.9 and the fact that h , i is hermitian (cf.
lemma 6.37), one can see easily that this defines a Clifford action
on S. In summary, we have c : C(V) ⌦ C ,! End(S). This is an
isomorphism by dimension counting:

dimC C(V) ⌦R C = 2dim V = (dimC S)2.

For (2), one simply take W := HomC(V)(S, E), the space of linear
maps from S to E commuting with the Clifford action. Thus, W car-
ries a trivial Clifford action and has a Z2-graded given by W+ =

HomC(V)(S±, E±), W� = HomC(V)(S±, E⌥). In fact, any any finite
dimensional EndS-module is of the form W ⌦ S. ⇤

Remark 8.11. In problem 7.21, we define the spin group Spin(n) as
double covering of SO(n). As one will see in problem 8.7, Spin(n)

can be defined as a subset of C(V) given by

Spin(V) = {v1 . . . v2k : vi 2 V, k � 0, |vi| = 1}.

Hence, any representation of C(V) gives rise to a linear representa-
tion of Spin(V). This is the reason why S is called the spinor repre-
sentation and we denote D : Spin(V) ! GL(S) by the corresponding
representation.

Now, we generalize everything above on a Riemannian manifold.
Let (M2m, g) be an oriented Riemannian manifold.

Definition 8.12. The Clifford bundle is defined by C(M) :=
S

x2M C(T⇤
x M),

the Clifford algebras of the cotangent space T⇤
x M.

By choosing a local orthonormal frame e1, . . . , e2m 2 C•(U, T⇤M),
the Clifford bundle p : C(M) ! M is trivialized by p�1(U) ⇠=
U ⇥ C(Rn). On C(M), one can define the symbol map s : C(M) !
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V
T⇤M by pointwise symbol map sx : C(T⇤

x M) ! V
T⇤

x M. It is easy
to see that this is a bundle isomorphism between C(M) and

V
T⇤M.

Exercise 8.8. Show that C(M) =
L

r�0(T⇤M)⌦r/I , where I is the
subbundle whose fiber Ip is the 2-sided ideal generated by v ⌦ v +

g(v, v), where v 2 T⇤
p M

Definition 8.13. A Clifford module E on an even diemensional Rie-
mannian manifold M is a Z2-graded vector bundle E = E+ � E�

on M with the smooth action of Clifford bundle C(M), which we
denote

C•(M, C(M)) ⇥ C•(M, E) ! C•(M, E); (a, s) 7! c(a)s.

If W is a vector bundle, the twisted Clifford bundle of E is just the
bundle W ⌦ E with Clifford action 1 ⌦ c(a).

It is natural to generalize spinor module S in theorem 8.10 to
a vector bundle S ! M, called spinor bundle. If so, any Clifford
module E is just a twisted Clifford module of S by taking W =

HomC(M)(S, E). Locally, on a coordinate chart U, p�1(U) ⇠= U ⇥
C(Rn), one can always define S(U) locally. However, there are topo-
logical obstructions to patch these S(U) globally. In general, we say
M has a spin structure7 or M is a spin manifold if an associated spinor
bundle S ! M is defined.

Remark 8.14. For the application to local index theorem, we do not
need M to be spin since our proof will be local. Thus, we denote S by
locally defined and unique spinor bundle and decompose Clifford
module E as HomC(M)(S, E) ⌦ S.

7To define the spin structure on M properly, we need the language of prin-
cipal bundle (cf. problem 7.9)). We say M has a spin structure if the frame bun-
dle PSO(TM) of TM can be lifted to a principal Spin(2m)-bundle PSpin(M). With
the spin structure, one can then construct spinor bundle by PSpin(M) ⇥D S, where
D : Spin(2m) ! S is the spinor representation, cf. remark 8.11. Using the theory of
Čech cohomology (cf. [LM89] Chapter II, §1), one can show that the topological ob-
struction for this lifting is exactly w2(M) := w2(TM), the second Stiefel–Whitney
class of M (cf. fact 7.30). In other words, M is spin if and only if w2(M) = 0.
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Let rLC be the Levi–Civita connection of (M, g). Then since rLV

is metrical, it is easy to see that rLC descends to a connection on the
quotient bundle C(M) (cf. exercise 8.8) satisfying

rLC
X (ab) = (rLC

X a)b + a(rLC
X b), 8a, b 2 C•(M, C(M)), X 2 C•(M, TM).

Similarly, on a Clifford module E ! M, we define

Definition 8.15. A connection rE on E is called a Clifford connection if
8s 2 C•(M, E), X 2 C•(M, E), a 2 C•(M, C(M)),

rE
X(c(a)s) = c(rLC

X a)s + c(a)rE
Xs.

Lemma 8.16. For any Clifford module E, there always exists a Clifford
connection rE on E.

PROOF. If M is spin, then the Levi–Civita connection rLC on TM
induces8 to a canonical connection still denoted by rLC on the spinor
bundle S ! M and it is a Clifford connection. Since E = S ⌦ W, pick
any connection rW on W, this induces a Clifford connection rE by

(8.5) rLC ⌦ id + id ⌦ rW .

In general, if M is not spin, one can still define spinor bundle S lo-
cally and define rLC on S locally. Thus, on any Clifford module
E ! M, we can locally split E into S ⌦ W and define local connection
as (8.5). We then use partition of unity to glue these local operators
to get a Clifford connection rE on E. ⇤

We now in place to define Dirac operator on a Clifford module
E with a Clifford connection rE. We define the Dirac operator D :
C•(M, E) ! C•(M, E) by the composition

C•(M, E)
rE
�! C•(M, T ⇤ M ⌦ E)

c�! C•(M, E).

In local coordinate, the operator is given by D = Âi c(dxi)rE
∂i

.

Proposition 8.17. D is an elliptic operator.
8Since rLC corresponds to a connection on the orthonormal frame bundle

PSO(TM). Since M is spin, the connection 1-form on PSO(TM) lifts to PSpin(M).
Hence, it gives rise to a connection on the associated vector bundle PSpin(M) ⇥D S.
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PROOF. Let x = xidxi 2 T⇤
p M \ {0}, the symbol of the differential

operator pD(x, x) = Âi c(dxi) · xi = c(x) 6= 0. ⇤

Exercise 8.9. Show that if c(a) is skew–adjoint on E, then D is self–
adjoint.

It is clear from definition that D : C•(M, E±) ! C•(M, E⌥).

That is, we can write D =

 
0 D�

D+ 0

!
.

Now, back to McKean–Singer formula in section 8.1, let E be a
Clifford bundle, D be a Dirac operator on E. We denote kt(x, y)

by the heat kernel of D2. Since E locally splits into S ⌦ W, the di-
agonal of heat kernel kt(x, x) has values in End(Ex) = End(Sx) ⌦
End(Wx) = C(M)x ⌦ End(Wx). By McKean–Singer formula, we
know that

indD =
Z

M
strS⌦Wkt(x, x)dnM(x),

where the strS⌦W means that the supertrace is taken on C(M)x ⌦
End(Wx). Obviously, we have

strS⌦Wkt(x, x) = strSkt(x, x) · strWkt(x, x).

We end this section by a relation between supertrace of C(V) acting
on S and symbol maps s : C(V, Q) ! V⇤ V. For a 2 C(V), we define

str(a) =

8
<

:
trS+(a) � trS�(a) a 2 C+(V)

0 a 2 C�(V).

Lemma 8.18. Let V = Rn with even n. str(a) = (�2i)n/2T(s(a)),
where T :

V⇤ V ! R is defined by the coefficients of a in the monomial
e1 ^ · · · ^ en, where {e1, . . . , en} is an oriented orthonormal basis of V.

SKETCH OF PROOF. On C(V), we have Z2-commutator [u, v] :=
uv � (�1)|u||v|vu, where |u|, |v| are parities of u, v, respectively. One
can check by case by case that str([u, v]) = 0, for any u, v 2 C(V).

Next, observe that Cn�1(V) = [C(V), C(V)]. Let e1, . . . , en be an
oriented orthonormal basis of V, then for any I ⇢ {1, . . . , n} with
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|I| < n, say j /2 I, then one can easily show that

eI = �1
2
[ej, ejeI ],

where eI = ’i2I ei. Obviously, this implies that Cn�1(V) = [C(V), C(V)].
Thus, we see that str must proportional to T � s, say str(a) =

cTs(a), for some constant c. To determine this constant, let us con-
sider the chirality element e := ipe1 . . . en 2 C(V) ⌦ C, where

p =

8
<

:
n/2 n even

(n + 1)/2 n odd
.

Since n is even, then e2 = 1 obviously. It is easy to see that S± =

{v : ev = ±v}. Therefore, stre = dim S+ + dim S� = 2n/2 while
T(s(e)) = T(ipe1 ^ en) = ip = in/2. Hence, the constant c =

(�2i)n/2. ⇤

Exercise 8.10. Complete the proof of lemma 8.18 by showing the
following

(1) Show that str([u, v]) = 0, for any u, v 2 C(V).
(2) Let {e1, . . . , en} be an oriented orthonormal basis of V and

I ⇢ {1, . . . , n}. If 9j /2 i, prove that

’
i2I

ei = �1
2
[ej, ejeI ].

(3) Show that S± = {v 2 S : ev = ±v}.

8.4. Local Index Theorem

Let M be an oriented9 Riemannian manifold of even dimension
n, D be a Dirac operator on a Clifford module E ! M associated to a
Clifford connection rE. We now let kt(x, y) be the the heat kernel of
D2 coupled with the volume form dnM(x) and denote hx|e�tD2 |xi :=
kt(x, x) by the restriction of it to the diagonal. Note that kt(x, x) 2

9In fact, M need not be oriented. We only need to define integration on M.
When M is not orientable, we just replace

Vn TM by |Vn T⇤M| to get the volume
form.
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C•(M, End(E) ⌦ V⇤ TM). Since E = S ⌦ W locally, End(E)x =

C(M)x ⌦ End(W)x, for all x 2 M. We denote Ci(M) by the sub-
bundle of C(M) with degree i.

Now, we are ready to state and prove the local index theorem.

Theorem 8.19 (Local Index Theorem). kt(x, x) has an asymptotic ex-
pansion

kt(x, x) ⇠ (4pt)�n/2
•

Â
i=0

tiki(x).

(1) The coefficient ki(x) 2 C•(M, C2i(M) ⌦ End(W) ⌦Vn TM).
(2) Let s(k) := Ân/2

i=0 s2i(ki) 2 A·(End(W)) be the negative degree
pieces in t, then

s(k) = det1/2
✓

R/2
sinh(R/2)

◆
e�FW

,

where FW is the curvature of W, R is the Riemannian curvature
on M.

Before proving theorem 8.19, let us first show that how it deduce
the usual form of the Index theorem for Dirac operator. By McKean–
Singer formula (8.2), if M is furthermore compact, then for t > 0,

indD =
Z

M
str(kt(x, x))dx.

Notice that by lemma 8.18 and theorem 8.19, supertraces and (�2i)n/2T �
s coincides and vanishes on Ci(M) for i < n. Hence, we have

strkt(x, x) ⇠ Â
i�n/2

tistr(ki(x)),

and thus there are no poles in the asymptotic expansion for str(kt(x, x)).
Consequently, the integrand has a limit as t ! 0+ and indD is inde-
pendent of t, and we conclude

indD = (2pi)�n/2
Z

M
tr(s(k))[n] =

Z

M


det1/2

✓
R/2

sinh(R/2)

◆
trW(e�FW

)

�

n

or in the more familiar form in the literatures:
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Theorem 8.20 (Atiyah, Singer). Let Mn be compact, oriented even-dimensional
manifold, the index of a Dirac operator D on a Clifford module E (locally
splits as S ⌦ W) is given by

indD = (2pi)�n/2
Z

M
det1/2

✓
R/2

sinh(R/2)

◆
trW(e�FW

),

Remark 8.21. If we put back the factor (2pi)�n/2 into the integrand,
then it will become det1/2

⇣
R/2p

sinh(R/4pi

⌘
trW(eFW

). In view of problem
7.8 and example 7.19, we recognize that the Atiyah–SInger index the-
orem is then given by

indD =
Z

M
Â(M)ch(F).

The rest of of this section is dedicated to prove theorem 8.19. We
first need a Bochner type formula for Dirac operator (cf. section 4.4).
Let E ! M be a Clifford module, rE be a Clifford connection on E,
tr(rE)2 be the connection Laplacian of rE defined in definition 4.18,
and sM be the scalar curvature of M. Assume E = W ⌦ S locally. The
Lichnerowicz formula states that

Theorem 8.22 (Lichnerowicz Formula).

D2 = �tr(rE)2 + c(FW) +
sM
4

,

where FW 2 A2(M, End(W)) is the curvature of W. Here, c(F) :=
Âi<j F(ei, ej)c(ei)c(ej), where {ei} is an orthonormal frame of TM and
{ei} is its dual frame.

SKETCH OF PROOF. It suffices to prove the formula on a coordi-
nate chart U at each point p 2 M. Pick a normal coordinate x on U
which coincides with an orthonormal frame ei at p. Let ci := c(ei).
Then

D2 = cirei(cjrej)

= cicjreirej + cic(rei e
j)rej (rei e

j = 0 at p)

= �r2
ei

+ Â
i<j

cicj(reirej � rejrei) (reirej � rejrei = FE(ei, ej)).
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Since End(E) ⇠= C(M) ⌦ End(W), one can show that

(8.6) FE(ei, ej) = �1
8 Â

k,l
Rklijcicjckcl + FW(ei, ej)cicj.

Moreover, using definition of Clifford algebra and symmetry of Rie-
mann curvature tensor (cf. exercise 3.7), one can show that the first
term in (8.6) equals to sM/4. ⇤

Exercise 8.11. Show the formula (8.6) and � Âi,j,k,l f rac18Rklijcicjckcl =

sM/4.

Recall that E ! M is a Clifford module on an even–dimensional
(oriented) Riemannian manifold M with a Dirac operator D associ-
ated to a Clifford connection rE on E. Fix x0 2 M, let x = (x1, . . . , xn)

be a normal coordinate on a Gauss ball U centered at x0. We pick any
basis of Ex0 , then for any x 2 U, t(x0, x) : Ex ⇠= Ex0 via parallel trans-
por the basis with respect to rE along the geodesic expx0

x (recall
that x 2 Tx0 M). In this way, we trivialize the bundle E

��
U as Ex0 ⇥ U

along radial tangent vectors. Thus, C•(U, E) ⇠= C•(U, Ex0). Since
E splits locally as S ⌦ W, we again identify End(Ex0) = C(M)x0 ⌦
End(Wx0). Let ci = c(dxi) 2 End(Ex0), ei be local orthonormal frame
obtained by parallel transport ∂i

��
x0

along radial geodesics. We first
observe that:

Lemma 8.23. The function c(ei) 2 C•(U, End(Ex0)) is a constant map
with value ci.

PROOF. Let R be a radial vector field on Tx0 M.

R · c(ei) = rE
Rc(ei) = [rE

R, c(ei)] = c(rRei) = 0.

⇤

Let pt(x, x0) b the heat Kernel of D2, and k(t, x) := t(x0, x)pt(x, x0),
where x = expx0

(x). Thus, we can regard k(t, x) as smooth functions
with values in End(Ex0) = C(T⇤

x0
M) ⌦ EndW and C(T⇤

x0
M) acts on

V
T⇤

x0
M by c(a)b = a ^ b � iab as in example 8.9. We denote a ^ · by

e(a) and ia by i(a).
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Proposition 8.24. Let L be the differential operator on U with coefficients
in C(T⇤

x0
M) ⌦ EndW, defined by the formula

L = � Â
i

⇣
(rE

ei
)2 � rE

rei ei

⌘
+

sM
4

+ c(FW).

Then (∂t + L)k(t, x) = 0.

PROOF. By definition, pt(x, x0) 2 Ex ⌦ E⇤
x0

satisfies the heat equa-
tion ✓

∂

∂t
+ D2

x

◆
pt(x, x0) = 0.

Fom Lichnerowicz formula and the above lemma t(x0, x)pt(x, x0) 2
C•(U, EndEx0) satisfies the equation (∂t + L)t(x0, x)pt(x, x0) = 0.

⇤
Now, here comes the heart of proof for local index theorem. Namely,

the rescaling procedure due to Getzler in [Get83] and [Get86] with
respect to the degree in exterior algebra

V
T⇤

x0
M. For a 2 A :=

C•(R+ ⇥ U,
V

T⇤
x0

M ⌦ End(Wx0)), we define the rescaling of a by

(dua)(t, x) =
n

Â
i=0

u�i/2a(ut, u1/2x)[i],

where a[i] is the degree i component of a. Then one can check easily
that the rescaling du acts on operators on A by

duf(x)d�1
u = f(

p
ux), for f 2 C•(U),(8.7)

du
∂

∂t
d�1

u = u�1 ∂

∂t
,(8.8)

du
∂

∂xi d�1
u = u�1/2 ∂

∂xi ,(8.9)

due(a)d�1
u = u�1/2e(a), for a 2 T⇤Mx0 ,(8.10)

dui(a)d�1
u =

p
ui(a).(8.11)

Exercise 8.12. Verify (8.7) to (8.11).

Definition 8.25. The rescaled heat kernel r(u, t, x) is defined by

r(u, t, x) = un/2(duk)(t, x).
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The factor un/2 is included because kt(t, x) has volume form10
Vn T⇤M part . Let us first indicate how we will approach the proof
of theorem 8.19. Assume that k(t, x) has an asymptotic expansion of
the form at x0 2 U as indicated in theorem 8.19 (1):

k(t, x) ⇠ (4pt)�n/2qt(x)(k0 + k1t + · · · + k n
2
tn/2 + · · · ),

where ki(x) 2 C•(U,
V2i(T⇤

x0
M)⌦ End(Wx0)⌦Vn T⇤

x0
M) under the

identification s : C(T⇤
x0

M) ⇠=
V

(T⇤
x0

M) and qt(x) = e
�|x|2

4t is the heat
kernel for standard Laplacian on Rn. Then notice that (4pt)�n/2qt(x)

is invariant under rescaling and thus

r(u, t, x) ⇠ (4pt)�n/2qt(x)un/2(k0 + du(k1)ut + · · ·+ du(kn/2)(ut)n/2 + · · · )

Since du(ki)(ut)i = ti Âi
j=0 ui�j/2ki(ut,

p
ux)[(j)] and higher order terms

have positive u-degree, we then see that the total negative part is sin-
gled out by

lim
u!0

r(u, t = 1, x = 0) = (4p)� n
2

⇣
(k0)[0] + (k1)[2] + · · · + (k n

2
)[n]

⌘
.

Thus, the content of (2) in theorem 8.19 is that the image of of right–
hand side under s is exactly det1/2

⇣
R/2

sinh(R/2)

⌘
e�FW .

To start, let us notice that the rescaled heat kernel r(u, t, x) :=p
un

(duk)(t, x) is the heat kernel of a recaled heat equation.

Lemma 8.26. ✓
∂

∂t
+ L(u)

◆
r(u, t, x) = 0,

where L(u) := uduLd�1
u .

PROOF. This is a direct consequence of (8.8). Since ∂t = udu∂td�1
u ,

we have

(∂t + uduLd�1
u )r = udu(∂t + L)d�1

u r = udu(∂t + L)d�1
u un/2(duk)(t, x)

= uduun/2(∂t + L)k(t, x) = 0.

⇤
10or density |Vn T⇤M| if M is not orientable



342 8. ATIYAH–SINGER INDEX THEOREM

Recall that L = � Âi

⇣
(rE

ei
)2 � rE

rei ei

⌘
+ sM

4 + c(FW) on U, and

L(u) = uduLd�1
u . Using (8.7) to (8.10) and lemma 8.23 , we now

decompose L(u) into L1(u) + L2(u), where

L1(u) = � Â
i

⇣p
udurE

ei
d�1

u

⌘2

+ Â
i<j

FW
ij (

p
ux)

p
u
⇣p

u�1
ei �

p
uii
⌘

·
p

u
⇣p

u�1
ej �

p
uij
⌘

,

L2(u) =
u
4

s(
p

ux) +
p

u
⇣p

udurE
rei ei

d�1
u

⌘
.

Now, we have the following explicit formula for covariant derivative
rE

∂i
acting on C•(U, E).

Lemma 8.27. In the normal coordinate (U, x) centered at x0 with the
trivialization TM

��
U

⇠= Tx0 M ⇥ U, E
��
U

⇠= Ex0 ⇥ U (via parallel trans-
port along radial line), the Clifford connection rE of the Clifford bundle
E = S ⌦ W is locally given by

rE
∂i

= ∂i +
1
4 Â

j;k<l
Rklijxjckcl + Â

k<l
fikl(x)ckcl + gi(x),

where Rklij = hR(∂i, ∂j)∂l, ∂ki(x0) is the Riemannian curvature at x0,
ci := c(dxi) 2 End(E), fikl(x) = O(|x|2) 2 C•(U) and gi(x) =

O(|x|) 2 C•(U, End(E)).

SKETCH OF PROOF. Let R := Âi xi∂i be a radial vector, rE = d +

w, where w is the connection 1-form of rE. We write w = (Âi Gk
ijdxj)

into matrix-valued 1-form and let wj = (Gk
ij) be the matrix. Notice

that in such choice of frame, iRw = 0 since we trivialize the bundle
along R. Thus, by Cartan’s formula

LRw = (iRd + diR)w = iRdw = iR(dw + w ^ w) = iR(FE).

Next, we take Taylor’s expansion on both sides.

LRw = LR

 

Â
j,a

∂awj(x0)
xa

a!
dxj

!

= Â
j,a

∂awj(x0)

a!

⇣
R(xa)dxj + xaLR(dxj)

⌘
.
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Since R = Âi xi∂i is the Euler vector field, R(xa) = |a|xa and LR =

diRdxj = dxj. Therefore, LRw = Âa,j(|a| + 1)∂awj(x0)
xa

a! dxj. For the

right hand side, we have Âa,j,k ∂aFE(∂k, ∂j)(x0)
xkxa

a! dxj. Comparing
the coefficients.

Â
a

(|a| + 1)∂awj(x0)
xa

a!
= Â

a,k
∂aFE(∂k, ∂j)(x0)

xkxa

a!
,

Now, we pick a = l, we get 2∂lwj(x0) = F(∂jl, ∂j)(x0) by comparing
the coefficients of xa. Finally, by (8.6), we have

FE(ei, ej)(x0) =
1
2 Â

i<j;k<l
hR(∂i, ∂j)ek, eli(x0)ckcldxi ^ dxj

+ FW(ei, ej)cicj(x0),

where R(∂i, ∂j)ek, eli(x0) = �Rklij since ei = ∂i at x0. ⇤

Hence by above lemma and (8.7) to (8.11), rE,u∂i :=
p

udurE
∂i

d�1
u

equals to

∂i +
p

u
1
4 Â

j;k<l
Rklij

p
uxj(

p
u�1

ek �
p

uik)(
p

u�1
el �

p
uil)

+
p

u Â
k<l

fikl(
p

ux)(
p

u�1
ek � ik)(

p
u�1

el �
p

uil) +
p

ugi(
p

ux)

= ∂i +
1
4 Â

j;k<l
Rklijxj(ek � uik)(el � uil)

+
p

u�1/2 Â
k<l

fikl(
p

ux)(ek � uik)(el � uil) +
p

ugi(
p

ux).

Since fikl(
p

ux) = O(|
p

ux|2) = uO(|x|2), we see that as u ! 0, rE,u
∂i

has a limit

rE,0
∂i

= ∂i +
1
4

Rklijxjekel = ∂i +
1
4

Rijxj,

where Rij = Âk<l Rklije
kel is the curvature 2-form.
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Clearly, L2(u) = u
4 s(

p
ux) +

p
u(

p
urE

rei ei
d�1

u ) ! 0 as u ! 0.
For L1(u), as u ! 0, ei ! ei(0) = ∂i, we see that

� Â
i
(
p

udurE
ei

d�1
u )2 ! � Â

i
(rE,0

∂i
)2 = �(∂i +

1
4

Rijxj)2

Â
i<j

FW
ij (

p
ux)(ei � uii)(ej � uij) ! Â

i<j
FW

ij (0)eiej = FW(x0).

In conclusion, we have shown that

L(u) = K + O(
p

u),

where K := Âi

⇣
∂i � 1

4 Âj Rijxj
⌘

+ FW(x0). Recall that K is exactly a
generalized harmonic oscillator considered in section 8.2. Therefore,
by theorem 8.5, we already construct an explicit solution:

p(x, t) =
1

(4pt)n/2

✓
det

tR/2
sinh(tR/2)

◆1/2
e

�1
4t hx
�� tR

2 coth tR
2

��xie�tF.

Thus, we get

lim
u!0

r(u, t, x) =
1

(4pt)n/2

✓
det

tR/2
sinh(tR/2)

◆1/2
e

�1
4t hx
�� tR

2 coth tR
2

��xie�tF.

Particularly, put x = 0, t = 1, we get

s(k) =
1

(4p)n/2 det1/2
✓

R/2
sinh R/2

◆
e�F.

This completes the proof of local index theorem (theorem 8.19).

8.5. Applications of Atiyah–Singer Index Theorems

In this section, we see that Atiyah–Singer index theorem (cf. the-
orem 8.20) is the generalization for many important formulae in the
history of geometry. More precisely, we will see that both Gauss–
Bonnet–Chern theorem and Hirzebruch signature theorem are con-
sequences of it. For Hirzebruch–Riemann–Roch theorem, which is
the higher dimension generalization for classical Riemann–Roch for-
mula on compact Riemann surface, one can consult problem 8.10.
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First of all, by example 8.9, for any compact oriented even-dimensional
Riemannian manifold Mn,

V
T⇤M is a Clifford module with Clifford

action given by

c(a)b = e(a) � i(a)b, a 2 A1(M), b 2 A(M).

Clearly, the Levi–Civita connection on
V

T⇤M is compatible with this
Clifford connection.

Lemma 8.28. The Dirac operator D associated to the Cliiford module
V

T⇤M
and its Levi–Civita connection r is the operator d + d⇤, where d is Cartan’s
exterior derivative and d⇤ is the formal adjoint of d.

PROOF. This is a direct consequence of exercise 4.6 since

(d + d⇤)b =
n

Â
i=1

(e(ei) � i(ei))rei b.

⇤

Hence, D2 = (d + d⇤)2 = dd⇤ + d⇤d = 4 is exactly the Hodge
Laplacian considered in chapter 4. By Hodge decomposition, we
know that ker D = ker D2 = ker 4 = H⇤

dR(M, R). Hence, the index
of Dirac operator D = d + d⇤ on

V
T⇤M =

Vev T⇤M
LVodd T⇤M is

given by

ind(d + d⇤) = dim ker(D
��Vev T⇤M) � dim ker(D

��Vodd T⇤M)

=
n

Â
i=0

(�1)i dim Hi
dR(M, R) = c(M),

where c(M) = Ân
i=0(�1)ibi is the Euler characteristic of M.

Now, we compute the twisting curvature FW for E =
V

T⇤M.
Recall that by theorem 8.10, we have the following identification:

S⇤ ⌦ S = End(S) = C(V)C
s�!
^

C
V

where S = S+L S� =
V

V1,0. Thus, we can identify S⇤ as the twist-
ing space W of E =

V
V ⌦R C. Here, the Z2-grading on (S⇤)ev �

(S⇤)odd is the Z2-grading induced from
V

V. Let {ei} be an oriented
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basis for V = T⇤
x M. Let ci := c(ei) = e(ei) � i(ei), bi := b(ei) =

e(ei) + i(ei). Obviously, we have

[ci, cj] = 2dij, [bi, bj] = �2dij, [ci, bj] = 0.

The curvature 2-form for E is given by

FE = Â
i,j;k<l

Rijkle
iijek^l = �1

4 Â
ij;k<l

Rijkl(ci + bi)(cj � bj)ek ^ el

=
�1
4 Â

ij;k<l
Rijkl(cicj � bibj)ek ^ el = FS + FW .

where we use the skew-symmetry Rijkl in i and j to eliminate the
cross terms. Hence, FW = �1

4 Âij;k<l Rijklei ^ ejbibj.
Now, observe that the supertrance strVV with respect to above

grading is closely related to operator b.

Exercise 8.13. Let n be even, e be the chirality element.
(1) (�1)p = c(e)b(e) on

Vp V.

(2) strVV(b(eI)) =

8
<

:
0 , I 6== {1, 2, . . . , n}
(�2i)n/2 I = {1, 2, 3, . . . , n}.

.

Let a = Âi<j aijeiej 2 V2 V ⇠= C2(V) via s with a = (aij) 2 so(n),
we define b(a) := Âi<j aijbibj 2 End(

V
V). We have the following

key result.

Lemma 8.29. The supertrace str of eb(a) with respect to the grading above
is given by

str(eb(a)) = (�2i)n/2 det1/2
✓

sinh(a/2)
a/2

◆
Pf(a).

PROOF. By splitting principle, we may assume that a is block di-

agonal of the form

 
0 �yi
yi 0

!
, for i = 1, . . . , n/2. Then

str(eb(a)) = str(eÂn/2
i=1 yib2i�1b2i

) = str

 
n/2

’
i=1

eyib2i�1b2i

!

= (�2i)n/2
n

’
i=1

sin(yi).
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On the other hand, one can immediately verified that

det1/2
✓✓

sinh(a/2)
a/2

◆◆
=

n/2

’
i=1

sin yi
yi

,

and Pf(a) = ’n/2
i=1 yi. This completes the proof. ⇤

Hence by plugging FW by a , we see that Â(M)str(e�FW
) = in/2Pf(TM).

We then obtain

Theorem 8.30 (Chern–Gauss–Bonnet). The Euler characteristic c(M)

of a compact even–dimensional oriented manifold is given by

c(M) =
Z

M
e(M),

where e(M) = 1
(2p)n/2 Pf(TM) is the Euler class of M.

Next, we deduce Hirzebruch signature theorem from Aityah–
Singer theorem by introducing a different Z2-grading on

V
T⇤M.

Recall that in section 4.1, we define the Hodge star operator ⇤ :
Vk T⇤M ! Vn�k T⇤M with ⇤2 = (�1)p(n�p) (cf. exercise 4.1). We
now define

⇤̃ :
^k

T⇤M ⌦R C !
^k

T⇤M ⌦R C

by ⇤̃ := i
n
2 +p(n�p)⇤. Obviously, ⇤̃2 = id on

V
T⇤M ⌦ C. In fact, we

have

Exercise 8.14. ⇤̃ = e, where e is chirality element on C(T⇤M) ⌦ C.
Also, under

V
C T⇤M ⇠= S ⌦ W, W = W+ is of pure even grading.

Since ⇤̃2 = id, we can splits the bundle
V

C T⇤M =
V+

C T⇤M
LV�

C T⇤M
as ±1-eigenspaces of ⇤̃. Notice that if dim M = n = 4k, then e is an
element in real Clifford algebra and ⇤̃. We have

^
T⇤M =

^+
T⇤M �

^�
T⇤M,

where a 2 A±(M) := C•(M,
V± T⇤M) if and only if ⇤̃a = ±a. We

call forms in A+(M) by self-dual form and A�(M) by anti self-dual
form. Observe that d⇤ = �⇤̃d⇤̃ and hence

(8.12) ⇤̃(d + d⇤) + (d + d⇤)=̃0, ⇤̃4 = 4⇤̃.
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This implies that D = (d + d⇤) : A+(M) ! A�(M) and

H(M) = H+(M) � H�(M),

where we denote H±(M) by the space of self-dual/anti self-dual
harmonic forms. The index of D = (d + d⇤) : A+(M) ! A�(M) is
given by

Exercise 8.15. If n = 4k = dim M, show that

indD = s(M),

where s(M) is the signature of M. Also, show that if 4 - n, then
indD = 0.

Since W = W+, strW(e�FW
) = trW(e�FW

) = 2�n/2trV T⇤M(e�FW
).

Similar to the proof of lemma 8.29, we have

(8.13) trW(eb(a)) = 2n/2 det1/2(cosh(a/2)).

Put a = FW in (8.13), we have

Â(M)trW(e�FW
) = 2n/2L(M),

where L(M) = det1/2
⇣

R/2
tanh(R/2)

⌘
is the L genus which we have seen

in example 7.49. We then obtain the ”analytic proof” of Hirzebruch
signature theorem:

s(M) = (p)�n/2
Z

M
L(M).

Exercise 8.16.

(1) Prove (8.13).
(2) Let E be a complex vector bundle, D : C•(M,

V± T⇤M ⌦
E) ! C•(M,

V⌥ T⇤M ⌦ E) be the twisted signature opera-
tor. Show the twisted signature theorem:

indD =
Z

M
L(M)ch(E).
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8.6. Milnor’s Exotic 7-Spheres

In 1956, Milnor constructed a non-standard smooth structures on
S7 in [Mil56]. It is the first known example that a manifold can ad-
mit more than one smooth structures. This section serves to be an
introduction to this construction.

The rough idea is the following: starting from the sphere bundle
S(E) of an oriented four plane bundle E over S4, one can show the to-
tal space M of S(E) is a topological S7 if the Euler number e(E) = 1.
In this case, if M is diffeomorphic to the standard S7, we can attach
an 8-disk to the disk bundle D(E) along the boundary M via this dif-
feomorphism to get a smooth closed 8-manifold W. By applying the
Hirzebruch signature theorem to W, we will obtain some divisibility
condition on its Pontryagin numbers. By a detailed computation of
the characteristic classes, this can not be true for some E, and we get
the ”exotic spheres”.

As a start, let us consider quaternion projective spaces HPm :=
(Hm+1 \ {0})/H⇥ by the right action of H⇥. Similar to real or com-
plex projective space, it has a tautological line bundle g := g1

Hm !
PHm, called Hopf bundle. It has the sphere bundle S(g) ⇠= S4m+3 ⇢
Hm+1. Notice that the action H⇥ restricts to S(g) is just unitary
quaternion Sp(1) = S3. Hence, S(g) is a S3-principal bundle. This
construction is known as the quanternion Hopf fibration. Especially,
when m = 1, then observe that PH1 = S4, then this gives the classi-
cal Hopf fibration

S3 S7

S4

Exercise 8.17. Show that H⇤(HPm, Z) = Z[e]/em+1, where e 2
H4(HPm, Z) = Z is the generator (Hint: You may try to find a CW
complex of it). Show that c(gC) = 1 + e and p(gR) = 1 � 2e + e2,
where gC and gR means the underlying complex vector bundle and
real vector bundle of quaternion line bundle g.
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In general, from problem 7.26 and 7.27, we know that oriented
real vector bundle of rank 4 (or SO(4)-bundle in the language of
principal bundle, cf problem refprincipal bundle) over S4 are clas-
sified by p3(SO(4)). Moreover, from problem 5.8, we know that
SO(3) ⇠= RP3 by considering the map r : S3 ! SO(3) defined by
using quaternion multiplication

(8.14) r(u)v = uvu�1,

where v 2 S2 is considered the unit sphere spanned by purely imag-
inary quaternions i, j, k. Hence, p1(SO(3)) = Z2 and pi(SO(3)) =

pI(S3) for i � 2.
Now consider the principal bundle structure:

SO(3) SO(4)

S3

j

p

where p is defined by p(g) = g · 1, and define a map s : S3 ! SO(4)

by still using quaternion multiplication:

(8.15) s(u)v = uv.

Since p(s(u)) = s(u) · 1 = u · 1 = u, s is a section. By problem 7.9
(3), we conclude SO(4) ⇠= S3 ⇥ SO(3) is a trivial bundle. So we have

p3(SO(4)) ⇠= p3(S3) ⇥ p3(SO(3)) = Z � Z.

Since SO(3) is a Lie group, we have the following general result on
multiplications of its homotopy groups.

Lemma 8.31. Let G be a topological group, then for k � 2 the (point-
wise) multiplication of two homotopy classes in pk(G) corresponds to the
composition law of homotopy classes.

PROOF. Let f1, f2 : (Ik, ∂Ik) ! (G, e) and let f0 be the constant
map e, then clearly have homotopies

f1 + f0 ⇠ f1, f0 + f2 ⇠ f2
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Multiply these two homotopies, we get

(f1 + f0) · (f0 + f1) ⇠ f1 · f2

By the definition of composition law, the left hand side is exactly
f1 + f2. This proves the lemma. ⇤

In view of (8.14), (8.15), and above lemma, we see that all clutch-
ing maps r : S3 ! SO(4) are of the form

fhj(u)v = uhvuj,

where h, j 2 Z. In fact, it is very clear that s corresponds to the Hopf
bundle discussed before because we use right action there, and as
a S3 = Sp(1) bundle its coordinate transform will be the left trans-
formation. So we have an even simpler set of generators, namely
the right Hopf bundle g and the left Hopf bundle ḡ defined by left
action. It correspons to the homotopy class s̄ := sr�1, that is

(8.16) s̄(u)v = vu.

Since g, ḡ are isomorphic as real bundles, they have the same Euler
class e = u, but since the “quaternion orientation” is changed, we
will have p1 = 2u.

Moreover, recall that oriented rank n bundle over a manifold X
are calssified by [X, G̃•,n(R)]. When X = Sm, this coincides with our
previous discussion.

Exercise 8.18. [Sm, G̃•,n(R)] ⇠= pm(G̃n,•(R) ⇠= pm�1(SO(n)) (Hint:
consider the principal SO(n) fibration given by SO(n + N)/SO(N) !
G̃n,N+n(R) and use fact 7.41).

Now, we will show both e, p1 : p4(G̃4,•(R)) ! H4(S4) can be
regarded as group homomorphism. For example, let [ f ] 2 p4(G̃4),
p1 is the map

[ f ] 7! p1( f ⇤g̃4)([S4])

so p1( f ⇤g̃4)([S4]) = f ⇤(p1g̃4)([S4]) = p1g̃4( f⇤[S4]) by the definition
of f ⇤ and f⇤, and the last map [ f ] 7! f⇤([S4]) is exactly the Hurwicz
homomorphism

p4(G̃4,•(R)) ! H4(G̃4,•(R)).
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Now, here comes a crucial arithmetic fact on characteristic classes of
these SO(4)-bundle over S4.

Proposition 8.32. The SO(4) bundle Ehj defined by fhj has e(Ehj) =

(h + j)u and p1(Ehj) = 2(h � j)u. In another word, for k ⌘ l (mod 2),
there is an unique SO(4) bundle E such that p1(E) = 2ku and e(E) = lu.

SKETCH OF PROOF. The proposition is ovbious by looking at the
characteristic classes of the right and left hopf bundles g and ḡ. An-
other way to see this is to see the tangent bundle TS4, which has
e(TS4) = 2u (the Euler number) and p1(TS4) = 0 since TS4 � e =

TS4 � NS4 = e
L

5 and by the Whitney product formula (Notice that
TS4 corresponds to f11, which is the “sum” of g and ḡ). ⇤

Let xhj be the sphere bundle of Ehj, that is, ∂D(Ehj), we will show
when h + j = 1, (so h � j = k is odd), the total spase of xhj, denoted
by M7

k . In proposition 8.32, we have already proved these two num-
bers h + j, 2(h � j) correspond to e, p1. Since h + j = 1, k determines
the pair (h, j) uniquely, so in the following we write the lower indices
as k instead of h, j.

Now, we show that M7
k is a topological 7-sphere. The idea is to

construct a Morse function f on M7
k with exactly two critical points.

Then M7
k is homeomorphic to S7 by Reeb’s theorem (cf. problem

7.23). First, we need the following realization of M7
k .

Lemma 8.33. M7
k is an identification of two R4 ⇥ S3 along (R4 � 0) ⇥ S3

via the diffemorphism g of (R4 � 0) ⇥ S3 :

g : (u, v) 7! (u0, v0) =

 
u

|u|2 ,
uhvuj

|u|

!

PROOF. First, we need to check that v0 2 S3 so that the expression
makes sense. Note that

�����
uhvuj

|u|

����� =
|u|h|v||u|j

|u| =
|u|h+j

|h| = 1,
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since h + j = 1. The formula u0 = u/|u|2 is nothing but the coordi-
nate change of the two stereographic projections: S4 ! R4, one from
the south and one from the north.

To check the glueing really gives M7
k , we consider the equator

S3, that is, |u| = |u0| = 1, in fact u = u0. The map g restrict on this
equator then defines a map g̃ : S3 ! SO(4) by g̃(u)v = uhvuj. which
is exactly the map fhj, since any bundle over S4 is classified by this
map as mentioned before, this space is exactly M7

k . ⇤

Now, we construct the desired Morse function f on M7
k .

Lemma 8.34. Consider the following two coordinate charts, (u, v) and
(u00, v0) of M7

k , where u00 = u0(v0)�1. We define f : M7
k ! R by

f (x) =
Re(v)p
1 + |u|2

=
Re(u00)p
1 + |u00|2

,

which has exactly two non–degenerate critical points.

PROOF. First of all, we check that the two expression of f is in-
deed identical. Notice that the right hand side equals to

Re(u0(v0)�1)p
1 + |u0|2

=
Re(|u|u0(v0)�1)p

1 + |u|2
,

and |u|u0(v0)�1) = u(|u|v0)�1 = u(uhvuj)�1 = u · u1�jv�1u�h =

uhv�1u�h. Observe that when we represent H as 4 ⇥ 4 matrices over
R, Re(x) = 1

4tr(x). Therefore,

Re(uhv�1u�h) =
1
4

trace(uhv�1(uh)�1) =
1
4

trace(v�1) = Re(v�1).

Since |v| = 1, v�1 = v̄, we have Re(v�1) = Re(v̄) = Re(v). Thus,
this is equals to the left hand side.

Now we consider the critical points. From the right expression of
f we easily see that no critical points exists in the chart (u00, v0): the
function x1/

p
1 + |x|2 % in the direction x1, so ∂1 f (x) > 0. Hence

all critical points lie in the (u, v) chart, and in fact lie in the set (0, v).
However, in this set, f (x) reduces to be Re(v) (the height function)
on S3, the unit sphere of H. Thus, the critical points are clearly the
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two points v = ±1, that is, (0, ±1). We leave the readers to verify
that they are indeed non–degenerate. ⇤
Exercise 8.19.

(1) Find the identification of H as subsets of M4(R) and prove
that Re(x) = 1

4tr(x).
(2) Verify that the two critical points of f on M7

k are non–degenerate.

In summary, we have shown that M7
k are all homeomorphic to S7

by problem 7.23. Now, we show that there exists some k such that
M7

k is not diffeomorphic to the standard S7. Recall that in the proof of
problem 7.23, suppose M7

k is diffeomorphic to S7, then we can attach
an standard 8-disk D8 onto the boundary of the total space of the
disk bundle D(Ek) along M7

k
⇠= S7 via the assumed diffeomorphism.

We denote the resulting closed 8-manifold by W8
k . We notice W8

k is
nothing but the Thom space T(Ek), by the usual Thom isomorphism
theorem (again, see [MS74], sec.10), we get (by excision and [e(Ek)):

Hi(S4) ⇠= H4+i(D(Ek), S(Ek)) ⇠= H4+i(T(Ek), t0).

The integral cohomology groups of W8
k therefore equal Z in dimen-

sion 0, 4, and 8, and zero in other dimensions. Actually, it is Z �
Ze(Ek) � Ze(Ek)

2. This implies s(W8
k ) = ±1. Choosing an orienta-

tion, may assume s(W8
k ) = 1. Now, apply the Hirzebruch signature

theorem, we have

1 = s =
7p2 � p2

1
45

.

Recall that proposition 8.32, which states that

e(Ehj) = (h + j)u, p1(Ehj) = 2(h � j)u.

In the present case, e(Ek) = u and p1(Ek) = 2ku. To pass this result
to W8

k , denote by p : Ek ! S4 the bundle projection, we always have
TEk

⇠= p⇤(TS4) � p⇤(Ek), so apply the Whitney product formula
and naturality as in section 7.2.1 and p(TS4) = 1, we get p(TEk) =

p⇤p(Ek) and p1(TEk) = p⇤p1(Ek) = p⇤(2ku) = 2ku = 2ke(EK).
Thus, p2

1(TW8
k ) = p2

1(TEk) = 4k2. This is true because of naturality,
the pontryagin classes of Ek are the restriction of Pontryagin classes
of W8

k which is a smooth closed manifold and only have one more
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point than Ek, and so have the same value when we evlauate them
on the fundamental class.

Now, put everything into the signature formula, we get 4k2 +

45 = 7p2 ⌘ 0 (mod 7) ( since Pontryagin numbers are integers!).
This implies 4(k2 � 1) ⌘ 0 (mod 7) and so k ⌘ ±1 (mod 7). But
k can be any odd integers! We get a contradiction for those Ek with
k 6⌘ ±1 (mod 7). That is, M7

k is not diffeomorphic to S7!

Remark 8.35. Although there are a lot of exotic seven spheres, they
may be diffeomorphic! For example, are M7

3 and M7
5 diffeomorphic?

In Milnor’s original approach [Mil56], he put everything in the cat-
egory of manifolds with boundary, and from this he constructed a
diffeomorphism invariant l which is exactly k2 � 1 (mod 7). In this
way, he can distinguish some of these exotic spheres.

There is still another even more sophisticated question: How
many smooth structures can a topological sphere have? The follow-
ing paragraph is a summary of Kervaire and Milnor’s result to this
question. We will omit the proof and give the reference for the proof.

In the rest of this section, we assume all manifolds are smooth
and oriented with dimension n � 5 and all vector bundles are smooth
and oriented.

Definition 8.36. Two closed n-manifolds M1, M2 are h-cobordant if
M1 \ M2 = ∂W and M1, M2 are both deformation retracts of some
(n + 1)-manifold W.

As in the case of cobordism, this defines an equivalence relation
on manifolds.

Exercise 8.20. Check that h-cobordism is indeed an equivalence re-
lation.

Recall that in exercise 7.25, we define the connected sum M1#M2

of two connected n manifolds M1, M2. The h-cobordism is compati-
ble with the connected sum (cf. [KM63], Lemma 2.2). In summary, all
closed n-manifolds form a commutative monoid under # with iden-
tity the standard Sn and descends to the h-cobordism classes. Now,
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we call a closed manifold M a homotopy n-sphere if M is closed and
has the homotopy type of Sn. Two main results of [KM63] are the
following:

Fact 8.37 ([KM63], Theorem 1.1). The h-cobordism classes of homo-
topy n-spheres forms an abelian group Qn under #.

Fact 8.38 ([KM63], Theorem1.2). Qn is finite11

A landmark in h-cobordism theory is the following h-cobordism
theorem due to Smale.

Fact 8.39 (Smale’s h-cobordism theorem, [Sma62]). If M and N are
h-cobordant via W, then W is diffeomorphic to M ⇥ [0, 1].

Smale’s original proof is to decompose a manifold M into han-
dles, which is the smooth analogue of cells. The procedure is known
as handlebodies decomposition. One can consult the [Kos93] for this
account. Alternatively, one can consult [Mil65] for Morse theoretic
exposition for the proof of Smale’s theorem.

Remark 8.40. One of the consequence of h-cobordism theorem is that
that simply connected manifolds in higher dimension (at least 5)
are much easier than those of dimension 3 or 4. In fact, Smale’s
proof fails for dimension 3 and 4. Moreover, Donaldson proved that
(smooth version) h-cobordism is false in dimension 4 while topolog-
ical version is true by the work of Freedman, cf. section 8.7.

An important consequence of h-cobordism theorem is the solu-
tion of Poincaré conjecture in higher dimensions:

Fact 8.41 (Generalized Poincaré Conjecture,[Sma61]). For n � 5, a
homotopy n-sphere is homeomorphic to the standard sphere Sn.

Thus, we know that Qn is the group of smooth structures on Sn.
We will not actually use these facts in the sequel. Instead, we will

11In the paper of Milnor and Kervaire, they cannot decide the order of Q3.
However, if one assume the Poincaré conjecture for n = 3, then it can be shown
that Q3 = 0.
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describe a subgroup bPn+1 ⇢ Qn. To define it, we need the concept
of parallelizable manifolds.

Definition 8.42. A smooth manifold M is parallelizable if TM is trivial
and is s-parallelizable if TM � e is trivial, where e is the trivial line
bundle over M.

We need the following basic facts:

Lemma 8.43. Let x be a k plane bundle over Mn, k � n. If x � er is trivial,
then x is trivial.

PROOF. It suffices to consider the case r = 1. The isomorphism
x � e ⇠= ek+1 gives rise to a bundle map

x gk

M Skf

,

where gk is the universal oriented k plane bundle over the oriented
grassmannian G̃k,k+1(R) = Sk. Since k � n, f is null homotopic, so x

is trivial. ⇤

Corollary 8.44. Let Mn be a submanifold of Sn+k, k � n, then M is s-
parallelizable iff the normal bundle is trivial.

PROOF. The bundle T � N � e is always trivial, where e is the
(trivial) normal bundle of Sn+k in Rn+k+1. If the normal bundle N is
trivial, apply previous lemma to (T � e) � N, we get T � e is trivial.
Conversely, if M is s-parallelizable, apply previous lemma to N �
(T � e), we get that N is trivial. ⇤

Corollary 8.45. A connected manifold with nonempty boundary is s-parallelizable
iff it is parallelizable.
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PROOF. We use Morse theory (cf. theorem 7.54 for the compact,
without boundary case) to conclude that a smooth manifold admits a
CW complex structure, and if the boundary is not empty, the dimen-
sion of this CW complex can be choosen to be < n = dim(M). In the
proof of lemma 8.43, we need only k � the CW complex dimension,
so the result follows. ⇤

Corollary 8.46. Any oriented submanifold M of Rn with ∂M 6= ∆ is
parallelizable.

PROOF. Such manifold has trivial normal bundle. If we take n
large, then M becomes s-parallelizable by corollary 8.44. So it is par-
allelizable by corollary 8.45. ⇤

Now we define the set bPn+1 ⇢ Qn: it consists of those homo-
topy n-spheres which bound a parallelizable manifold. This condi-
tion depends only on the h-cobordism class (This is clear if we use
h-cobordism theorem). The main property we should know is that
bPn+1 is a finite cyclic group and its members can be classified by
simple topological invariant. For simplicity, we only consider bP4m
for m � 2, the collection of all parallelizable 4m manifolds with
∂M = (4m � 1)-sphere. The corresponding signatures s(M) form
a non trivial subgroup of Z, denote it by smZ where sm � 0. Then
the following structure theorems are known:

Theorem 8.47 ([KM63], Theorem 7.5). Let S1, S2 be two 4m � 1 homo-
topy spheres, ∂Mi = Si, with Mi parallelizable. Then S1 is h-cobordant
to S2 if and only if s(M1) ⌘ s(M2) (mod sm). In another words, the
signature (mod s)m classifies the smooth structures on S4m�1.

Hence, bP4m is a subgroup of Z/smZ. In fact, we have
(1) bP2k+1 = 0
(2) bP4m�2 = Z/2Z if m 6= 1, 2, 4
(3) bP4m is cyclic of order sm/8, which equals to

em22m�2(22m�1 � 1) ⇥ numerator of
✓

4Bm
m

◆
,

where em = 1 if m is odd, = 2 if m is even.
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8.7. Existence of Exotic R4

In the section, we give a brief survey to topology for 4-manifolds
as a complement for discussions on manifold topology of higher
dimensions in previous section. Specifically, we will state Donald-
son’s and Freedman’s theorem and use them to construct exotic R4–a
smooth 4-manifold M which is homeomorphic to R4 but not diffeo-
morphic to R4 with standard differentiable structure. The details of
the proof for Donaldson’s theorem will be given in the next section.

First of all, in section 7.8.3, we have defined the intersection pair-
ing qM of a manifold M. Now, if M is a simply connected closed
topological 4-manifold, one can show that H2(X, Z) and H2(M, Z)

are torsion–free12 and the intersection pairing qM (which is symmet-
ric) can be regarded as a quadratic form over Z:

qM : H2(M, Z) ⇥ H2(M, Z) ! Z

via the cup product (a, b) 7! (a [ b)[M]. Moreover, Poincaé duality
shows that qM is unimodular, i.e. det(qM) = ±1.

The intersection form qM actually contains non–trivial informa-
tion about the topology of M. For instance, here is an early result
due to Whitehead and Milnor (cf. [Mil58], theorem 3):

Fact 8.48 (Whitehead, 1949). Let M be a simply connected closed
topological 4-manifold. qM determines the homotopy type of M.

Example 8.49. Now let us compute some examples.
(1) Let M = S4. Since H2(S4, Z) = 0, qM = ∆.
(2) Let M = S2 ⇥ S2 ⇠= CP1 ⇥ CP1. By Künneth formula for

homology which is the same form for cohomology version
given in problem 2.23), we know that H2(M, Z) ⇠= Z2 gen-
erated by the cycles a = [S2 ⇥ pt] and b = [pt ⇥ S2]. Clearly,

a2 = b2 = 0, ab = 1.
12Since M is simply connected, H1(M, Z) = 0. The universal coefficient the-

orem shows that H2(X, Z) ⇠= HomZ(H2(M, Z), Z). The result then follows from
the simple algebra fact that HomZ(A, Z) kills all the torsion part of A and Poincaré
duality: H2(M, Z) ⇠= H2(M, Z).
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Hence, qM ⇠
 

0 1
1 0

!
. Notice that qM is equivalent to the

diagonal form

 
1 0
0 �1

!
over Q but not over Z.

(3) Let M = CP2, thn H2(M, Z) = Z[H] ⇠= Z, where H ⇠=
CP1 is the complex line. Hence, qM = (1). Let CP2 be the
same underlying manifold with reverse orientation. Since
[CP2] = �[CP2], we have q

CP2 = (�1).

Exercise 8.21. Let M1, M2 be simply connected, closed 4-manifolds.

(1) Show that M1#M2 is still a simply connected, closed 4-manifolds.
(2) Show that H2(M1#M2) ⇠= H2(M1) � H2(M2) and qM1#M2 =

qM1 � qM2 .

(Hint: Use Mayer–Vietoris sequence, cf. lemma 2.30).

Hence, for M = CP2#CP2, we get qM = (1) � (�1). However, as

we have remarked in previous example, qM ⌧
 

0 1
1 0

!
= qS2⇥S2

over Z. Hence, CP2#CP2 and CP1 ⇥ CP1 have different homo-
topy type by Whitehead’s theorem. One may furthermore pose the
following question: if the intersection form qM of a 4-manifold M
can be decomposed as q1 � q1, can one find 4-manifold M1, M2 with
qMi = qi for i = 1, 2 such that M ⇠= M1#M2?

Before answering the question, let us first discuss the classifica-
tion theory of unimodular quadratic form over Z following the clas-
sical reference [Ser73], chapter V.

Definition 8.50. Let q be an unimodular form over Z on a free abelian
group L. We define

(1) the rank rankq of q by the rank of L;
(2) the signature s(q) of q as the signature of qR on L ⌦Z R.

As in linear algebra, we call q is definite if s(q) = ±rankq. Also, we
say qM is of even type or is even if qM(a, a) 2 2Z and qM is odd if
otherwise.
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Exercise 8.22. Show that q = q1 � q2 is even if and only if q1 and q2

are even.

Here is the construction of the non–trivial positive definite form.
Let k 2 N, n = 4k, and V = Qn with the standard quadratic form
kxk2 = Ân

i=1 x2
i = 0. Let L0 = Zn ⇢ V be the integral points of

V and q is the induced quadratic form from k · k. Let L1 := {x 2
L0 : q(x, x) ⌘ 0 (mod 2)} be the subgroup of L0. In other words,
x 2 L1 if and only if Ân

i=1 xi ⌘ 0 (mod 2) and thus L1 is an index 2
subgroup of L0.

Now, we define L = Zhe, L1i, where e =
⇣

1
2 , . . . , 1

2

⌘
. Since n ⌘ 0

(mod 4), one has 2e 2 L1 but e /2 L1. Hence, [L : L1] = 2. For
x = (x1, . . . , xn) 2 V, x 2 E if and only if

(8.17) 2xi 2 Z, xi � xj 2 Z,
n

Â
i=1

xi 2 2Z.

Then we have q(x, e) = 1
2 Ân

i=1 xi 2 Z. Since q(e, e) = k, one can
show that q(x, y) 2 Z, for any x, y 2 L. Moreover, since [L0 : L1] =

[L : L1] = 2, one can show that det(q) = 1 on L. Hence, q is
a unimodular form on L. Moreover, when k is even (i.e., n ⌘ 0
(mod 8)), q(e, e) is even and this implies q(x, x) 2 2Z, for any x 2 L.
Thus, we denote Gn := (L, q) in this case. Then Gn is a positive
definite unimodular form of even type with rank n = 8m

When m = 1, i.e. n = 8, let {e1, . . . , en} denotes the standard
basis on Q8, then elements x 2 G8 with q(x, x) = 2 are of the form

±ei ± ek(i 6= k) and
1
2

8

Â
i=1

eiei, ei = ±1,
8

’
i=1

ei = 1.

One can check that

1
2
(e1 + e8 � e2 � · · ·� e7), e2 � e1, e3 � e2, e1 + e2, e4 � e3, e5 � e4, e6 � e5, e7 � e6
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forms an ordered basis for G8 and the corresponding q with respect
to the basis is given by

0

BBBBBBBBBBBB@

2 �1
�1 2 �1

�1 2 �1 �1
�1 2 0
�1 0 2 �1

�1 2 �1
�1 2 1

�1 2

1

CCCCCCCCCCCCA

For m � 2, the vectors x 2 G8m such that q(x, x) = 2 are simply the
vectors the vectors ±ei ± ej, for i 6= j. Hence, they do not generate
G8m for m � 2. Particularly, we know that G8 � G8 is not isomorphic
to G16.

Exercise 8.23. Verify the details in the above constructions.

Remark 8.51. For readers who familiar with theory of Lie groups, G8

forms the root system of type E8 and the matrix is the Cartan matrix

associated to the Dynkin diagram .

Here are some facts on unimodular forms whose proof can be
found in [Ser73], Chapter V, §2–3.

Fact 8.52. Let q be an indefinite unimodular form, then q is uniquely
determined by its rank, signature, and type. Furthermore,

(i) if q is odd, then q ⇠ s(1) � t(�1), for some s, t 2 N.

(ii) if q is even and s(q) � 0, then q is equivalent to m

 
0 1
1 0

!
�

nG8, where n = 1
8 s(q)and m = 1

2(rankq � s(q)). If s(q) <

0, then the corresponding result follows from changing q to
�q.

For q is definite, there is no easy classification. However, we have
the following arithmetic restriction for any even forms.

Fact 8.53. If q is even, then s(q) ⌘ 0 (mod 8).
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Now, we compute a more involved example of intersection form.
Let M := {[Z0 : Z1 : Z2 : Z3] : Â3

i=0 Z4
i = 0} be the Kummer surface,

which is the quartic surface in CP3 with defining equation of Fermat
type. In general, for a hypersurface Md ⇢ CPn of degree d, we have
the normal sequence

0 ! TMd ! i⇤TCPn ! NMd ! 0.

Let us denote OPn(1) by the hyperplane bundle of CPn, h := c1(OPn(1))

be its first Chern class which is also the Poincaré dual of a line L ⇢
CPn. We abuse the notation by still denoting h by the restriction of
c1(OPn(1)) onto Md. The hypersurface Md has degree d means that
its normal bundle is the restriction of d-tensor power of hyperplane
bundle onto Md. In other words13, NMd

⇠= (O(1)⌦d)
��

Md
. Hence.

from Whitney product formula, we have

i⇤c(CPn) = c(Md)(1 + dh).

From (7.13), we know that c(CPn) = (1 + h)n+1 and thus i⇤c(CPn) =

(1 + h)n+1 by functoriality of Chern class. From this, one can com-
pute c(Md) by

c(Md) = (1 + h)n+1(1 + dh)�1

=
h
(1 + h)n+1(1 � dh + d2h2 � d3h3 + · · · )

i

n�1
,

where [· · · ]n�1 means taking the degree (n � 1)-part in the expan-
sion.

Thus, for n = 3, d = 4, the Chern class of Kummer surface M =

M4 is given by

1 + c1(M) + c2(M) = (1 + 4h + 6h2)(1 � 4h + 4h2) = 1 + 6h2.

Hence, c1(M) = 0 and c2(M) = 6h2 = e(M) (cf. exercise 7.21 (2)).
By Chern–Gauss–Bonnet theorem (cf. theorem 8.30), we can com-

pute its Euler characteristic as

c(M) =
Z

M
c2(K3) =

Z

M
6h2.

13This is known as adjunction formula in algebraic geometry.
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Notice that another interpretation for a hypersurface Md ⇢ CPn

having degree d is that its homology class [Md] 2 H2n�2(CPn, Z)

is homologous to d[H], where [H] is a hyperplane in CPn. Also, ob-
serve that the Poincaŕe dual of [H] is given by hn�1, we then have

Z

Md

hn�1 = hn�1([Md]) = hn�1(d[H]) = dhn�1[H] = 1.

Particularly, this shows that the Euler characteristic for Kummer sur-
face c(M) = 24 = b0 � b1 + b2 � b3 + b4. Since M is compact and
connected, bi = b4�i and b0 = 1. Also, by Lefschetz hyperplane the-
orem (cf. theorem 7.56), we know that b1 = 0. Hence, b2 = 22 and
thus H2(X, Z) ⇠= Z22.

Now, we are ready to determine the intersection form qM of Kum-
mer surface M. First, by Hirzebruch signature theorem, we know
that s(M) = s(qM) = p1

3 while the first Pontryagin number of M is
given by

p1(M) = (�1)c2(TM ⌦ C)[M] = �2c2(M)[M] = �48.

Hence, s(M) = �16 and thus qM is indefinite. One can show that
qM is of even type and thus by fact 8.52, we know that

(8.18) qM ⇠ (�2)G8 � 3

 
0 1
1 0

!
.

Exercise 8.24. Show that the intersection form qM for Kummer sur-
face is even.

Remark 8.54. Notice that Kummer surface satisfies c2(M) = 0, which
implies the canonical bundle KM =

V2,0 T⇤M is trivial. This is ex-
actly the Calabi–Yau condition we have mentioned in section 6.7. In
general, a complex compact surface14 S with trivial KS is called a K3
surface, named after Kummer, Kähler, and Kodaira. Thus, Kummer
surface is an example of K3 surface.

As mentioned the remark 8.40 in previous section, we know that
Smale’s proof for h-cobordism theorem fails for dimension 3 and 4.

14A non–trivial fact due to Yum-Tong Siu is that all K3 surfaces are Kähler.
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The classification for manifolds in dimension four remains largely
mysterious until the early 1980s. In 1981, Freedman gave a remark-
able result on complete classification theorem for compact, simply-
connected topological 4-manifold:

Fact 8.55 (Freedman, [Fre82]). For compact, simply-connected topo-
logical 4-manifold M4, the homeomorphism type is uniquely deter-
mined by qM if qM is even and up to two choices if qM is odd.

Moreover, every unimodular form q can be realized by qM for
some M4.

We refer the monograph [FQ90] for exposition of Freedman’s work.
From Freedman’s result, we know that the classification for (simply–
connected compact) topological 4-manifolds is essentially the same
as the classification of unimodular forms. Particularly, his theorem
shows the Poincaré conjecture in dimension 4.

Corollary 8.56. Let M be a homotopy sphere of dimension 4. Then M is
homeomorphic to S4.

Back to our previous question. Since every unimodular form is
realizable by some simply connected closed 4-manifold, if qM de-
compose into q1 � q2, Freedman’s result shows that there exists two
topological 4-manifolds M1, M2 with qi = qMi for i = 1, 2 such that
M is homeomorphism to M1#M2.

We have not mentioned anything about differentiable structure
up to this point. In fact, the topological manifolds and smooth mani-
folds are sharply distinct in dimension 4, as indicated by the another
remarkable diagonalizable theorem due to Simon Donaldson [Don83]
nearly at the same time.

Theorem 8.57 (Donaldson, 1982). Let M be a compact, simply–connected
smooth 4-manifold. Assume that qM is definite, then qM is diagonalizable
over Z.

As a first corollary, Donaldson’s theorem shows that the topolog-
ical 4-manifold realizing positive definite even forms like G8, G8 � G8,
or G16 cannot admit any smooth structure.
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From this, one can establish the existence of exotic R4 as follow-
ing. Consider the Kummer surface M, from (8.18) and Freedman’s
result, there exists a topological surgery M = M1#M2, where M1

is the topological manifold with intersection form qM1 = (�G8) �
(�G8) and M2 = 3(S2 ⇥ S2), as shown in below.

However, Donaldson’s theorem shows that such a surgery can-
not be smooth. We denote V by the topological 4-disk, which is
homeomorphic15 to R4, in M2 = 3(S2 ⇥ S2) and X = M2 \ V. Since
M2 = V [ X is smooth, we can induce a smooth structure on V in-
herited from M2.

Now, we take U to be a collar (cf.
problem 2.14) of X in M2. Don-
aldson’s theorem then show that
there exists no smooth embedding
from S3 = ∂V ,! U, for other-
wise the surgery will be smooth.
Hence, we have shown that the
compact set C = V \ U cannot be
surrounded by any smoothly em-
bedded 3-sphere.

Of course, on R4 with standard differentiable structure, any com-
pact sets can be surrounded by smooth 3-spheres of sufficiently large

15It is actually quite technical to show that V is homeomorphic to R4, which
uses some topological results called Casson handles described in Freedman’s 1981
paper cited above, see [FU84], theorem 1.6.
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radius. Therefore, V is homeomorphic to R4 but not diffeomorphic
to R4 with standard differentiable structure!

Remark 8.58. In fact, Taubes [Tau87] later proved that there are un-
countable families of exotic R4s.

8.8. Introduction to Donaldson Theory

In this section, we discuss some ideas in the proof of Donaldson’s
diagoalizable theorem (cf. theorem 8.57). For details, we refer to the
original paper [Don83], the exposition [FU84], and [Lawsonguage].
One can also consult the more comprehensive monograoh [DK90].

The key ingredients in Donaldson’s proof is the gauge theory16.
Let M be a compact, simply connected, smooth 4-manifold, E ! M
be a G-vector bundle, where G is a compact Lie group. In practice,
we take G = SU(N). We denote g = su(N) ⇢ Mn(C) by the Lie
algebra of G with bi-invariant inner product hA, Bi = �trAB.

As we have seen in section 7.1, given a trivializing cover {Ua}
for E, we can write a G-connection r (cf. problem 7.1) locally as
r = d + qa on Ua, where qa is a g-valued 1-form. Also, recall that the
curvature 2-form Fr = dqa + qa ^ qa is a globally-defined g-valued 2-
form. In fact, both of them are differential forms valued in the vector
bundle gE over M, called adjoint bundle17 of the G-vector bundle E.

16In physics literature, this is often referred as Yang–Mills theory though ear-
lier ideas have appeared in the work of Weyl. gauge theory (and its ”quantiza-
tion”) plays the dominant role in modern physics, especially in standard model,
the current model in theoretical physics to explain the fundamental interactions
and particles (apart from gravitation). From the mathematical point of view, it is
an open problem to construct quantization of a Yang–Mills theory mathematically,
cf. [JaffeWitten].

17If one use the language of principal bundles (cf. problem 7.9), given the Lie
group G, the vector bundle E ! M is just the associated bundle of a principal G-
bundle P with respect to a representation r : G ! GL(V), where V is any fiber of
E (cf. problem 7.11). The g-valued forms qa and Fr are actually differential forms
values in the adjoint bundle gE := AdP (cf. problem 7.14 and ??, whose fibers are
the Lie algebra g of G.
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Remark 8.59. Since in the sequel we are interesting to not just one
fixed connection but the spaces of connection, we would like to re-
gard a connection as an object rather than as an operator. We differ
with our notations in section 7.1 by denoting a connection by A, the
associated covariant derivatives (on all associated bundle for E) by
dA, and the curvature of A by FA. Also, to avoid the confusion with
connection A, we denote the space of smooth k-forms with values in
some vector bundle F by Wi(F) rather than Ai(F).

Now, let (M, g) be a Riemannian manifold, we can define the
Yang–Mills functional YM on the space of G-connections18 A on E by

(8.19) YM(A) := kFAk2 =
Z

A
|FA|2dµg,

where (·, ·) :=
R

Mh·, ·idµg is the L2-norm with respect to the inner
product h·, i on W2(gE). Recall that A is an affine space modeled on
W1(gE) (cf. exerciseaffineness of connection and problem 7.14, we
may investigate the critical points of YM by: let a 2 W1(gE), from
the proof of proposition 7.4, we know that the curvature for FA+ta is
then given by

FA+ta = Fa + tdAa + t2a ^ a.

We then calculate the derivative of YM(A + ta) with respect to t:

d
dt

���
t=0

kFA+tak2 =
d
dt

���
t=0

Z

M
|FA + tdAa + t2a ^ a|2m. ug

= 2
Z

M
hdAa, FAi = 2(dAa, FA) = 2(a, d⇤

AFA).

Hence, A is a critical point for YM if and only if d⇤
AFA = 0. Notice

that this is a second order non–linear PDE with respect to A, called
the Yang–Mills equation.

Exercise 8.25. Write down the Yang–Mills equation d⇤
AFA = 0 in lo-

cal coordinates when the metric gij = dij is flat. Also, explain why
this is the non–linear and non–abelian version of Harmonic theory dis-
cussed in chapter 4.

18In physics literatures, a G-connection A is called a Yang–Mills field.
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When dim M = 4, as we have seen in section 8.5, (??) shows that
the exterior bundle splits into self-dual part and anti-self dual part.
Obviously, the decomposition extends to forms with values in any
vector bundles. In particular, we have the orthogonal decomposition

W2(gE) = W2
+(gE) � W2

�(gE).

Hence, FA = F+
A � F�

A and kFAk2 = kF+
A k2 + kF�

A k2.
Now, we restrict ourselves to the case N = 2, i.e., E ! M is a

complex vector bundle of rank 2 with structure group SU(2), and we
consider the characteristic classes on E, which are c1(E) and c2(E).
Since g = su(2), we have c1(E) = [ i

2p trFA] = 0. Hence, we have

[
⇣

i
2p

⌘2
tr(F2

A)] = c1(E)2 � 2c2(E) = �2c2(E). The characteristic
number of E is given by

�2c2(E)[M] =
Z

M

�1
4p2 trFA ^ FA

=
�1
4p2

Z

M

�
tr(F+

A ^ F+
A ) + trF�

A ^ F�
A
�

=
�1
4p2

Z

M
tr(F+

A ^ ⇤F+
A ) � tr(F�

A ^ F�
A ).

We then get k := c2(E)[M] = 1
8p2

�
kF+

A k2 � kF�
A k2� 2 Z. This is

called the topological charge of the Yang–Mills field A. When k > 0,
the absolute minimum of kFAk2 is 8p2k, which occurs if and only if
F+

A ⌘ 0, or ⇤FA = �FA. In this case, we call A is an ASD connection.
Similarly, when k < 0, the minimum is �8p2c2(E) which occurs if
and only if F�

A ⌘ 0. Thus, we then call A in this case a self-dual
connection. We will focus on the case k > 0. In this case, we see that
the minimizing problem for Yang–Mills functional is equivalent to
the solution of F+

A = 0, a first order non-linear PDE.

Remark 8.60 (Classification of SU(2)-bundles and Line Bundles on
4-Manifolds). Actually, on 4-manifolds M, complex vector bundle
of rank 2 over M with structure group SU(2) is classified by the
topological charge k 2 Z. Since SU(2) ⌘ Sp(1), such complex vec-
tor bundle are in fact quaternion line bundle with classifying space
HP• (cf. section 7.5 and section 8.6). Therefore, the isomorphisms
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classes of SU(2)-bundles are one-to-one corresponds to [M, HP•],
the homotopy classes of maps from M to classifying space. As in ex-
ercise 8.17 indicated, the CW complex structure of HP• is given by
HPk for k = 0, 1, 2, . . . , and HP1 ⇠= S4. Thus, by cellular approxima-
tion theorem (cf., for instance [Hat02]), theorem 4.8)

[M, HP•] = [M, S4] ⇠= Z,

where the last isomorphism comes from taking the degree of the map,
which is compatible with taking c2(E)[M].

Similarly, the complex line bundles on M are in fact classified19

by their first Chern classes c1(E), for any CW complex M.

.
Now, for a rank 2 complex vector bundle E with c2(E) = k, notice

the following relation between intersection form qM with the split-
ting of E.

Lemma 8.61. E splits topologically into L1 � L2, for some line bundles
L1, L2, if and only if the equation �k = qM(a, a) is solvable for some
a 2 H2(M, Z). Moreover, in this case, a = ±c1(L1) and L2 = L⇤

1 .

PROOF. Suppose E splits, then Whitney product formula implies
0 = c1(E) = c1(L1) + c1(L2) and k = c2(E) = c1(L1)c1(L2) =

�c1(L1)2. Thus, �k = qM(a, a), where a = ±c1(L1) and L2 = L⇤
1

19Since the classifying space for complex line bundle is CP•, the isomor-
phism classes of line bundles are one-to-one corresponds to [M, CP•]. Similar
to the construction of quaternion Hopf fibration in section 8.6, the sphere bundle
S2k+1 ! CPk for the tauotological bundle g ! CPk is a S1-fibration. Hence, in-
ductively, we have a S1-fibration S• ! CP•.Using homotopy exact sequence of
fibration (cf. fact 7.41), we know that the homotopy groups of CP• are trivial ex-
cept p2(CP•) ⇠= Z. Then from Hurewicz theorem (cf. section 7.8.1) and universal
coefficients theorem for cohomology, we have

H2(CP•, Z) = Hom(Z, Z) = Zhc1i,

where c1 = 1Z 2 Hom(Z, Z) is the universal first Chern classes (cf. section 7.5.3).
For any f 2 [M, CP•], we associate the cohomology class f ⇤c1 2 H2(M, Z).
Hence, we obtained an isomorphism [M, CP•] = H2(M, Z) by f 7! f ⇤c1.
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(since c1(L2) = �c1(L) and by the classification result for line bun-
dles in previous remark).

Conversely, if a 2 H2(M, Z) satisfies qM(a, a) = �k. By previ-
ous remark, we know that there exists a complex line bundle L with
c1(L) = a. Above calculation then shows that �c2(L � L⇤)[M] = k.
By previous remark again, we know that SU(2)-bundles are classi-
fied by topological charge, and thus E ⇠= L � L�1 as SU(2)-bundles.

⇤

Now, we are ready to state how Donaldson approached the diag-
onalizable theorem (cf. theorem 8.57).

Theorem 8.62 (Donaldson, 1982). Let M be a compact, simply–connected,
smooth 4-manifold with negative definite intersection form qM, E ! M be
a SU(2)-bundle with charge k = c2(E) = 1. We denote M by the moduli
space of ASD connections on E (which depends on a choice of Riemannian
metric g on M). Then for genetic Riemannian metric g on M, the following
statements hold:

(1) There exists p1, . . . , pm 2 M such that M \ {p1, . . . , pm} is a
non–compact, oriented smooth 5-manifold.

(2) There exists an open set Ml0 ⇢ M such that Ml0 is diffeomor-
phic to M ⇥ (0, l0) and M \ Ml0 is compact. In other words,
M has a collar neighborhood Ml0 and we can compacitify M
into M by adding M ⇠= M ⇥ {0} as a boundary.

(3) Each singularity pi 2 M are one-to-one corresponds to the topo-
logical splitting E = L � L⇤.

(4) There exists a neighborhood Ui of each pi such that Ui homeomor-
phic to C3/S1, a cone on CP2 or CP2.

We may illustrate the moduli space M satisfying (1)–(4) above
by the below figure.

Granted theorem 8.62, we may prove the diagonalizable theorem
as following:

PROOF OF THEOREM 8.57. Since M is oriented cobordant to dis-
joint union of m(±CP2) via M \ {p1, . . . , pm}, where �CP2 := CP2.
From lemma 7.50, we know that signature is an invariant under
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cobordism. Since qM is negative definite,

b2(M) = rankH2(M, Z) = �s(qM)  ms(CP2) = m.

However, by the process of diagonalization of integral quadratic form20,
we must have m  b2. Hence, we conclude that b2 = m and thus qM

is diagonalizable to

0

B@
�1

. . .
�1

1

CA. ⇤

In the remaining section, we will discuss some ideas in the proof
of theorem 8.62. First, we define the moduli space M. As in the dis-
cussion in Plateau problem (cf. section 6.4), the space of connections
A also has many redundancy due to action of infinite dimensional
symmetric group. In the present case, the symmetry group in con-
sideration is just G := Aut(E), the group of bundle automorphisms
of E. It acts on A by: for each section s 2 C•(E),

dg(A)s := g�1dA(gs).

In terms of local description, by writing dg(A) = d + g(Aa), we know
that

g�1dA(g(s)) = g�1(d + Aa)(gs) = ds + (g�1dg + g�1Aag)s.
20if a 2 H2(M, Z) such that q(a, a) = �1, then H2(M, Z) = Za � a? by b 7!

q(a, b)a + (b � q(a, b)a). Since q is definite, number of solution for q(g, g) = �1
for g 2 a? equals to m � 1 and rank(q

��
a?) = rankq � 1. The result then follows

from indcution.



8.9. PROBLEMS 373

Hence, g(Aa) = g�1dg + g�1Aag (compare exercise 7.1) and thus
Fg(A) = g�1FAg = Adg(FA). This shows that G acts on trivially on
the ”form part” of FA and acts on the g-part by adjoint representation
Ad : G ! Aut(g). Hence, in view of adjoint-invariance of the inner
product h·, ·i on gE, we know that YM is in fact a well–defined func-
tional on the orbit spaces A/G and the condition of ASD is preserved
under the action of G. We then define the desired moduli space of
ASD connection by

M := {A 2 A : ⇤FA = �FA}/G.

ADHM Construction. Before actual proving the theorem, let us
consider the case M = S4, where the moduli spaces of ASD SU(2)

connections for k = 1 can be explicitly described21. We identify R4

as the quaternion H with the unit group Sp(1) = SU(2) ⇠= S3 ⇠=
Spin(3). Its Lie algebra sp(1) = su(2) can then identified as ImH,
the imaginary part of quaternions.

Then the tautological bundle g1
H ! HP1 ⇠= S4 is then a Sp(1) =

SU(2)-bundle. Exercise 8.17 shows that the underlying rank 2 com-
plex bundle g1

C satisfies c1(g1
C) = 0 and c2(g1

C)[HP1] = 1. Now, we

trivialize g1
H

���
R4

with the section s(x) = (x,1)p
1+|x|2

. We then define an

ASD connection A = d + w by the su(2)-valued connection 1-form

w =
Im(x̄dx)
1 + |x|2 .

8.9. Problems

8.1. Let E ! M = S2m be a complex vector bundle over an 2m-sphere.
Consider the twisted signature operator D : C•(

V±
C T⇤M ⌦ E ! V⌥

� CM ⌦
E) in exercise 8.16.

(1) Show that indD = 1
(m�1)!

R
S2m cm(E).

(2) Deduce that the only spheres which could admit almost complex
structures are S2 and S6. This generalize problem 7.4.

21The construction of ASD connections on S4 in general case is due
to Atiyah, Drinfeld, Hitchin, and Manin [ADHM]. For more details, see
[AtiyahGeometryofYM] or [DK90] chapter 3.
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*(3) Construct an almost complex structure on S6.
**(4) Does there exists an integrable almost complex structure on S6?

(cf. footnote 18 in Chapter 6)

Classification of Clifford Algebra. In problem 8.2 to 8.5, we consider the
classification of Clifford algebra. The presentation here mainly follows the
original source [ABS64] and the exposition [LM89], §4.

8.2. Let V be a real vector space of dimension n, Q be a quadratic form
with signature (r, s = n � r). Under the identification, (V, Q) ⇠= (Rn, q),
where q = diag(1, . . . , 1| {z }

r

, �1, . . . , �1| {z }
s

), we denote Cr,s by the Clifford algebra

C(Rn, q). Show that the following algebra isomorphisms (H =quaternions).

(1) C1,0 ⇠= C, C0,1 ⇠= R � R.
(2) C2,0 ⇠= H, C1,1 ⇠= M2(R), C0,2 ⇠= M2(R).
(3) Cr,s ⇠= C+

r+1,s, for any r, s � 0.

([ABS64], §4)

8.3. Show the following algebra isomorphisms for any n, r, s � 0:

(1) Cn,0 ⌦ C0,2 ⇠= C0,n+2

(2) C0,n ⌦ C2,0 ⇠= Cn+2,0

(3) Cr,s ⌦ C1,1 ⇠= Cr+1,s+1.

([ABS64], §4)

8.4. In this problem, we classify the Cn,0 and C0,n in terms of matrix algebras
over R, C, or H.

(1) Show the following isomorphisms of R-algebras
(a) C ⌦R C ⇠= C � C.
(b) C ⌦R H ⇠= M2(C).
(c) H ⌦R H ⇠= M4(R).

(2) For any n � 0, show that there are ”periodicity” isomorphisms

Cn+8,0 ⇠= Cn,0 ⌦ C8,0; C0,n+8 ⇠= C0,n ⌦ C0,8

(3) It remains to classify Cn,0 and C0,n, for n  8. Prove the following
table (Here, K(n) := Mn(K) with K = R, C, H).

1 2 3 4 5 6 7 8
Cn,0 C H H � H H(2) C(4) R(8) R(8) � R(8) R(16)

C0,n R � R R(2) C(2) H(2) H(2) � H(2) H(4) C(8) R(16)
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With above table and C1,1 ⇠= M2(R), one can actually obtain the table for
Cr,s, for any 0  r, s  8, cf. [LM89], p.29.

([ABS64], §4)

8.5. In this problem, we consider the classification of Clifford algebra of a
complex vector space.

(1) For any r + s = n, show that Cr,s ⌦ C ⇠= Cln := C(Cn, qC), where
qC(z) = Ân

k=1 z2
k .

(2) Cln+2 ⇠= Cln ⌦ Cl2 and Cl2 = M2(C).

(3) Show that Cln =

8
<

:
M2n/2(C) n even

M
2

n�1
2

(C) � M
2

n�1
2

(C) n odd.

([ABS64], §4)

Spin Groups. For simplicity, we consider Cn := Cn,0 = C(V, g), where
V ⇠= Rn, g is a positive definite symmetric bilinear form on V.

8.6. Denote C⇥
n by the multiplicative group of unit of Cn.

(1) Show that C⇥
n is a Lie group with Lie algebra Cn.

(2) More generally, show that if R is a finite-dimensional associative
k-algebra (k = R or C), then R⇥ is a Lie group.

8.7 (Pin and Spin Group). We define groups Pin(n) and Spin(n) as the sub-
set of C⇥

n :

Pin(n) := {v1 . . . vk : vi 2 V, |vi| = 1}
Spin(n) := Pin(n) \ C+

n .

(1) We define a map a : Cn ! Cn by the unique map extending V !
V given by v ! �v. Show that it is an involution on Cn and C±

n
are ±1-eigenspaces for a.

Following [ABS64], we define a twisted adjoint representation fAd : C⇥
n !

GL(Cn) by fAdf(x) = a(f)xf�1.

(2) Show that if v 2 V, v 6= 0, then fAdv is the reflection with respect
to the hyerplane v? = {w 2 vn : g(v, w) = 0}.

(3) Show that r : Pin(n) ! O(n) given by r(f) = fAdf is a surjective
Lie group homomorphism with ker r ⇠= Z2.

(4) Deduce that Spin(n) is a non–trivial double cover for SO(n) for
n � 2 and is its universal cover if n � 3 (cf. problem 7.21).
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Dirac Operator and ∂̄-operators on Kähler Manifolds. In problem 8.8 to
problem , we investigate Dirac operator on Kähler manifolds.

8.8 (Dirac Operator on Complex Manifolds). Let W be a holomorphic vec-
tor bundle over a Kähler manifold M. Given any hermitian metric h on
E, let rW be the Chern connection on W. Since M is Kähler, the Levi-
Civita connection rLC on M is the Chern connection on T1,0M. Hence,
they induces a canonical connection rE = rLC ⌦ 1 + 1 ⌦ rW on E :=
V

T0,1M ⌦ W.

(1) Show that E is a Clifford module with Clifford connection rE, and
the associated Dirac operator D =

p
2(∂̄W + ∂̄⇤

W).
(2) If M is only a complex manifold, define the Clifford connection

and its associated Dirac operator D on E =
V

T⇤0,1M ⌦ W. More-
over, show that the Dirac operator D �

p
2(∂ + ∂⇤) 2 C•(M, EndE)

and such term vanishes exactly when M is Kähler.

8.9 (Dolbeault Operators and Harmonic Theory). Let W ! M be a holo-
morphic vector bundle over a complex manifold. Recall that in section
7.2.2, we have defined the Dolbeault operator ∂̄ : Ap,q(M, E) ! Ap,q+1(M, E).

(1) Show that ∂̄2
E = 0.

Thus, we can form the Dolbeault cohomology by

Hp,q
∂̄

(M, W) := ker(∂̄
(p,q)
W )/im(∂̄

(p,q�1)
W ).

We define 4∂̄W
:= ∂̄⇤

W ∂̄W + ∂̄W ∂̄⇤
W be the ∂̄-Laplacian on W.

(2) Show that problem 6.13 can be generalized to forms with values
in W:

(a) dim Hp,q(M, W) < •, where Hp,q(M, W) := ker(4∂̄W
).

(b) Ap,q(M, W) = ∂̄E(Ap,q�1(M, W))� Hp,q(M, W)
L

∂̄⇤
E(Ap,q+1(M, W)).

(3) Deduce that Hp,q
∂̄

(M, W) ⇠= Hp,q(M.W).

8.10 (Hirzebruch–Riemann–Roch Theorem). Let W ! M be a holomor-
phic vector bundle over a compact Kähler manifold M. Let D be the Dirac
operator on the Clifford module E :=

V0,1 M ⌦ W.

(1) Show that indD = Âi(�1)i dim H0,i
∂̄

(M, W).
(2) Compute the twisting curvature for W.
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(3) Deduce Hirzebruch–Riemann–Rock formula rom Atiyah–Singer
Theorem (cf. theorem 8.20):

(8.20) Â
i
(�1)i dim H0,i

∂̄
(M, W) =

1
(2pi)n/2

Z

M
Td(M)ch(W),

Td(M) = det
⇣

R1,0

eR1,0 �1

⌘
is the Todd genus (cf. problem 7.7).

(4) Argue that (8.20) holds for any compact complex manifold.

8.11 (Bochner–Kodaira–Nakano Identity). Let E ! M be a complex mani-
fold. We denote by (r0,1)⇤ the formal adjoint of r0,1 = ∂̄E.

(1) Show that the complex analogue for connection Laplace (cf. exer-
cise 4.15 (2)) holds

(r0,1)⇤r0,1 = � Â
i

rZirZ̄i
� rrZi Z̄i

,

where {Zi} is a local orthonormal frame for T1,0M with respect
the hermitian metric on M.

Assume furthermore that M is Kähler. We define canonical line bundle of M
by K :=

Vn(T⇤1,0M).

(2) Express the curvature of K⇤ with respect to the Levi–Civita con-
nection in terms of Riemannian curvature of M.

(3) Let E be a hermitian holomorphic vector bundle over M. Show
that in the holomorphic coordinate z of M, the folllowing Bochner
type formula, known as Bocher–Kodaira–Nakano identity, holds:

(8.21) ∂̄E∂̄⇤
E + ∂̄⇤

E∂̄E = (r0,1)⇤r0,1 + Â
i,j

e(dz̄i)i(dzj)FW⌦K⇤
(∂zi , ∂z̄j),

where FW⌦K⇤ is the curvature for W ⌦ K⇤.

8.12 (Kodaira Vanishing Theorem). A hermitian line bundle L ! M with
curvature FL = Âi,j Fijdzi ^ dz̄k is said to be a positive line bundle if Fij is posi-
tive definite. Use Bochner–Kodaira–Nakano identity to deduce the Kodaira
vanishing theorem:

(1) If L ! M is a hermitian holomorphic line bundle on a compact
Kähler manifold such that L ⌦ K⇤ is positive, then

H0,i(M, L) = 0, for i > 0.
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(2) If L is a positive hermitian holomorphic line bundle and W is a
hermitian holomorphic vector bundle on M, then for m � 0,

H0,i(M, L⌦m ⌦ W) = 0, for i > 0.

8.13. Classify all intersection forms of surface Md of degree d > 1 in CP3.

([DK90], p.13)


