
Chapter 5

BASIC LIE THEORY

1. Categories of Lie groups and Lie algebras

A C• manifold G is a Lie group if G has a group structure and the
group law

G ⇥ G ! G; (g, h) 7! gh�1 are C•.

For g 2 G, we denote the left multiplication map h 7! gh by Lg and
right multiplication h 7! hg by Rg. We have the induced map on
tangent spaces:

dLg : ThG ! TghG; dRg : ThG ! ThgG.

A vector field X 2 C•(TG) is left invariant if Xgh = dLgXh for all
g, h 2 G. The Lie algebra g = Lie G of G is the vector space of all left
invariant vector fields (l.i.v.f.) under bracket operation. Namely, as
differential operators, for f 2 C•(G):

[X, Y] f := X(Y f ) � Y(X f ).

Since a l.i.v.f. X is determined by its value Xe at the identity e 2 G,
we identify

g ⇠= TeG.

Abstractly, a vector space L over a field F (with charF 6= 2) with
an F-bilinear map [ , ] : L ⇥ L ! L is called a Lie algebra (over F) if
[x, y] = �[y, x] and

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0. (Jacobi identity) .

It is clear that the bracket of vector fields has this property.

Example 5.1. Consider the general linear group

G = GL(n, R) = { g 2 Mn⇥n(R) | det g 6= 0 }.
163
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From Cramer’s rule, we see that g 7! g�1 is C• hence that G is a Lie
group.

As an open subset of Mn⇥n(R) ⇠= R
n2 , we have TeG = Mn⇥n(R).

The matrix algebra has a natural Lie algebra structure gl(n, R) de-
fined by

[A, B] := AB � BA.

Theorem 5.2. gl(n, R) coincides with Lie G.

PROOF. From (gh(t))0 = gh0(t), we see that (Lg)⇤A = gA for
g 2 G, A 2 TeG. Thus if Ã is the l.i.v.f. with Ãe = A, then Ãg =

gA. Let G ,! R
n2 with coordinates (xij)n

i,j=1 being the entries of the
corresponding matrix g. Then a tangent vector A = (aij) 2 TeG and
Ã are equivalent to

A = Â
i,j

aij
∂

∂xij

����
e

and Ãg = Â
i,j

(gA)ij
∂

∂xij

����
g

respectively. From

Â
m

∂

∂xij
(xkmbml) = Â

m
dkidmjbml = dkibjl,

we compute

[Ã, B̃]e = Â
i,j,k,l

✓
aij

∂

∂xij

�
(gB)kl

� ∂

∂xkl
� bij

∂

∂xij

�
(gA)kl

� ∂

∂xkl

◆����
g=e

= Â
i,j,l

aijbjl
∂

∂xil

����
e
� bijajl

∂

∂xil

����
e
= Â

i,l
(AB � BA)il

∂

∂xil

����
e
.

This corresponds to AB � BA precisely. ⇤
A Lie subgroup H < G is itself a Lie group such that H is both a

subgroup and an immersion. We allow H ⇢ G to be not closed.

Example 5.3. Subgroups of matrix groups are the main sources of Lie
groups.

(i) Let SL(n, R) = {g 2 GL(n, R) | det g = 1 } be the special
linear group. Consider a smooth curve t 7! g(t) with g(0) = e
and det g(t) = 1. Then we compute tr g0(0) = 0. So its Lie
algebra is given by sl(n, R) = {A 2 Mn⇥n(R) | tr A = 0 }.
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(ii) Let O(n, R) = { g 2 GL(n, R) | gTg = e } be the orthogonal
group. Consider a smooth curve t 7! g(t) with g(0) = e and
g(t)Tg(t) = e. Then we compute g0(0)T + g0(0) = 0. So its
Lie algebra is given by:

o(n, R) = { A 2 Mn⇥n(R) | AT = �A }.
(iii) Let SO(n, R) = { g 2 O(n, R) | det g = 1 } be the special

orthogonal group . It is clear that O(n, R) has two connected
components and SO(n, R) is the identity component, so

so(n, R) = o(n, R).
(iv) Let Sp(2n, R) = { g 2 M2n⇥2n(R) | gT Jg = J } be the sym-

plectic group, where

J =

 
0 In

�In 0

!
.

Its Lie algebra sp(2n, R) is given by:
{ A 2 M2n⇥2n(R) | AT J = �JA }.

(v) We have similar complex Lie groups GL(n, C), SL(n, C), O(n, C),
SO(n, C) and Sp(n, C). Indeed they are defined by algebraic
equations with integer coefficient, so they can take values in
any field. The corresponding Lie algebras gl(n, C), sl(n, C),
so(n, C) and sp(n, C) are complex Lie algebras.

(vi) Let U(n) = { g 2 GL(n, C) | g⇤g = e } be the unitary group.
Consider a smooth curve t 7! g(t) with g(0) = e and g(t)⇤g(t) =

e. Then we compute g0(0)⇤ + g0(0) = 0. So its Lie algebra is
given by u(n) = { A 2 Mn⇥n(C) | A⇤ = �A }. Notice that
u(n) is a real Lie algebra.

(vii) Let SU(n) = { g 2 U(n) | det g = 1 } be special unitary group.
su(n) = sl(n, C) \ u(n).

All these subgroups can be realized as the subgroup preserving
certain additional structure. For “S”, g preserves volume. For “O”,
g preserves the Euclidean inner product. For “Sp”, g preserves the
non-degenerate symplectic form

xT Jy = (x1yn+1 � xn+1y1) + · · · + (xny2n � x2nyn).

And for “U”, g preserves the Hermitian inner product.
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sl(n, C), so(2n, C), sp(n, C) and so(2n + 1, C) are known as classi-
cal complex semi-simple Lie algebras of type An, Bn, Cn and Dn respec-
tively. (To be explained later).

Theorem 5.4. Given a Lie group G. There is an one to one correspondence
between connected Lie subgroups of G and Lie subalgebras of g.

PROOF. This follows from the Frobenius Theorem (cf. theorem 1.40).
For a basis Xi of a Lie subalgebra h of g, we defined a subspace dis-
tribution Hg which is spanned by Xig for all g 2 G. The distribution
H =

S
g2G Hg is integrable. Indeed, for any two C• vector fields

V = Â fiXi and W = Â giXi, we compute

[V, W] = Â figj[Xi, Xj] + Â fi(Xigj)Xj � Â gj(Xj fi)Xi 2 H.

We then take H to be the maximal integral submanifold passing
through e 2 G.

To check that H is a group, let g 2 H. The map Lg maps the
manifold H to gH. The left invariance says that dLgHh = Hgh, hence
gH is also an integral submanifold. Now H and gH both contain the
element g, hence the maximality (uniqueness) implies that H = gH.
This implies that H is closed under multiplication and also g�1

2 H
(since e 2 H). So H is a subgroup of G.

Finally, H is a Lie groups simply because the map H ⇥ H ! H
sending (g, h) to gh�1 is the restriction of the given C• map G ⇥ G !

G. ⇤

Remark 5.5. For any Lie group G, the tangent bundle TG is a trivial
vector bundle with global frame given by any basis of g.

More generally, a Lie group homomorphism r : G ! H is a C• map
which is also a group homomorphism. The tangent map dr : TG !

TH is compatible with l.i.v.f.’s. To see this, r(gg0) = r(g)r(g0) means
r � Lg = Lr(g) � r, so

dr � dLg = dLr(g) � dr.
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Thus dr : g ! h. dr is indeed a Lie algebra homomorphism in the
sense that dr[X, Y] = [dr(X), dr(Y)], which is easily verified from
the definitions.

2. Exponential map

We call a nontrivial Lie group homomorphism R ! G a one pa-
rameter subgroup, even though it may not be injective. The exponential
map links Lie algebras with Lie groups through the consideration of
all one parameter subgroups. Before treating the abstract setting, we
look at the case for matrix groups.

Example 5.6. For A 2 Mn⇥n(C), t 2 C, we define the absolutely
convergent series

etA = 1 + tA +
t2

2!
A2 + · · · +

tk

k!
Ak + · · · .

It is easily checked that if AB = BA then eAeB = eA+B. Hence eA has
inverse e�A and so eA

2 GL(n, C). Moreover g(t) = etA is the one
parameter subgroup with

g0(t) = etA A = dLg(t)A = Ag(t).

That is, etA is the integral curve of the l.i.v.f. determined by A 2

gl(n, C).
The discussion works for C being replaces by R. Also if we take

A be in a Lie subalgebra, the eA lies in the corresponding Lie sub-
group. This follows from the previous theorem. But we can also see
how it works explicitly: For example,

tr A = 0 =) det eA = etr A = 1.

Also

A⇤ = �A =) (eA)⇤eA = eA⇤

eA = e�AeA = In.

Now we turn to a general Lie group G. Let X 2 g. Since RX < g

is a one dimensional Lie subalgebra, by the previous theorem its inte-
gral curve is a one dimensional subgroup H. By taking the universal
cover R ! H if necessary, we get a one parameter subgroup which
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we denote by t 7! exp tX. We shall give a direct proof of this with
stronger conclusions.

Let ft be the flow generated by X. That is, ft(g) is the curve with
f0(g) = g and

d
dt

ft(g) = Xft(g).

Theorem 5.7. The range of t is R for all g 2 G. Moreover, ft : G ! G is a
one-parameter group of diffeomorphisms as right translations ft = Rft(e).

PROOF. Consider the curve gft(e). Since gf0(e) = g and

d
dt
�

gft(e)
�

= dLg
�
dLft(e)Xe

�

= dLgft(e)Xe

= Xgft(e),

we conclude that ft(g) = gft(e) = Rft(e)g.
By substituting g = fs(e) we find fs(e)ft(e) = ft(fs(e)) =

ft+s(e). This shows that for g = e, the range of t can be extended to
all R and ft(e) is a one parameter subgroup. The theorem is proved
by using the relation ft(g) = gft(e) again. ⇤

Now we define the exponential map

exp : g ! G

by exp tX = ft(e) where ft is the flow generated by X. Since

(d exp)0(X) =
d
dt

����
t=0

exp tX = X,

we get (d exp)0 = Idg and exp is invertible near 0 2 g.

Corollary 5.8. If H < G is a Lie subgroup, then H is generated by exp h.

However, exp is not necessarily surjective, hence exp g is not nec-
essarily a group.

Exercise 5.1. Let X 2 sl(2, R) and d =
p

| det X|. Then

(i) eX = (cosh d)I2 + 1
d (sinh d)X if det X < 0.

(ii) eX = (cos d)I2 + 1
d (sin d)X if det X > 0.
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(iii) eX = I2 + X if det X = 0.

Let ga =

 
a 0
0 a�1

!
2 SL(2, R). Then ga lies in a unique one pa-

rameter subgroup if a > 0. ga lies in infinitely many one parameter
subgroup if a = �1. If a 6= �1 and a < 0, then ga 62 exp sl(2, R).

3. Adjoint representation

3.0.1. Three adjoints Ig, Adg and adX. For g 2 G, let Ig : G ! G be
the inner automorphism Ig(h) = LgRg�1(h) = Rg�1 Lg(h) = ghg�1.
Since Ig(e) = e, we get its differential

Adg := dIg : g ! g

as a Lie algebra automorphism. From dIgg0 = d(Ig � Ig0) = dIg � dIg0 ,
we get the adjoint representations of Lie group G

Ad : G ! Aut g

and the adjoint representation of Lie algebra g

ad := d(Ad) : g ! End g.

For G a matrix group, g is a matrix Lie algebra and it is clear that
Adg(Y) = gYg�1. For g(t) a curve with g(0) = e and g0(0) = X we
then compute

adX(Y) = (g(t)Yg(t)�1)0(0) = XY � YX = [X, Y].

This property holds true in general:

Theorem 5.9. For X, Y 2 g,

adXY = [X, Y].
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PROOF. Let f 2 C•(G) and f, y be the flows generated by X, Y.
Then

(adXY) f =
d
dt

����
t=0

(Adexp tXY) f

=
d
dt

����
t=0

d
ds

����
s=0

f (Iexp tX(exp sY))

=
d
ds

����
s=0

d
dt

����
t=0

f (exp tX · exp sY · exp(�tX))

=
d
ds

d
dt
�

f � f�t � ys � ft(e)
�
(0, 0)

=
d
ds

d f (�Xys(e)) + d( f � ys)Xe

����
s=0

= �
d
ds

����
s=0

Xys(e) f + Xe

✓
d
ds

����
s=0

f � ys

◆

= �
d
ds

����
s=0

(X f ) � ys(e) + XeY f

= �YeX f + XeY f = [X, Y]e f .

⇤

Remark 5.10. Readers with experience in differential geometry may
observe that the proof is identical with the one for Lie derivative LXY =

[X, Y]. Indeed,

adXY =
d
dt

����
t=0

(Adexp tXY)

=
d
dt

����
t=0

dRexp(�tX)dLexp tXY

=
d
dt

����
t=0

df�tY = LXY

by the left invariance of Y and the definition of LXY.

It is harder to get explicit formula for Adg in the abstract setting.
We have such a formula in two special cases, both are based on the
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commutative diagram

G
r
//

OO

exp

H
OO

exp

g
dr
// h

To see this, simply notice that r exp tX and exp dr(tX) are both one
parameter subgroups in H with the same tangent vector dr(X) at
t = 0.

By applying the diagram to r = Ig, we get:

exp(AdgX) = g(exp X)g�1.

(For matrix groups this is obvious).
By applying the diagram to H = Aut g, r = Ad and g = exp X,

we get

Adexp XY = eadXY.

With these preparation, we give some applications of the adjoint
representation:

3.0.2. Center of a Lie group. A Lie algebra is called abelian if [X, Y] =

0 for all X, Y. We denote Z(G) by the center of G.

Proposition 5.11. Let G be a connected Lie group, then Z(G) = Ker Ad.
In particular, G is abelian if and only if g is abelian.

PROOF. If g is in the center, then for all t 2 R and X 2 g,

exp tX = g(exp tX)g�1 = exp Adg tX = exp tAdg X.

Hence X = Adg X for all X. That is, Adg = idg.
Conversely, g 2 Ker Ad implies that exp X = g(exp X)g�1. Hence

g commutes with all elements in a neighborhood of e in G. By the
connectedness of G we conclude that g commutes with every ele-
ments in G. ⇤

Corollary 5.12. [X, Y] = 0 implies that exp X · exp Y = exp(X + Y).
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PROOF. Let h be the two dimensional abelian Lie subalgebra of g
spanned by X and Y. Consider the Lie group H generated by exp h.
The proposition show that H is abelian and so the curve g(t) =

exp tX · exp tY is an one parameter subgroup. Since g0(0) = X + Y,
we conclude that exp tX · exp tY = exp t(X + Y). ⇤

Corollary 5.13. If G is a connected Lie groups with trivial center, then

Ad : G ,! Aut g = GL(g)

is a faithful representation. In particular, G is a matrix subgroup.

3.0.3. Normal Lie subgroups. A subspace h of g is a Lie ideal if [h, g] ⇢

h. In this case we denote by hC g. It is clear that h is at least a subal-
gebra.

Proposition 5.14. Let H < G be a connected Lie subgroup of a connected
Lie group. Then

H C G () h := Lie H C g.

PROOF. Let g = exp X with X 2 g and Y 2 h,
If h is a Lie ideal of g, then

g(exp Y)g�1 = exp Adg Y

= exp(eadXY)

= exp
✓

I + adX +
1
2!

ad2
X + · · ·

◆
Y
�

2 exp h ⇢ H.

Since H is generated by h, this proves that H is normal.
Conversely, if H is normal, then the above computation shows

that

g(t) := exp(eadtXY) 2 H.

Hence h 3 g0(0) = adXY = [X, Y] and h is a Lie ideal. ⇤

3.1. Fundamental correspondences.
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3.1.1. Equivalence of categories.

Theorem 5.15. Let G and H be connected Lie groups with Lie algebras g
and h, If G is simply connected, then there is a one to one correspondence be-
tween Lie group homomorphisms G ! H and Lie algebra homomorphisms
g ! h.

IDEA OF PROOF. The is proved by exploring the Frobenius theo-
rem on the product group G ⇥ H in a manner similar to the subgroup
case.

Indeed a morphism r : G ! H is equivalent to a subgroup
G ⇢ G ⇥ H (graph of r) such that pG : G ⇥ H ! G maps G onto
G bijectively.

The given map g ! h gives rise to a Lie subalgebra of g � h and
by the subgroup case we have proved, the corresponding Lie sub-
group exists. The remaining problem is to prove the bijectivity of G
onto G when G is simply connected. ⇤

Exercise 5.2. Complete the remaining problem of Theorem 5.15.

3.1.2. Ado’s imbedding theorem.

Theorem 5.16. Every (finite dimensional) Lie algebra can be regarded as a
Lie subalgebra of some gl(n, R). Hence every simpley connected Lie group
is a subgroup of GL(n, R). Moreover, every compact Lie group can be
imbedded as a closed subgroup of some O(n, R).

For a proof, see [Bou98], chapter I.

4. Differential geometry on Lie groups

4.1. Levi-Civita connection. Any inner product h , ie on TeG = g

uniquely determined a left invariant (Riemannian) metric on G by
left translations. Namely for v, w 2 TgG,

hv, wig := hdLg�1v, dLg�1wie.

A bi-invariant metric is a metric which is both left and right invariant.
We will shortly determine all Lie groups which admit bi-invariant
metrics.
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Proposition 5.17. (i) For any left invariant metric h , i on G, and X, Y 2

g, the Levi-Civita connection is given by

rXY = 1
2([X, Y] � ad⇤

XY � ad⇤

YX).

(ii) If h , i is bi-invariant, then hadZX, Yi+ hX, adZYi = 0 for X, Y, Z 2

g. In particular, rXY = 1
2 [X, Y].

Moreover, R(X, Y)Z = �
1
4 [[X, Y], Z] and R(X, Y, X, Y) = 1

4 |[X, Y]|2 �

0.

PROOF. Recall that the Levi-Civita connection is the unique first
order differential operator rX : C•(TM) ! C•(TM) with rXY �

rYX = [X, Y] (torsion free) and X hY, Zi = hrXY, Zi + hX, rYZi

(metrical). For any three vector fields X, Y, Z 2 C•(TM), a cyclic
computation leads to

2 hrXY, Zi = X hY, Zi + Y hZ, Xi � Z hX, Yi

� hZ, [Y, X]i � hY, [X, Z]i � hX, [Y, Z]i .

If X, Y, Z 2 g, all the inner products are constant in G. This leads to
(i).

For (ii), the bi-invariance implies in particular that for X, Y, Z 2 g,
⌦
Adexp tZX, Adexp tZY

↵
= hX, Yi .

Take differentiation at t = 0 leads to hadZX, Yi + hX, adZYi = 0. In
the above formula, only the term � hZ, [Y, X]i is left, hence rXY =
1
2 [X, Y].

By the definition of the Riemann curvature operator,

R(X, Y)Z = rXrYZ � rYrXZ � r[X,Y]Z

= 1
4 [X, [Y, Z]] � 1

4 [Y, [X, Z]] � 1
2 [[X, Y], Z] = �

1
4 [[X, Y], Z],

where the Jacobi identity is used to rewrite the second term. Finally,

R(X, Y, Z, W) := hR(X, Y)W, Zi = �
1
4h[[X, Y], W], Zi

= 1
4h[W, [X, Y]], Zi = �

1
4h[X, Y], [W, Z]i = 1

4h[X, Y], [Z, W]i,

where the adW invariance of h , i is used. ⇤

It is also straightforward to deduce from (i):
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Corollary 5.18. For left invariant metrics,

R(X, Y, X, Y) = |ad⇤

XY + ad⇤

YX|
2
� had⇤

XX, ad⇤

YYi

�
3
4 |[X, Y]|2 �

1
2h[[X, Y], Y], Xi �

1
2h[[Y, X], X], Yi.

Exercise 5.3. Show the Corollary 5.18 by Proposition 5.17(i).

4.1.1. Lie groups with bi-invariant metrics.

Theorem 5.19. A connected Lie group G with a bi-invariant metric is
complete, the exponential map is surjective and its one parameter subgroups
coincides with geodesics through e 2 G.

PROOF. By Proposition 5.17, for any l.i.v.f. X, rXX = 1
2 [X, X] =

0. Hence one parameter subgroups are the same as geodesics through
e 2 G. This implies that geodesics through e can be extended infin-
itely, so G is complete by the Hopf-Rinow theorem. In particular, the
two exponential maps exp and expe (in Riemannian geometry) coin-
cide and are surjective. ⇤

Corollary 5.20. If G has a bi-invariant metric, then any Lie group immer-
sion H ! G is totally geodesic.

Corollary 5.21. There is no bi-invariant metrics on SL(2, R).

Exercise 5.4. When G is compact, the bi-invariant metrics always
exist. For example, for G ⇢ O(n, R) ⇢ Sn2

�1(
p

n), the Euclidean
metric hA, B i = tr ABT is bi-invariant.

Example 5.22. The Euclidean metric on R
n is clearly bi-invariant.

These examples turns out to be basically all the examples:

Theorem 5.23. A simply connected Lie group G which admits a bi-invariant
metric takes the form G = R

n
⇥ H for H compact and n 2 Z�0.
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PROOF. Let z C g be the center, which is clearly an ideal. Then
h := z? < g is also an ideal: For a 2 z?, b 2 g, and c 2 z,

h[b, a], ci = �ha, [b, c]i = 0 =) [b, a] 2 z?.

(This holds true for any ideal z.) Since G is simply connected, the
decomposition g = z � h leads to G = Z ⇥ H with Lie Z = z and
Lie H = h.

The center Z C G is simply connected and abelian, hence Z ⇠= R
n

for some n. Let e1, . . . , eh 2 h be an orthonormal basis. For any X 2 h,
the group H with the induced bi-invariant metric has Ricci curvature

Ric(X, X) = 1
4

h

Â
i=1

|[X, ei]|
2 > 0.

By translation, this show that the Ricci curvature has a positive lower
bound on H. Hence by the theorem of Bonnet-Meyer H must be
compact. ⇤

5. Homogeneous spaces

5.1. General homogeneous spaces. Let H < G be a closed Lie
subgroup. Then the coset space G/H = { gH | g 2 G } has a natural
C• manifold structure such that the projection map p : G ! G/H
is C•. G acts transitively on G/H by left translations. Also the sta-
bilizer (also called isotropy subgroup) G[gH]

⇠= H at each point [gH].
Conversely, given a transitive C• action G ⇥ M ! M on a C• mani-
fold M. Let H = Gm0 for some m0 2 M. Then G/H ⇠= M. A space of
the form G/H is called a homogeneous space. If H C G then G/H is a
also Lie group.

Example 5.24. Here are some standard examples:

(i) O(n) ⇥ Sn�1
! Sn�1 is transitive and O(n)en

⇠= O(n � 1).
So Sn�1 ⇠= O(n)/O(n � 1).

(ii) U(n) ⇥ S2n�1
! S2n�1 is transitive and U(n)en

⇠= U(n � 1).
So S2n�1 ⇠= U(n)/U(n � 1). Similarly, S2n�1 ⇠= SU(n)/SU(n �

1). In particular, S1 ⇠= U(1) and S3 ⇠= SU(2) are Lie groups.
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(iii) Real projective space: RPn�1 = Sn�1/{±1}. So

RPn�1 ⇠= O(n)/O(n � 1) ⇥ {±1} ⇠= SO(n)/O(n � 1).

(iv) Complex projective space: CPn�1 = (C
n
\{0})/C

⇥. So

CPn�1 ⇠= S2n�1/S1 ⇠= U(n)/U(n � 1) ⇥ U(1) ⇠= SU(n)/U(n � 1).

(v) Stiefel manifold of k-frames: GL(n, R) ⇥ Ṽn,k ! Ṽn,k is tran-
sitive where Ṽn,k is the set of all k frames in R

n. For S =

{e1, . . . , ek},

GS =

( 
I A
0 B

!
2 GL(n, R)

)
.

So Ṽn,k
⇠= GL(n, R)/GS. For Vn,k the set of all orthonormal

k-frames,

Vn,k
⇠= O(n)/O(n � k) ⇠= SO(n)/SO(n � k).

For complex Stiefel manifold VC

n,k of k-frames in C
n,

VC

n,k
⇠= U(n)/U(n � k) ⇠= SU(n)/SU(n � k).

(vi) Grassmannian manifolds: Let Gn,k be the set of all k-dimensional
subspaces in R

n, then Gn,k
⇠= Vn.k/O(k) ⇠= O(n)/O(n � k) ⇥

O(k) and dim Gn,k = k(n � k). Similarly for the complex
Grassmannian

GC

n,k
⇠= VC

n.k/U(k) ⇠= U(n)/U(n � k) ⇥ U(k).

It is a complex manifold with dimC GC

n,k = k(n � k). Grass-
mannians generalizes projective spaces. They are very im-
portant for the study of vector bundles.

(vii) Poincaré’s upper half plane: Let H = { z 2 C | Im z > 0 }.
SL(2, R) acts on H transitively by

 
a b
c d

!
z =

az + b
cz + d

,

The stabilizer at i is SO(2, R), so H ⇠= SL(2, R)/SO(2, R). H
is non-compact and analytically isomorphic to the unit disk,
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an example of the bounded symmetric domains. The double
coset space

G\H ⇠= G\SL(2, R)/SO(2, R)

with G < SL(2, R) contains all Riemann surfaces of genus
g � 2 (uniformization theorem). If G < SL(2, Z) is an arith-
metic subgroup, then it represents certain moduli spaces of
elliptic curves.

5.2. Riemannian homogeneous spaces. For further study, we
need notions and results from differential geometry. Let (M, ds2)

be a Riemannian manifold. That is, ds2 is a family of inner products
h , ix on Tx M varying smoothly in x 2 M. An isometry g : M ! M is
a C• map such that g⇤ds2 = ds2. Equivalently, hdg(v), dg(w)ig(x) =

hv, wix for all v, w 2 Tx M. It is known that the full isometry group

G ⌘ O(M, ds2) := { g 2 C•(M, M) | g⇤ds2 = ds2
}

is a Lie group. For each x 2 M, Gx induces a linear representation
r : Gx ! O(Tx M). Since an isometry maps geodesics to geodesics,
r(h) determines h through the geodesic exponential map expx : U ⇢

Tx M ! M and thus r is injective. In particular, each isotropy group
Gx is compact.

A connected Riemannian manifold (M, ds2) is Riemannian homo-
geneous if for any two points x, y 2 M, there exists an isometry g such
that g(x) = y. In this case, we have a transitive action G ⇥ M ! M
and M ⇠= G/Gx. In particular, M is homogeneous with compact
isotropy.

Proposition 5.25. A Riemannian homogeneous space is complete.

Exercise 5.5. Prove the Proposition 5.25

A natural question arises: When is a general homogeneous space
M ⇠= G/H Riemannian homogeneous? That is we are searching for met-
rics on G/H such that G acts on it as isometries. Such a metric is called
a G-invariant metric, which may not always exist. Also there could
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be different ways to represent M as a group quotient. Thus we need
to clarify these issues first.

In considering the homogeneous structure we may assume that
G acts on G/H effectively in the sense that any g 2 G\{e} acts non-
trivially. Indeed,

g[kH] = [kH] () k�1gk 2 H () g 2 kHk�1.

Hence g acts trivially if and only if g 2
T

k2G kHk�1 =: H0. It is clear
that H0 is the largest subgroup of H with H0 C G. Thus

G/H ⇠=
G/H0
H/H0

=: G1/H1

has an effective G1 action.
Denote G ! G/H by g 7! ḡ := gH. There is a natural identi-

fication Tē G/H = g/h. Since AdH and adh act on g and leave the
subspace h invariant, we get the natural adjoint actions on g/h in-
duced from p : g ! g/h.

Lemma 5.26. For h 2 H, dLh ⌘ Adh modulo h on Tē G/H.

PROOF. Differentiate the equation h exp(tX)H = h exp(tX)h�1H.
⇤

Proposition 5.27. A G-invariant metric on the homogeneous space M =

G/H is equivalent to an inner product h , i on g/h ⇠= TēM which is
AdH-invariant. If H is connected, this is equivalent to “adh-invariance”:
Namely, for A 2 h, X, Y 2 g/h,

hadAX, Yi + hX, adAYi = 0.

PROOF. The necessity of AdH invariance on h , i follows from the
above lemma. To see its sufficiency, we simply define for v, w 2

Tḡ G/H
hv, wiḡ := hdLg�1v, dLg�1wi.

Then hv, wigh = hdLh�1dLg�1v, dLh�1dLg�1wi = hdLg�1v, dLg�1wi =

hv, wiḡ. Hence the left invariant metric on G/H is well defined.
The remaining statement on adh is left as an exercise. ⇤
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Exercise 5.6. Show the remaining statement on adh in Proposition 5.27.s

Theorem 5.28. Assume that G acts on M = G/H effectively. Then M
admits a G invariant metric if and only if AdH ⇢ GL(g) has compact
closure.

Moreover, G invariant metrics on G/H are precisely left invariant met-
rics on G which is also H bi-invariant.

PROOF. ()) Write G/H = G⇤/H⇤ with G⇤ = O(M, ds2), H⇤ =

G⇤
ē . Then G ! G⇤, and hence g ! g⇤, is injective. We know that

im AdH⇤ ⇢ GL(g⇤) is compact since H⇤ is. To realize it inside the or-
thogonal group we simply pick an arbitrary inner product on g⇤ and
average it by this compact image so that the resulting inner product
h , i⇤ on g⇤ is AdH⇤-invariant. (This is the same procedure to con-
struct bi-invariant metrics on a compact Lie group.) Let h , i = h , i|⇤g.
Then it is clear that the image AdH ⇢ O(g, h , i).

(() If AdH has compact closure K ⇢ GL(g), starting with any in-
ner product on g the averaging procedure over K again produces
an AdH-invariant inner product h , i on g. Let p := h? which is
isomorphic onto g/h under p. It is clear that AdH(p) ⇢ p since
hAdH(h?), hi = hh?, AdHhi = 0. Thus h , i|p defines the desired
AdH-invariant inner product on g/h. ⇤

6. Symmetric spaces

6.1. Local and global symmetric spaces. A connected Riemann-
ian manifold (M, ds2) is a symmetric space if for all x 2 M there is an
isometry sx : M ! M such that x is an isolated fixed point of sx and
dsx : Tx M ! Tx M sends v ! �v. It is locally symmetric if sx exists
only locally.

To construct local isometry, consider the map ŝx which reverses
geodesics g with g(0) = x:

ŝx(g(t)) = g(�t).
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This coincides with sx when (M, ds2) is locally symmetric, because
local isometry maps geodesics to geodesics and geodesics are deter-
mined by initial conditions g(0) and g0(0).

Proposition 5.29. Symmetric spaces are Riemannian homogeneous.

PROOF. Let G = O(M, ds2). In particular it contains the sub-
group generated by the symmetries sx, x 2 M. We only need to
show that G acts on M transitively. For any x, y which are joined by
a geodesic g with g(0) = x, g(T) = y, let sz be the isometry with
z = g(T/2). Clearly sz(x) = y.

In general, x and y can be joined by a sequence of broken geodesics
gi. Then we take the isometry to be the composite of those szi ’s. ⇤

Proposition 5.30. In terms of curvature, (M, ds2) is locally symmetric if
and only if that rR = 0, that is the curvature tensor is parallel.

PROOF. Indeed, “)” is easy: For any tensor T of even degree,
rT is of odd degree. Since sx is a local isometry, we get

rT = s⇤
x(rT) = �rT,

hence rT = 0. “(” is a consequence of the Cartan Theorem (cf.
theorem 3.47). ⇤

Corollary 5.31. Simply connected locally symmetric spaces are symmetric.

This follows from rR = 0 and the Cartan-Ambrose-Hicks Theorem
(cf. theorem 3.48).

Theorem 5.32. A connected Lie group G with a bi-invariant metric, e.g.,
for G compact times Euclidean, is a G ⇥ G symmetric space.

PROOF. Let G ⇥ G act on G by (g, h)a = gah�1. Then G ⇠=
G ⇥ G/G, with the stabilizer at e 2 G being the diagonal group iso-
morphic to G. We claim that the map

sg : h 7! gh�1g

defined the symmetry at g.
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We check this for se : h 7! h�1 first. Indeed, near e 2 G the map
se is given by exp X 7! exp(�X). From this we see that se reverses
one parameter subgroups and dse = �IdTeG.

To show that se is an isometry, consider any point g 2 G and
a vector v = dLgX 2 TgG with X 2 TeG. Then v = g0(0) where
g(t) = g exp tX. Then seg(t) = exp(�tX)g�1 = Rg�1 exp(�tX).
Hence

(dse)g v = (dse)g g0(0) = �dRg�1 X.

With w = dLgY, we compute by using bi-invariance of the metric
that
⌦
(dse)g v, (dse)g w

↵
=
D
�dRg�1 X, �dRg�1Y

E
= hX, Yi = hv, wi .

For general g 2 G, sg = LgRgse is the composite of three isome-
tries, hence sg is also an isometry.

It remains to check that (dsg)g = �IdTgG. As before let v =

dLgX 2 TgG. g(t) = g exp tX. Then sgg(t) = g exp(�tX)g�1g =

g exp(�tX). Hence

(dsg)g v = (dsg)g g0(0) = �dLgX = �v.

This completes the proof that G is symmetric. ⇤

6.2. Symmetric spaces via Lie algebras. When is a homogeneous
space M = G/H symmetric? This will be reduced to a problem on
Lie algebras. Recall that s 2 Aut G ia an involution if s 6= IdG and
s2 = IdG.

Theorem 5.33. (Basic structure theorem for symmetric spaces).

(a) Let M = G/H be a symmetric space with G = O(M, ds2), then

s : G ! G; g 7! s(g) = sxgsx

is an involution of G and K = Gs is a closed subgroup contain-
ing H such that K� = H�. H contains no non-trivial normal
subgroup of G.

(b) Conversely, let G be a Lie group with an involution s. Let K = Gs

and fix a G-invariant metric h , i on M = G/K. Let s̄ be the
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diffeomorphism on M induced from s. If h , i is s̄-invariant then
M is symmetric.

(c) A simply connected Lie group G with an involution s is equivalent
to a Z2 graded decomposition g = h� p in the sense that

[h, h] ⇢ h, [h, p] ⇢ p, [p, p] ⇢ h.

Given s, the subalgebra h and the subspace p are the ±1 eigenspace
of ds : g ! g respectively.

PROOF. For (a), s is an involution since

s(gh) = sxghsx = (sxgsx)(sxhsx) = s(g)s(h)

and s2(g) = s(sxgsx) = sx(sxgsx)sx = g. One can check that K \ H
is open and closed in K, hence F� = H�. H contains no non-trivial
normal subgroup of G since otherwise the action of G on M is not
effective.

For (b), h , i is s̄-invariant means that s̄ is an isometry on M. Since
(dse)2 = idg, we have the ±1 eigenspace decomposition g = k � p

and TēM ⇠= p. So ds̄ē = �idTē M. Thus sē := s̄ is the symmetry
at ē. We noticed that a Riemannian homogeneous space which is
symmetric at one point is then symmetric everywhere. Indeed, the
symmetry at ḡ is given by

sḡ := Lg � s̄ � Lg�1 = Lg � s � Lg�1 (mod K).

It is clear that sḡ is well defined, sḡ(ḡ) = ḡ, s2
ḡ = idM and sḡ is an

isometry. The property (dsḡ)ḡ = �id can be easily checked as in the
Lie group case.

For (c), let v 2 h and w 2 p. Then

ds[v, w] = [ds(v), ds(w)] = [+v, �w] = �[v, w].

Hence [h, p] ⇢ p. The proofs of the other two inclusions are similar.
Conversely, given Z2 graded decomposition g = h � p, define

a Lie algebra morphism T : g ! g with T|h = id and T|p = �id.
Since G is simply connected, this gives rise to a Lie group morphism
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s : G ! G. Since d(s2) = ds � ds = T � T = idg, we conclude that
s2 = idG by the unique correspondence between morphisms. ⇤

Exercise 5.7. Show that in K \ H in Theorem 5.33 is open.

So the problem on constructing symmetric spaces is reduced to
finding a Z2 decomposition g = h � p with compatible inner prod-
uct h , i on p. Combining with Proposition 5.27 and Theorem 5.28, the
corresponding metric on G/H can be constructed from a left invari-
ant metric on G which is bi-invariant on H. Examples are provided
by the semi-simple Lie groups.

6.3. Examples via semi-simple Lie groups. Let g be a Lie alge-
bra over F = R or C. Define the Killing form

B(X, Y) = tr(ad X ad Y); B : g⇥ g ! F.

It is the main source to provide adjoint invariant quadratic forms:

Lemma 5.34 (Exercise). B is ad-invariant: B(adZX, Y)+ B(X, adZY) =

0.

Exercise 5.8. Show Lemma 5.34

We say that g is semi-simple if B is non-degenerate, g is simpleif g
is not abelian and g contains no proper Lie ideals.

Theorem 5.35. g is semi-simple if and only if g is a direct sum of simple
ideals.

The proof for the “only if” part is similar to the proof of Theorem
5.23 by using B in place of the bi-invariant metric. The “if” part
follows from the Killing-Cartan criterion which will not be presented
here.

We say G is semi-simple (simple) if g is semi-simple (simple). For
G simple, every bi-invariant metric h , i is determined by its value at
e and proportional to the Killing form.

Example 5.36. We give two main series of examples of symmetric
spaces G/H that arise from semi-simple Lie groups G. Notice that
we had seen that H may always be assumed to be compact.
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(i) Type I: G is compact and B is negative definite. E.g.

SO(2n)/U(n), SO(p + q)/SO(p) ⇥ SO(q),

SU(2n)/SO(n), SU(p + q)/SU(p) ⇥ U(q),

Sp(n)/U(n), Sp(p + q)/Sp(p) ⇥ Sp(q).

These includes spheres, projective spaces and Grassmanni-
ans.

(ii) Type II: G is non-compact and B is indefinite.
In this case there is a maximal compact subalgebra h and

Z2 decomposition g = h � p (the Cartan decomposition).
Moreover, B is negative definite on h and positive definite on p.
E.g.

SO(p, q)/SO(p) ⇥ SO(q),

with respect to the indefinite inner product Âp
i=1 x2

i � Âp+q
j=p+1 x2

j .
For q = 1, we get the Poincaré upper half space Hp.

Similarly

SU(p, q)/U(p) ⇥ SU(q),

with respect to the indefinite Hermitian inner product Âp
i=1 |zi|

2
�

Âp+q
j=p+1 |zj|

2. For q = 1, we get the unit ball in C
p. Other ex-

amples are SL(n, R)/SO(n, R) (for n = 2 we had seen that
this gives Poincaré upper half plane), SO(n, C)/SO(n, R),
SL(n, C)/SU(n).

The main theory of Cartan says that any simply connected sym-
metric space may be decomposed into a product of three factors

M = M0 ⇥ M+ ⇥ M�,

where M0 is a Euclidean space, M+ is of compact type and M� is of
non-compact type. Both M+ and M� may be further decomposed
into irreducible factors and each factor can be constructed from cer-
tain semi-simple Lie algebras in a way similar to the above examples.
The details can be found in Helgason’s classic text.
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7. Curvature for symmetric spaces

7.1. Riemannian submersion. A map f : (M̄, ḡ) ! (M, g) is
a Riemannian submersion if it is a C• submersion f : M̄ ! M and
d f : ThM̄ ! TM is an isometry, where TM̄ = TvM̄ � ThM̄ is the
orthogonal decomposition defined by: Tv

p̄ M̄ := ker d f p̄ is the vertical
tangent space which is also the tangent space of the fiber submanifold
M̄p := f �1(p) with p = f ( p̄), and Th

p̄ M̄ := (Tv
p̄ M̄)? is the horizontal

tangent space.
If f ( p̄) = p and X 2 TpM, then there is a unique horizontal lift

X̄ 2 Tp̄M̄ such that d f p̄X̄ = X. Under such a lifting, one may relate
the Levi-Civita connection and Riemannian curvature tensor on M
in terms of those on M̄. This is particularly useful in dealing with
Riemannian homogeneous spaces or symmetric spaces of the form
G ! M = G/H. The following simple relations, due to O’Neill, can
be found in most textbook in Riemannian geometry. The proofs are
left as exercises.

Theorem 5.37. Let f : M̄ ! M be a Riemannian submersion. Then

(a) r̄X̄Ȳ = rXY + 1
2 [X̄, Ȳ]v for any vector fields X, Y on M and any

lifts X̄, Ȳ. The vertical component [X̄, Ȳ]v is tensorial in X and Y.
(b) For any X, Y, Z, W 2 TpM,

R(X, Y, Z, W) = R̄(X̄, Ȳ, Z̄, W̄) + 1
2h[X̄, Ȳ]v, [Z̄, W̄]vi

+ 1
4h[X̄, Z̄]v, [Ȳ, W̄]vi �

1
4h[X̄, W̄]v, [Ȳ, Z̄]vi.

(c) R(X, Y, X, Y) = R̄(X̄, Ȳ, X̄, Ȳ) + 3
4 |[X̄, Ȳ]v|2.

Combining with the curvature formula for Lie groups, we may
achieve

Theorem 5.38. (a) Let G be a compact semi-simple Lie group with
an involution s (s2 = id). Let g = h � p be the ± eigenspace
decomposition. Then �B defines a bi-invariant metric on G and
G/H is a symmetric space with curvature

R(X, Y, X, Y) = |[X, Y]|2.
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(b) Let G be a non-compact semi-simple Lie group and g = h � p

be a Z2 decomposition as in Example 5.36 (ii). Then B|p defines
an invariant metric on G/H and make it a symmetric space with
curvature

R(X, Y, X, Y) = �|[X, Y]|2.

PROOF. We only give the proof for (b). The proof for (a) is similar
and easier.

For the Riemannian submersion G ! G/H with the left invariant
metric on G defined by

h , i|h = �B|h, h , i|p = B|p,

we have Tv
e G = h and Th

e G = p. Let X, Y, Z 2 T[H]G/H ⇠= p. By
Corollary 5.18 and Theorem 5.37 (c), we get

R(X, Y, X, Y) = |ad⇤

XY + ad⇤

YX|
2
� had⇤

XX, ad⇤

YYi

�
3
4 |[X, Y]p|2 �

1
2h[[X, Y], Y], Xi �

1
2h[[Y, X], X], Yi.

Since [p, p] ⇢ h, [X, Y]p = 0. Also [X, Z] 2 h implies that had⇤

XY, Zi =

hY, [X, Z]i = 0, hence ad⇤

XY 2 h. Now for T 2 h, the left invariant
metric h , i on G is also right invariant under H (i.e. ad-invariance of
B) says that

h[T, X], Yi + hX, [T, Y]i = 0,

which is equivalent to had⇤

XY + ad⇤

YX, Ti = 0, hence ad⇤

XY + ad⇤

YX =

0. By setting X = Y we get also ad⇤

XX = 0. So only the last two terms
remained in the curvature formula.

Since [[X, Y], Y], [[Y, X], X] 2 p, we compute by ad-invariance of
B

R(X, Y, X, Y) = �
1
2 B([[X, Y], Y], X) �

1
2 B([[Y, X], X], Y)

= 1
2 B([X, Y], [X, Y]) + 1

2 B([Y, X], [Y, X]).

Since [X, Y] 2 h, this gives �|[X, Y]|2. The proof is complete. ⇤
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8. Topology of Lie groups and symmetric spaces

For a group action G on a manifold M, a differential form w 2

Lp(M) is an invariant form if g⇤w = w for all g 2 G.

Theorem 5.39. Let M = G/H be a symmetric space with compact G,
Then

H⇤(M, R) ⇠= A⇤

inv(M) = H⇤(M).

PROOF. By the de Rham theorem H⇤(M, R) ⇠= H⇤

dR(M, R), hence
we need to show that every invariant form is also closed and every
closed differential form is equivalent to an unique invariant form.

Step 1. w 2 Ap
inv(M) ) dw = 0. We show first that ŵ := s⇤

xw 2

Ap
inv(M) for any x 2 M. For this, recall sxg = s(g)sx, where s is the

involution. So

g⇤ŵ = g⇤s⇤
xw = s⇤

xs(g)⇤w = s⇤
xw = ŵ.

From dsx = �Id on Tx M we get ŵ|x = (�1)pw|x. Together with the
invariance of w and ŵ, this implies that ŵ = (�1)pw.

Now dw and dŵ are also invariant forms (since d commutes with
g⇤) and s⇤

xdw = d(s⇤
xw) = dŵ 2 Ap+1

inv (M). So similarly dŵ =

(�1)p+1dw. But we also have dŵ = (�1)pdw, hence we conclude
dw = 0.

Step 2. dw = 0 ) w ⇠ w̃ 2 Ap
inv(M). We prove this step for any

homogeneous space with compact G. On a Lie group G, pick up any
left invariant metric, its volume form give rise to invariant measure
dµ which can be normalized to have total volume 1 if G is compact.

For any g 2 G, g⇤w ⇠ w since the map g : M ! M is homo-
topic to identity. This holds true for any affine linear combination:
Â µig⇤

i w ⇠ w with Â µi = 1. Taking limits (by definition of Riemann
sum) we find that

w̃ :=
Z

G
g⇤w dµg ⇠ w.

w̃ 2 Lp
inv(M) since for any h 2 G,

h⇤w = h⇤

Z

G
g⇤w dµg =

Z

G
h⇤g⇤w h⇤dµg =

Z

G
(gh)⇤w dµgh = w̃.
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Step 3. We show that an exact invariant form must be zero. Fix
a G invariant metric on M. We recall the Hodge star operator ⇤ :
LpT⇤

x M ! Ln�pT⇤
x M. The G invariance implies that ⇤g⇤ = g⇤

⇤ for
any g 2 G. Hence w 2 Ap

inv(M) ) ⇤w 2 Ap
inv(M). In particular

d(⇤w) = 0 by step 1.
For w, h 2 Ap(M),

hw, hi =
Z

M
w ^ ⇤h

is a inner product on Ap(M). Now for w = dh an exact invariant p
form,

hw, wi =
Z

M
dh ^ (⇤w) =

Z

M
d(h ^ (⇤w)) � (�1)p

Z

M
h ^ d(⇤w) = 0

by Stokes theorem and d(⇤w) = 0. Hence w = 0 as desired.

Step 4. It remains to show that invariant forms are precisely har-
monic forms. If w 2 Ap

inv(M), we have just seen that

dw = 0 and d⇤w = (�1)p(n�p)
⇤d⇤w = 0.

Thus 4w = (dd⇤ + d⇤d)w = 0. If we assume the Hodge theorem
which says that H⇤

dR(M, R) ⇠= H⇤(M), then harmonic forms must be
invariant forms.

We would like to give a direct proof: First notice that 4h = 0 if
and only if that dh = 0 and d⇤h = 0, which is seen from the identity

h4h, hi = ||dh||
2 + ||d⇤h||

2.

Let 4w = 0. For any X 2 g, we compute by Cartan’s homotopy
formula

LXw = iXdw + diXw = diXw.

The invariance of the metric implies that 4 commutes with LX, hence
LXw is also harmonic. So hLXw, LXwi = hLX, diXwi = hd⇤LXw, iXwi =

0 and then LXw = 0. By definition of Lie derivatives this implies that
w is an invariant form. The proof is completed. ⇤
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Corollary 5.40. For a connected compact Lie group G, viewed as a G ⇥ G
symmetric space, the de Rham cohomology are given by bi-invariant forms,
which are precisely harmonic forms:

H⇤(G, R) ⇠= A⇤

G ⇥ G-inv(G) ⇠= L⇤

Ad-inv[g
⇤].

PROOF. Only the last equality requires explanation. The left in-
variant forms are uniquely determine by their values at e 2 G, so we
have

A⇤

left-inv(G) ⇠= L⇤[g⇤].

A left invariant form is right invariant if and only if it is adjoint in-
variant:

R⇤

g�1w = R⇤

g�1 � L⇤
g w = I⇤

g w.

The inner automorphism Ig induces the adjoint action Adg on g,
hence on the dual space g⇤. This gives the action I⇤

g on left invari-
ant forms. ⇤

Corollary 5.41. Let G be a compact Lie group and W(X, Y, Z) := B([X, Y], Z)

where B is the Killing form. If W 6= 0, say if G is semi-simple, then
H3(G) 6= 0.

PROOF. The skew symmetry of W in X, Y is obvious. In Z, this
is equivalent to adjoint invariance of B. The adjoint invariance of W
follows from the adjoint invariance of B and the Jacobi identity. ⇤

We conclude the discussion with two fundamental results in co-
homology and homotopy theory of Lie groups without proof.

Theorem 5.42 (Hopf Theorem). For connected Lie group G, H⇤(G) is a
finitely generated free exterior algebra L[y1, . . . , yn], with yi being of odd
degree. For example, H⇤(U(n), R) ⇠= L[y1, . . . , y2n�1], deg yi = i.

Theorem 5.43 (Bott Periodicity Theorem).

(i) Unitary case: pi�1(SU(2m)) ⇠= pi+1(SU(2m)) for 1  i  2m.
Hence for U := lim

�!
U(m), we have pi�1(U) ⇠= pi+1(U).
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(ii) Orthogonal case: For O := lim
�!

O(n), we have pi(O) ⇠= pi+8(O).
The first eight values pi(O) for 0  i  7 are Z2, Z2, 0, Z, 0, 0, 0, Z

respectively.

9. Problems

5.1 ([War83] Ch.6 #20) (The Peter-Weyl Theorem). The representative ring of
a compact Lie group G is the ring generated over the complex numbers
by the set of all continuous functions f for which there is a continuous ho-
momorphism r : G ! GL(n, C) for some n such that f = rij for some
choice of i and j. The Peter-Weyl theorem states that representative ring is
dense in the space of complex-valued continuous functions on G in the uniform
norm. That is, if g is a complex valued continuous function on G, and if
e > 0 is given, then there is a function f in the representative ring such
that | f (s) � g(s)| < e for all s 2 G. We outline the proof of this theorem
which is based on the uniform completeness of the eigenfunctions of the
Laplacian. One can choose a Riemannian structure on G such that each of
the diffeomorphisms `s for s 2 G (left translation by s) is an isometry (that
is, hv, wit = hd`sv, d`swist for all t 2 G and all v, w 2 Gt). Since the
C• functions are dense in the space of continuous functions in the uniform
norm, and since by result of above exercise ([War83] Ch.6 #16 (h)) the direct
sum of the eigenspaces of the Laplacian is dense in the space of C• func-
tions in the uniform norm, it suffices for the Peter-Weyl theorem to prove
that each eigenfunction of the Laplacian 4 : C•(G) ! C•(G) belongs to
the representative ring.

Now, G acts on the C• functions on G by

s( f ) = f � `s for s 2 G.

Prove that since the `s are isometries, this action commutes with the Lapla-
cian

4( f � `s) = (4 f ) � `a, for sinG.

Let Vl be the (finite dimensional) eigenspace associated with the eigen-
value l of 4 : C•(G) ! C•(G). Prove that the action of G leaves Vl

invariant. Then let j1, . . . , jn be a basis of Vl, and let

s(ji) = Â
j

gji(s)jj.
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Then s ! {gji(s)} is a homomorphism of G ! GL(n, R). Prove that this
homomorphism is continuous. Then observe that

ji(s) = ji � `s(e) = Â
j

gji(s)jj(e),

so that ji belongs to the representative ring.

5.2 (cf. [Car92] Ch.1 #7). When G is compact, the bi-invariant metrics al-
ways exist. For example, for G ⇢ O(n, R) ⇢ Sn2

�1(
p

n), the Euclidean
metric hA, B i = tr ABT is bi-invariant.

5.3 ([Car92] Ch.8 #8) (Riemannian submersions). A differentiable mapping
f : Mn+k

! Mn is called a submersion if f is surjective, and for all p̄ 2 M,
d f p̄ : Tp̄ M ! Tf ( p̄)M has rank n. In this case, for all p 2 M, the fiber
f �1(p) = Fp is a submanifold of M and a tangent vector of M, tangent to
some Fp, p 2 M, is called a vertical vector of the submersion. If, in addi-
tion, M and M have Riemannian metrics, the submersion f is said to be
Riemannian if, for all p 2 M, d fp : Tp M ! Tf (p)M preserves lengths of
vectors orthogonal to Fp. Show that:

(a) If M1 ⇥ M2 is the Riemannian product, then the natural projections pi :
M1 ⇥ M2 ! Mi, i = 1, 2 are Riemannian submersions.

(b) Let the tangent bundle TM be given the Riemannian metric as:

hV, Wi(p,v) = hdp(V), dp(W)ip + h
Dv
dt

(0),
Dw
ds

(0)ip

for (p, v) 2 TM, V, W tangent vectors at (p, v) in TM where V = a0(0),
W = b0(0) for curves a, b chosen such that a(t) = (p(t), v(t)), b(t) =

(q(s), w(s)), p(0) = q(0) = 0, v(0) = w(0) = v (cf. [Car92] Ch.3 #2).
Show that the projection p : TM ! M is a Riemannian submersion.

5.4 ([Car92] Ch.8 #9) (Conneciton of a Riemannian submersion). Let f :
M ! M be a Riemannian submersion. A vector x̄ 2 Tp̄ M is horizontal if
it is orthogonal to the fiber. The tangent space Tp̄ M then admits a decom-
position Tp̄ M = (Tp̄ M)h

� (Tp̄ M)v, where (Tp̄ M)h and (Tp̄ M)v denote the
subspaces of horizontal and vertical vectors, respectively. If X 2 X (M), the
horizontal lift X of X is the horizontal field defined by d f p̄(X( p̄)) = X( f (p)).

(1) Show that X is differentiable.
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(2) Let r and r be the Riemannian connections of M and M respec-
tively. Show that

rXY = rXY +
1
2
[X, Y]v, X, Y 2 X (M),

where Zv is the vertical component of Z.
(3) [X, Y]v( p̄) depends only on X( p̄) and Y( p̄).

5.5 ([Car92] Ch.8 #10) (Curvature of a Riemannian submersion). Let f :
M ! M be a Riemannian submersion. Let X, Y, Z, W 2 X (M), X, Y, Z, W
be their horizontal lifts, and let R and R be the curvature tensors of M and
M respectively. Prove that:

(1)
⌦

R(X, Y)Z, W
↵

= hR(X, Y)Z, Wi �
1
4
⌦
[X, Z]v, [Y, W]v

↵

+
1
4
⌦
[Y, Z]v, [X, W]v

↵
�

1
2
⌦
[Z, W]v, [X, Y]v

↵

(2) K(s) = K(s) + 3
4

��[X, Y]v
��2 � K(s), where s is the plane gener-

ated by the orthonormal vectors X, Y 2 X (M) and s is the plane
generated by X, Y.

5.6. ([Car92] Ch.8 #11) [The complex projective space] Let

C
n+1

\ {0} = {(z0, . . . , zn) = Z 6= 0 | zj = xj + iyj, j = 0, . . . , n}

be the set of all non-zero (n + 1)-tuples of complex numbers zj. Define
equivalence relation on C

n+1
\ {0}: (z0, . . . , zn) ⇠ W = (w0, . . . , wn) if zj =

lwj, l 2 C, l 6= 0. The equivalence class of Z will be denoted by [Z] (the
complex line passing through the origin and through Z). The set of such
classes is called, by analogy with the real case, the complex projective space
P

n(C) of complex dimension n.

(1) Show that P
n(C) has a differentiable structure of a manifold of

real dimension 2n and that P
1(C) is diffeomorphic to S

2.
(2) Let (Z, W) = z0w0 + · · · + znwn be the hermitian product on C

n+1,
where the bar denotes complex conjugation. Identify C

n+1
⇡ R

2n+2

by putting zj = xj + iyj = (xj, yj). Show that

S
2n+1 = {N 2 C

n+1
⇡ R

2n+2
| (N, N) = 1}

is the unit sphere in R
2n+2.
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(3) Show that the equivalence relation ⇠ induces on S
2n+1 the follow-

ing equivalence relation: Z ⇠ W if eiqZ = W. Establish that there
exists a differentiable map (the Hopf fibering) f : S

2n+1
! P

n(C)

such that

f �1([Z])

={eiq N 2 S
2n+1

| N 2 [Z] \ S
2n+1, 0  q  2p}

=[Z] \ S
2n+1.

(4) Show that f is a submersion.

5.7 ([Car92] Ch.8 #12) (Curvature of the complex projective space). Define
a Riemannian metric on C

n+1
\ {0} in the following way: If Z 2 C

n+1
\ {0}

and V, W 2 TZ(C
n+1

\ {0}),

hV, WiZ =
Re(V, W)

(Z, Z)
.

Observe that the metric h , i restricted to S
2n+1

⇢ C
n+1

\ {0} coincides with
the metric induced from R

2n+2.

(1) Show that, for all 0  q  2p, eiq : S
2n+1

! S
2n+1 is an isometry,

and that, therefore, it is possible to define a Riemannian metric on
P

n(C) in such a way that the submersion f is Riemannian.
(2) Show that, in this metric, the sectional curvature of P

n(C) is given
by

K(s) = 1 + 3 cos2 j,

where s is generated by the orthonormal pair X, Y, cos j = hX, iYi,
and X, Y are the horizontal lifts of X and Y, respectively. In partic-
ular, 1  K(s)  4.
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duality, 139
lemma, 64
upper half plane, 111, 177
upper half space, 185

polarization formula

for sectional curvature, 99
of tensors, 45

pull-back
of tensor fields, 49
map, 49

for cohomology, 64

regular
point, 25
value, 25

regularity theorem, 136, 152
Rellich lemma, 147
representation

adjoint, 169
Riemannian

manifold, 80
metric, 80

bi-invariant, 173
Riemannian manifold, 39

complete, 92
Riemannian structure, 39

Sard’s theorem, 25
singular

cohomology, 69
homology, 68

Sobolev
lemma, 147
norm, 146
space, 146

space
form, 110
Hausdorff, 6
homogeneous

Riemannian, 178



200 INDEX

homogenous, 176
locally Euclidean, 5
projective

complex, 177
real, 177

second countable, 6
symmetric, 180

basic structure theorem,
182

locally, 180
submanifold, 20
submersion, 18

Riemannian, 186
Synge theorem, 102

tangent
map, 16
space, 16

horizontal, 186

verticle, 186
Zariski, 13

tensor
space of type (r, s), 44
algebra, 44
field of type (r, s), 47

totally geodesic, 114

variation formula
first, 100
second, 101

vector field, 28
left invariant, 163
parallel, 86
variational, 99

weak derivative, 146
Whitney imbedding theorem,

22
Witten Deformation, 160


