
幾何, 弦論與量子環的不變性
Geometry, Strings and 
Quantum Invariance

(In celebration of the opening of CMTP)

Chin-Lung Wang

Dept. of Math. NTU

2008/9/26

1Geometry, Strings and Quantum Invariance



1.  Prologue

• In the early 20th century, i.e. about 100 years ago, 
mathematics and theoretic physics took a very close 
relationship with each other.

• In large scale, Riemannian geometry forms the natural 
language in Einstein’s theory of general relativity.  At 
the same time, relativity provides natural subjects to 
study for frontier researches in differential geometry. 
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• In small scale, quantum mechanics had involved 
various subjects in mathematics including

• Analysis (variational methods, operator theory in 
Hilbert spaces, PDE), 

• Geometry (Hamiltonian mechanics, symplectic 
geometry), 

• Algebra (group represetation theory) and 

• Statistics/probability.

• Its development is completely parallel to those 
corresponding mathematical subjects.
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• That was a golden age, the achievement had formed a 
solid foundation for modern sciences and technologies.

• However, soon (before the 2nd world war) mathematics 
and physics had faced intrinsic challenges from their 
own fields. 
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• There were consistency problems in the mathematical 
foundation.  Mathematicians were forced to investigate 
their axiom system and logic.  No branches in mathematics 
could stay away from this serious challenge which might 
affect the thousand years basis of Mathematics.

• Except few instances like the invention of computers (Von 
Neumann), applied mathematics had been out of the core 
Math.  The Bourbaki school in Paris was typical in this 
period.  Some mathematicians were proud of being working 
on researches totally unrelated to the real world. 
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• In mid 70’s, through Gauge Theory and vector bundle 
theory, mathematics and physics seemed to find their 
common playground again.  Yet, mathematicians like
Dieudonne still insisted that Number Theory will save a 
place for math that will never be polluted by sciences. 

• Researches in recent years showed that even the relation 
between number theory and physics is getting closer.

• On the other side, in physics, it became a dream to search 
for an ultimate unified theory to explain all basic forces 
from both the large scale and small scale (the so called 
Grand Unified Theory).
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• Many attempts had required non-existing 
mathematical models.  The Feymann path integral is 
perhaps the most basic (popular?) one. 

• The integral has to be taken in an infinite dimenisonal
path space.  So far such a theory still could not be 
constructed rigorously.  But it has been widely used in 
physics for many decades, and its crucial role is non-
challengeable.
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• String Theory is a theory attempting to unified all 
basic forces.  After several revolutions, it became 
mature in early 80’s.  Through many people’s efforts, 
including Witten’s, some people believe that - The 
Theory of Everything - has been found.

• However, string theory uses huge amount of deep 
mathematics.  Also the related quantities can’t be 
observed in current experiments.  Thus most physicists 
do not believe it. They simply regard it as a tough 
mathematical game (or magic).
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• Even worse, string theory attempts using far more 
mathematical argument without rigorous foundation.  
Thus most mathematicians did not believe in it as well.

• In 1980’s, a few dramatic events completely changed 
our, or some of our, viewpoints on string theory.  

9Geometry, Strings and Quantum Invariance



• First in 1983 Donaldson used the very basic topological 
property of solution space of Yang-Mills equations to 
achieve breakthroughs on 4 dim manifolds. E.g. there 
are infinitely many non-standard structures on R4.

• This is the first example that modern physical ideas 
feedback advanced mathematical research (through 
rigorous mathematical formulation). 

• At that time most people still regarded this as an 
isolated event.  (Why Yang-Mills?)
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• A few years later, further impact came from the mirror 
symmetry phenomenon, predicted by string theory, on
Calabi-Yau manifolds and their moduli spaces.

• This indeed opened a new era since the most frontier 
ideas in Math and Phys had merged again. 

• The aim of this talk is to report on this development 
from a geometric viewpoint as well as on my own 
related researches in recent years.
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2.  Geometric View of Strings

• Since mid 20th century, many new particles were found. 
String theory says that particles are indeed strings (an 
interval or a circle).

• Different vibration patterns determine their particle 
behavior under the classical observation.

• The trajectory of motion in string theory becomes a 2 
dimensional surface (world sheet).  
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• This model overcomes the puzzle arising from 
singularities. E.g. collision is indeed a smooth process.
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D = 26, 10, or 4?

• Yet, according to ST the space-time dimension is 26, 
instead of 4 .  This predicts the existence of extra 
dimensions as well as one or several ways to 
approximate the classical limit (compactifications).

• Already in the 80’s, there were 5 known ST’s and 
corresponding compactifications.  It is the Heterotic
ST to be addressed here.  It contains a special 16D 
gauge group E8 × E8 , so the space-time can be 
constructed on a 10 = 26 – 16 dim model.

14Geometry, Strings and Quantum Invariance



• For the extra 6 = 10 – 4 dim, it rolls into a tiny scale
curved manifold X, so small to be observed in the 
normal scale of daily life. 
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Quantum effects

• But since the scale of X is small, the quantum effects 
ought to be apparent.  Through physical theory, the 
effects turns out can be described mathematically in 
exact geometric terms. 

• Although we can’t test ST in current experiments, it is 
possible to test it through mathematical proofs!
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Calabi-Yau manifolds

• In general, the compactification from 10D to 4D relies 
on a 6D manifold X, which has a metric g satisfying 
the (Riemmanian) Einstein’s vacuum equation

Ricci(g) = 0.  

• All these Ricci flat solutions g form the moduli space of 
string theory, denoted by M(g) or simply by M.
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• Heterotic theory is an N = 2 super-symmetric 
conformaly invariant quantum field theory.

• It implies that X has a complex structure J compactible
with the Ricci flat metric g, i.e. holonomy = SU(3).

• The general constructions of such X are dated back to
Shing-Tung Yau (丘成桐) in his 1976 paper on proving 
the Calabi conjecture.  So (X, J, g) is now called a
Calabi-Yau manifold.
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Which one?

• There are many Calabi-Yau’s and string theory does 
not indicate the one which leads to our world.

• As no Calabi-Yau is superior than the others, a brave 
guess is that any Calabi-Yau should do the job -
Namely all the corresponding QFT’s are all equivalent!

• This leads to puzzels immediately since different 
Calabi-Yau’s could have different topology!! 
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Local structure of moduli

• We need some more geometric concepts to proceed.  
For general (X, J), the metric g uniquely corresponds 
to a symplectic structure w: A non-degenerate closed 2 
form 

dw = 0, 

w is also called a Kaehler metric. 

• Yau’s theorem implies that every [w] (cohomology
class of w) uniquely corresponds to a Ricci flat g.  
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• So there is a local 1-1 correspondence between Ricci 
flat g and (J, [w]), i.e. M(g) = M(J) x M(w) locally. 
M(J) is the complex moduli of X and M(w) is the 
Kaehler (class) moduli.
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Hilbert spaces

• The tangent space of M(J) at X is H1(X, T), and the 
tangent space of M(w) at X is H1(X, T*), here T is the 
holomorphic tangent bundle of X. 

• These vector spaces and higher Dolbeault cohomology
groups form the Hilbert space of states H = H(X) of 
the QFT. Elements in them are called fields.

• According the complex manifold theory, every field 
corresponds to a tensor field on X. 
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3.  Mirror Symmetry

• In the heterotic theory, denote by (Q, Q’) the left/right 
generators of the N = 2 susy algebra u(1) x u(1), then 
H1(T) and H1(T*) are the (1, 1) and (–1, 1) eigenspaces.

• The choice of Q and Q’ is only up to sign, hence we 
may as well choose (–Q, Q’) as generators. 

• Key point: When we use Calabi-Yau X to construct
H(X), the sign-change switches the types of the two 
eigenspaces.  But dim H1(X, T) ≠ dim H1(X, T*) !?
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Exchanging moduli

• There must be another Calabi-Yau Y such that

H1(Y, T) = H1(X, T*),

H1(Y, T*) = H1(X, T).

• Since X and Y should lead to the same QFT, we expect 
that X and Y exchange their M(J) and M(w). 

• This is called Mirror Symmetry, and Y is the mirror 
manifold of X.
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Mirror symmetry
a naïve illustration
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Correlations
• The Hilbert space H involves only the number of fields.   

The full quantum theory describes also the correlation 
functions between fields a, b, c, … denoted by

<a, b, c, …> = ∫ (some path integral)

• Here the variables of the functions are the string 
moduli parameters in M(g).

• We consider twisted theories when we set restrictions 
on the variables. 
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From SCFT to AG

• According to the principle of path integral, correlation 
can be calculated as weighted integral among all 
possible paths (world sheets) of strings.  The weight of 
each path is determined by an action functional.  As 
said, this infinite dimensional integral is still lacking a 
rigorous mathematical definition. 

• For Conformal FT, using localizations on weights, 
string theorists may reduce the integral (in twisted 
theories) to an integral over finite dimensional moduli. 
This transforms the problems into algebraic geometry.
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A = Gromov-Witten theory

• For heterotic theory, there are A-model (J fixed, [w] 
varies) and B-model ([w] fixed, J varies) as twisted 
theories.  (Also known as σ models.) 

• In A-model, correlation becomes intersection theory in 
the moduli of holomorphic maps from Riemann 
surfaces to X, now called Gromov-Witten invariants.

• This is classically known as enumerative geometry, 
with many unsolved problems since hundred years ago.
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Quantum ring
• Before 1990, algebraic geometers had not found 

systematic ways to handle these problems, even on P2.

• In the classical limit, correlations are reduced to 
topological intersections in X, in the ring H*(X).

• In A-model, through the WDVV equations, Vafa
found that all genus g = 0 correlations gives rise to a 
new big quantum cohomology ring structure on H*(X), 
denoted by QH*(X). The existence of ring structure 

already solves the enumerative problem in the P2 case.
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B = Kodaira-Spencer theory

• In B-model, the correlations are called the Yukawa 
coupling.  At least for the genus g = 0 case they can be 
computed by Kodaira-Spencer theory in algebraic 
geometry.

• Specifically, the correlation functions satisfy the 
Picard-Fuchs equations arising from the theory of 
variations of Hodge structures. Thus they can be solved 
by methods in classical differential equations.
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A(X) = B(Y)

• If X and Y are mirror manifolds to each other, the 
striking consequence of mirror symmetry is that it 
switches the A-models and B-models of X and Y.

• Hence the quantum ring on X, which is difficult to 
compute, can be transformed into the much easily 
handled Picard-Fuchs equations on Y!
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Candelas formula

• Given a Calabi-Yau X, mirror symmetry predicts the 
existence of Y, but says nothing on the constructions.

• The first explicit construction is due to Greene and
Plesser in 1990: Orbifold construction on quintic CY 
hypersurfaces in 4 dim projective space.

• In 1991, by mirror symmetry, Candelas, de la Ossa, 
Green and Parkes used this Y to derive the exact 
formulae for all genus 0 enumerative invariants on X. 
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Mirror conjecture
• Mathematically, the Candelas formula can only be regarded 

as a conjecture, but the power to make such a prediction was 
beyond the ability of Math at that time. 

• Mathematicians started to watch the message sent from 
nature.  To string theorists, no doubt they are confident 
with the predictions. Still, they expect for rigorous 
mathematical justifications.

• Through many efforts, this mirror conjecture was finally 
solved by Givental and Lian-Liu-Yau in 1996. This is the 
first key mathematical justification for string theory.
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Duality

• In the 90’s, Batyrev extended the orbitfold
constructions to toric geometry.  He used reflexive 
polytope to achieve some combinatorial duality.

• The real breakthrough is the Strominger-Yau-Zaslow
conjecture in 1996. They proposed geometric 
constructions of mirror manifolds using T-duality.

• Duality is the most important direction of ST since
1990’s. The 5 known ST’s are all equivalent to a single 
theory under duality: Witten’s M theory (physically)!
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SYZ conjecture

• SYZ predicts that complex 3D Calabi-Yau X admits a 
fibration structure over S3, with general fiber being 
special Lagrangian 3D tori T3. 

• The mirror Y is simply the dual fibration of X → S3. 

• This is now one of the hottest research directions in the 
study of Calabi-Yau manifolds.
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4.  K equivalence and flops

• In Heterotic theory, there is a more basic observation which 
connects to algebraic geometry:  If the compactified Calabi-
Yau X and X’ differs only within a small range around sub-
manifolds, we want to know how the QFT’s correspond.

• Type I: Birational case.  In algebro-geometric language, X 
and X’ are a pair of 3D birational minimal models.

• Kollar and Mori in 1990 proved that X can be connected to 
X’ though flops (space surgery). 3D flops preserve complex 
moduli M(J) and cohomology groups. So X and X’ have the 
same B-model and same number of fields in A-model.
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Type I:  Flops (not necessarily for Calabi-Yau)
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Invariance of QH
• But the classical intersection product is not preserved under 

flops.  Thus it is expected that X and X’ have isomorphic A-
model and quantum rings.

• Yet, the isomorphism can not be achieved in the naïve way.  
Witten in 1992 noticed the necessity to use analytic 
continuations in the A-model moduli M(w), since the 
M(w)’s for X and X’ have no common part in H2.   

• In 3D, this was solved by Li-Ruan in 2000.  Thus I am 
interested in the higher dim case and Type II case: Extremal
transitions. (Here we discuss only HD Type I.)
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Minimal model program

• The central topic in HD algebraic geometry is Mori’s 
minimal model program (MMP) invented in 1982.  Mori
finished the 3D MMP in 1988.  However, the existence in 
HD and non-uniqueness are big issues of the MMP. 

• Recently Hacon and McKernan combined Siu (蕭蔭堂) and
Shokurov’s works and obtained important existence results.

• Also Kawamata proved that birational minimal models can 
be connected by flops.  Unfortunately HD flops are rather 
complicate and hard to understand.
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Ordinary flops

• In 1998 I raised the notion of K-equivalence in order to 
study the non-uniqueness.  K-equivalence is a crucial 
generalization of flops. It allows us to extend the study on
Calabi-Yau or minimal models to the general cases.

• There is no hope to classify HD flops, I thus try to modify
classical MMP by adding symplectic deformations into it, 
with the hope to decompose K-equiv into ordinary flops.

• This holds in 3D, which is crucial in Li-Ruan’s theorem.  
But the only known proof uses MMP and classification of 
3D singularities.  It can not be generalized to HD.
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My earlier works

• By extending Kollar’s 3D results, I had shown around
2000 that the Betti and Hodge numbers are invariant 
under K-equiv. I also found all the curvature integrals 
that are invariant under K-equivalence.

• Curvature integrals are exactly Chern numbers, e.g.
Euler number = Gauss-Bonnet integral.  The result is 
that the K-invariant integrals are precisely the complex 
elliptic genera. They can be interpreted as the 
equivariant index of Dirac operators on loop spaces. 
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Topological evidence
• This has important applications on manifolds with 

Ricci curvature close to each other.  It is conjectured 
that they can be connected to each other by ordinary 
flops up to symplectic deformations. 

• Modulo complex cobordism, this conjecture follows 
from my elliptic genus result. Thus it gives a partial 
topological solution to the non-uniqueness problem in 
all dimensions and in a more general context. 

• Q:  Replace cobordism by symplectic deformations.
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5.  Quantum invariance in HD

• K-equivalence preserves cohomology groups, but not the 
product structure. For ordinary flops, the topological defect 
had been determined by H.-W. Lin (林惠雯) and I in 2004.  
Meanwhile we extended the Lian-Liu-Yau 1996 theory in 
mirror conjecture to the local case and proved the invariance 
of (local) small quantum ring.

• Indeed, the topological defect is completely remedied by the 
quantum corrections attached to the Mori extremal rays.  
Our major calculation is on the 3-point (field) correlation 
function (called the generalized multiple cover formula). 
This extends Witten’s 1992 3D result to all dimensions.
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Analytic continuations

• Noticed that, the n-point functions on X and on the
flopped manifold X’ are analytic functions defined on 
their Kaehler cones respectively, and the invariance is 
under analytic continuations.  This is a brand new 
phenomenon in HD algebraic geometry.

• Two remaining steps are needed to attack the full QH. 

• (1) Non-extremal curve classes.  

• (2) Big quantum ring, i.e. n-point functions with n > 3.
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• In the fall of 2005, with NCTS visitor Y.-P. Lee (李元斌,  
Utah), we found a new proof of the multiple cover formula 
via the Divisor Relation on stable map moduli (2003, Lee 
and Pandharipande, Princeton). 

• The proof consists of reductions of 3-point functions into 1-
point functions with gravitational descendents.  This new 
method also extends our result to (local) big quantum ring.

• In early 2005, we had started using the degeneration formula 
of Gromov-Witten invariants (due to Ruan and Li) to 
reduce the problem to local models (projective bundles).
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2001 – 2004 – 2006

• In early 2006, we solved the local model case completely.  
Our proof uses a 5 level induction on functional equations 
and analytic continuations.

• Later in April, we overcame the technical details to reduce 
the general case to local models, hence completely solved 
the invariance of QH under simple flops in all dimensions.

• This is one of the best results in Gromov-Witten theory in 
recent years. It also put a landmark in K-equivalence theory. 
[1] LLW, accepted by Annals of Mathematics, 2007.

46Geometry, Strings and Quantum Invariance



Recent works at NCU-CMTP

• With Baohua Fu (U. Nantes, visited CMTP in April 2007): 

[2] Motivic and quantum invariance under stratified Mukai
flops.  J. Differential Geometry 80, 2008.

• With Y.-P. Lee (U. Utah, visited CMTP and NCU, Dept. 
of Math. in November 2007 and May 2008) and H.-W. Lin: 

[3] Invariance of Gromov-Witten theory under simple flops, 
submitted. Preprint 2008, arXiv: 0804.3816.
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6. Epilogue

• In this talk I use the recent interactions between algebraic 
geometry and heterotic string theory to highlight that some 
parts of Math and Phys are going together now.

• In fact, in the applied area there is always close relationship 
and collaboration between Math and Phys and other 
sciences. Sometimes Math even plays the key role.

• For historical reasons, for a long period in the 20th century, 
the core Math had been separated from other sciences 
(purposely) in order to face her own intrinsic problems. 
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• Now the nature offers again vast subjects and great ideas for 
mathematical studies.  Meanwhile, the abstract objects 
invented by purely intrinsic study of Math also found their 
roles in nature, sometimes quite unexpectedly.

• Rigorous mathematical proofs may even play the role of 
experiments to test the law of nature.

• The atmosphere is similar to the one in early 20th century.  
It is our belief that Mathematics and Sciences will deeply 
interact with each other in the 21st century. More surprises 
are waiting for us!
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*** The end ***

Thank you!
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