A Beautiful Mind
The Mathematical Life of John Nash
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Part I. The way I knew Nash

e 1986: The visit of Chern to Taitwan, from
Gauss-Bonnet Theorem to 1sometric
embedding problems.

* 1988: The course 1n Differential Geometry,
the unbelievable theorem of Nash.

* Geometry = Intuition?



* 1989: The curve shortening problem.
Hamilton’s Ricci1 flow. The Nash-Moser
Implicit Function Theorem.

e 1989: C.-S. Lin’s work on 1sometric

embedding of surfaces into R5.

A recall of 1985: Newton’s iteration for
solving equations. Smale’s Dynamical
Systems.



1992: Fields medals? A dead man?
1940-1980: an era of Topology and
Algebraic Geometry. A general 1ignorance
of Analysis.

1994: New York Times: Nash won the
Nobel for economics!

1996: The Duke Math J. Vol. 81: A
Celebration of John F. Nash. Nash’s 1968
paper “Arc Structures of Singularities™.

1998: Nasar: A Beautiful Mind.



Part II: The Real Life of Nash

Birth: 1928, June 13. Bluefield, West Virginia.
4-th grade: "B-’ in Mathematics.
12 years old: T. Bell: Man of Mathematics.

Carnegie Inst of Tech: 1945, Course by Synge:
Relativity and Tensor Calculus. Bott, Weistein.

1947: Putnam Math Competition. Young
Gauss.

1948: Harvard vs Princeton



From Hilbert, Weyl to Von Neumann.
Lefschetz, Annals of Math, school of genuis.
The way to learn is to do research on it!
Disagreement with Artin.

Game Theory, bargaining and axioms.
Game Theory, Nash equilibrium.

Von Neumann’s against.

Childish behavior and jealousy, Shaply.
RAND.



The Start of Mathematics

A beautiful theorem.
MIT.

Ambrose’s challenge.
C7 isometric embedding. Artin’s against.

Eleanor. A nurse for Nash’s surgery.
1954: homosexual at RAND, depression.
Alicia.

The embedding theorem.



Sloan fellowship.

1956: NYU. Marriage and death.
Nirenberg’s problem.

De Giorge, Rota’s comment in 1994,

1958 Fields Medalist: Roth and Thom.

30 years old. Riemann Hypothesis (1859, 33).
1962 Fields Medalist: Hormander and Milnor.
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Hospitalization.
1960: Absolute zero.
1963: Nash Blowing-Up (Hironaka).
Divorce.

1965 — 1967: Back to Boston

Short recovery: Two papers in 40’s.
A man all along in a strange world.
A ghost in Princeton.

Alicia’s endless love, 1970 -.

Slow recovery 1990. Nobel 1994.



Part III: Nash’s Research Works

* 1. Game Theory

e 2. Real Algebraic Geometry
* 3. Embedding Problems

* 4. PDE: Fluid Flows

* 5. Singularities: Arc Spaces



1. Game Theory

Cooperative vs Non-Cooperative Games

« Non-Cooperative Games:
The Nash Equilibrium

e Pre-play Games,
Unbounded Rationality

e Theorem (Nash 1951):
Each individual simply finds
strategies for his maximal
profit, the society then reach
its (non-unique) equilibrium

* History: Von Neumann

and Morgenstern: 1944,
The Theory of Games
and Economic Behavior

Cooperative Game Theory
Min-Max Theorem (1928)

Implication: Importance of

Government, laws,
contracts and regulations



Bargaining Problems
(Nash 1950)

* Bargaining Problem I Axiomatic Approach
(Nash, 1950)

* Bargaining Problem II Transfer Cooperative
Games 1nto Non-Cooperative Games



2. Real Algebraic Geometry

* A real algebraic set is a set in Euclidean space
consists of all real solutions of a finite number of
polynomial equations in finite variables.

 Theorem (Nash 1952, Tognol1 1973) Every

compact manifold can be approximated by (hence
diffeomorphic to) real algebraic manifolds.

« Hironaka (1982): Nash Blowing-Up.



3. Isometric Embeddings

* A Riemannian metric g on a manifold M 1s a
family of smoothly varied inner products, with one

on each tangent space 7p M of M. (Riemann 1850)
e An isometric imbedding of M into an Euclidean

space R 1s to regard M as a sub-manifold such
that g coincides with the restriction of the standard
inner product <u,v> = 2" uivi,

* Question: Does 1sometric imbedding exist?



Density Theorems and /-Principle

 Whitney’s Theorem (1936, 1943): Every smooth
manifold can be smoothly imbedded into R’", and

into R’n+1 freely (imbeddings are dense in the
space of smooth maps).

 Nash’s C/ Isometric Imbedding Theorem
(Nash 1954, Kuiper 1955): Any topological Ck
imbedding of (M, g) in RN with N > n and k> 0
can be CY approximated by (deformed into) a C!
isometric imbedding in the same RN.



Nash’s Implicit Function Theorem and the
Full Isometric Imbedding Theorem

Nash (1956): Every Riemannian manifold can be
isometrically imbedded into any arbitrarily small
region (volume) of RN. For manifolds of
dimension n, N = (n + 2)(n + 3)/2 is sufficient.

Step 1: Implicit function theorem for tame maps
in Frechet spaces.

Step 2: Existence of an initial non-degenerate
approximate imbedding.



4. PDE: Fluid Flows and Heat

* Nash 1958: Continuity of solutions of
(linear) parabolic and elliptic equations
(with measurable coefficients).

» Here, although I did succeed in solving the problem, I ran
into some bad luck, since, without my being sufficiently
informed, 1t happened that I was working in parallel with
de Giorgi of Pisa, Italy. And de Giorgi was first actually to
achieve the ascent of the submit at least for the particularly

interesting case of “elliptic equations”.



Parabolic equation in divergence form
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Assume c> > c¢1; > 0 being uniform bounds
of eigenvalues of C. Then for |T| < B and
to > t1 > tg, there are bounds A and a de-
pend only on ¢y, ¢co and n such that
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5. Nash’s Arc Spaces

« Hironaka 1964: Resolution of Singularities
of algebraic varieties over a field of
characteristic zero.

* Nash 1968: Singularities can be studied
through arcs (or jets), which encodes all the
infinitesimal structures. This 1s particularly
useful in studying bi-rational maps.



1. For an algebraic variety X, let £(X) :=
X (k[[t]) = Mor(Speck]t], X) be the Nash
space of (formal) arcs in X (power series
solutions of equations defining X).

2. Let X, Y be smooth of dimension n
and ¢ : Y — X be a birational morphism. ¢
induces an algebraic map ¢ : £(Y) — L£(X).
Let J(¢) be the (usual) Jacobian computed
from ¢*Q2', QY.

3. Problem: let S, C £(Y) be the subset
such that ord;J(¢) = r. What is the struc-
ture of S, — &(S;) C L(X)7?



Answer: For each r, ¢, : Sy — &(Sy) C L(X)
IS a piece-wise trivial affine A}; fibration.

Two algebraic manifolds X and X’ are called
K-equivalent if there exists smooth Y with
birational morphisms (¢,¢') : ¥ — X x X’
such that ¢*Q% = ¢*Q7%,. Example: Bira-
tional Calabi-Yau manifolds.

Application (Wang 1998): X =, X’ implies
that [X] = [X'] in the Grothendieck ring of
varieties Kg(Vary). In particular, hP9(X) =
hP4(X").



Work Iin progress: Nash’s arc space indeed
provide a space to find “natural cycle” in
L(X) x £(X") which will produce a cycle
W c X x X' extending the graph closure
[ C X x X/, such that W induces a canoni-
cal isomorphism HP4(X) = HP9(X'").

Expected application: birational maps be-
tween Calabi-Yau manifolds X and X'’ de-
form in families. Hence X and X’ have
canonically isomorphic moduli spaces.
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TG, kb, &S, T, &g
(Concerning the preparation of this talk).

RIS, =L, R A, MRS, i

(Concerning their advise toward my further
study of John Nash)

Thank you for your paying attention.




