GEOMETRY 2023 (HONOR COURSE) MIDTERM EXAM - II A COURSE BY CHIN-LUNG WANG AT NTU

(a) Show that L_ξη = [ξ, η] for vector field η and L_ξ d = dL_ξ on differential forms.
(b) Let ω be a k form. For vector fields X₀,..., X_k, prove Cartan's formula:

$$d\omega(X_0,\ldots,X_k) = \sum_{i=0}^k (-1)^i X_i \,\omega(X_0,\ldots,\widehat{X}_i,\ldots,X_k) + \sum_{i< j} (-1)^{i+j} \omega([X_i,X_j],X_0,\ldots,\widehat{X}_i,\ldots,\widehat{X}_j,\ldots,X_k).$$

2. Define $*: \Lambda^p \to \Lambda^{n-p}$ by $(*T)_{i_{p+1}\cdots i_n} = \frac{1}{p!}\sqrt{g} \epsilon_{i_1\cdots i_n} T^{i_1\cdots i_p}$ for Riemannian metric $d\ell^2$. (a) Show that $*^2 = (-1)^{p(n-p)}$ and $T \wedge *S = \{T, S\} d\sigma$.

- (b) On Ω_U^p , forms supported in a bounded region U, with $\langle \omega_1, \omega_2 \rangle := \int_U \omega_1 \wedge *\omega_2$,
 - show that the adjoint of *d* is given by $\delta := (-1)^{np+n+1} * d *$ and $\delta^2 = 0$.
- (c) Let $\triangle = d\delta + \delta d$. Show that \triangle is self-adjoint and it commutes with d, δ and *.
- (d) $\triangle \omega = 0$ if and only if $d\omega = 0$ and $\delta \omega = 0$. If furthermore $\omega = d\eta$ then $\omega = 0$.
- **3.** For a connection ∇ on U, its Christoffel symbol is defined by $\nabla_{\partial_i}\partial_j = \Gamma_{ii}^k \partial_k$.
 - (a) Find the transformation formula of Γ_{ji}^k in another coordinate system.
 - (b) Given *n* connections ∇_{α} and $f_{\alpha} \in C^{\infty}(U)$, when is $\nabla := \sum_{\alpha=1}^{n} f_{\alpha} \nabla_{\alpha}$ a connection?
 - (c) Compute $\nabla_{X,Y}^2 \nabla_{Y,X}^2$ on vector fields in terms of curvature and torsion.
 - (d) Assume ∇ is torsion free, compute a formula of $T_{j_1...j_s;pq}^{i_1...i_r} T_{j_1...j_s;pq}^{i_1...i_r}$.
- **4.** Consider a classical Lie group (i.e. matrix group) $G \subset GL(n, \mathbb{F}), F = \mathbb{R}$ or \mathbb{C} .
 - (a) Let $X \in \mathfrak{g}$, show that R_X define by $R_X(A) = -XA$ for $A \in G$ is right invariant. Also $[R_X, R_Y] = R_{[X,Y]}$ and $[L_X, R_Y] = 0$.
 - (b) Show that a bi-invariant metric $d\ell^2$ exists for $G \subset O(n)$ or U(n).
 - (c) Under the metric $d\ell^2$ in (b), determine ∇^{LC} and all geodesics through $e \in G$.
 - (d) Compute the Riemann curvature tensor R(X, Y, Z, W).
- **5.** (a) Prove the two Bianchi identities $R^{i}_{[jkl]=0}$ and $R^{i}_{j[kl;m]=0}$.
 - (b) Show that $R_{m;i}^i = \frac{1}{2} \partial_m R$. If $R_{ij} = \lambda g_{ij}$, when can we deduce that λ is a constant? (c) For n = 3 show that R_{ijkl} is determined by R_{ij} by

$$R_{ijkl} = R_{ik} g_{jl} - R_{il} g_{ik} + R_{jl} g_{ik} - R_{jk} g_{il} + \frac{1}{2} R(g_{il} g_{jk} - g_{ik} g_{jl}).$$

- 6. (a) Let α be a piecewise smooth closed curve bounding a region Ω in a surface. Prove that $\int_{\Omega} K dA = \theta_{\alpha}$ where θ_{α} is the holonomy angle along the curve.
 - (b) Prove the local Gauss–Bonnet Theorem

$$2\pi = \sum_{\text{outer angles}} \alpha_j + \int_{\partial \Omega} k_g \, d\ell + \int_{\Omega} K \, dA.$$

Date: 08:30 – 12:30 or 10:00 – 14:00, November 17, 2023 at AMB 102. Each problem is of 20 credits. Show your answers/computations/proofs in details. You may work on each part separately by assuming other parts.