
Theorem on Formal Function

In this talk, we will introduce the definition of formal scheme and some essential

propositions to help us go through the proof of theorem on formal function. This part

is follow Section II.9 in Hartshorne’s Algebraic Geometry.

Inverse Systems & Inverse Limits

• Inverse system of abelian group (An, ϕn′n) is a collection of abelian groups {An}
together with homorphism ϕn′n : An′ → An for each n′ ≥ n such that for all

n′′ ≥ n′ ≥ n, we have ϕn′′n = ϕn′n ◦ ϕn′′n.

An′′ An

An′

ϕn′′n

ϕn′′n ϕn′n

• Inverse limit A = lim←−An := {{an} ∈
∏
An | ϕn′n(an′) = an,∀n′ ≥ n}.

• Universal property : Given group B and homomorphisms ψn : B → An,∀n such

that ∀n′ ≥ n, ψn = ϕn′n ◦ψn′ , then ∃!ψ : B → A such that ψn = pn ◦ψ,∀n, where

pn : A→ An is nth projection map
∏
Ak → An.

B An

An′

ψn

ψn′ ϕn′n
 

B A

An

ψ

ψn
pn

• Homomorphism of inverse system: (An) → (Bn) is a collection of group homo-

morphism fn : An → Bn such that ∀n′ ≥ n, the following diagram commute:

An′ Bn′

An Bn

fn′

ϕn′n ψn′n

fn
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• Exactness : 0 → (An) → (Bn) → (Cn) → 0 is said to be exact if for each n,

correspending sequence of group is exact.

Proposition. If

0→ (An)→ (Bn)→ (Cn)→ 0

is exact, then so is

0→ lim←−An → lim←−Bn → lim←−Cn.

9 Formal Scheme

Definition. We say an inverse system (An) satisfies Mittag-Leffler condition (ML), if

for each n, the decreasing family {ϕn′n(An′) ⊆ An | n′ ≥ n} of subgroups of An is

stationary.

If (An) satisfies (ML), then for each n, we can define A′n ⊆ An to be the stable image

ϕn′n(An) for n′ large enough. Then all maps of (A′n) is surjective, and lim←−A
′
n = lim←−An.

Proposition 9.1. Let 0 (An) (Bn) (Cn) 0
f g

be exact sequence of inverse

system of abelian groups.

(a) if (Bn) satisfies (ML), then so does (Cn).

(b) if (An) satisfies (ML), then 0→ lim←−An → lim←−Bn → lim←−Cn → 0 is exact.

Proof. (a) For each n ≥ n′, the image of Bn′ in Bn maps surjectively to the image of

cn′ in cn, so (ML) for (Bn) implies (ML) for (Cn) immediately.

(b) Just need to show

lim←−Bn → lim←−Cn

is surjective. So fix {cn} ∈ lim←−Cn. For each k, let Ek := g−1(ck) ⊆ Bn.

Then (En) form an inverse system of sets. Also, since for each k, we have

0 Ak Bk Ck 0
fk gk is exact, so

Ek = bk Ker gk = bk Im fk,

where bk is an element in Bk such that gk(bk) = ck. (Such bk must exists since

Bk maps surjective to Ck.) Hence, Ek is bijective to Ak. So (An) satisfies (ML)

implies (En) satisfies (ML).
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Now, consider the stable image of (En), we find that lim←−En is nonempty, say

{en} lim←−En, then {en} is an element in lim←−Bn which maps to {cn}.

Proposition 9.2. X: topological space, C: category of sheaves of abelian groups on X.

(Fn): inverse system of sheaves on X. Then F := lim←−Fn exists in C and for any U :

open subset of X, Γ(U,F ) = lim←−Γ(U,Fn).

Proof. Consider pre-sheaf

U 7→ lim←−Γ(U,Fn).

One can check this is a sheaf, denote it by F . Now, we are going to check that F

is satisfies the universal property. If there is any other sheaf G and compatible maps

ψn : G → Fn, ∀n. Then on each open set U , universal property of inverse limit of

abelian groups (lim←−Γ(U,Fn)) gives us an unique maps

Γ(U,G )→ Γ(U,F ).

This gives a sheaf map G → F . Thus, F is what we want.

Remark. We should notice that the statement of 9.1(b) may false in C. See coun-

terexample in [Amnon Neeman, A counterexample to a 1961 “theorem” in homological

algebra].

Definition. A: commutative ring with identity, and I CA. Then (A/In) is an inverse

system. We defined I-adic completion of A to be

Â := lim←−A/I
n.

By universal property, we get a homomorphism A→ Â. Also, for a A-module M ,

M̂ := lim←−M/InM

is I-adic completion of M , and it is a Â-module.

Theorem 9.3. A: noetherian ring, and I C A. Let ˆ be I-adic completion. Then

(a) Î = lim←− I/I
n C A, and for each n, În = InÂ, Â/În ∼= A/In.

(b) M : finitely generated A-module. Then M̂ ∼= M ⊗A Â.
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(c) M 7→ M̂ is an exact functor on the category of finitely generated A-modules.

(d) Â is neotherian.

Proof.

(a) [Atiyah-Macdonald, Proposition 10.15]

(b) [Atiyah-Macdonald, Proposition 10.13]

(c) [Atiyah-Macdonald, Proposition 10.14]

(d) [Atiyah-Macdonald, Proposition 10.26]

Definition. X: neotherian scheme, Y : closed subscheme of X defined by a sheaf of

ideals I . Then we defined formal completion of X along Y , denote by (X̂,OX̂) is a

topological space Y with sheaf of rings OX̂ := lim←−OX/I n.

Definition.

• A noetherian formal scheme (X,OX) has finite open cover {Ui} such that for each

i, (Ui,OX|Ui
) ∼= completion of some noetherian scheme Xi along Yi.

• A sheaf F of OX- module is said to be coherent if there exists finite open cover

{Ui} such that Ui ∼= X̂i and ∃Fi on Xi such that F|Ui
∼= F̂i via given isomorphism

Ui ∼= X̂i.

Remark. Y = {P}. A ÔP - module M is coherent on X if and only if M is finitely

generated module.

Proof. (⇒) done!

(⇐) Obtain X̂ by completing the scheme Spec ÔP at its closed point, and any finitely

generated ÔP -module M is correspond to a coherent sheaf on Spec ÔP .

Next, we will give some motivation of theorem on formal function and go through

the proof. After that, we are going to see how can we apply the theorem on formal

function to prove the Zariski’s main theorem and the Stein factorization. This part is

follow Section III.11 in Hartshorne’s Algebraic Geometry.
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11 The Theorem on Formal Function

Now, Let’s recall the following fact:

Fact 1 (Proposition III.9.3 & Remark 9.3.1 in Hartshorne’s book)

Let f : X → Y is separated morphism of finite type of noetherian scheme. Let F :

quasi-coherent sheaf on X, and u : Y ′ → Y be morphism of noetherian schemes.

X ′ X

Y ′ Y

v

g f

u

Then ∀i ≥ 0, we have a map

u∗Rif∗(F )→ Rig∗(v
∗F ).

Moreover, if u is flat, then this map gives an isomorphism u∗Rif∗(F ) ∼= Rig∗(v
∗F ).

Now, consider f : X → Y be a projective morphism of noetherian schemes, F :

coherent sheaf on X. Fix y ∈ Y . For each Xn = X ×Y Spec Oy/m
n
y . Then we have the

following diagram:

Xn X

Spec Oy/m
n
y Y

v

f ′ f

Let Fn := v∗F . By Fact 1 , for each n, we have

Rif∗(F )⊗ Oy/m
n
y → Rif ′∗(Fn).

Since Spec Oy/m
n
y has only one point, concentrated at this point, then the right

hand side is just H i(Xn,Fn), and the left hand side is Rif∗(F )/mn
yR

if∗(F ). (Since

M ⊗ A/mn = M/mnM .)

Notice that as n varies, both side form inverse systems, so we can take inverse limits

and get

Rif∗(F )ŷ → lim←−H
i(Xn,Fn).

So we are going to introduce the following theorem:
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Theorem 11.1 (Theorem on Formal Functions). Let f : X → Y be a projective

morphism of noetherian schemes, F : coherent sheaf on X. Let y ∈ Y . Then the

natural map:

Rif∗(F )ŷ → lim←−H
i(Xn,Fn).

is an isomorphism, ∀i ≥ 0.

Proof.

1. Embed X ↪→ PNY , and consider F as coherent sheaf on PNY . So we reduce to the

case X = PNY .

2. Reduce to the case that Y is affine and restate the result as A-module:

Let A = Oy. Make flat base extension SpecA → Y . Again by the Fact 1 , we

reduce the case to that Y is affine. In fact, we may assume Y = SpecA with A is

noetherian local ring and y ∈ Y is a closed point. So we have

Rif∗(F )̂ = H i(X,F )̂.
Thus, we just need to show

H i(X,F )̂ lim←−H
i(Xn,Fn)∼

is an isomorphism as A-module.

3. Deal with the case F = ⊕ri=1O(qi):

Suppose F = O(q) on X = PNY for some q ∈ Z. Then Fn = O(q) on Xn = PNA/mn .

So for each n, we have

H i(Xn,Fn) = H i(PNA/mn ,O(q)) ∼= H i(PNA ,O(q))⊗A A/mn = H i(X,F )⊗A A/mn.

Then take inverse limit on both sides to get the desired result, and thus, results

holds for finite direct sum of O(qi).

4. For arbitrary coherent sheaf F on X:

By descending induction on i. Notice that X can be cover by N + 1 affine open

sets, using this open cover to compute the Čech cohomology, and we will find that

there is no Ci(U,F ), whenever i > N . Thus, if i > N , then both sides are 0. So

we may assume the theorem holds for i + 1, and for all coherent sheaf. For any
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coherent sheaf F , we can write F as a quotient of E = ⊕ri=1O(qi). Let R be the

kernel, then

0→ R → E → F → 0 (♥)

is exact. Unfortunately, tensoring OXn is not exact. (Since Oy/m
n
y is not a free

OY -module.) So for each n, we only have

Rn → En → Fn → 0

is exact. Now, let Tn := Im(Rn → En) and Sn := Ker(Rn → En). Then we get:

0→ Sn → Rn → Tn → 0 (♠)

and

0→ Tn → En → Fn → 0 (♣)

Now, consider the following diagram:

H i(X,R)̂ H i(X,E )̂ H i(X,F )̂ H i+1(X,R)̂ H i+1(X,E )̂

lim←−H
i(Xn,Rn) lim←−H

i+1(Xn,Rn)

lim←−H
i(Xn,Tn) lim←−H

i(Xn,En) lim←−H
i(Xn,Fn) lim←−H

i+1(Xn,Tn) lim←−H
i+1(Xn,En)

α1
α2

∼=

α3

α4

∼= α5

∼=
β1 β2

The top row comes from the cohomology sequence of (♥) by completion. Since

they are all finitely generated A-modules, completion is an exact functor. The

bottom row comes from the cohomology sequence of (♣) by taking inverse limits.

These groups are all finitely generated A/mn-modules, and so satisfy d.c.c. for

submodules. Therefore the inverse systems all satisfy the (ML), and so the bottom

row is exact. The vertical arrows a1, . . . , a5 are the maps of the theorem. Finally,

β1 and β2 are maps induced from the sequence (♣).

By 3, α2 and α5 are isomorphisms. By induction hypothesis, α4 is isomorphism.

Claim β1, β2 are isomorphisms.

(pf of claim) Take cohomology of (♠), and again, since they are all finitely gen-

erated A-module, we can passing inverse limit and preserve the exactness. So it

suffices to show that for each i ≥ 0,

lim←−H
i(Xn,Sn) = 0.
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To show this, we just need to show that ∀n,∃n′ > n such that Sn′ → Sn is zero

map. Notice that X is quasi-compact, so we can check it locally. We may assume

X = SpecB. Denote R, E, Sn be the B-module corresponding to R,E ,Sn. Let

a := mB. Notice that R is a submodule of E, and

Sn = Ker(R/anR→ E/anE).

So

Sn = (R ∩ anE)/anR.

By Krull’s theorem, ∀n,∃n′ > n such that R ∩ an
′ ⊆ anR, i.e. Sn′ → Sn is zero.

This prove the claim.

Now, by 5-lemma, α3 is surjective. Since it will be true for any coherent sheaf, the

map in theorem is surjective. This implies α1 is also surjective. So by 5-lemma

again, α3 is injective. Thus, α3 is isomorphism. This prove the theorem.

Remark. This is also true for the case f is proper.

Remark. H i(X̂, F̂ ) will equal to two quantities in the theorem.

Corollary 11.2. Let f : X → Y be a projective morphism of neotherian schemes,

r = max{dimXy | y ∈ Y }. Then Rif∗(F ) = 0, ∀i > r, ∀F : coherent sheaf on X.

Proof. For any y ∈ Y , tp(Xn) = tp(Xy). By Grothendieck vanshing, H i(Xn,Fn) = 0,

∀i > r. By Theorem 11.1, Rif∗(F )ŷ = 0, ∀y ∈ Y , ∀i > r. Also, since Rif∗(F ) is

coherent, so Rif∗(F ) is zero at all stalk. (Since for M : finitely generated A-module,

A: noetherian local ring, M̂ = M ⊗A Â, and notice Â is faithfully flat A-module.)

Remark (Exercise III.11.1 in Hartshorne’s book). Corollary 11.2 is false without the

projective hypothesis. Let X = An
k , P = (0, . . . 0), U = X − P , and f : U ↪→ X be the

inclusion. Notice that the fibres of f all have dimension 0. (So r = 0.) But we can show

that Rn−1f∗OU 6= 0. Since Rn−1f∗OU is associated to V 7→ Hn−1(f−1(V ),OU |f−1(V )),

we just compute the n − 1th Čech cohomology to show it is not zero. Take Ui =

Spec k[x1, . . . , xn, x
−1
i ] be an open cover of U . Then the Čech complex will be
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. . .

n⊕
i=1

k[x1, . . . , xn, x
−1
1 , . . . , x̂i

−1, . . . x−1n ] k[x1, . . . , xn, x
−1
1 , . . . , x−1n ] 0

n⊕
i=1

fi

n∑
i=1

(−1)i−1fi

Thus, to show n− 1th cohomology is not zero, just need to show the map above is not

surjective. But x−11 x−12 . . . x−1n is clearly not in the image. Hence, Rn−1f∗OU 6= 0.

Corollary 11.3. Let f : X → Y be a projective morphism of neotherian schemes.

Assume f∗OX = OY . Then f−1(y) is connected, for every y ∈ Y .

Proof. Suppose f y = X ′ ∪X ′′, where X ′ and X ′′ are disjoint closed subsets. For each

n, we have

H0(Xn,OXn) = H0(X ′n,OXn)⊕H0(X ′′n,OXn).

Also,

Ôy = (OY )ŷ = (f∗OX)ŷ = lim←−H
0(Xn,OXn) = lim←−H

0(X ′n,OXn)⊕ lim←−H
0(X ′′n,OXn).

But a local ring can not be a direct sum of two other rings.

Fact 2 A local ring can not be a direct sum of teo other rings.

Proof. Let e′, e′′ be identity of A′, A′′ respectively. Then e′ + e′′ = 1 in Ôy = A′ ⊕ A′′

and e′e′′ = 0. If one of e′, e′′ is unit, then e′ = 0 or e′′ = 0, so both e′, e′′ are non-unit.

This implies e′, e′′ ∈ m. Thus e′ + e′′ can not be 1. →←

Corollary 11.4 (Zariski’s Main Theorem). Let f : X → Y be a birational projective

morphism of noetherian integral schemes. Assume Y is normal. Then ∀y ∈ Y , f−1(y)

is connected.

Proof. Only need to check f∗OX = OY . This can be check locally on Y , so we assume

that Y = SpecA. Then f∗OX is coherent OY -algebra, so B := Γ(Y, f∗OX) is finitely

generated A-module. But A and B are integral domain with the same quotient field.

(Since f is birational =⇒ K(X) = K(Y )) Also, A is integrally closed (∵ Y is

normal.) Thus, A = B. Hence, f∗OX = OY . Then by Corollary 11.3, this completes

the proof.
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Corollary 11.5 (Stein Factorization). Let f : X → Y be a projective morphism of

noetherian schemes. Then one can factor f into g ◦ f ′, where f ′ : X → Y ′ is projective

morphism with connected fibres, and g : Y ′ → Y is a finite morphism.

To proof this we need the following lemma:

Lemma. Let f : X → Y , g : Y → Z be morphisms of schemes. If g ◦ f is projective,

and g is separated, then f is projective.

Proof. Notice that g is separated means Y → Y ×Z Y is a closed immersion, and thus,

is projective. Since projectivity is stable under the base change, X → X ×Z Y is

projective. Also, g ◦ f : X → Z is projective, then so is X ×Z Y → Y .

X Y

X ×Z Y Y ×Z Y

X

Y Z

(projective) closed immersion

(projective)

projective

Finally, notice that the map X → X ×Z Y → Y is just f , but the composition of

projective morphisms is projective, so f is projective.

Proof. (of Corollary 11.5) Let Y ′ = Spec f∗OX . Then notice that f∗OX is coherent

OY -algebra. The natural map g : Y ′ → Y is affine, since for any open affine subset V

of Y , by the definition of Spec, g−1(V ) = Spec OX(f−1(V )). Also, g is proper since

f is. A proper affine morphism is projective, so g is finite. It is clearly that f factor

through g, so we get f ′ : X → Y ′. Since g is separated, by Lemma, f ′ is projective.

Notice that f ′∗OX = OY ′ , so the fibre is connected.

Corollary 11.6 (Exercise III.11.2 in Hartshorne’s book). A projective morphism with

finite fibres is a finite morphism.

Proof. Use Stein factorization then we have a projective morphism g with connected

fibres and a finite morphism h such that the diagram commute:

X Y

Y ′

f

g h
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Our goal is to show that g is an isomorphism so that f and h just deffer by an isomor-

phism, and thus, f is a finite morphism. Since we can replace Y ′ by Im g, so we may

assume g is surjective. Notice that f−1(h(y′)) is finite and g−1(y′) ⊆ f−1(h(y′)), but

g−1(y′) should be connected, and hence, g−1(y′) is a single point. Also, g is projective

and thus, is proper, so g give a homeomorphism on the under lying spaces. In the proof

of Stein factorization, we see that g∗OX = OY ′ , so their structure sheaf are the same.

Thus, g is an isomorphism. This prove the statement.
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