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Exercise 0 (by Kuan-Wen).

This is an example of proof.

Remark. This is an example for how to write in this format.

1 Riemann-Roch Theorem
Exercise 1 (by Chi-Kang).

This is equivalent to show that there exists f ∈ K(X) s,t, f ∈ H0(X,nP ) for some n > 0 and f is
non-constant. By Riemann-Roch we have for any natural number n ≥ 2g − 1, h1(nP ) = 0, thus

χ(nP ) = h0(nP ) = n+ 1− g

take n ≥ g + 1 we have h0(nP ) ≥ 2, hence there is a non-constant function f ∈ H0(X,nP ).

Exercise 2 (by Chi-Kang).

Use induction on r, r = 1 is just exercise 1.1. If the consequence holds for r − 1, then for r, there exists
some f s,t, f has pole at P1, ..., Pr−1 and regular elsewhere. And as 1.1 there is g s,t, g has pole at Pr and
regular elsewhere. hence f + g is a function has pole at P1, ..., Pr and regular elsewhere.

Exercise 3 (by Yi-Tsung Wang).

Proof. By Nagata theorem (remark 2.7.17.2), X can be embedding as an open subset of a complete curve
X, then in this case X\X is just a finite set, say X\X = {p1, . . . , pr}. By Exercise 4.1.2, take f : X → P1

such that f has poles at each of the pi and regular elsewhere. Since f is not constant, f must be surjective,
then f−1 (A1) = X. Moreover, f is a finite morphism, hence an affine morphism, and then X = f−1 (A1) is
affine.

Exercise 4 (by Yi-Tsung Wang).
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Proof. Let X be a separated one-dimensional scheme of finite type over k. By Exercise 3.3.1, we may
assume X is reduced. By Exercise 3.3.2, we may furthermore assume X is irreducible, hence X is integral
and is not proper over k. Let Y be the normalization of X, and the natural map π : Y → X. π is finite
since X is of finite type over k by Exercise 2.3.8 and is surjective since X is integral (locally, it is going-up).
If Y is proper over k, by Exercise 2.4.4, X = π (Y ) is also proper over k, contradiction. Now note that Y is
also integral, separated, one-dimensional scheme of finite type over k, and is regular since Y is furthermore
normal, by Exercise 4.1.3, Y is affine. By Chevalley’s theorem (Exercise 3.4.2), X is also affine.

Exercise 5 (by Shuang-Yen Lee).

By Riemann-Roch Theorem, we have

dim |D| = `(D)− 1 = `(K −D) + deg(D + 1− g = deg(D) + (`(K −D)− g) ≤ deg(D)

since K −D ≤ K =⇒ `(K −D) ≤ `(K) = g. If g = 0, then

deg(K −D) ≤ deg(K) = −2 =⇒ `(K −D)− g = 0

so the equality holds. If g 6= 0, then D = 0 =⇒ `(K − D) − g = `(K) − g = 0. Suppose D 6= 0, say
D =

∑
niPi, then K −D ≤ K − P1 ≤ K, so

0 = `(K −D)− g ≤ `(K − P1)− g ≤ `(K)− g = 0 =⇒ `(K − P1) = g.

By Riemann-Roch Theorem, `(P1) = `(K − P1) + 2− g. So `(P1) = 2, which is impossible since g > 0.

Exercise 6 (by Shi-Xin).

Let P be a point on X, and let g denote g(X). Consider the divisor D = (g + 1)P . By Riemann-Roch
Theorem, we have

`(D) ≥ degD + 1− g > 1.

Therefore, there is a f ∈ K(X) such that (g + 1)P + div(f) ≥ 0, i.e. f has pole at P with order ≤ g + 1
and is regular everywhere else. Thus it induces a finite morphism f̃ : X → P1 by x 7→ f(x) which is of
degree ≤ g + 1 since deg f̃ · deg∞ = degD.

Exercise 8 (by Shi-Xin).

(a) From 0→ OX → f∗OX̃ →
∑

p∈X Õp/Op → 0 where f : X̃ → X is the normalization of X, we obtain

0→ H0(X,OX)→ H0(X, f∗OX̃) ∼= H0(X̃,OX̃)→ H0(X,
∑
p∈X

Õp/Op)

→ H1(X,OX)→ H1(X, f∗OX̃) ∼= H1(X̃,OX̃)→ H1(X,
∑
p∈X

Õp/Op) = 0

Since H0(X,OX) ∼= H0(X̃,OX̃) ∼= k, we have

0→ H0(X,
∑
p∈X

Õp/Op)→ H1(X,OX)→ H1(X̃,OX̃)→ 0

Thus by ex.iii.5.3, pa(X) = pa(X̃) +
∑

p∈X length(Õp/Op) = pa(X̃) +
∑

p∈X δp.

2



(b) If pa(X) = 0, then it forces pa(X̃) = 0 and δp = 0 for any p ∈ X. So f is an isomorphism, i.e.
X ∼= X̃ ∼= P1 which is given by Riemann-Roch Theorem.

(c)

Exercise 9 (by Ping-Hsun Chuang).

Proof. (a) Let f : Xreg → X be the inclusion. We have the short exact sequence

0 O (D) f∗Oreg (D)
∑
P∈X

(f∗Oreg (D))P /O (D)P 0

Note that O (D)P = OX,P since O (D) is an invertible sheaf. Also, (f∗Oreg (D))P = OX̃,P since Xreg

is normal. Moreover,

δP = length
(
OX̃,P/OX,P

)
= h0

(
X, (f∗Oreg (D))P /O (D)P

)
.

Finally, since χ is a additive function, we have

χ (O (D)) = χ (f∗Oreg (D))−
∑
P∈X

χ (f∗Oreg (D)P /O (D)P )

= degD + 1− pa (Xreg)−
∑
P∈X

δP = degD + 1− pa (X) .

(b) Since X is projective, take a very ample divisor R on X. Then, there exists n > 0 such that
O (nR +D) is generated by global section. Then, since R is very ample, O (nR +D +R) is also very
ample. Now, D = M − (n+ 1)R, where M = D + (n+ 1)R which is very ample.

(c) Using the result in (b), it suffice to show the result in case that L is very ample. Write L = f ∗O (1)
for some embedding f : X → PN . Since X has finitely may irregular points, there exists a hyperplane
H in PN such that H ∩X ⊆ Xreg. Now, take D = H ∩X.

(d) Since X is locally complete intersection, we may apply the Sere duality. We then get

H1 (X,O (D)) ∼= Ext0X (O (D) , ω◦X)∨

∼= Ext0X (OX ,O (−D)⊗ ω◦X)∨

∼= H0 (OX ,O (−D)⊗ ω◦X)∨

Then, χ (O (D)) = h0 (X,O (D)) − h1 (X,O (D)) = ` (D) − ` (K −D). Finally, using the result in
(a), we get the required formula.

Exercise 10 (by Ping-Hsun Chuang).
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Proof. Apply exercise 4.1.9 to D = K and get

` (K)− ` (0) = degK + 1− ga = degK.

Also, we have
` (K) = h0 (X,ω◦X) = h1 (X,OX) = pa.

Note that the second equality above holds by the Serre duality since we assume X is locally complete
intersection. Thus, we get degK = pa − 1 = 0.

Now, for any D ∈ Pic0X, apply exercise 4.1.9 to D = D + P0 and get

` (D + P0)− ` (K −D − P0) = deg (D + P0) + 1− pa = 1.

Also, we have deg (K −D − P0) = degK − 1 = −1 and thus ` (K −D − P0) = 0. Hence, ` (D + P0) = 1,
that is, there exists a unique R > 0 such that R ∼ D+P0. Therefore, for any D ∈ Pic0X, we find a unique
R such that D ∼ R− P0 and thus Xreg → Pic0X is bijection.

2 Hurwitz’s Theorem
Exercise 1 (by Pei-Hsuan Chang).

Induction on n. For n = 1, it is Example IV.2.5.3 in Hartshorne. So let’s deal with the case n > 1. Let
f : X → Pn be an étale covering. We may assume that X is connected. For each hyperplane H ∼= Pn−1 in
Pn, f : f ∗H → H is an étale covering of H. By induction hypothesis, f ∗H is disjoint union of copies of H.

Now, we are going to showing that f ∗H is connected, and conclude f ∗H is isomorphic to H via f . To
show this, we want to show that X is normal and f ∗H is ample with codimension 1, then by Corollary III.
7.9, f ∗H will be connected. Notice that H is ample, so f ∗H is ample since f is finite. Also, an étale covering
is smooth, so X is smooth over k and thus, is normal. Hence, f ∗H ∼= H, and f |f∗H is an isomorphism.
Now, deg f = deg f |f∗H = 1. An étale covering with degree 1 is an isomorphism, so X = Pn. This complete
the prove.

Exercise 2 (by Yu-Chi Hou).

(a) From Exercise 1.7, we know that any curve X of genus 2 is hyperelliptic whose the degree 2 morphism
f := φ|KX | : X −→ P1 coming from the canonical system. Using Riemann-Hurwitz formula, one
computes directly that deg(R) = 6. If P is branched point of f , then eP = 2, for any P ∈ f−1(Q).
Since char(k) 6= 2, any ramification point P ∈ X is tamely ramified,

R =
∑
P∈X

(eP − 1), and deg(R) = 6.

Hence, f is ramified exactly at 6 points.
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(b) Let h(x) := (x− α1) · · · (x− α6) ∈ k[x] and K := (k(x))[z])/(z2 − h). Since K/k(x) is an algebraic
extension of degree 2, K/k has transcendental degree 1. This together with [K : k(x)] = 2 determines
a non-singular projective curve X and a morphism f : X → P1 of degree 2. On the affine open
chart U0 = Spec k[x] ⊂ P1, there exists a morphism from the affine open set V ⊆ f−1(U0) → U0

correpsonding to the inclusion k[x] ↪→ k[x, z̄] := k[x, z]/(z2 − h). Hence, the function field K(V ) =
K(X) = K.

Since k = k̄, any closed point P ∈ U0 ⊂ P1 correponds to the maximal ideal (x − α) ⊂ k[x]. If
α /∈ {α1, . . . , α6}, then h(α) 6= 0 and thus (x− α, z̄ ±

√
h(α) is a maximal ideal in k[x, z]/(z2 − h).

In other words, #f−1(P ) = 2 if P ∈ U0 not corresponding to α1, . . . , α6. Thus, we have shown that
f−1(U0)→ U0 is only branched at α1, . . . , α6 ∈ k ∼= U0 ⊂ P1.

Next, we need to check that f does not brached at ∞ ∈ P1. To see this, we first localizing

k[x](x) = k[x, x−1] ↪→ (k[x, z]/(z2 − h))(x) = k[x, x−1, z]/(z2 − h),

which correponds to f−1(U0 ∩ U1)→ U0 ∩ U1. On k[x, x−1, z], we first assume that α1, . . . , α6 ∈ k∗,
then

z2 − h(x) = z2 − (x− α1) · · · (x− α6) = z2 − x6(1− α1

x
) · · · (1− α6

x
)

=z2 − α1 · · ·α6x
6(

1

α1

− 1

x
) · · · ( 1

α6

− 1

x
) = x6(x−6z2 − α1 · · ·α6h̃(1/x)),

where h̃(1/x) :=
∏6

i=1

(
1
αi
− 1

x

)
∈ k[x−1]. Since x is a unit in k[x, x−1, z], (z2 − h(x)) = (z̃2 −

α1 · · ·α6h̃(1/x)), where z̃ = x−3z. Hence, we have

k[x, x−1, z]/(z2 − h) = k[x, x̃, z̃]/(z̃2 − α1 · · ·α6h̃(1/x)).

Let y = 1/x, k[x, x̃, z̃]/(z̃2 − α1 · · ·α6h̃(1/x)) = k[y, y−1, z̃]/(z̃2 = α1 · · ·α6h̃(y)). Thus, on U =
Spec k[y], f−1(U1) → U1 is defined by the correponding morphism from k[y] ↪→ k[y, z̃]/(z̃2 =
α1 · · ·α6h̃). Same argument as above shows that f is only branched at y − αi ∈ Spec k[y] for
i = 1, . . . , 6. Now„ if α6 = 0, α1, . . . α5 6= 0 (since α1, · · · , α6 are distinct),

h(x) = x(x− α1) · · · (x− α5) = α1 · · ·α5x
6(

1

α1

− 1

x
) · · · ( 1

α5

− 1/x).

Repeating above argument shows that f is not branched at ∞. Thus, f is only ramified over 6
points with each ramification index 2 (since f is of degree 2). Using Riemann-Hurwitz formula,
2g(X)− 2 = 2(0− 2) + 6 = 2⇒ g(x) = 2. Moreover, let P ∈ X such that f(P ) = Q ∈ {α1, . . . , α6},
then f ∗P =

∑
P∈f−1(Q eP · P = 2P . Thus, f ∗OP1(Q) = f ∗OP1(1) = OX(2P ).

On the other hand, using Riemann-Roch, h0(X,OX(2P ))−h0(X,OX(KX−2P )) = deg(2P )−g(X) +
1 = 1. Since H0(X,OX(2P )) = H0(X, f ∗OP1(1)) = H0(P1,OP1(1)) ∼= k2, h0(X,OX(KX − 2P )) = 2.
However, deg(KX − 2P ) = 2g(x)− 2− 2 = 0. Thus, KX ∼ 2P . Hence, the map f : X → P1 is the
same as the one determined by |KX |.
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(c) If Pi 6= ∞ ∈ P1, for i = 1, 2, 3, then let P1 = [a : 1], P2 = [b : 1], P3 = [c : 1], then the Möbius
transform φ(z) = z−a

z−c
b−c
b−a maps P1 to 0, P2 to 1, and P3 to ∞. If P1 = ∞, P2 = [b : 1], P3 = [c : 1],

then we take φ(z) = b−c
z−c . Since Aut(P1) = PGL(2), such φ is unique.

(d) The symmetric group S3 acts on distinct element β1, β2, β3 ∈ k\{0, 1} by permuting {0, 1,∞, β1, β2, β3),
then sending the first three element to 0, 1, ∞ by Möbius transform again, then call them β′1, β

′
2, β

′
3.

Then we define [β1, β2, β3] to be the equivalence class of (β1β2, β3) modulo such S3− action.

(e) Given any genus 2 curve X, |KX | gives f : X → P1 with six distinct brached points P1, . . . , P6. Then
using Möbius transform, we sends P1 7→ 0, P2 7→ 1, P3 7→ ∞, Pi 7→ βi−3, for i = 4, 5, 6. We then
get an equivalence class [β1, β2, β3] modulo S3−action described in (d). Now, if φ : X

∼−→ X ′ be an
isomorphism, then φ∗KX′ ∼ Kx. Thus, |φ∗KX′| gives a morphism to P1 which differ to the one from
|KX | by an ψ ∈ Aut(P1) = PGL(2). Then as in (d), the tuple (β′1, β

′
2, β

′
3) differ by (β1, β2, β3) by an

S3−action. Thus, [β′1, β
′
2, β

′
3] = [β1, β2, β3].

Also, (b) implies that starting from six points of P1, one can construct a genus two curve X whose
φ|KX | is branched exactly at the given six points. Thus, we established the isomorphism class [X]
with the tuple [β1, β2, β3] modulo S3−action.

Exercise 4 (by Yi-Tsung Wang).

Proof. Let f (x, y, z) = x3y + y3z + z3x. Then fx = z3, fy = x3, fz = y3 ⇒ f is non-singular since
(0, 0, 0) /∈ P2. Since  fxx fxy fxz

fyx fyy fyz
fzx fzy fzz

 =

 0 0 3z2

3x2 0 0
0 3y2 0

 = 0

every point of X is an inflection point. For p (a, b, c) ∈ X, the tangent line at p is

c3 (x− a) + a3 (y − b) + b3 (z − x) = 0

that is, c3x+ a3y + b3z = 0. Then the natural map X → X∗ is defined by (a, b, c) 7→ (c3, a3, b3), which is a
Frobenius morphism, hence is isomorphic and purely inseparable.

Exercise 5 (by Yu-Ting Huang).

(a) Let G act on X, then f−1(f(P )) is an orbit of the group action, then |f−1f(P )| = n
r
and each element

in f−1f(P ) are of index r as P . By Hurwitz’s theorem, 2g(X) − 2 = n(2g(Y ) − 2) +
∑

p(ep − 1).
Then 2g−2

n
= 1

n

∑
P (eP − 1) = 1

n

∑s
i=1

n
ri

(ri − 1) =
∑s

i=1(1−
1
ri

).

(b) First, note that 2g(Y )− 2 +
∑s

i=1(1−
1
ri

) = 2g(X)−2
n

> 0, since g(X) ≥ 2. If g(Y ) = 0, −2 +
∑s

i=1(1 +
1
ri

) = 2g(X)−2
n
≥ 2

n
≥ 0. Thus,

∑s
i=1(1−

1
ri

) ≥ 2
n

+ 2. Consider the minimal possibility of ri such that∑s
i=1(1−

1
ri

) ≥ 2
n

+ 2. We find that ri = 2, 3, 7. Then, −2 + 1
2

+ 2
3

+ 6
7

= 1
42

= 2(g−1)
n

. i.e. n = 84(g−1).
In the case g(Y ) = 0, n ≤ 84(g − 1).
As for g(Y ) ≥ 1, 2g(Y )−2 > 0, so

∑s
i=1(1−

1
ri

) > 0. To find maximal n, we set s = 1, r1 = 2, g(Y ) = 1.
Then 2− 2 + (1− 1

2
) = 2g−2

n
. i.e. n = 4(g− 1) ≤ 84(g− 1). Now, we can conclude that n ≤ 84(g− 1).
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Exercise 6 (by Tzu-Yang Chou).

(a) Let D be effective. We first consider the short exact sequence 0 −→ OX(−D) −→ OX −→ OD −→ 0
and apply f∗. Since f is finite, so R1f∗OX(−D) vanishes and hence we have 0 −→ f∗OX(−D) −→
f∗OX −→ f∗OD −→ 0 is exact. Taking determinant, we obtain det(f∗OX) ' det(f∗OX(−D)) ⊗
det(f∗OD). Now we only need that (det(f∗OD))−1 ' OX(f∗(−D)) since then for a general divisor,
we can write it as a difference of two effective ones and above formula proves the assertion. But this
statement follows from Ex(II.6.11)(c).

(b) (a) tells us that OX(f∗D) ' det(f∗OX(D))⊗ (det(f∗OX))−1 and hence it only depends on the linear
equivalence class of D. f∗ ◦ f ∗ = n follows from their definitions, where n = deg f .

(c) By Ex(III.7.2) and Ex(III.6.10), we have the following sequence of isomorphisms: det(f∗ΩX) '
det(f∗H omX(OX ,ΩX)) ' det(f∗H omX(OX , f !ΩY )) ' det(H omY (f∗OX ,ΩY )) ' det((f∗OX)−1 ⊗
ΩY ) ' (det(f∗OX))−1 ⊗ Ω⊗nY

(d) KX = f ∗KY +R⇒ f∗KX = nKY +B ⇒ OX(−B) ' Ω⊗nY ⊗ (OX(f∗KX))−1, and this is isomorphic
to (det(f∗OX))2 by (a) and (c).

Exercise 7 (by Po-Sheng Wu).

(a) Since f is finite flat, f∗OX is locally free of rank 2. Plus, the injection OY → f∗OX is also injective
on residue field, so the kernel L is locally free of rank 1. By taking det for the short exact sequence we
have L ∼= detf∗OX , and then by 2.6(d) we have L2 ∼= OY since f is etale.

(b) On the affine subset U = Spec(A) ⊂ Y such that L is free, the constructed algebra is actually
isomorphic to A[t]/(t2 − u) via (a, bv) 7→ a+ bt, where v is a generator of L(U), and u = φ(v ⊗ v) is a unit
of A. Since A[t]/(t2 − u) is unramified over A, Spec(O ⊕ L) is etale over Y .

(c) Conversely, if X 7→ Y is etale of degree 2, then locally f∗OX(U) is an unramified algebra of rank 2
over A, which is always able to be written in the form A[t]/(t2 − u), so the exact sequence in (a) is splitted
by f∗OX → OY where the map A[t]/(t2 − u)→ A is given by taking the constant term. Now we see that
(a) and (b) are converse to each other.

3 Embeddings in Projective Space
Exercise 1 (by Shi-Xin Wang).

Since degD ≥ 5 = 2g(X) + 1, by Corollary 3.2, D is very ample. So we only need to show that if D is
very ample, then degD ≥ 5. We first show that dim |D| ≥ 3. Indeed, if dim |D| = 1, it defines a closed
immersion to P1, which is impossible. Moreover, if dim |D| = 2, it defines a closed immersion from X to P2

as a plane curve, and hence by Riemann-Roch formula,

degD = g(X)− 1 + dim |D| − dim |K −D| = 4
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Therefore, g(X) = 1
2
(degD − 1)(degD − 2) = 3 6= 2 is a contradiction. On the other hand, by ex.iv.1.5,

degD > dim |D| ≥ 3. Then we may assume degD = 4. Since degD ≥ 2g(X)− 2 = 2, dim |K −D| = −1.
However, there is a contraction

degD = g(X)− 1 + dim |D| − dim |K −D| ≥ 5

Thus we must have degD ≥ 5.

Exercise 2 (by Yi-Tsung Wang).

(a) Let K be a canonical divisor. Since ωX = OX (d− n− 1) = OX (1), we see that K = |K|∗L = X.L
for some line L.

(b) Since X is a plane curve of degree 4, we have g (X) = 3. Since ωX = OX(1) is very ample, so is
K. ` (K −D) = ` (K) − 2 = 1. By Riemann-Roch, ` (D) = degD + 1 − g + ` (K −D) = 1, hence
dim |D| = 0.

(c) Suppose not, let f : X → P1 be a finite morphism of degree 2, then D := f ∗ (∞) is an effective
divisor of degree 2. By part (b), ` (D) = 1, and since f ∈ Γ (X,L (D)), f sends all x ∈ X to ∞ ∈ P1,
contradiction. Hence X is not hyperelliptic.

Exercise 3 (by Tzu-Yang Chou).

By Ex(II.8.4), OX(K) ' OX(m) for some integer m. Moreover, degK = 2g − 20 so m > 0 and hence
K is very ample. When g = 2, K has degree 2 < 5 so cannot be very ample by Ex(IV.3.1); thus X must
not be a complete intersection.

Exercise 4 (by Yu-Chi Hou).

(a) For d ≥ 1, let νd : P1 → Pd be d−uple embedding of P1 in Pd and let X be its image. Recall the d−uple
embedding is given by νd([t0, t1]) = [td0 : td−10 t1 : · · · : t0td−11 : td1]. From Exercise I.2.12, we know that
X is integral, S(X) = k[x0, . . . , xd]/I(X) is integral, and I(X) = ker(θ), where θ : k[x0, x1, . . . , xd]→
k[t0, t1] is given by xi 7→ td−i0 ti1. In other words, we can write S(X) = k[td0, t

d−1
0 t1, . . . , t

d
1]. Given

r ∈ Frac(S(X)) = k(t0, t1) which in integral over S(X). Write r(t0, t1) = f(t0,t1)
g(t0,t1)

, where f, g ∈ k[t0, t1]

and gcd(f, g) = 1, and there exists a0, a1, . . . , an−1 ∈ S(X) such that

rn + an−1r
n−1 + · · ·+ a1r + a0 = 0.

Repeating the proof that UFD are integrally closed (clean out the denominator g and use the relative
primeness of g and f), we know that g ∈ k∗ and hence r = f(t0, t1) ∈ k[t0, t1]. Hence, above equation
reads

fn + an−1f
n−1 + · · ·+ a1f + a0 = 0. (1)

By comparing degree, we may assume that a0, . . . , ad−1 are homogeneous of degree k0, . . . , kn−1 in
degree d monomial of t0, t1 and g is homogeneous of degree m in t0, t1. Thus, equating the degree
of (1) gives mn = m(n − 1) + dkn−1 + · · · = m + dk1 = dk0. Hence, m = dkn−1 ⇒ d | m. Thus,
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f =
∑

i ait
dn−1−i
0 ti1. However, since each monomial tk0t

j
1 in a0, . . . , ad−1, these exponents congruent to

zero modulo d. As a result, i ≡ 0 mod d. In other words, f ∈ S(X).

Alternatively, we see that V := Spec(k[td0, t
d−1
0 t1, . . . , t

d
1]) is the affine toric variety associated to the

cone σ := R≥0〈e1, e1 + de2〉 ⊂ R2. Since σ is strongly convex polyhedral cone, the affine monoid
Sσ = Z2 ∩ σ is saturated, and hence the variety V = Spec(k[Sσ]) is normal. Also, observe that if V
is an affine cone over a projective variety X, V is normal if and only if X is projectively normal by
definition.

Next, we show that the homogenous ideal I(X) is generated by homogeneous polynomial of degree 2.
More precisely, we show that that

I(X) = 〈gij := xixj+1 − xi+1xj : 0 ≤ i < j ≤ d− 1〉 ⊂ k[x0, . . . , xd].

Obviously, gij ∈ ker(θ) and hence I(X) ⊃ 〈gij : 0 ≤ i < j ≤ d − 1〉. For the converse, given any
homogeneous polynomial f ∈ I(X) of degree n, choose the lexicographic order x0 > x1 > · · · > xd as
monomial ordering and let r be the remainder after division by gij ’s. That is, r = f−

∑
0≤i<j≤d−1 aijgij ,

where aij ∈ k[x0, . . . , xd]. By equating degree on both sides, we know that r is also a homogeneous
polynomial of degree n. We now have two simple observations:

(1) r contains no monomial of the form −xli, for i = 1, . . . , d− 1. If there were such monomial, then
such term can be subtracted by some multiple of gi−1,i := xi−1xi+1 − x2i .

(2) Also, r contains no monomial involving variables xi, xj with j − i ≥ 2. If there were, then again
such term can be subtracted by some multiple of gi,j−1 := xixj − xi+1xj−1.

Following these two observations, r can be decomposed into

r = h0(x0, x1) + h1(x1, x2) + · · ·+ hd−1(xd−1, xd),

where each hi is homogeneous of degree n, for all i = 0, . . . , d− 1 and contains no term like xni , for
i = 1, . . . , d− 1.

Finally, for r = f −
∑

ij aijgij ∈ I(X), that is to say, r(td0, t
d−1
0 , . . . , td1) = 0. For each i = 1, . . . , d− 2,

hi(xi, xi+1) =
n−1∑
k=1

c
(i)
k x

n−k
i xki+1

and

h0(x0, x1) = c
(0)
0 xn0 +

n−1∑
k=1

c
(0)
k xn−k0 xk1;hd−1(xd−1, xd) =

n−1∑
k=1

c
(d−1)
k xn−kd−1x

k
d + c

(d−1)
d xd1.

Thus, for i = 0, . . . , d, plugging xi by td−i0 ti1, we see that:

0 = c
(0)
0 tnd0 +

n−1∑
k=1

c
(0)
k tnd−k0 tk1 +

n−1∑
k=1

c
(1)
k t

n(d−1)−k
0 tr+k1 + · · ·+

n−1∑
k=1

c
(d−1)
k tn−k0 t

n(d−1)+k
1 + c

(d−1)
d tnd1 .

Therefore, c(i)k = 0 for all i, k. That is, r = 0.
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(b) Let X be a curve of degree d in Pn with d ≤ n and X * H, for any hyplerplane H in Pn. Take
any hyperplane H, let D = X.H be the very ample divisor on X. Thus, deg(D) = deg(X.H) =
deg(X) = d and dim |D| = n (otherwise, there exists a proper subspace V ⊂ h0(X,OX(D)) such that
X ⊂ P(V ∗) ( Pn). Now, since X * H, there exists P /∈ Bs|D|, then dim |D−P | = dim |D|−1 = n−1
and deg(D − P ) = d− 1.

If n > d, then pick P1, . . . , Pd /∈ Bs|D|, inductive on aboce arguement gives dim |D−
∑d

i=1 Pi| = n−d >
0 yet deg(D −

∑d
i=1 Pi) = 0. Therefore, D −

∑d
i=1 Pi ∼ 0. If so, then h0(X,OX(D −

∑n
i=1 Pi) = 1,

contradiction. Hence, n = d. By Exercise IV.1.5, deg(d) = dim |D| if and only if D ∼ 0 or g(X) = 0.
By assumption, deg(D) > 0, we then must have g(X) = 0 and OX(H) = OP1(dH). Therefore,
X ∼= νd(P1) up to Aut(Pn).

(c) If X is of degree 2 in Pn. If X is not contained in any hyperplane, then n = 2 by (b). If there exists
a hyperplane H ∼= Pn−1 such that X ⊆ H, then replacing n by n − 1 and repeating the previous
argument, we still get n = 2. Hence, X is a plane conic.

(d) Let X be a curve of degree 3. The same argument in (c) shows that X ⊆ P3. We now have two cases.
If X is not contained in any plane P2, then X ∼= ν3(P1) by (b). It is indeed the twisted cubic curve
up to a projective transform. If X falls into some plane, then it is a plane cubic.

Exercise 6 (by Tzu-Yang Chou).

(a) Let n be the smallest integer such that X ⊆ Pn. First, Ex(IV.3.4)(b) implies that the case n > 3 is
contained in (1). Also, for the case n = 2, we have g = (4−1)(4−2)

2
= 3. For n = 3, we have g < 3 by

Ex(IV.3.5)(b), so it remains to show that the genus cannot be 2 in this case. But X embed into P3 as
a degree 4 curve, so there’s a degree 4 very ample divisor D, which contradicts to Ex(IV.3.1).

(b) Now we assume that X ⊆ P3 with g = 1. We consider the cohomology sequence of 0 −→
IX(2) −→ OP3(2) −→ OX(2) −→ 0, which is a four-term one. We see that h0(P3,IX(2)) =
10− 8 + h1(P3,IX(2)) ≥ 2. Then the assertion follows from Bezout’s theorem.

Exercise 7 (by Yi-Heng Tsai).

Since char k 6= 2, the curve has only one node at (x, y) = (0, 0). Suppose there is a non-singular curve
C which projects to it, then deg(C) = 4 and g(C) = 2 (contradicts to Ex3.6).

Exercise 9 (by Pei-Hsuan Chang).

Let H be a plane in P3. We have: H intersect X least then d distinct point ⇔ H contain a tangent line
of X. Also, there are 3 intersection point of H and X are collinear ⇔ H contain a multisecant of X.

Notice that T := {H ∈ (P3)∗ | H contain a tangent line of X} is locally a subset of X × P1; thus, it has
at most dimension 2. Consider S := { mulitsecants of X} ⊂ (X ×X \ 4). It is a proper closed subset of
X ×X, so S has at most dimension 1. Hence, {H ∈ (P3 | H contains a multisecant of X} has at most
dimension 2. So, T∪ is a proper closed subset of (P3)∗. Thus, there is an open set U ⊂ (P3)∗ as desired.

10



4 Elliptic Curves
Exercise 1 (by Chi-Kang).

By R-R, we have h0(nP )− h0(K − np) = n. Note that K = 0, so h0(K − nP ) is zero if n > 0, and is 1
if n = 0. So h0(nP ) = n for n > 0, and h0(0p) = 1.
Now embedded X by |3P | into P2, we say X in k[z0, z1, z2] is defined by z31 = z0(z0 − z2)(z0 = λz2).
Now we choose t0 = 1 be a generator of H0(P ), x0 ∈ H0(2P ) s,t, {t0, x0} is a basis of H0(2P ), and
similarly choose y0 ∈ H0(3P ) s,t, {t0, x0, y0} is a basis of H0(3P ). Then R is generated by t0, x0, y0
i,e, R = k[t0, x0, y0]/(relations). As the proof of proposition 4.6, after a change of coordinate we have
y + 02 = x0(x − t0)(x − λt0). Note that in fact t0 = 1 ∈ H0(P ), so t20 = t0, thus we have the relation
y20 = x0(x0 − t20)(x0 − λt20). Hence the map

k[t, x, y]/(y2 − x(x− t2)(xλt2))→ R

is well-defined and surjective. Now the above 2 rings are intergal domain. Note that for any surjective
homomorphism f : A→ B between integral domain, if f is not an isomorphism we must have dimA > dimB.
But for our map both LHS and RHS has Krull dimension 2, hence it must an isomorphism.

Exercise 2 (by Yu-Chi Hou).

Let X be a genus 1 curve and D is a divisor on X with degD ≥ 3. Since degD ≥ 3, D is very ample
(cf. Cor. IV.3.2). Hence, the complete linear system |D| gives an embedding φ|D| : X ↪→ Pn, where
n = dim |D| = degD + 1 using Riemann-Roch.

Lemma 1. X is projectively normal if and only if for any m ≥ 0, the natural map H0(Pn,OPn(m)) →
H0(X,OX(m)) is a surjection.

The lemma is really a special case of Ex. II.5.14.
To check the condition of the lemma, we proceeds inductively on m. For m = 1, this follows directly

from φ∗|D|OPn(1) = OX(D). Assume the induction hypothesis holds for m−1, then we consider the following
diagram

H0(Pn,OPn(m))⊗H0(Pn,OPn(1)) H0(Pn,OPn(m+ 1))

H0(X,OX(mD))⊗H0(X,OX(D)) H0(X,OX((m+ 1)D)),

where the horizontal maps are given by multiplication map and the vertical arrow is the natural map
coming from X ↪→ Pn. By induction hypothesis, the left arrow is surjective. If we can prove the surjectivity
of the bottom horizaontal arrow, then the surjectivity of H0(Pn,OPn(m + 1)) → H0(X,OX((m + 1)D))
will follows.

Starting from here, we use the assumption that X is an elliptic curve. First of all, we can pick P ∈ X
such that dP ∼ D, where d = degD and from Riemann–Roch,

h0(X,OX(nP )) =

{
1 , n = 0, 1

n , n ≥ 2.

11



Hence, for k ≥ 1, we have a sequence of strict inclusion

H0(X,OX(kP )) ( H0(X,OX((k + 1)P )).

Namely, there exists unique f ∈ K(X) which is regular outside P and ordP (f) = k + 1, for each k ≥ 1.
Thus, for any f ∈ H0(X,OX((n+m)P )) there exists g ∈ H0(X,OX(nP )), h ∈ H0(X,OX(mP )) such that
gh = f , for any n,m ≥ 3.

As a result, we see that the multiplication map

H0(X,OX(mdP ))⊗H0(X,OX(dP ))→ H0(X,OX((m+ 1)dP ))

is surjective since d ≥ 3.

Exercise 3 (by Pei-Hsuan Chang).

Let f = y2 − x(x − 1)(x − λ). Then regular functions on X except P0 is k[x, y]/ < f > + : R.
Thus, K(X) = Frac(R) = {a(x) + b(x)y | a(x), b(x) ∈ k(x)}. Now, for each ϕ ∈ Aut(X), we can assume
ϕ(x, y) = (x′, y′) = (u1(x)+v1(x), u2(x)+v2(x)y). Notice that ∀P = (x, y) ∈ X, 0 = ϕ(0) = ϕ(P +(−P )) =
ϕ(P ) + ϕ(−P ) in the group law. So

P0 = ϕ(x, y) + ϕ(x,−y) = (u1(x) + v1(x), u2(x) + v2(x)y) + (u1(x)− v1(x), u2(x)− v2(x)y),

then u1(x) + v1(x) = u1(x)− v1(x) and u2(x) + v2(x)y = −(u2(x)− v2(x)y). Hence, v1(x) = u2(x) = 0, so
ϕ(x, y) = (u1(x), v2(x)y).

Now, we homogenizes ϕ to get

ϕ̃(x, y, z) = (u1

(x
z

)
, v2

(x
z

) y
z
, 1) = (ũ1(x, z), ṽ2(x, z)y, z

n),

where ũ1, ṽ2 are homogeneous rational functions of degree n and n − 1 respectively. Since ϕ̃(P0) = P0,
ϕ̃(0, 1, 0) = (ũ1(0, 0),̃ v2(0, 0) · 1, 0) = (0, t, 0) for some t 6= 0. Thus, ṽ2(0, 0) 6= 0⇒ ṽ2(x, z) is constant, say
ṽ2(x, z) = c. Hence n = 1⇒ ũ1 is linear. Now, de-homogenize ϕ̃ and get ϕ(x, y) = (x′, y′) = (ax+ b, cy)
for some constant a, b, c ∈ k on the affine piece.

Exercise 4 (by Tzu-Yang Tsai).

The equation equivalent to (y + a1
2
x + a3

2
)2 = x3 + (a2 +

a21
4

) + (a4 + a1a3
2

)x + a6 +
a23
4
, so by a linear

transformation, we get Y 3 = x3 + Ax2 +Bx+ C, where A,B,C ∈ k0.

Let the roots of x3 + Ax2 + Bx + C = 0 be α, β, γ, we map {α 7→ 0
β 7→ 1

by a linear transformation, then

γ 7→ γ−α
β−α = λ. Thus

j(λ) = 28 (1− λ+ λ2)3

λ2(1− λ)2

= 28 (α2 + β2 + γ2 − αβ − βγ − γα)3

(α− β)2(β − γ)2(γ − α)2
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, where both numerator and denominator are symmetric polynomial, which can be represented by elementary
symmetric polynomial A,B,C. As a result, j is a rational function of {ai}, furthermore, j ∈ k0.
For j 6= 0, 1728, take A = 0, C = tB,

j = 28 B3

4B3 + 27C2
⇒ B =

−27jt2

4(j − 1728)

so simply take t = 1, notice that B ∈ k, we get an elliptic curve in k with j as j-invariant.
For j = 0, y2 + y = x3 is the curve; for j = 1728, y2 = x3 + x is the curve.

Exercise 5 (by Shuang-Yen Lee).

(a) By Hurwitz formula, f has no ramification points. Let P0 + Q = f ∗P0, then P0 6= Q. Since
`(P0 +Q) = `(2P0) = `(2Q) = 2 (by R-R), there exist h1 ∈ L(P0 +Q), h2 ∈ L(2P0) and h3 ∈ L(2Q)
which are not constant. Since `(P0) = `(Q) = 1, h21 6= L(2P0)∪L(2Q). So L(2P0+2Q) = 〈1, h21, h2, h3〉k.
Note that

(π ◦ f)∗(∞) = f ∗π∗(∞) = f ∗(2P0) = 2P0 + 2Q,

π ◦ f ∈ k×h21, say π ◦ f = a2h21 = (ah1)
2 for some a ∈ k×. Let π′ = ah1, g = [x 7→ x2], then

π ◦ f = g ◦ π′ and deg g = 2, so we get deg π′ = 2.

(b) By (a).

(c) The branch points of g are 0, ∞. ∞ is a branch point of π since π∗(∞) = 2P0. 0 is a branch point of
π since f ∗π∗(0) = π′∗g∗(0) = 2π′∗(0) and note that f has no ramification points. Suppose that other
two branch points of π are 1, λ. Then

π′
∗
((1) + (−1)) = 2f ∗(2Q1), π′

∗
((λ1/2) + (−λ1/2)) = f ∗(2Q2)

for some Q1, Q2 ∈ X, so 1, −1, λ1/2, −λ1/2 are branch points of π′.

Now we have two ways to count j. By the map π, we have

j = 28 (λ2 − λ+ 1)3

λ2(1− λ)2
.

By the map π′, since the cross ratio

λ′ := (1,−1;λ1/2,−λ1/2) =

(
1− λ1/2

1 + λ1/2

)2

,

we have

j = 28 (λ′2 − λ′ + 1)3

λ′2(1− λ′)2
= 28 (λ2 + 14λ+ 1)3

16λ(1− λ)4
.

So 16(λ2 − λ+ 1)3(1− λ)2 = (λ2 + 14λ+ 1)3λ.
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(d) By solving the equation above, we have λ = −1, 3± 2
√

2, 1
32

(1± 3
√

7i), 1
2
(1± 3

√
7) and

j = 26 · 33, 26 · 53,−33 · 53,−33 · 53,

respectively.

Exercise 9 (by Chi-Kang).

(a) The identity map is an isogenus, and the composition of 2 finite morphism is finite, so we only
need to show if f : X → X ′ is a finite morphism of degree n, then there exists X ′ → X be another finite
morphism. By exercise IV.4.7 we have a dual morphism f̂ : X ′ → X s,t, f̂ ◦ f = nX is a finite morphism
with degree n2, hence f̂ is also finite morphism with degree n, and thus isogenus is an equivalent realtion.
(b) Suppose f : X → X ′, g : X → X ′′ are 2 finite morphism with the same (group theoritic) kernel, then
X ′ ∼= X ′′ as abelian group. So there is a natural group isomorphism g ◦ f−1 : X ′ ∼= X/(ker f) ∼= X ′′, and
this is a morphism between curves since both f, g is. Thus g ◦ f−1 is a bijective morphism between curves,
hence it is an isomorphism since X ′, X ′′ are smooth.

Now since f̂ ◦ f = nX so ker f ⊂ kernX . And by exercise 4.7 we have f ◦ f̂ = nX′ , so both f, f̂ has
degree n, thus degnX = n2, so X has n2 element of order n, hence X has at most countably many subgroups
G which is a subgroup of some kernX . Hence X has at most countablley many isogenus classes.

Exercise 10 (by Shi-Xin Wang).

To construct the map φ : Pic(X ×X)→ R := End(X,P0), we let M ∈ Pic(X ×X) and p1, p2 be two
projections from X ×X to X. We may guess M should be sent to M ⊗ (p∗1(M |X×{P0})⊗ p∗2(M |{P0}×X))−1,
denoted by NM . However, NM does not lie in R. Remark that we have an isomorphism ϕ : Pic0X → X.
Therefore, we may consider

φ(M) := [P 7→ ϕ(NM |X×P )].

This is well defined since NM |X×P has the same degree with NM |X×P0 , i.e. they are both in Pic0X. Clearly,
p∗1PicX ⊕ p∗2PicX ⊂ kerφ. Now let M ∈ kerφ. Since NM |X×P ∼= OX×P , by seesaw theorem, NM

∼= p∗2L for
some L ∈ PicX. Therefore, M = p∗1(M |X×{P0})⊗ p∗2(L⊗M |{P0}×X), and hence p∗1PicX ⊕ p∗2Pic = kerφ.
On the other hand, for any αinR, consider the line bundle M ∈ Pic(X ×X) corresponding to the divisor

D = (α, idX)(X)− {P0} ×X

where (α, idX) : X → X ×X is the morphism given by P 7→ (α(P ), P ). Then NM still corresponds to the
divisor D and

ϕ(NM |X×P ) ∼= ϕ(OX(α(P )− P0)) = α(P )

Exercise 11 (by Pei-Hsuan Chang).

(a) Let L be the parallelogram, A be the area of L. Then area of f(L) is |α2|A. Now,

deg f = [L : αL] =
|α2|A
A

= |α|2.
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(b) By exercise 4.4.7(c), we have f̂ ◦ f is an endomorphism corresponding to degf = |α|2. Thus, f̂ is an
endomorphism corresponding to |α|2 · α−1 = ᾱ.

(c) Let L be the lattice Z⊕τZ. Now, if τ ∈ Q(
√
−d) and integral over Z, then τ 2 can be written as integral

linear combination of τ and 1. Thus, Z[τ ] = Z ⊕ τZ. Also, for a, b ∈ Z, (a + bτ)τ = aτ + bτ 2 ∈ L.
Hence, ∀a+ bτ ∈ Z[τ ], (a+ bτ)L ⊂ L, which means Z[τ ] ⊂ R.

For any f ∈ R, say f corresponding to α ∈ C. Since αL ⊂ L and 1 ∈ L⇒ Z⊕ τZ⇒ R ⊂ Z[τ ]. To
sum up, R = Z[τ ].

Exercise 12 (by Po-Sheng Wu).

(a)(b) Suppose the complex multiplication was given by α, then |α|2 = 1 for (a), 2 for (b) respec-
tively. Since α is imaginary quadratic and integral, we can assume that α = (a + b

√
−d)/2, b, d > 0,

d squarefree, then a2 + db2 = 4( or 8, respectively). So (a, b, d) = (0, 2, 1), (±1, 1, 3) for (a), (a, b, d) =
(0, 2, 2), (±1, 1, 7), (±2, 2, 1) for (b), and we get τ = i, ω for (a), τ =

√
−2, (1+

√
−7)/2, i for (b), respectively.

Moreover, we have j(
√
−2) = 8000, j((1 +

√
−7)/2) = −3375, j(i) = 1728 comparing with 4.5(d), using the

fact that if Re(τ) = 0 then j(τ) > 0.

Exercise 13 (by Yi-Heng Tsai).

Hasse invariant = 0 i.e. hp(λ) = 0. ⇒ j = 28(λ6−3λ5+6λ4+6λ3+6λ2−3λ+1)
(λ2−2λ+1)λ2

= 28(2λ4−4λ3+2λ2)
(λ2−2λ+1)λ2

= 29 = 5.

Exercise 14 (by Tzu-Yang Tsai).

By 4.21, Hasse invariant of X is 0 if and only if the coefficient of (xyz)p−1 in fp−1 is 0. Now f(x, y, z) =
x3 + y3 − z3, thus it’s clear that p ∈ B if and only if 3 | p− 2, thus by Dirichlet’s theorem the density of B
in prime is 1

2
.

Exercise 17 (by Ping-Hsun Chuang).

Proof. X is the curve y2 + y = x3 − x in P2 with P0 = [0 : 1 : 0].

(a) Write Q = [a : b : 1] ∈ X. If a = 0, then we have y2 + y = 0 and thus Q = [0 : 0 : 1] or [0 : −1 : 1].
Case 1: Q = [0 : 0 : 1] = P . The tangent line at P [0 : 0 : 1] of X is x = −y by the implicit function

theorem. Solve

{
x = −y
y2 + y = x3 − x

and get (x, y) = (0, 0) and (1,−1). Note that the solution

(0, 0) has multiplicity 2. Then, we have 2P + R ∼ 0, where R = [1 : −1 : 1]. Now, the hyperplane

x − z = 0 passing through P0 and R. Solve

{
x− z = 0

y2z + yz2 = x3 − xz2
and get [x, y, z] = [0 : 1 : 0],

[1 : −1 : 1] and [1 : 0 : 1]. In consequence, we have R + R′ ∼ 0, where R′ = [0 : 1 : 0] and thus
2P ∼ −R ∼ R′ = [1 : 0 : 1].

Case 2: Q = [0 : 0 : 1] = P . The hyperplane x = 0 passing through P [0 : 0 : 1], Q [0 : −1 : 1], and
P0 [0 : 1 : 0]. Then, we have P +Q+ P0 ∼ 0 and thus P +Q ∼ 0.
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Case 3: a 6= 0. The hyperplane bx − ay = 0 passing through Q [a : b : 1] and P [0 : 0 : 1]. Solve{
bx− ay = 0

y2 + y = x3 − x
and get (x, y) = (0, 0), (a, b), and

(
b2

a2
− a, b3

a3
− b
)
. Then, P + Q + R ∼ 0,

where R =
(
b2

a2
− a, b3

a3
− b
)
. Now, the hyperplane x −

(
b2

a2
− a
)
z = 0 passing through P0 and R.

Solve

{
x−

(
b2

a2
− a
)
z = 0

y2z + yz2 = x3 − xz2
and get [x : y : z] = P0, R, R′ =

[
b2

a2
− a,−1 + b− b3

a3
: 1
]
. Hence,

R +R′ ∼ 0, that is, P +Q ∼ −R ∼ R′ =
[
b2

a2
− a,−1 + b− b3

a3
: 1
]
.

Finally, we use the above formula to find nP for n = 1, · · · , 10:

P 2P 3P 4P 5P 6P 7P 8P 9P 10P
(0, 0) (1, 0) (−1,−1) (2,−3, )

(
1
4
, −5

8

)
(6, 14)

(−5
9
, 8
27

) (
21
25
, −69
125

) (−20
49
, −435

343

) (
161
16
, −2065

64

)
(b) If p 6= 2, then the curve become

(
y + 1

2

)2
= x3 − x+ 1

4
. The discriminant of x3 − x+ 1

4
is 37

16
. Now,

modulo p reduction gives non-zero discriminant if p 6= 37. This makes the curve non-singular.

If p = 37, the curve is (y + 19)2 = (x+ 10) (x+ 32)2 which is singular.

If p = 2, the partial derivative is given by ∂f
∂x

= x2 + 1 and ∂f
∂y

= 1 6= 0. Thus, the curve is non-singular
when p = 2.

5 The Canonical Embedding
Exercise 1 (by Yu-Chi Hou).

Assume that X is complete intersection in Pn, then there exists hypersurfaces H1, . . . , Hn−1 in Pn with
degree d1, . . . , dn−1 respectively such that X = H1 ∩H2 ∩ · · ·Hn−1. Using adjunction formula repeatly, one
has ωX ∼= OX(

∑n−1
i=1 di − (n+ 1)). Let d :=

∑n−1
i=1 di − (n+ 1). Since g(X) ≥ 2, deg(KX) > 0. Thus, d > 0.

We then onsider d−uple embedding νd : Pn ↪→ PN with N =
(
n+d
n

)
− 1. Therfore, ωX ∼= (νd|X)∗OPN (1).

Thus, KX is very ample. However, if X is hyperelliptic, then KX cannot be very ample, and thus X cannot
be complete intersection. In particular, we know that genus 2 curves are hyperelliptic (Ex.IV.1.7) and thus
X cannot be complete intersection. This also proves Ex. IV.3.3.

Exercise 2 (by Yu-Chi and Pei-Hsuan Chang).

We first prove a lemma.

Lemma 2 (by Yu-Chi). Let x be a curve of genus g ≥ 2, τ ∈ Aut(X) and τ 6= 1X , then τ fixes at most
(2g + 2)−points.
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Proof. Let s be the number of fixed points of τ . Consider a divisor D =
∑g+1

i=1 Pi with P1, . . . , Pg+1 are
distinct and are not fixed point of τ . Then using Riemann–Roch,

h0(X,D)− h1(X,D) = deg(D) + 1− g = g + 1 + 1− g = 2.

Hence, h0(X,D) ≥ 2 implies that there exists a non–constant morphism f : X → P1 and (f) +
∑g+1

i=1 Pi ≥ 0.
In other words, the rational function f has at worst simple pole on P1, . . . , Pg+1. Since τ(Pi) 6= Pi for all
i, f ◦ τ − f is also a non–constant and has simple pole at most on 2g + 2 points. On the other hand,
for any fixed point Q of τ , Q ∈ (f ◦ τ − f) obviously. Hence, f ◦ τ − f has at least s many zeros. From
deg(f ◦ τ = f) = 0,

0 = |(f ◦ τ − f)∞| − |(f ◦ τ − f)0| ≤ 2g + 2− s

Hence, s ≤ 2g + 2.

Solution of exercise 2 (by Pei-Hsuan Chang).
Case 1: X is hyperelliptic ∃f : X → P1 of degree 2. Every ramified point is of index 2. By Hurwitz’s
formula,

2− 2g = 2× 2−
∑
P∈X

(eP − 1).

So f has 2g + 2 ramified points. ∀ϕ ∈ AutX, f ◦ ϕ is also of degree 2, so f ◦ ϕ and f are differ by an
automorphism of P1. Hence, if P ∈ X is a ramified point of f , then ϕ(P ) is also a ramified point of f , i.e.
ϕ permute ramified points. Now, if ϕ is an automorphism of X which fix 2g + 2 ramified points then by
Lemma above, ϕ is either identity map or switch all the fibres. Hence,

|AutX| ≤ 2× |S2g+2| <∞.

Case 2: X is not hyperelliptic Let f : X → Pg−1 be canonical embedding. By Exercise 4.4.6(b), X has
(g − 1)2g + gd hyperosulating points. ∀ϕ ∈ AutX, f and f ◦ ϕ differ by an automorphism of Pg−1. Thus,
ϕ permute hyperosulating points. In this case, g must bigger then 3, so (g − 1)2g + gd > 2g + 2. By the
Lemma again, ϕ is an identity map. Hence,

|AutX| ≤ |S(g−1)2g+gd| <∞.

Exercise 3 (by Chi-Kang).

For the hyperelliptic case, let X be a hyperelliptic curve of g = 4, then there is a degree 2 morphism
X → P1. By Hurwitz formula we have the ramification divisor R has degree 10, and since degree is 2 therer
are 10 distinct ramafication points. Since up to an automorphism on P1 we may assume three of them are
0, 1,∞, so the moduli space is 7-dimensional.

For non-hyperelliptic case, use the very ample divisor |K| we may assume X is a degree 6 curve in P3.
So by example 5.2.2. X is a complete intersection of a unique quadric and a cubic.

To determine for a given quadric Q, how many complete intersection is, we needto computeH0(Q,OQ(3)).
By the exact sequence 0 → OP3(1) → OP3(3) → OQ(3) → 0 and compute the cohomology we have
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h0(Q,OQ(3) = h0(P3,OP3(3))− h0(P3,OP3(1)) = 16. Quotient the constant, we know that the dimension
of moduli space of degree 3 surface complete intersection with Q is 15. Since the dimension of moduli
space of quadric is h0(P3,OP3(2)) − 1 = 9, we have the dimension of moduli space of genus 4 curves is
9 + 15− dim Aut(P3) = 9 + 15− (16− 1) = 9.

Finally, by example 5.5.2, a non-hyperelliptic curve with g = 4 has a unique g13 iff Q is singular. Hence
the dimension of the moduli space of such curve is 9− 1 = 8.

Exercise 4 (by Tzu-Yang Tsai).

Claim P +Q+R ∈ g13 ⇔ P,Q,R are colinear under canonical embeding.
Proof: By Riemann-Roch theorem, dim |P +Q+R| − dim |K − P −Q−R| = 3 + 1− 4 = 0
, thus P +Q+R ∈ g13 ⇔ dim |K −P −Q−R| = 1, but in canonical embedding, |K −P −Q−R| consists
of hyperplanes containing P,Q,R, thus dim |K − P −Q−R| = 1 is equivalent to P,Q,R are colinear.

(a) Let σ1, σ2 be the two g13, then for any P not a base point of σi for i = 1, 2, !∃Qi 6= Ri s.t. P +Qi+Ri ∈
σi∀i = 1, 2. Thus we have a projection from P, φ : X − P → P2, which is nonsingular at everywhere
except for φ(Qi) = φ(Ri) = Ti ∀i = 1, 2. Use Riemann extension theorem we get φ̄ : X → P2, thus we
represent X as a plane curve C with nodes T1, T2, and if degC = r, (r−1)(r−2)

2
= 4 + 2 = 6⇒ r = 5,

thereby a quintic curve.

(b)

Exercise 7 (by Po-Sheng Wu).

(a) Let f be the canonical embedding, then since |K| is preserved under AutX, f and f ◦ σ differ by an
automorphism of P2, ∀σ ∈ AutX.

(b) Assume chark 6= 3, 7. Obviously

ω4 0 0
0 ω2 0
0 0 ω

 and

0 1 0
0 0 1
1 0 0

 ∈ PGL(k, 2) induces automorphism

of X of order 3 and 7, and they generate H ∈ AutX of order 21. Since (2g(X) − 2)/n = 2g(Y ) − 2 +∑s
i=1(1 − 1/ri) won’t hold for g(X) = 3, n = 21 in Ex.2.5., there are automorphisms not in H. Now

notice that (1, 0, 0), (0, 1, 0), (0, 0, 1) are hyperosculating points on X with hyperosculating hyperplanes
z = 0, x = 0, y = 0, and H acts freely on X\{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, so AutX acts transitively on the
24 hyperosculating points (Ex 4.6.) since there are extra automorphisms that are not permuting ei. As a
consequence, 24 | |AutX| and 21 = |H| | |AutX|, so 168 ≤ |AutX| ≤ 84(g − 1) = 168.

(c) Since most of the curves of genus 3 are nonhyperelliptic, we may consider only the curves of degree
4 in P2. Now we show that for each Jordan form J with Jp = rI, the family of curves with automorphism
induced from some matrix conjugate with J has dimension ≤ dim|4H| = 14. J acts on |4H| via Sym4(J).
Denote m(J) = dim(|4H|Sym4(J)) = maxr null(Sym4(J)−rI)−1 and n(J) = dim{PJP−1|P ∈ GL(k, 3)} =
9 − dim{P ∈ GL(k, 3) | PJ = JP}. The goal is to show that m(J) + n(J) < 14. If chark 6= p, then by

scaling we may assume that J =

ωa 0 0
0 ωb 0
0 0 ωc

, where ωp = 1. Then with some calculation we obtain
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m(J) = 8, n(J) = 4 for p = 2, and m(J) ≤ 6, n(J) ≤ 6 for p ≥ 3. If chark = p, then again by scaling we may

assume J =

1 1 0
0 1 0
0 0 1

 or

1 1 0
0 1 1
0 0 1

. For the former case, we calculate that m(J) ≤ 8, n(J) = 4, and for

the latter case, we have m(J) ≤ 4, n(J) = 6 (Note that p 6= 2 in this case). As a result, m(J) + n(J) < 14
holds for every cases, so most of the genus 3 curves has no automorphism by Bertini’s theorem.

6 Classification of Curves in P3

Exercise 1 (by Shi-Xin).

Let X be a rational curve of degree 4 in P3. First, from the short exact sequence

0→ IX → OP3 → OX → 0

where IX is the ideal sheaf of X, we have a long exact sequence

0→ H0(IX(2))→ H0(OP3(2))→ H0(OX(2))→ · · ·

Note that h0(OP3(2)) = C5
3 = 10. Let D be a hyperplane section of X. Then by Riemann-Roch

Theorem, h0(2D) = 9 + h0(K − 2D) = 9 since degK − 2D < 0. Therefore, h0(IX(2)) ≥ 1 which means X
is contained in a quadric surface Q. If X is containd in two nonsingular quadric surface , by ex.ii.8.4(g),
g(X) = 1

2
2 · 2(2 + 2− 4) + 1 = 1 which leads to a contradiction. Indeed, since X is rational, it has 4 linearly

independent points, and thus Q can not be x21, x21 + x22. Moreover, by Remark 6.4.1, Q can not be a cone.
We conclude that Q is nondegenerate, i.e. nonsingular.

Exercise 2 (by Yu-Chi Hou).

Let X be a degree 5 rational curve in P3, consider the exact sequence of X twisting by OP3(3),

0→ IX(3)→ OP3(3)→ OX(3)→ 0,

where IX is the ideal sheaf of X. Taking long exact sequence of cohomology, one has

0→ H0(P3,IX(3))→ H0(P3,OP3)→ H0(X,OX(3))→ H1(X,IX(3))→ H1(P3,OP3(3)) = 0.

Thus, we have h0(P3,IX(3))− h1(P3,IX(3)) = h0(P3,OP3)− h0(X,OX(3)). Since degX = 5 = deg(D.H),
where H ⊂ P3 is a plane. Also, deg(OX(3)) = deg(3D) = 15, deg(KX) = 2g − 2 = −2 < 0. Thus,
Riemann–Roch gives h0(X,OX(3)) = 15 − 0 + 1 = 16. On the other hand, h0(P3,OP3) =

(
6
3

)
= 20. In

conclusion, h0(IX (3)) = h1(IX(3)) + 4 ≥ 4. Thus, X must be contained in a cubic surface.
Now, suppose X is contained in a quadric surface Q ⊂ P3. If Q is non-singular, say X has type (a, b) in

Q, then a+ b = 5 and (a− 1)(b− 1) = 0. This leads a contradiction. If Q is singular, then remark IV.6.4.1
shows that deg(X) = 2a+ 1 = 5 and g(X) = a2 − a = 22 − 2 = 2, a contradiction to the assumption that
X is rational.
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Exercise 4 (by Yi-Heng Tsai).

Assume there exists such X, then we have a long exact sequence 0 → H0(IX(2)) → H0(OP3(2)) →
H0(OX(2))→ ... with dimH0(OX(2)) < dimH0(OP3(2)) = 10. Thus, dimH0(IX(2)) ≥ 1 which means X
lies on some quadric surface. However, this contradicts to remark 6.4.1.

Exercise 6 (by Tzu-Yang Chou).

First recall that projectively normal is equivalent to H0(P3,OP3(l)) −→ H0(X,OX(l)) is surjective for
any non-negative l.
If d = 6, we have g ≤ 4, so we need that g 6= 0, 1, 2. LetD be the hyperplane section (so degD = d = 6) which
is nonspecial in these cases. Riemann-Roch imlies that l(OX(1)) = 6 + 1− g = 7, 6, 5 but h0(OP3(1)) = 4,
which leads to a contradiction.
If d = 7, we have g ≤ 6. The above argument still works for g = 0, 1, 2, 3. For g = 4, we use the divisor 2D.
l(OX(2)) = 7× 2 + 1− 4 = 11 but h0(OP3(2)) = 10.

Exercise 8 (by Shuang-Yen Lee).

If D is a nonspecial divisor of degree d such that |D| has no base point, then by R-R we have
`(D) = d+ 1− g. If d ≤ g, then dim |D| ≤ 0. So |D| = {E} or ∅, this implies |D| has base point or empty.

Conversely, suppose d ≥ g + 1. Let S ⊆ Xd be the set of divisors D ∈ Xd such that there exists P ∈ X
with D−P ∼ E ≥ 0 is a special divisor. Note that every D ∈ Xd−S is a nonspecial base point free divisor
of deg d. So we want to show that S 6= Xd.

Let D ∈ S be nonspecial, then there exist P ∈ X such that D − P ∼ E ≥ 0 is special. We have
D = E + P + (f) for some f ∈ K(X). By R-R, E special implies that

`(E) = degE + 1− g + `(K − E) = d− g + `(K − E) ≥ d− g + 1.

E+P is nonspecial, so `(E+P ) = deg(E+P )+1−g = d−g+1. Since L(E+P ) ⊇ L(E), L(E+P ) = L(E).
So f ∈ L(E + P ) = L(E), hence D = (E + (f)) + P and E + (f) ≥ 0 is special. Therefore

S ⊆ {E + P | E ≥ 0 special and P ∈ X} ∪ { special divisors }.

Since dim |K| = g− 1, the dimension of special divisors as a subset of Xd−1 and Xd are both ≤ g− 1. Thus
dimS ≤ g < dimX. So S 6= X, as desired.
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