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Exercise 0 (by Kuan-Wen).

This is an example of proof.

Remark. This is an example for how to write in this format.

1 Riemann-Roch Theorem

Exercise 1 (by Chi-Kang).

This is equivalent to show that there exists f € K(X) s,t, f € HY(X,nP) for some n > 0 and f is
non-constant. By Riemann-Roch we have for any natural number n > 2g — 1, h'(nP) = 0, thus

x(nP)=h"nP)=n+1—g
take n > g + 1 we have h°(nP) > 2, hence there is a non-constant function f € H°(X,nP).
Exercise 2 (by Chi-Kang).

Use induction on 7, » = 1 is just exercise 1.1. If the consequence holds for » — 1, then for 7, there exists
some f s,t, f has pole at Py, ..., P._; and regular elsewhere. And as 1.1 there is ¢ s,t, g has pole at P, and
regular elsewhere. hence f + g is a function has pole at P, ..., P, and regular elsewhere.

Exercise 3 (by Yi-Tsung Wang).

Proof. By Nagata theorem (remark 2.7.17.2), X can be embedding as an open subset of a complete curve
X, then in this case X\ X is just a finite set, say X\X = {p1,...,p.}. By Exercise 4.1.2, take f : X — P!
such that f has poles at each of the p; and regular elsewhere. Since f is not constant, f must be surjective,
then f~! (A!) = X. Moreover, f is a finite morphism, hence an affine morphism, and then X = f~1 (A!) is
affine. O

Exercise 4 (by Yi-Tsung Wang).



Proof. Let X be a separated one-dimensional scheme of finite type over k. By Exercise 3.3.1, we may
assume X is reduced. By Exercise 3.3.2, we may furthermore assume X is irreducible, hence X is integral
and is not proper over k. Let Y be the normalization of X, and the natural map 7 : Y — X. 7 is finite
since X is of finite type over k by Exercise 2.3.8 and is surjective since X is integral (locally, it is going-up).
If Y is proper over k, by Exercise 2.4.4, X = 7 (Y') is also proper over k, contradiction. Now note that Y is
also integral, separated, one-dimensional scheme of finite type over k, and is regular since Y is furthermore
normal, by Exercise 4.1.3, Y is affine. By Chevalley’s theorem (Exercise 3.4.2), X is also affine. m

Exercise 5 (by Shuang-Yen Lee).

By Riemann-Roch Theorem, we have

dim |D| = (D) — 1 =4(K — D) + deg(D + 1 — g = deg(D) + ({(K — D) — g) < deg(D)
since K —D <K = (K —-D)</{K)=g. If g=0, then
deg(K — D) <deg(K)=-2 = ((K—-D)—g=0
so the equality holds. If g # 0, then D =0 = {((K — D) —g = {(K) — g = 0. Suppose D # 0, say
D=> n;P,then K —D< K- P, <K, so
0=0K~—-D)—g<UlUK-P)—g<UK)—g=0 = (K- P)=yg.

By Riemann-Roch Theorem, ¢(P;) = ((K — P;) + 2 — g. So £(P;) = 2, which is impossible since g > 0.
Exercise 6 (by Shi-Xin).

Let P be a point on X, and let g denote ¢g(X). Consider the divisor D = (g + 1)P. By Riemann-Roch

Theorem, we have
(D) >degD+1—g>1.

Therefore, there is a f € K(X) such that (g + 1)P + div(f) > 0, i.e. f has pole at P with order < g+ 1
and is regular everywhere else. Thus it induces a finite morphism f : X — P! by x — f(x) which is of
degree < g + 1 since deg f - degoo = deg D.

Exercise 8 (by Shi-Xin).

(a) From 0 = Ox — f.05 = > . 0,/O, — 0 where f : X — X is the normalization of X, we obtain

peEX

0— H(X,0x) = H°(X, £.05) = H(X,03) = H'(X,>_0,/0,)

peX

— H'(X,0x) = H'(X, f.05) 2 H'(X,03) - H'(X,>_0,/0,) =0

peX
Since H*(X,Ox) = HY(X,04) = k, we have
0— HX,) 0,/0,) = H'(X,0x) - H'(X,0%) — 0

peX

Thus by ex.iii.5.3, pa(X) = pa(X) + D opex length(0,/0,) = pa(X) + > pex Op-
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(b) If po(X) = 0, then it forces p,(X) = 0 and §, = 0 for any p € X. So f is an isomorphism, i.e.
X = X = P! which is given by Riemann-Roch Theorem.

(c)
Exercise 9 (by Ping-Hsun Chuang).
Proof.  (a) Let f: X, — X be the inclusion. We have the short exact sequence

0 —— O(D) — f.Oweg (D) —— > (fu0ues (D)) /O (D)p —— 0

pPeX

Note that O (D)p = Ox,p since O (D) is an invertible sheaf. Also, (fiOreg (D))p = Ox p since Xieg
is normal. Moreover,

5p = length (OKP/(’)X,p> = 10 (X, (£.04es (D)) p JO (D)) .

Finally, since y is a additive function, we have

X(O (D)) = X(f*oreg (D)) - Z X(f*oreg (D)P /O (D)P>

pPeX

=deg D+ 1 —p, (Xreg) — Y _ 6p =deg D +1—p, (X).
PeX

(b) Since X is projective, take a very ample divisor R on X. Then, there exists n > 0 such that
O (nR + D) is generated by global section. Then, since R is very ample, O (nR + D + R) is also very
ample. Now, D = M — (n+ 1) R, where M = D + (n + 1) R which is very ample.

(c) Using the result in (b), it suffice to show the result in case that £ is very ample. Write £ = f*O (1)
for some embedding f : X — P¥. Since X has finitely may irregular points, there exists a hyperplane
H in PV such that H N X C X,e. Now, take D= HN X.

(d) Since X is locally complete intersection, we may apply the Sere duality. We then get
H'(X,0(D)) = Ext (O (D),w%)"

>~ Ext% (Ox, 0 (=D) @ w)"
~ 0% (0x,0(-D) @ wg)"

Then, x (O (D)) = b (X,0 (D)) — h' (X,0 (D)) = £(D) — (K — D). Finally, using the result in
(a), we get the required formula.
[

Exercise 10 (by Ping-Hsun Chuang).



Proof. Apply exercise 4.1.9 to D = K and get
((K)—((0)=deg K +1—g, =deg K.

Also, we have
E(K) = hO (X7w())() = hl (X, OX) = Da-

Note that the second equality above holds by the Serre duality since we assume X is locally complete
intersection. Thus, we get deg K =p, — 1 = 0.
Now, for any D € Pic’X, apply exercise 4.1.9 to D = D + P, and get

E(D+PO)_£(K_D_PO):deg(D‘f—Po)—l-l—pa:l'

Also, we have deg (K — D — Fy) = deg K — 1 = —1 and thus ¢ (K — D — By) = 0. Hence, ¢ (D + Py) = 1,
that is, there exists a unique R > 0 such that R ~ D + P,. Therefore, for any D € Pic’X, we find a unique
R such that D ~ R — Py and thus X, — Pic”X is bijection. O

2 Hurwitz’s Theorem

Exercise 1 (by Pei-Hsuan Chang).

Induction on n. For n =1, it is Example IV.2.5.3 in Hartshorne. So let’s deal with the case n > 1. Let
f: X — P" be an étale covering. We may assume that X is connected. For each hyperplane H = P"~! in
P, f: f*H — H is an étale covering of H. By induction hypothesis, f*H is disjoint union of copies of H.

Now, we are going to showing that f*H is connected, and conclude f*H is isomorphic to H via f. To
show this, we want to show that X is normal and f*H is ample with codimension 1, then by Corollary III.
7.9, f*H will be connected. Notice that H is ample, so f*H is ample since f is finite. Also, an étale covering
is smooth, so X is smooth over k and thus, is normal. Hence, f*H = H, and f|sg is an isomorphism.
Now, deg f = deg f|s~n = 1. An étale covering with degree 1 is an isomorphism, so X = P". This complete
the prove.

Exercise 2 (by Yu-Chi Hou).

(a) From Exercise 1.7, we know that any curve X of genus 2 is hyperelliptic whose the degree 2 morphism
[ = ¢xy) + X — P! coming from the canonical system. Using Riemann-Hurwitz formula, one
computes directly that deg(R) = 6. If P is branched point of f, then ep = 2, for any P € f~}(Q).
Since char(k) # 2, any ramification point P € X is tamely ramified,

R = Z(ep —1), and deg(R) = 6.

PeX

Hence, f is ramified exactly at 6 points.



(b) Let h(z) := (z —ay) -+ (x — ag) € k[z] and K := (k(x))[z])/(2% — h). Since K/k(z) is an algebraic
extension of degree 2, K/k has transcendental degree 1. This together with [K : k(z)] = 2 determines
a non-singular projective curve X and a morphism f : X — P! of degree 2. On the affine open
chart Uy = Spec k[x] C P!, there exists a morphism from the affine open set V' C f~1(Uy) — U
correpsonding to the inclusion k[z] < k[, z] := k[x, 2]/(2* — h). Hence, the function field K (V) =
K(X) =K.
Since k = k, any closed point P € Uy C P! correponds to the maximal ideal (z — ) C k[z]. If
a & {a,...,as}, then h(a) # 0 and thus (x — «, z + y/h(a) is a maximal ideal in k[z, 2]/(2% — h).
In other words, #f~1(P) = 2 if P € Uy not corresponding to ay, ..., as. Thus, we have shown that
f1(Uy) — Uy is only branched at ay,...,a¢ € k = Uy C PL.

Next, we need to check that f does not brached at oo € PL. To see this, we first localizing
ki) = klz, 27" = (k[z, 2]/ (z* — h)) @) = K[z, 27", 2] /(2° — h),

which correponds to f~1(Uy N Uy) — Uy NU;. On klz,z71, 2], we first assume that «ay,...,as € k*,
then

ZQ—h(ZL'):ZQ—(ZL'—OQ)"'(ZU—OZG)222—336(1—;)"'(1—%)
222—041"'oz6x6(ail—§)~~(ai6—é) :xﬁ(x_Gzz—a1-~~a61~1(1/x)),

where h(1/z) = []_, (i — l) € klz7']. Since z is a unit in k[z,z71, 2], (22 — h(z)) = (2% —

a; T

oy - --agh(1/x)), where 2 = 2732, Hence, we have
klz,7', 2]/(z% = h) = k[z, &,2] /(32 — ay - - - agh(1 /).

Let y = 1/x, klz, %, 2)/(3% — a1 - -~ agh(1/x)) = k[y,y™", 2]/(3* = o1 ---agh(y)). Thus, on U =
Speck[y], f~1(Uy) — U, is defined by the correponding morphism from k[y] — kly, 2]/(z* =

ajg---agh). Same argument as above shows that f is only branched at y — a; € Speckly] for

i=1,...,6. Now, if ag = 0, a1, ... 5 # 0 (since «, - - - , o are distinct),
h(z) =x(x —ay) (2 —a5) = ap - - - 525 L1 ( ! 1/z)
= 1 5) =0q T T o :

Repeating above argument shows that f is not branched at oo. Thus, f is only ramified over 6
points with each ramification index 2 (since f is of degree 2). Using Riemann-Hurwitz formula,
2g(X)—2=2(0—-2)46 =2= g(x) = 2. Moreover, let P € X such that f(P)=Q € {ay,...,a6},
then f*P =3 pc,1gep- P =2P. Thus, [*OPYQ) = f*Op (1) = Ox(2P).

On the other hand, using Riemann-Roch, h°(X, Ox(2P)) — h°(X, Ox(Kx —2P)) = deg(2P) — g(X ) +
1 =1. Since H*(X,Ox(2P)) = H(X, f*Op (1)) = H*(P', Op (1)) 2 k%, h%(X, Ox(Kx — 2P)) = 2.
However, deg(Kx — 2P) = 2g(x) —2 — 2 = 0. Thus, Kx ~ 2P. Hence, the map f: X — P! is the
same as the one determined by |Kx].



(c) If P, # oo € P!, for i = 1,2,3, then let P, = [a : 1], P, = [b: 1], P3 = [c : 1], then the M&bius
transform ¢(2) = Z=22=¢ maps P, to 0, Py to 1, and Py to oo. If P, =00, P, = [b: 1], P3 = [c: 1],

z—c b—a

then we take ¢(z) = <. Since Aut(P') = PGL(2), such ¢ is unique.

(d) The symmetric group Ss acts on distinct element 31, 8o, B3 € k\{0, 1} by permuting {0, 1, 0o, 51, B2, 83),
then sending the first three element to 0, 1, co by Mdébius transform again, then call them g7, 55, 55.
Then we define [f1, B2, 83] to be the equivalence class of (5102, 53) modulo such S;— action.

(e) Given any genus 2 curve X, |Kx| gives f : X — P! with six distinct brached points Py, ..., Ps. Then
using Mobius transform, we sends P, +— 0, P, — 1, Py — 00, P, — (;_3, for i = 4,5,6. We then
get an equivalence class [3;, 2, 33] modulo Sz—action described in (d). Now, if ¢ : X = X’ be an
isomorphism, then ¢*Ky: ~ K,. Thus, |¢*K x| gives a morphism to P! which differ to the one from
|Kx| by an ¢ € Aut(P') = PGL(2). Then as in (d), the tuple (3, 85, 55) differ by (1, B2, 83) by an
Sy—action. Thus, (3], 8, 8] = [B1, Ba, Bs).

Also, (b) implies that starting from six points of P!, one can construct a genus two curve X whose
Pk | is branched exactly at the given six points. Thus, we established the isomorphism class [X]
with the tuple [f1, 52, f3] modulo S3—action.

Exercise 4 (by Yi-Tsung Wang).

Proof. Let f(z,y,2) = 2y + y*2 + 2°z. Then f, = 2% f, = 2*,f. = v* = [ is non-singular since
(0,0,0) ¢ P2. Since

f X f Ty f Tz 0 0 3z 2
Joe fou foe | =1 322 0 0 =0
f zT f zy f 2z 0 3@/2 0

every point of X is an inflection point. For p(a,b,c) € X, the tangent line at p is
Alr—a)+a®(y—>0b)+b (2 —2)=0

that is, >z + a®y + b*2 = 0. Then the natural map X — X* is defined by (a,b, c) — (c?,a®, b*), which is a
Frobenius morphism, hence is isomorphic and purely inseparable. O

Exercise 5 (by Yu-Ting Huang).

(a) Let G act on X, then f~'(f(P)) is an orbit of the group action, then [f~'f(P)| = 2 and each element
in f~'f(P) are of index r as P. By Hurwitz’s theorem, 2g(X) — 2 = n(2g(Y) —2) + 3 (e, — 1).

Then 29n2 =1 ZP( ep—1) = Zz 17 s —1) = 25:1(1 - %)

(b) First, note that 2g
1 ) _29(X)-2 2

(V)—2+37 (1—1) =252 5 ¢ gince g(X) > 2. If g(V) =0, —2+ 35, (1 +

> 0. Thus, Y7 (1 —+) > 2 +2. Consider the minimal possibility of r; such that
+2. We find that r; = 2,3,7. Then, -2+ +2+8 =1L =200 ¢ pn=84(g—1).

In the case g(Y) =0, n<84(g—1).

Asfor g(Y) > 1, 29(Y)—2 >0,s0 Y5 (1—+) > 0. To find maximal n, weset s = 1,7 = 2,g(Y) = 1.

Then2—2+(1—1) =222 je n=4(g—1) < 84(g—1). Now, we can conclude that n < 84(g —1).

n

>
Yia(l=7) =
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Exercise 6 (by Tzu-Yang Chou).

(a) Let D be effective. We first consider the short exact sequence 0 — Ox(—D) — Ox — Op — 0
and apply f.. Since f is finite, so R'f,Ox(—D) vanishes and hence we have 0 — f,Ox(—D) —
f+Ox — f.Op — 0 is exact. Taking determinant, we obtain det(f.Ox) ~ det(f.Ox(—D)) ®
det(f.Op). Now we only need that (det(f.Op))~! =~ Ox(f.(—D)) since then for a general divisor,
we can write it as a difference of two effective ones and above formula proves the assertion. But this
statement follows from Ex(I1.6.11)(c).

(b) (a) tells us that Ox(f.D) ~ det(f.Ox (D)) ® (det(f.Ox))~" and hence it only depends on the linear
equivalence class of D. f, o f* = n follows from their definitions, where n = deg f.

(c) By Ex(II1.7.2) and Ex(II1.6.10), we have the following sequence of isomorphisms: det(f,Qx) ~
det(f. 0 omx(Ox,0x)) = det(feilomx(Ox, f'Qy)) =~ det(Homy (f.Ox,Qy)) ~ det((f.0x) ' ®
Qy) =~ (det(f.0x)) ' @ Q"

(d) Kx = f*Ky + R= f.Kx =nKy + B = Ox(—B) ~ QY" @ (Ox(f.Kx))™!, and this is isomorphic
to (det(f.Ox))? by (a) and (c).

Exercise 7 (by Po-Sheng Wu).

(a) Since f is finite flat, f.Ox is locally free of rank 2. Plus, the injection Oy — f.Ox is also injective
on residue field, so the kernel L is locally free of rank 1. By taking det for the short exact sequence we
have £ = det f,Oy, and then by 2.6(d) we have £ = Oy since f is etale.

(b) On the affine subset U = Spec(A) C Y such that £ is free, the constructed algebra is actually
isomorphic to A[t]/(t* — u) via (a,bv) — a + bt, where v is a generator of L(U), and u = ¢(v ® v) is a unit
of A. Since A[t]/(t* — u) is unramified over A, Spec(O & L) is etale over Y.

(c) Conversely, if X — Y is etale of degree 2, then locally f.Ox(U) is an unramified algebra of rank 2
over A, which is always able to be written in the form A[t]/(t? — u), so the exact sequence in (a) is splitted
by f.Ox — Oy where the map At]/(t* — u) — A is given by taking the constant term. Now we see that
(a) and (b) are converse to each other.

3 Embeddings in Projective Space

Exercise 1 (by Shi-Xin Wang).

Since deg D > 5 = 2¢(X) + 1, by Corollary 3.2, D is very ample. So we only need to show that if D is
very ample, then deg D > 5. We first show that dim|D| > 3. Indeed, if dim |D| = 1, it defines a closed
immersion to P!, which is impossible. Moreover, if dim |D| = 2, it defines a closed immersion from X to P?
as a plane curve, and hence by Riemann-Roch formula,

deg D = g(X) — 1+ dim|D| — dim |K — D| = 4



Therefore, g(X) = 3(deg D — 1)(deg D — 2) = 3 # 2 is a contradiction. On the other hand, by ex.iv.1.5,
deg D > dim |D| > 3. Then we may assume deg D = 4. Since deg D > 2¢(X) — 2 =2, dim|K — D| = —1.
However, there is a contraction

deg D = g(X) — 1+dim|D| —dim|K — D| > 5
Thus we must have deg D > 5.

Exercise 2 (by Yi-Tsung Wang).

(a) Let K be a canonical divisor. Since wx = Ox (d —n — 1) = Ox (1), we see that K = |K|*"L = X.L
for some line L.

(b) Since X is a plane curve of degree 4, we have g (X) = 3. Since wx = Ox(1) is very ample, so is
K. {(K—-D)=/¢(K)—2=1. By Riemann-Roch, ¢ (D) =degD +1— g+ ¢ (K — D) = 1, hence
dim |D| = 0.

(c) Suppose not, let f : X — P! be a finite morphism of degree 2, then D := f*(00) is an effective
divisor of degree 2. By part (b), £(D) =1, and since f € T'(X,.Z (D)), f sends all z € X to co € P!,
contradiction. Hence X is not hyperelliptic.

Exercise 3 (by Tzu-Yang Chou).

By Ex(I1.8.4), Ox(K) ~ Ox(m) for some integer m. Moreover, deg K = 2g — 20 so m > 0 and hence
K is very ample. When g = 2, K has degree 2 < 5 so cannot be very ample by Ex(IV.3.1); thus X must
not be a complete intersection.

Exercise 4 (by Yu-Chi Hou).

(a) Ford > 1, let vy : P! — P? be d—uple embedding of P! in P? and let X be its image. Recall the d—uple

embedding is given by vg([to, t1]) = [td : t37 %y -+ tot$! 2 ). From Exercise 1.2.12, we know that
X is integral, S(X) = k[zo, ..., z4]/1(X) is integral, and I(X) = ker(0), where 6 : k[zg, 21, ..., 74 —
k[to,t1] is given by x; ~— t2'¢'. In other words, we can write S(X) = k[td, t& ;... t{]. Given

r € Frac(S(X)) = k(to,t1) which in integral over S(X). Write r(to,t1) = 5832;, where f, g € k[to, t1]
and ged(f, g) = 1, and there exists ag, ay, ..., a, 1 € S(X) such that

" Gy - ar +ag = 0.

Repeating the proof that UFD are integrally closed (clean out the denominator g and use the relative
primeness of g and f), we know that g € k* and hence r = f(to,t1) € k[to,t1]. Hence, above equation

reads

fn‘|—0m71fn71+"‘ —|—a1f+a0 =0. (1)
By comparing degree, we may assume that ag,...,aqs_1 are homogeneous of degree ky,...,k,_1 in
degree d monomial of #y,t; and g is homogeneous of degree m in ty,t;. Thus, equating the degree
of gives mn = m(n — 1) +dk,_1 + -+ = m + dk; = dky. Hence, m = dk,_; = d | m. Thus,
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= Y q;t" 17 However, since each monomial t5¢/ in a, . .., ag_1, these exponents congruent to
i dito 1 ol1 g
zero modulo d. As a result, i =0 mod d. In other words, f € S(X).

Alternatively, we see that V := Spec(k[td, tat,,...,t{]) is the affine toric variety associated to the
cone o := Rsg(ey, e1 + dey) C R% Since o is strongly convex polyhedral cone, the affine monoid
S, = Z? N o is saturated, and hence the variety V' = Spec(k[S,]) is normal. Also, observe that if V'
is an affine cone over a projective variety X, V' is normal if and only if X is projectively normal by
definition.

Next, we show that the homogenous ideal 1(X) is generated by homogeneous polynomial of degree 2.
More precisely, we show that that
I(X) = <g”LJ =Xl — L1y - 0 S 1< ] S d— 1> C k?[a')o,. .. ,Id].

Obviously, g;; € ker(#) and hence I(X) D (g;; : 0 <4 < j < d—1). For the converse, given any
homogeneous polynomial f € I(X) of degree n, choose the lexicographic order g > x; > -+ > x4 as
monomial ordering and let r be the remainder after division by g;;’s. That is, r = f _Zogz‘ <j<d—1 %ijGij;
where a;; € k[xo,...,zq). By equating degree on both sides, we know that r is also a homogeneous
polynomial of degree n. We now have two simple observations:

(1) r contains no monomial of the form —x!, for i = 1,...,d — 1. If there were such monomial, then
such term can be subtracted by some multiple of ¢;_1; 1= z;_12;41 — xf

(2) Also, r contains no monomial involving variables x;, z; with j — i > 2. If there were, then again
such term can be subtracted by some multiple of g; ;_1 = z;x; — zi112;_1.

Following these two observations, r can be decomposed into
7 = ho(zo, 1) + hi(z1, 22) + - + hg1(Ta—1, Ta),

where each h; is homogeneous of degree n, for all i =0,...,d — 1 and contains no term like z7, for
1=1,...,d—1.

Finally, for r = f — 3, a;j9;; € 1(X), that is to say, r(td, tét . 19 = 0. Foreachi=1,...,d — 2,

n—1

hi(@i, Tiv1) = Z C;(:)xghkxfﬂ
k=1
and
n—1 n—1
n n— d— n— d—
ho(zo, 21) = C(()O)Io + ZCI(CO)% s hao1 (Tao1, Ta) = C;(C de,fxg + Cil UI‘f.
k=1 k=1
Thus, for i = 0,...,d, plugging x; by t2 '}, we see that:
n—1 n—1 n—1
0=ctp? + Y et Rl ) Vg I e Y e @ g,
k=1 k=1 k=1

Therefore, c,(f) = 0 for all 7, k. That is, r = 0.



(b) Let X be a curve of degree d in P" with d < n and X ¢ H, for any hyplerplane H in P". Take
any hyperplane H, let D = X.H be the very ample divisor on X. Thus, deg(D) = deg(X.H) =
deg(X) = d and dim | D| = n (otherwise, there exists a proper subspace V' C h°(X, Ox (D)) such that
X Cc P(V*) € P*). Now, since X ¢ H, there exists P ¢ Bs|D|, then dim |D—P| =dim |D|-1=n—1
and deg(D — P) =d — 1.

If n > d, then pick Py, ..., P; ¢ Bs|D|, inductive on aboce arguement gives dim \D—Zle Pl =n—d>
0 yet deg(D — 3¢, P,) = 0. Therefore, D — 3 | P, ~ 0. If so, then h°(X, Ox(D — Y1, P) = 1,
contradiction. Hence, n = d. By Exercise IV.1.5, deg(d) = dim | D| if and only if D ~ 0 or g(X) = 0.
By assumption, deg(D) > 0, we then must have ¢(X) = 0 and Ox(H) = Op:(dH). Therefore,
X = yy(P) up to Aut(P").

(c) If X is of degree 2 in P". If X is not contained in any hyperplane, then n = 2 by (b). If there exists
a hyperplane H = P"! such that X C H, then replacing n by n — 1 and repeating the previous
argument, we still get n = 2. Hence, X is a plane conic.

(d) Let X be a curve of degree 3. The same argument in (c) shows that X C P3. We now have two cases.
If X is not contained in any plane P2, then X = v5(P!) by (b). It is indeed the twisted cubic curve
up to a projective transform. If X falls into some plane, then it is a plane cubic.

Exercise 6 (by Tzu-Yang Chou).

(a) Let n be the smallest integer such that X C P". First, Ex(IV.3.4)(b) implies that the case n > 3 is
contained in (1). Also, for the case n = 2, we have g = w = 3. For n = 3, we have g < 3 by
Ex(IV.3.5)(b), so it remains to show that the genus cannot be 2 in this case. But X embed into P? as

a degree 4 curve, so there’s a degree 4 very ample divisor D, which contradicts to Ex(IV.3.1).

(b) Now we assume that X C P? with ¢ = 1. We consider the cohomology sequence of 0 —
Ix(2) — Ops(2) — Ox(2) — 0, which is a four-term one. We see that h%(P?, #x(2)) =
10 — 8 + A (P3, #x(2)) > 2. Then the assertion follows from Bezout’s theorem.

Exercise 7 (by Yi-Heng Tsai).

Since char k # 2, the curve has only one node at (x,y) = (0,0). Suppose there is a non-singular curve
C' which projects to it, then deg(C) =4 and ¢g(C) = 2 (contradicts to Ex3.6).

Exercise 9 (by Pei-Hsuan Chang).

Let H be a plane in P2. We have: H intersect X least then d distinct point <> H contain a tangent line
of X. Also, there are 3 intersection point of H and X are collinear < H contain a multisecant of X.

Notice that T := {H € (P3)* | H contain a tangent line of X} is locally a subset of X x P!; thus, it has
at most dimension 2. Consider S := { mulitsecants of X} C (X x X \ A). It is a proper closed subset of
X x X, so S has at most dimension 1. Hence, {H € (P | H contains a multisecant of X} has at most
dimension 2. So, TU is a proper closed subset of (P3)*. Thus, there is an open set U C (P?)* as desired.
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4 Elliptic Curves

Exercise 1 (by Chi-Kang).

By R-R, we have h’(nP) — h°(K — np) = n. Note that K =0, so h°(K — nP) is zero if n > 0, and is 1
if n =0. So h°(nP) = n for n > 0, and h°(0p) = 1.
Now embedded X by |3P] into P2, we say X in k[zo, 21, 22] is defined by 23 = 29(20 — 22)(20 = A22).
Now we choose ty = 1 be a generator of H(P), zqg € H°(2P) s,t, {to, 7o} is a basis of H°(2P), and
similarly choose yo € H°(3P) s,t, {to, 2o, y0} is a basis of H°(3P). Then R is generated by tg, Zo, ¥o
i,e, R = k[to, o, yo]/(relations). As the proof of proposition 4.6, after a change of coordinate we have
y+ 0% = zo(x — to)(z — My). Note that in fact tg = 1 € H°(P), so t2 = to, thus we have the relation
ye = zo(wo — 13) (2o — At2). Hence the map

Klt 2]/ (" — 2z — ) (@M?)) — R

is well-defined and surjective. Now the above 2 rings are intergal domain. Note that for any surjective
homomorphism f : A — B between integral domain, if f is not an isomorphism we must have dim A > dim B.
But for our map both LHS and RHS has Krull dimension 2, hence it must an isomorphism.

Exercise 2 (by Yu-Chi Hou).

Let X be a genus 1 curve and D is a divisor on X with deg D > 3. Since deg D > 3, D is very ample
(cf. Cor. 1V.3.2). Hence, the complete linear system |D| gives an embedding ¢|p| : X — P", where
n = dim |D| = deg D + 1 using Riemann-Roch.

Lemma 1. X is projectively normal if and only if for any m > 0, the natural map H°(P", Opn(m)) —
H°(X,Ox(m)) is a surjection.

The lemma is really a special case of Ex. 11.5.14.

To check the condition of the lemma, we proceeds inductively on m. For m = 1, this follows directly
from ¢/}, Opn (1) = Ox(D). Assume the induction hypothesis holds for m — 1, then we consider the following
diagram

HO(B", Opn (1)) © HO(P", Opn (1)) ——— HO(B", Opn (m + 1))

| |

H(X,0x(mD))® H*(X,Ox(D)) —— H°(X,Ox((m + 1)D)),

where the horizontal maps are given by multiplication map and the vertical arrow is the natural map
coming from X — P". By induction hypothesis, the left arrow is surjective. If we can prove the surjectivity
of the bottom horizaontal arrow, then the surjectivity of H°(P", Opn(m + 1)) — H°(X, Ox((m + 1)D))
will follows.

Starting from here, we use the assumption that X is an elliptic curve. First of all, we can pick P € X
such that dP ~ D, where d = deg D and from Riemann—Roch,

1 ,n=0,1
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Hence, for k£ > 1, we have a sequence of strict inclusion
HO(X, Ox (kP)) € H(X, Ox((k+ 1)P)).

Namely, there exists unique f € K(X) which is regular outside P and ordp(f) = k + 1, for each k > 1.
Thus, for any f € H°(X,Ox((n + m)P)) there exists g € H*(X, Ox(nP)),h € H*(X, Ox(mP)) such that
gh = f, for any n,m > 3.

As a result, we see that the multiplication map

H°(X,0x(mdP)) ® H'(X,Ox(dP)) — H°(X,Ox((m + 1)dP))
is surjective since d > 3.
Exercise 3 (by Pei-Hsuan Chang).

Let f = y*> — z(x — 1)(x — A). Then regular functions on X except Py is k[z,y]/ < f > + : R.
Thus, K(X) = Frac(R) = {a(z) + b(x)y | a(z),b(x) € k(x)}. Now, for each ¢ € Aut(X), we can assume
olx,y) = (@, y) = (ur(x) +vi(z), uz(x) +ve(2)y). Notice that VP = (z,y) € X, 0= ¢(0) = o(P+(—P)) =
©(P) + ¢(—P) in the group law. So

Py = w(z,y) + o(x, —y) = (w1 (z) + v1(2), ua(z) + v2(2)y) + (wi1(z) — v1(7), us(w) — v2(7)y),

then uy (z) + v1 () = uy(x) — v1(2) and ug(z) + vo(2)y = —(ue(z) — vo(z)y). Hence, vy (x) = us(x) = 0, so

o(r,y) = (ur(x), va(2)y).
Now, we homogenizes ¢ to get

Br,y.2) = (u (3) 02 (3) 21) = (e, ), i, 20y, 27,

where 7, v, are homogeneous rational functions of degree n and n — 1 respectively. Since ¢(Py) = P,
#(0,1,0) = (11(0,0),22(0,0) - 1,0) = (0,¢,0) for some t # 0. Thus, 5(0,0) # 0 = v,(x, 2) is constant, say
Ua(x,z) = c. Hence n =1 = 4 is linear. Now, de-homogenize ¢ and get p(z,y) = (2/,y') = (az + b, cy)
for some constant a, b, ¢ € k on the affine piece.

Exercise 4 (by Tzu-Yang Tsai).

The equation equivalent to (y + %z + %)* = 2° 4 (az + %) + (ag + “2)x + a6 + Z—g , so by a linear
transformation, we get Y3 = 23 + Ax? + Bx + C, where A, B,C € k.

Let the roots of 3 + Az? + Bx + C' = 0 be «, 3,7, we map {g : (1) by a linear transformation, then

7~—>g:—3:)\. Thus

(1— X+ \?)3

N2(1—A)?
_ 5@+ 8 +9°—aB - By —qa)’
(@ = B)2(B =)y — a)?

JA) =2°
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, where both numerator and denominator are symmetric polynomial, which can be represented by elementary
symmetric polynomial A, B, C. As a result, j is a rational function of {a;}, furthermore, j € k.
For j £ 0,1728, take A =0,C =tB,

s B —275t?

L R ; Y L
IS B 2102 A(j — 1728)

so simply take t = 1, notice that B € k, we get an elliptic curve in k& with j as j-invariant.
For j =0, 4> +y = 23 is the curve; for j = 1728, y* = 23 + x is the curve.

Exercise 5 (by Shuang-Yen Lee).

(a) By Hurwitz formula, f has no ramification points. Let Py + @ = f*Fy, then P, # . Since
P+ Q) =L(12FR) =4(2Q) = 2 (by R-R), there exist hy € L(Py + Q), hs € L(2F) and hs € L(2Q)
which are not constant. Since ((Py) = £(Q) = 1, h? # L(2P))UL(2Q). So L(2Py+2Q) = (1, h?, ha, h3)y.
Note that

(mo f) (00) = fim"(00) = [*(2P) = 2P + 2Q,
mo f € k*hi, say mo f = a*h? = (ahy)?® for some a € k*. Let ©’ = ahy, g = [z — z*], then
mo f=gon and degg = 2, so we get degn’ = 2.
(b) By (a),

(c¢) The branch points of g are 0, co. oo is a branch point of 7 since 7*(00) = 2F. 0 is a branch point of
7 since f*7*(0) = 7""¢*(0) = 27"°(0) and note that f has no ramification points. Suppose that other
two branch points of m are 1, A. Then

T((1) + (1) = 2f2Q1),  77((A2) + (=A%) = f1(2Q2)

for some Q1, Q2 € X, so 1, —1, A/2, —A\/2 are branch points of 7’.
Now we have two ways to count j. By the map 7, we have
A2 —A+1)3
A2(1 — )2
By the map 7', since the cross ratio

1— A2\
R .y 1/2 1/2\ __
A/'_(la_laA/a_A/)_(m) )

we have
s V2= N1 (A2 14N+ 1)
N1 =2 16A(1 — )4

So 16(A2 — A+ 1)3(1 — A\)2 = (A2 + 14X + 1)\,

J=2
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(d) By solving the equation above, we have A = —1, 3 +2v/2, (1 +3+/7i), (1 +3/7) and
j=26.3%20.5% _33.5% —3%.53
respectively.

Exercise 9 (by Chi-Kang).

(a) The identity map is an isogenus, and the composition of 2 finite morphism is finite, so we only
need to show if f: X — X" is a finite morphism of degree n, then there exists X " — X be another finite
morphism. By exercise IV.4.7 we have a dual morphism f X' = X s, f f =nx is a finite morphism
with degree n2, hence f is also finite morphism with degree n, and thus isogenus is an equivalent realtion.
(b) Suppose f: X — X', g: X — X" are 2 finite morphism with the same (group theoritic) kernel, then
X' = X" as abelian group. So there is a natural group isomorphism go f~!: X’ = X/(ker f) = X", and
this is a morphism between curves since both f, g is. Thus g o f~! is a bijective morphism between curves,
hence it is an isomorphism since X', X” are smooth.

Now since fo f=mnx sokerf C kerny. And by exercise 4.7 we have f o f = nx, so both f,f has
degree n, thus degnx = n?, so X has n? element of order n, hence X has at most countably many subgroups
G which is a subgroup of some kerny. Hence X has at most countablley many isogenus classes.

Exercise 10 (by Shi-Xin Wang).

To construct the map ¢ : Pic(X x X) — R = End(X, Fy), we let M € Pic(X x X) and py, p2 be two
projections from X x X to X. We may guess M should be sent to M @ (pj(M|xx{r}) @ p5(M|ipyxx)) "
denoted by N,;. However, Nj; does not lie in R. Remark that we have an isomorphism ¢ : Pic®X — X.
Therefore, we may consider

¢(M) = [P = ¢o(Npr|xxp)]-

This is well defined since Ny/|xxp has the same degree with Nys|x«p,, i.e. they are both in Pic’X. Clearly,
piPicX @ piPicX C ker¢. Now let M € kerg. Since Nys|xxp = Oxxp, by seesaw theorem, Ny, = p3L for
some L € PicX. Therefore, M = pi(M|xxip) ® p5(L @ M|ipyxx), and hence piPicX @ p;Pic = ker.
On the other hand, for any ainR, consider the line bundle M € Pic(X x X) corresponding to the divisor

D = (a,idx)(X) —{R} x X

where (a,idx) : X — X x X is the morphism given by P+ («a(P), P). Then Ny, still corresponds to the
divisor D and
p(Nu|xxp) = 0(Ox(a(P) — Ry)) = a(P)

Exercise 11 (by Pei-Hsuan Chang).
(a) Let L be the parallelogram, A be the area of L. Then area of f(L) is |o?|A. Now,

21A
|Oé ’ :’04’2.

deg f=I[L:al]= 1
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(b) By exercise 4.4.7(c), we have f o f is an endomorphism corresponding to degf = |o|2. Thus, f is an
endomorphism corresponding to |a|? - a™! = a.

(c) Let L be the lattice Z&7Z. Now, if 7 € Q(+/—d) and integral over Z, then 72 can be written as integral
linear combination of 7 and 1. Thus, Z[r] = Z & 7Z. Also, for a,b € Z, (a + br)T = a7 + br? € L.
Hence, Va + br € Z[7], (a + br)L C L, which means Z[7| C R.

For any f € R, say f corresponding to o € C. Since oL C Land 1 € L = Z ® 7Z = R C Z[r]. To
sum up, R = Z[r].

Exercise 12 (by Po-Sheng Wu).

(a)(b) Suppose the complex multiplication was given by «, then |a|?> = 1 for (a), 2 for (b) respec-
tively. Since « is imaginary quadratic and integral, we can assume that a = (a + byv/—d)/2,b,d > 0,
d squarefree, then a? + db*> = 4( or 8, respectively). So (a,b,d) = (0,2,1),(+1,1,3) for (a), (a,b,d) =
(0,2,2), (£1,1,7), (£2,2,1) for (b), and we get 7 = i, w for (a), 7 = /=2, (1++/=7)/2,1 for (b), respectively.
Moreover, we have j(y/—2) = 8000, j((1 + +/—7)/2) = —3375, j(i) = 1728 comparing with 4.5(d), using the
fact that if Re(7) = 0 then j(7) > 0.

Exercise 13 (by Yi-Heng Tsai).

28(A6—3X5H6A 46A3 4602 —30+1) _ 28(221—4X342)2) 29 _ 5

Hasse invariant = 0 i.e. h,(A\) =0. = j = D2 DN = T

Exercise 14 (by Tzu-Yang Tsai).

By 4.21, Hasse invariant of X is 0 if and only if the coefficient of (zyz)P~! in fP~!is 0. Now f(z,y,z) =
23 4y — 23, thus it’s clear that p € B if and only if 3 | p — 2, thus by Dirichlet’s theorem the density of B
in prime is %
Exercise 17 (by Ping-Hsun Chuang).
Proof. X is the curve y* +y = 2* — x in P? with Py =[0:1:0].
(a) Write Q =[a:b:1] € X. If a = 0, then we have y> +y =0 and thus Q = [0:0: 1] or [0: —1:1].
Case 1: @ =[0:0:1] = P. The tangent line at P[0: 0 : 1] of X is x = —y by the implicit function
r=—y
V4+y=2°—x
(0,0) has multiplicity 2. Then, we have 2P + R ~ 0, where R = [1 : —1: 1]. Now, the hyperplane

theorem. Solve and get (x,y) = (0,0) and (1,—1). Note that the solution

r—2z=0

iy +y2? = ad — x2?
[1:—1:1] and [1:0:1]. In consequence, we have R + R’ ~ 0, where R = [0:1:0] and thus
2P~ —-R~R =1[1:0:1].

Case 2: Q =[0:0:1] = P. The hyperplane x = 0 passing through P[0:0:1], Q[0 : —1:1], and
Py[0:1:0]. Then, we have P+ @ + Py ~ 0 and thus P + @ ~ 0.

x — z = 0 passing through P, and R. Solve and get [z,y,z] =[0:1:0],

15



Case 3: a # 0. The hyperplane bx — ay = 0 passing through Q[a:b: 1] and P[0:0: 1]. Solve

br —ay =0
{ §:+ay 5 and get (z,y) = (0,0), (a,b), and (Z—i—a,i—i—b). Then, P+ Q + R ~ 0,
Y +y=a"—u

where R = (Z—z —a, Z—z — b). Now, the hyperplane =z — (Z_Z — a) z = 0 passing through F, and R.
b2
N (- -0
Solve {x (“ a)z and get [x:y:z2] = P, R, R = [Z—Z—a,—l—i—b—i—i:l}. Hence,

iz +y2? =2 —x2?

R+ R ~0, thatis, P+Q~ R~ R = |5 —a,-1+b- 5 1],

Finally, we use the above formula to find nP forn =1,--- ,10:
P |2P |3P | 4P 5P |6P | 7P | 8P | 9P | 10P
0.0 [ (L) [ (~L.-D) [2=3)[ (%) [ 614 [ (5.27) [ G5 5) | G5 5s) | (5 =5¢)

(b) If p # 2, then the curve become (y + %) =23 -2 + . The discriminant of z3 — x + Zis y‘ Now,

modulo p reduction gives non-zero discriminant if p # 37 This makes the curve non- smgular.
If p = 37, the curve is (y + 19)° = (z + 10) (z + 32)® which is singular.
If p = 2, the partial derivative is given by af =22 +1 and af =1 # 0. Thus, the curve is non-singular

when p = 2.
O
5 The Canonical Embedding
Exercise 1 (by Yu-Chi Hou).
Assume that X is complete intersection in P, then there exists hypersurfaces Hy, ..., H,_; in P" with

degree dy, . ..,d,_1 respectively such that X = H; N HyN--- H, ;. Using adjunction formula repeatly, one
has wy =2 Ox (320 di — (n4+1)). Let d:= 327" d; — (n+1). Since g(X) > 2, deg(Kx) > 0. Thus, d > 0.
We then onsider d—uple embedding vy : P* < PV with N = ("'’) — 1. Therfore, wx = (v4|x)*Opn(1).
Thus, Kx is very ample. However, if X is hyperelliptic, then Kx cannot be very ample, and thus X cannot
be complete intersection. In particular, we know that genus 2 curves are hyperelliptic (Ex.IV.1.7) and thus
X cannot be complete intersection. This also proves Ex. 1V.3.3.

Exercise 2 (by Yu-Chi and Pei-Hsuan Chang).
We first prove a lemma.

Lemma 2 (by Yu-Chi). Let z be a curve of genus g > 2, 7 € Aut(X) and 7 # 1x, then T fizes at most
(29 + 2)—points.
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Proof. Let s be the number of fixed points of 7. Consider a divisor D = f:ll P, with Py, ..., Py, are
distinct and are not fixed point of 7. Then using Riemann—Roch,

R(X,D)—h'(X,D)=deg(D)+1—g=g+1+1—g=2.

Hence, h°(X, D) > 2 implies that there exists a non-constant morphism f : X — P and (f) + 3.7} P, > 0.
In other words, the rational function f has at worst simple pole on P, ..., Py1. Since 7(P;) # P, for all
1, f o1 — f is also a non—constant and has simple pole at most on 2g + 2 points. On the other hand,
for any fixed point @ of 7, Q € (f o7 — f) obviously. Hence, f o7 — f has at least s many zeros. From
deg(f o= f) =0,

O0=I[(for—flol —|(foT—=[lol<29+2—5

Hence, s < 2g + 2. O
Solution of exercise 2 (by Pei-Hsuan Chang).

Case 1: X is hyperelliptic 3f : X — P! of degree 2. Every ramified point is of index 2. By Hurwitz’s
formula,

2-29=2x2-> (ep—1).
Pex
So f has 2g + 2 ramified points. Yy € Aut X, f o ¢ is also of degree 2, so f o ¢ and f are differ by an
automorphism of P1. Hence, if P € X is a ramified point of f, then ¢(P) is also a ramified point of f, i.e.
 permute ramified points. Now, if ¢ is an automorphism of X which fix 2¢g 4+ 2 ramified points then by
Lemma above, ¢ is either identity map or switch all the fibres. Hence,

]AutX| <2 X ’Sgg_i_g‘ < 0.

Case 2: X is not hyperelliptic Let f : X — P9~! be canonical embedding. By Exercise 4.4.6(b), X has
(g9 — 1)%g + gd hyperosulating points. Vi € Aut X, f and f o ¢ differ by an automorphism of P¢~!. Thus,
¢ permute hyperosulating points. In this case, g must bigger then 3, so (g — 1)%g + gd > 2g + 2. By the
Lemma again, ¢ is an identity map. Hence,

|Aut X| < |S(g—1)2g+gd| < 00.
Exercise 3 (by Chi-Kang).

For the hyperelliptic case, let X be a hyperelliptic curve of g = 4, then there is a degree 2 morphism
X — P!. By Hurwitz formula we have the ramification divisor R has degree 10, and since degree is 2 therer
are 10 distinct ramafication points. Since up to an automorphism on P! we may assume three of them are
0,1, 00, so the moduli space is 7-dimensional.

For non-hyperelliptic case, use the very ample divisor |K| we may assume X is a degree 6 curve in P3.
So by example 5.2.2. X is a complete intersection of a unique quadric and a cubic.

To determine for a given quadric ), how many complete intersection is, we needto compute H°(Q, Og(3)).
By the exact sequence 0 — Ops(1) — Ops(3) = Og(3) — 0 and compute the cohomology we have
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h(Q, Og(3) = hO(P3, Ops(3)) — h°(P3, Ops(1)) = 16. Quotient the constant, we know that the dimension
of moduli space of degree 3 surface complete intersection with ¢ is 15. Since the dimension of moduli

space of quadric is h%(P3, Ops(2)) — 1 = 9, we have the dimension of moduli space of genus 4 curves is
9+ 15 —dimAut(P?) =9+15— (16 — 1) = 9.

Finally, by example 5.5.2, a non-hyperelliptic curve with g = 4 has a unique g3 iff Q is singular. Hence
the dimension of the moduli space of such curve is 9 — 1 = 8.

Exercise 4 (by Tzu-Yang Tsai).

Claim P+ Q + R € g} & P,Q, R are colinear under canonical embeding.
Proof: By Riemann-Roch theorem, dim |P+ Q + R| —dim|[K —P—-Q —R|=3+1—-4=0
,thus P+ Q+ R € g3 & dim|K — P—Q — R| = 1, but in canonical embedding, |K — P — Q — R| consists
of hyperplanes containing P, @, R, thus dim |K — P — @ — R| = 1 is equivalent to P, @, R are colinear.

(a) Let 01,09 be the two g3, then for any P not a base point of o; for i = 1,2,13Q; # R; s.t. P+Q; +R; €
o;Vi = 1,2. Thus we have a projection from P, ¢ : X — P — P?, which is nonsingular at everywhere
except for ¢(Q;) = ¢(R;) = T; Vi = 1,2. Use Riemann extension theorem we get ¢ : X — P2, thus we
represent X as a plane curve C' with nodes 77,75, and if degC' = r, w =44+2=6=1r=2>,
thereby a quintic curve.

(b)
Exercise 7 (by Po-Sheng Wu).

(a) Let f be the canonical embedding, then since | K| is preserved under AutX, f and f oo differ by an
automorphism of P?, Vo € AutX.

wt 00 010
(b) Assume chark # 3,7. Obviously [ 0 w? 0] and |0 0 1| € PGL(k,2) induces automorphism
0 0 w 1 00

of X of order 3 and 7, and they generate H € AutX of order 21. Since (2¢(X) —2)/n =2g(Y) — 2+
> (1 —1/r;) won’t hold for g(X) = 3,n = 21 in Ex.2.5., there are automorphisms not in H. Now
notice that (1,0,0),(0,1,0),(0,0,1) are hyperosculating points on X with hyperosculating hyperplanes
z2=0,2 =0,y =0, and H acts freely on X\{(1,0,0),(0,1,0),(0,0,1)}, so AutX acts transitively on the
24 hyperosculating points (Ex 4.6.) since there are extra automorphisms that are not permuting e;. As a
consequence, 24 | [AutX| and 21 = |H| | |[AutX]|, so 168 < |AutX| < 84(g — 1) = 168.

(c) Since most of the curves of genus 3 are nonhyperelliptic, we may consider only the curves of degree
4 in P2. Now we show that for each Jordan form J with J? = rI, the family of curves with automorphism
induced from some matrix conjugate with J has dimension < dim|4H| = 14. J acts on |[4H| via Sym*(.J).
Denote m(.J) = dim(J4H ™)) = max, null(Sym*(J) —rI)—1 and n(J) = dim{PJP~|P € GL(k,3)} =
9 — dim{P € GL(k,3) | PJ = JP}. The goal is to show that m(J) + n(J) < 14. If chark # p, then by

w* 0 0
scaling we may assume that J = [ 0 «w® 0 |, where w? = 1. Then with some calculation we obtain
0 0 w°

18



m(J) =8,n(J) =4forp=2 and m(J) < ) <6 for p > 3. If chark = p, then again by scaling we may
1 10 1 10

assume J = [0 1 O] or |0 1 1]. For the former case, we calculate that m(J) < 8,n(J) = 4, and for
0 0 1 0 0 1

the latter case, we have m(J) < 4,n(J) = 6 (Note that p # 2 in this case). As a result, m(J) +n(J) < 14
holds for every cases, so most of the genus 3 curves has no automorphism by Bertini’s theorem.

6 Classification of Curves in P?
Exercise 1 (by Shi-Xin).
Let X be a rational curve of degree 4 in P2. First, from the short exact sequence
0— Ix = Ops — Ox — 0
where #x is the ideal sheaf of X, we have a long exact sequence
0 — H°(F%(2)) = H°(Ops(2)) — H*(Ox(2)) — ---

Note that h%(Ops(2)) = C = 10. Let D be a hyperplane section of X. Then by Riemann-Roch
Theorem, h°(2D) = 9 + h°(K — 2D) = 9 since deg K — 2D < 0. Therefore, h°(.#x(2)) > 1 which means X
is contained in a quadric surface Q. If X is containd in two nonsingular quadric surface , by ez.ii.8.4(g),
9(X) =32-2(2+2—4)+1 =1 which leads to a contradiction. Indeed, since X is rational, it has 4 linearly
independent points, and thus Q can not be z%, 22 + 22. Moreover, by Remark 6.4.1, @ can not be a cone.
We conclude that () is nondegenerate, i.e. nonsingular.

Exercise 2 (by Yu-Chi Hou).
Let X be a degree 5 rational curve in P3, consider the exact sequence of X twisting by Ops(3),
0— Ix(3) = Ops(3) = Ox(3) — 0,
where #x is the ideal sheaf of X. Taking long exact sequence of cohomology, one has
0 — H°(P?, #x(3)) — H°(P?,Ops) — H°(X,0x(3)) — H' (X, #x(3)) — H'(P?, Ops(3)) = 0.

Thus, we have h°(P3, #x(3)) — h'(P3, Zx(3)) = h°(P3, Ops) — h°(X, Ox(3)). Since deg X = 5 = deg(D.H),
where H C P? is a plane. Also, deg(Ox(3)) = deg(3D) = 15, deg(Kx) = 29 —2 = —2 < 0. Thus,
Riemann-Roch gives h(X, Ox(3)) = 15— 0+ 1 = 16. On the other hand, h°(P3, Ops) = (5) = 20. In
conclusion, h°(Zy(3)) = h'(Fx(3)) + 4 > 4. Thus, X must be contained in a cubic surface.

Now, suppose X is contained in a quadric surface @Q C P3. If ) is non-singular, say X has type (a,b) in
@, then a +b=>5 and (a —1)(b— 1) = 0. This leads a contradiction. If @ is singular, then remark 1V.6.4.1
shows that deg(X) =2a+1=5 and g(X) = a®> —a = 2? — 2 = 2, a contradiction to the assumption that
X is rational.
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Exercise 4 (by Yi-Heng Tsai).

Assume there exists such X, then we have a long exact sequence 0 — HY(%x(2)) — H°(Op:(2)) —
H°(Ox(2)) — ... with dimH°(Ox(2)) < dimH°(Ops(2)) = 10. Thus, dimH°(#x(2)) > 1 which means X
lies on some quadric surface. However, this contradicts to remark 6.4.1.

Exercise 6 (by Tzu-Yang Chou).

First recall that projectively normal is equivalent to H°(P?, Ops (1)) — H°(X, Ox(l)) is surjective for
any non-negative [.
If d = 6, we have g < 4, so we need that g # 0, 1,2. Let D be the hyperplane section (so deg D = d = 6) which
is nonspecial in these cases. Riemann-Roch imlies that I(Ox(1)) =6+ 1— g =7,6,5 but h%(Ops(1)) = 4,
which leads to a contradiction.
If d =7, we have g < 6. The above argument still works for g =0,1,2,3. For g = 4, we use the divisor 2D.
1(0x(2)) =7 x 2+ 1—4 =11 but h°(Op(2)) = 10.

Exercise 8 (by Shuang-Yen Lee).

If D is a nonspecial divisor of degree d such that |D| has no base point, then by R-R we have
{(D)=d+1—g. If d < g, then dim|D| < 0. So |D| = {E} or @, this implies | D| has base point or empty.

Conversely, suppose d > g+ 1. Let S C X be the set of divisors D € X? such that there exists P € X
with D — P ~ E > 0 is a special divisor. Note that every D € X? — S is a nonspecial base point free divisor
of deg d. So we want to show that S # X9,

Let D € S be nonspecial, then there exist P € X such that D — P ~ E > 0 is special. We have
D =FE+ P+ (f) for some f € K(X). By R-R, FE special implies that

(EY=degE+1—g+ /¢ K—-E)=d—g+{K—-E)>d—g+1.

E+ P is nonspecial, so {(E+P) = deg(E+P)+1—g = d—g+1. Since L(E+P) D L(E), L(E+P) = L(E).
So f € L(E+ P)=L(E), hence D = (E+ (f)) + P and E + (f) > 0 is special. Therefore

SC{E+ P | E >0 special and P € X} U { special divisors }.

Since dim | K| = g — 1, the dimension of special divisors as a subset of X?! and X? are both < g — 1. Thus
dim S < g <dim X. So S # X, as desired.
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