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Exercise 0 (by Kuan-Wen).

This is an example of proof.

Remark. This is an example for how to write in this format.

1 Affine Varieties
Exercise 1 (by Jung-Tao).

(a) A(Y ) = k[x, y]/(y − x2) ∼= k[x]

(b) A(Z) = k[x, y]/(xy − 1), which is generated by invertible elements x, y, is
not isomorphic to k[x]

(c) If char(k)6= 2, irreducible(non-degenerate) quadratic polynomial ax2 + bxy +
cy2 + dx + ey + f in k[x, y] can be represented as either x2 − y = 0 (if
b2 = 4ac) or x2− y2 = t (else) under linear parameterization, and notice that
xy − 1 = 0 is equivalent to (x+ y)2 − (x− y)2 = 4, so we are done.

Else if char(k)= 2, consider the quadratic polynomial ax2 + bxy + cy2 + dx+
ey + f ,

if b 6= 0, we can assume d = e = 0 under translation, ax2 + bxy + cy2 =
g(x, y)h(x, y), where g, h are linear. If g = zh, for some z ∈ k, the quadratic
polynomial is not irreducible, so g 6= zh, and the coordinate ring k[x, y]/(gh−
f) is isomorphic to k[x, y]/(xy − 1), because k[x, y] = k[g, h].

Else b = 0, we can assume e = 0, else e 6= 0, and let y′ = y + d
e
x, and d

becomes zero. And then we can assume a = 0, so the quadratic polynomial
becomes cy2 + dx+ f , and the coordinate ring is obviously k[x]
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Exercise 2 (by Yu-Ting).

Let f = y − x2 and g = z − x3. Note that Y = V (f, g), then Y is closed.
A := k[x, y, z]/(f, g)

∼→ k[x], which is a domain, then (f, g) is a prime ideal, hence
Y = V (f, g) is an affine variety. Also, we have I(Y ) = I(V (f, g)) =

√
(f, g) =

(f, g), and dimY = dimA(Y ) = dim k[x] = 1).

Exercise 3 (by Te-Lun).

V (x2 − yz, xz − x) = V (x2 − yz) ∩ V (xz − x)

= V (x2 − yz) ∩ [V (x) ∪ V (z − 1)]

= [V (x2 − yz) ∩ V (x)] ∪ [V (x2 − yz) ∩ V (z − 1)]

= [V (x, y) ∪ V (x, z)] ∪ V (x2 − y, z − 1)

where (x, y), (x, z), (x2 − y, z − 1) are obviously prime by taking their quotient
domain.

Exercise 4 (by Shi-Xin).

Clearly, the Zariski closed set in A1 are the sets of finitely many points. So the
Zariski open sets in A1 are the complement of finitely many points. Since open
sets of A1×A1 are the union of Ui×Vi where Ui, Vi are open in A1, in the sense of
the product topology of their Zariski topology, the closed sets in A1 × A1 consist
of some point points, some horizontal lines and some vertical lines. However, there
are more varied closed sets in A2 such like the curve defined by y − x2.

Exercise 5 (by Pei-Hsuan).

(⇒) Say B ∼= k[x1, . . . , xn]/I(Y ) for some algebraic set Y in An. Clearly, B
is finitely generated, and since I(Y ) is a radical ideal, B has no nilpotent
element.

(⇐) Since B is finitely generated, we can write B as k[x1, . . . , xn]/a for some
n ∈ N and for some ideal a in k[xa, . . . , xn]. Since B is reduced, a is radical.
Let Y = V (a), then B ∼= A(Y ).

Exercise 7 (by Tzu-Yang Tsai).

(a) To show these are equivalent, we shall show the following:

(i)⇒(ii) For any closed set chain in the family of closed subsets, there’s a minimal
element. Then the intersection of minimal elements of closed set chains,
which satisfies d.c.c, has a minimal element, which is the minimal
element in the family of closed subsets.
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(ii)⇒(i) For any closed set chain {Fi}i∈I , expand it into a family of closed set,
which has a minimal element. The minimal element can be denoted as
∩ni=1Fi for some n ∈ N, in other word, the chain has a minimal element.

(i)⇔(iii) (And also (ii)⇔(iv)) Easily shown by taking complement.

(b) If {Fi}i∈I is a set of open cover of A, we assume the result is wrong, then
∃{Fi}i∈Z s.t. {∪Fi}i∈Z is an a.c.c. in X that don’t have maximal element,
which contradicts to Noetherian by (a)(iii).

(c) If Y ⊂ X is not Noetherian, i.e. ∃Y1 ( Y2 ( . . . that is not stationary, then
take closures of Yi in X, which leads to a chain with d.c.c., which is not
stationary thus a contradiction.

(d) Suppose it’s not finite, for an infinite set of points {xi}i∈I , take open sets
{Fi}i∈I s.t. xi ∈ Fi and xj /∈ Fi∀i 6= j. Then ∪ni=1Fi ⊂ X, which is a chain
with a.c.c, by (a)(iii), it’s a contradiction. Therefore X is finite, thus has a
discrete topology.

Exercise 8 (by Zi-Li).

Let Y = V (P) be an affine variety of dimension r in An, H = V (f), f is an
irreducible polynomial. V (P) ∩ V (f) = V (P + (f)), say

√
P + (f) = ∩ki=1Pi, Pi

is minimal prime divisors of
√

P + (f). Work in A/P,
√

P + (f)/P =
√

(f̄) =
∩ki=1Pi/P, where f̄ denotes the image of f in A/P. We can assume Y ∩H 6= ∅
and Y * H, i.e. f̄ is not a unit or zero divisor in A/P. Note that (f̄) and

√
(f̄)

have same minimal prime divisors, hence htPi/P = 1. Hence, htPi = htP + 1,
every irreducible component of Y ∩H has dimension of r − 1.

Exercise 9 (by Shuang-Yen).

Induction on r, the case r = 0 is trivial. Let a be generated by f1, f2, . . . , fr and
let a′ = 〈f1, . . . , fr−1〉, then every irreducible component of V (a′) has dimension
≥ n − r + 1. For an irreducible component V of V (a), suppose p = I(V ). Let
V (a′) = W1 ∪ W2 ∪ . . . ∪ Wm be all the irreducible component and suppose
qk = I(Wk), then ∩qk ⊂ p implies that qk ⊂ p for some k. Hence p/qk is one of the
minimal prime over 〈fr〉 C k[x1, . . . , xn]/qk. If fr is neither a zero divisor or a unit,
then htp/qk = 1. If fr is a zero divisor, then fr = 0, which means htp/qk = 0. If
fr is a unit, then p = k[x1, . . . , xn], a contradiction. So htp/qk ≤ 1, which implies

htp ≤ htqk + 1 ≤ r =⇒ dimV ≥ n− r.

Exercise 10 (by Yi-Tsung).
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(a) If dimX =∞, then there is nothing to prove. Suppose dimX <∞, for any
chain C0 ( C1 ( . . . of irreducible closed subsets in Y , we have C0 ⊆ C1 ⊆ . . .
a chain of irreducible closed subsets in X. If there exists n ∈ N ∪ {0} such
that Cn = Cn+1, note that Cn ∩ Y = Cn

Y
= Cn, where Cn

Y denote the
closure of Cn in Y , then Cn = Cn+1, contradiction. Thus dimY ≤ dimX.

(b) It suffices to show that dimX ≤ sup
i

dimUi. For any chain C0 ( C1 ( . . . of

irreducible closed subsets in X, take x ∈ C0 and i such that x ∈ Ui. Then
C0 ∩Ui ⊆ C1 ∩Ui ⊆ . . . is a chain of irreducible closed subsets in Ui. If there
exists n ∈ N∩ {0} such that Cn ∩Ui = Cn+1 ∩Ui, note that Cj ∩Ui is dense
in Cj, then

Cn = Cn ∩ Ui
Cn

= Cn ∩ Ui
X

= Cn+1 ∩ Ui
X

= Cn+1

which is a contradiction. Hence C0 ∩ Ui ( C1 ∩ Ui ( . . . is a chain of
irreducible closed subsets in Ui, then dimX ≤ dimUi ≤ sup

i
dimUi. Thus

dimX = sup
i

dimUi.

(c) Consider X = {1, 2} with open subsets {1, 2} , {2} , ∅ and U = {1}. Then
dimU = 0 but dimX = 1.

(d) If Y 6= X, let C0 ( C1 ( . . . ( CdimY be a chain of irreducible closed subsets
in Y , then C0 ( C1 ( . . . ( CdimY ( X is a chain of irreducible closed
subsets in X, yielding that dimX > dimY , contradiction. Hence Y = X.

(e) Let X = N with closed subsets {{1, 2, . . . , n}|n ∈ N}. Clearly X is noethe-
rian but {1} ( {1, 2} ( . . . is a chain of irreducible closed subsets in X,
therefore dimX =∞.

Exercise 11 (by Chi-Kang).

First we show that Y is irreducible i,e, I(Y ) is prime. Now suppose Y = V1∪V2

with Vi proper closed subset of Y , then each Vi is of the form V ∩ V (Ii) for some
ideal Ii of k[x, y, z]. Now since Y is not a subset of V (Ii), we have I(Y ) + Ii for
each i. Now let fi ∈ Ii\I(Y ), we have V (fi) ⊃ V (Ii). So we have

Vi ⊂ Y ∩ V (fi) = {(t3, t4, t5)|t ∈ k, fi(t3, t4, t5) = 0}.

But fi(t3, t4, t5) 6= 0 (otherwise fi ∈ I(Y )), there are only finitely many root of
fi(t

3, t4, t5), thus Y ∩ V (fi) must be a finite set, so does Vi, but Y is an infinite
set since algebraically closed field always infinite, so it cannot be a union of two
finite subsets, hence we get a contradiction and so Y is irreducible. And in the
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above proof we also show that every proper closed subset of Y is finite, thus
any non-empty proper closed irreducible subset of Y must be a single point, so
dim(Y ) = 1, hence ht(I(Y )) = 3− 1 = 2.

To show I(Y ) cannot be generated by 2 elements, now we give the new "degree"
of variables by deg x = 3, deg y = 4, deg z = 5. Then since 8 is the smallest integer
which can be written in more than one distinct non-negative integer combination
of 3,4,5, every monomial term of element in I(Y ) has degree at least 8. Now it is
obviously that xz − y2, x3 − yz, x2y − z2 ∈ I(Y ).
Claim: for any f, g ∈ I(Y ), at least one of xz − y2, x3 − yz, x2y − z2 not lies in
the ideal (f, g).
To prove this claim, first we write f =

∑
fd, g =

∑
gd for fd, gd be the homogeneous

part of degree d in f, g. Then since fd(t
3, t4, t5) = gd(t

3, t4, t5) = 0 for each
homogeneous part of f, g, and xz, y2 are the only two degree 8 monomial in
k[x, y, z], x3, yz are the only two degree 9 monomial in k[x, y, z], x2y, z2 are the
only two degree 10 monomial in k[x, y, z], we must have

f8 = a1(xz − y2), f9 = a2(x3 − yz), f10 = a3(x2y − z2)

g8 = b1(xz − y2), g9 = b2(x3 − yz), g10 = b3(x2y − z2)

for some ai, bi ∈ k. Now if xz − y2, x3 − yz, x2y − z2 all lies in (f, g), then for
xz− y2, there is some h1, h2 ∈ k[x, y, z] s,t, h1f + h2g = xz− y2, since in k[x, y, z]
any polynomial has no degree 1,2 terms, let ci be the constant term of hi, we must
have [

c1 c2

] [a1 a2 a3

b1 b2 b3

]
=
[
1 0 0

]
Similarly if x3 − yz, x2y − z2 ∈ (f, g), there is di, ei ∈ k s,t,c1 c2

d1 d2

e1 e2

[a1 a2 a3

b1 b2 b3

]
=

1 0 0
0 1 0
0 0 1


But by counting the rank it is obviously impossible. Hence at least one of
xz − y2, x3 − yz, x2y − z2 not lies in the ideal (f, g), so any 2 elements of I(Y )
cannot generate the complete I(Y ).

Exercise 12 (by Wei-Ping).

Take xy + 1 = 0 to see that there are two components. Assume xy + 1 =
p(s, y)q(x, y), then counting degree of x and y we must have p and q are both linear
and is in form xy+1 = (ax+b)(cx+d). Then ac = bd = 1, bc+ad = 0⇒ b

a
+ a

b
= 0,

which is impossible in R. Hence xy+1 is irreducible but its zero set isn’t irreducible.
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2 Projective Varieties
Exercise 1 (by Chun-Yi).

If f ∈ S is a homogeneous polynomial with positive degree such that f(p) ∈ Z(a)
in Pn, then f(p) ∈ An+1. By usual Hilbert Nullstellensatz, f q ∈ a for some q > 0.

Exercise 2 (by Chun-Yi).

Exercise 4 (by Jung-Tao).

(a) If Z(a) 6= φ, we have I(Z(a)) =
√
a = a, Z(I(Y )) = Ȳ = Y . And

Z(a) = φ⇔ a = S or S+

I(φ) = S, so we got a one-to-one inclusion-reversing correspondence between
Y an algebraic set in P n and a a homogeneous radical ideal of S not equal
to S+ by [Ex 1.2.3].

(b)
Y is not irreducible ⇔ Y = Y1 ∪ Y2 ⇔ I(Y ) = I(Y1) ∩ I(Y2)

Where Y1, Y2 are closed and 6= Y .
if I(Y ) = I(Y1) ∩ I(Y2), ∃x ∈ I(Y1) \ I(Y ), y ∈ I(Y2) \ I(Y )⇒ xy ∈ I(Y )
So I(Y ) is not a prime ideal.
On the other side, if I(Y ) is not a prime ideal, consider its primary decom-
position. The fact I(Y ) is reduced =⇒ it is intersection of prime ideals
more than one, so I(Y ) = I(Y1)∩ I(Y2), for some closed Y1, Y2, and Y is not
irreducible.

(c) I(P n) = 0 is a prime ideal =⇒ P n is irreducible

Exercise 5 (by Jung-Tao).

(a) A descending chain of irreducible closed sets in P n corresponds to an ascend-
ing chain of prime ideals in S. So the S is a noetherian ring implies P n is
noetherian.

(b) algebraic set Y in P n corresponds to a radical ideal in S. Consider the
primary decomposition of I(Y ) = P1 ∩ ... ∩ Pt, Pi is prime since I(Y ) is a
radical ideal. so Pi = Z(Yi), and I(Y ) = I(Yi)∩...∩I(Yt), and Y = Y1∪...∪Yt,
where Yi is irreducible, and no one contains another one.
If there is a "redundantless" way to represent Y as finite unions of irreducible
closed sets, it will corresponds to a primary decomposition of I(Y ), by the
uniqueness of primary decomposition, we concluded that every algebraic set
in P n can be uniquely written as a finite union of irreducible closed sets, no
one containing another.
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Exercise 6 (by Tzu-Yang Tsai).

Let Yi = φ(Ui ∪ Y ), A(Yi) is the coordinate ring of Yi in Ui, then A(Yi) ∼=
((S(Y )xi)(0), which implies A(Yi)[xi, x

−1
i ] ∼= S(Yi)xi . Take function field of both

side, we getK(A(Yi)[xi, x
−1
i ]) ∼= K(A(Yi)[xi]) ∼= K(S(Yi)xi).

Consequently, dimS(Y ) =trdegkK(S(Y )) =trdegkK(A(Yi)[xi]) = dim(A(Yi) +
1 = dimYi + 1. It remains to show that ∃i ∈ Ns.t. dimYi = dimY . But
Y = ∪ni=1Ui ∪ Y is an open cover, by Exercise 1.10, we have dimY = sup dimYi,
therefore ∃i ∈ Ns.t. dimYi = dimY .

Exercise 7 (by Yi-Heng).

(a) By Ex2.6, dimPn = dimS(Pn)− 1 = dimk[x0, ..., xn]− 1 = n.

(b) Consider Yi = ϕ(Y
⋂
Ui) 6= φ. By Ex2.6, dimY = dimYi = dim Ȳi = dim Ȳ .

Exercise 8 (by Yi-Heng).

Note that dimY = n− 1⇔ ht(I(Y )) = 1.

(⇒) Since S is an UFD, I(Y ) = (f) for some f ∈ S irreducible by Prop1.12A.
Thus, Y = Z(f).

(⇐) Let Y = Z(f) for some f ∈ S irreducible. Then, by Thm1.11A, ht I(Y ) =
ht(f) = 1 since deg(f) > 0 and S is a domain.

Exercise 9 (by Yu-Chi).

(a) Notice that if we given a polynomial f(y1, . . . , yn) ∈ k[y1, . . . , yn], then

α(β(f)) = α(x
deg(f)
0 f(x1/x0, . . . , xn/x0)) = f.

Therefore, given f ∈ I(Y ), β(f) vanishes on Y ∩ U0 = Y . Since Y is
dense in Y , f vanishes on whole Y . This gives β(I(Y )) ⊂ I(Y ); hence,
〈β(I(Y ))〉 ⊂ I(Y ).

For the reverse inclusion, consider g ∈ I(Y ), then α(g) = g(1, y1, . . . , yn)
vanishes on Y . As a result, α(g) ∈ I(Y ). Say α(g) has degree r (note that
r ≤ d), then

β(α(g)) = β(g(1, y1, . . . , yn)) = xr0g(1, x1/x0, . . . , xn/x0).

Thus, g(x0, . . . , xn) = xd−r0 β(g) ∈ 〈β(I(Y ))〉.
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(b) From previous exercise I.1.2, we know that the defining ideal I(Y ) of affine
twisted cubic Y is given by I(Y ) = 〈f1 := x2 − y, f2 := x3 − z〉. Then their
homogenizations are β(f1) = x2 − yw; β(f2) = x3 − zw2.

Notice that y2 − xz = (y + x2)f2 − xf1 ∈ I(Y ) and β(xz − y2) = xz − y2.
However, xz − y2 /∈ 〈β(f1), β(f2)〉. To see this, suppose there exists f, g ∈
k[x, y, z, w] such that

xz − y2 = f(x, y, z, w)(wy − x2) + g(x, y, z, w)(w2y − x3).

By comparing degree, one see that g must be 0 and f must have degree 0.
This gives a contradiction.

To obtain a generator of 〈β(I(Y )〉, we first see note that {g1 := xz−y2, g2 :=
xy−z, g3 := x2−y} is a set generators of I(Y ) since we have x3−z = xg3 +g2

and g3 = f1. In fact, {g1, g2, g3} is reduced Gröbner basis for I(Y ) with
respect to grevlex as one can verify by hand or using Macaulay 2.

We now claim that their homogenizations {g1 = xz − y2, β(g2) = xy −
zw, β(g3) = x2 − yw} is a set of generators for I(Y ) = 〈β(I(Y ))〉. Let
J := 〈xz − y2, xy − zw, x2 − yw〉, then on affine part U(w) := P3 \ Z(w),
Z(J) ∩ U(w) ∼= Z(xz − y2, xy − z, x2 − y) ⊂ A3, which is just affine twisted
cubic. For points P = [x : y : z : 0] on Z(J) ∩ Z(w), we see that the
homogeneous coordinates of P satisfies

xz − y2;xy = 0;x2 = 0.

This gives x = y = 0. Hence, P = [0 : 0 : 1 : 0]. Therefore,

V (J) = {[t : t2 : t3 : 1]|t ∈ k} ∪ {[0 : 0 : 1 : 0]}.

Since V (J) is a closed subset containing Y , we have Z(J) ⊇ Y , and
thus I(Z(J)) ⊂ I(Y ). Conversely, for any homogeneous polynomial f ∈
k[x, y, z, w]d such that f vanishes on Y , i.e., g(t) := f(t, t2, t3, 1) = 0 for
all t ∈ k. Since k = k̄, k is an infinite field, g(t) must be zero polynomial.
Suppose that f(0, 0, 1, 0) 6= 0, then f must contains a term of the form czd

for some c 6= 0. Then g(t) = ct3d + h(t), where deg h(t) < 3d. Therefore, it
cannot be zero polynomial. Hence, I(Y ) ⊂ I(Z(J)) and Y = Z(J). Now,
Z(J) = Y is irreducible since Y is. This shows that J is a prime ideal, and
hence I(Y ) = I(Z(J)) = J .

Although this example shows that if {f1, f2} generates I(Y ), then {β(f1), β(f2)}
does not necessarily generates I(Y ). However, one can prove that if {g1, . . . , gr} is
a Gröbner basis of I with respect to some graded monomial ordering (eg., grlex,
grevlex), then their homogenization generates the ideal 〈β(I)〉, as illustrated by
above example.
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Exercise 10 (by Pei-Hsuan).

(a) Clearly, f ∈ I(Y ) is generated by homogeneous polynomial, so f(0, . . . 0) = 0.
Also, f(θ−1(Y ) = 0 by definition of I(Y ) and θ. So I(Y ) ⊆ I(C(Y )).

On the other hand, for g ∈ I(CY )), write

g =
r∑

d=0

gd,

where gd is homoeneous with degree d.

Since for any (a0, . . . an) ∈ C(Y ), then (λa0, . . . , λan) ∈ C(Y ), ∀λ ∈ k. So
we can see that

0 =
r∑

d=0

gd(λa0, . . . , λan) =
r∑

d=0

gd(a0, . . . , an)λd.

RHS is a polynomial in k[λ], but it vanish on all k, so it must be a zero
polynomial. Thus, gd(a0, . . . an) = 0, ∀d. Then gd ∈ I(Y ),∀d⇒ g ∈ I(Y ).

(b) C(Y ) is irreducible. ⇔ I(C(Y )) is prime. ⇔ I(Y ) is prime. ⇔ Y is
irreducible.

(c)
dimC(Y ) = dim k[x0, . . . , xn]/I(C(Y )) = dim k[x0, . . . , xn]/I(Y )

= dimS(Y ) = dimY + 1 (The last equality is due to exercise 1.2.6.)

Exercise 12 (by Wei-Ping).

(a) k[y0, . . . , yN ]/ker θ → k[x0, . . . , xn] is injective, since k[x0, . . . , xn] is domain,
image of θ is also a domain, hence kernel is a prime ideal(so a radical ideal).
For any θ(f) = 0, their homogeneous part must also map to 0, hence kernel
is a homogeneous ideal.

(b) Im ρd ⊆ Z(ker θ) since for any f ∈ ker θ, choose any (M0(a) . . .Mn(a)) ∈
Im ρd, f(M0(a) . . .Mn(a)) = θ(f)(a) = 0. To prove the converse, we
construct preimage. First we pair number from 0 to N with n-tuple
(e0, . . . , en) such that

∑n
i=0 ei = d, and let Mk(b) =

∏n
i=0 b

ei
i , where b =

(b0, . . . , bn). Consider point a = (a0, . . . , aN) ∈ Z(ker θ), construct point
ā = (a(d,0,...0), a(d−1,1,0,...0), a(d−1,0,1,...,0), . . . , a(d−1,0,...,0,1)).

Now we claim ρd(ā) = a by saying ρd(ā)(e0,...,en) = ad−1
(d,0,...,0)a(e0,...,en) for any

(e0, . . . , en). Then it suffices to show that f = xe0(d,0,...,0)

∏n
i=1 x

ei
(d−1,0,...,1,...,0) −

xd−1
(d,0,...,0)x(e0,...,en) ∈ ker θ for any (e0, . . . , en), which holds since both two
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terms are sent to y
e0+d(d−1)
0

∏n
i=1 y

ei
i . Note that this method works with

a(d,0,...0) 6= 0, since not all a(0,...,d,...,0) = 0, by suitable reordering we can
always assume it is nonzero.

(c) By (b) and injectivity(fixing some bk 6= 0, and compare bd−1
k bj for 0 ≤ j ≤ n

to see that ratio of (b0, . . . , bn) is fixed), the map is bijective. Now the map in
(b) is inverse map, and both are continuous since both map is in polynomial
form, so any preimage of closed set define by equations is still defined by
polynomial equations, which is closed. Hence the map is homeomorphism,
in fact, it is an isomorphism.

(d) The embedding is (x0, x1) → (x3
0, x

2
0x1, x0x

2
1, x

3
1), assume x0 6= 0, then it is

twist cubic curve (1, t, t2, t3) where t = x1
x0
.

Exercise 13 (by Shuang-Yen).

Let Y = V (a) as in the previous exercise and let Z = Y ∩ V (I) = V (
√
a + I)

for some radical homogeneous ideal I. Since dimZ = 1 and dimY = dimP2 = 2,
ht
√
I = 1 in k[y0, . . . , y5]/a ∼=

⊕
m≥0 S2m

∼= k[z0, z1, z2] which is a UFD. So√
I = 〈f〉 for some f ∈ k[y0, . . . , y5] implies that

√
a + I =

√
a + 〈f〉, so

Z = V (
√

a + 〈f〉) = V (a + 〈f〉) = V (a) ∩ V (f) = Y ∩ V,

where V = V (f) is a hypersurface.

Exercise 14 (by Tzu-Yang Chou).

We need to show that the ideal defined by the kernel of the map φ : k[zij|i =
0, · · · , r, j = 0, · · · , s] → k[x0, · · · , xr, y0, · · · , ys] will define the image of Segre
embedding.

First, we note that the image of ψ is equal to Z(I), where I is the ideal
generated by binomials of the form zijzkl− zilzkj. One side of the inclusion is clear.
For the converse, given any p = [z00 : · · · : zrs] ∈ Z(I), we may choose some zij 6= 0
and then define ak :=

zkj
zij

for k 6= i and ai := 1. Similarly, we define bl := zil
zij

for
l 6= j and bj := 1. Then we found that ([a0 : · · · : ar], [b0 : · · · : bs]) will map to the
point p under the map ψ.

Now, it remains to show that kernel of φ is exactly the same as I since then
I will be a prime ideal and hence our assertion is proved. Again, one inclusion
is obvious. Conversely, for a polynomial f with φ(f) = 0, we may assume f
is homogeneous by looking at each of its homogeneous part. By the algebraic
independence of xi and yj, we see that the sum of the coefficients of terms, whose
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second indices differ by a permutation, must be zero, that is, the sum of coefficients
of zi1σ(i1)zi2σ(i2)zi3σ(i3) · · · zikσ(ik) for all σ ∈ Sk is 0. So we reduce to the problem
that whether a binomial which is difference of two such terms can be generated
by zijzkl − zilzkj, namely, those of degree two. However, since the symmetric
groups are generated by 2-cycles, we obtain that zi1σ(i1)zi2σ(i2)zi3σ(i3) · · · zikσ(ik) can
be generated by those binomials of degree k − 1. This completes the proof.

Exercise 15 (by Shi-Xin).

(a) Let φ : P1
X,Y × P1

Z,W → P3
w,x,y,z be the map sending ((X, Y ), (Z,W )) to

(XZ,XW, Y Z, Y W ). Then by exercise 2.14, one can show Imφ = Z(xy −
zw) = Q immediately.

(b) For t, u ∈ P1, let {Lt} and {Mu} be the image of {t} × P1 and P1 × {u} via
φ, respectively. Then

Lt = {(w, x, y, z) ∈ P3 | t2x = t1z, t1y = t2w}
Mu = {(w, x, y, z) ∈ P3 | u2w = u1x, u2y = u1z}

It is clear that Lt = Lt′ if and only if t = t′ in P1, and Lt ∩Lt′ = ∅ whenever
t 6= t′. Similarly, the same result holds for Mu. Moreover, Lt ∩Mu only meet
at the point (t1u1, t1u2, t2u1, t2u2)

(c) Consider the set T := Z(x − y) ∩ Q which is a closed set in Q. It is easy
to show that Im(S) = T where S = {(λ, λ) | λ ∈ P1}. If S is closed, it can
be write as U × V for some closed subsets U, V ⊂ P1. Choose two distinct
point (λ1, λ1), (λ2, λ2) in S. Then (λ1, λ2) should be in U × V , which leads
to a contradiction since (λ1, λ2) should not be in S. So S is not a closed set
in the product topology.

Exercise 16 (by Yi-Tsung).

(a) LetQ1 = V (x2 − yw) , Q2 = (xy − zw), thenQ1∩Q2 = V (x2 − yw, xy − zw).
For (x, y, z, w) ∈ Q1 ∩Q2, we have

xzw = x2y = y2w

⇒ w = 0 or y2 = xz

⇒ x = w = 0 or y2 = xz

⇒ Q1 ∩Q2 ⊆ V (x,w) ∩ V
(
y2 − xz

)
Conversely, it is clear that Q1 ∩Q2 ⊇ V (x,w) ∩ V (y2 − xz), hence we see
that Q1 ∩Q2 = V (x,w) ∩ V (y2 − xz) is the union of a twisted cubic curve
and a line.

11



(b) Let C = V (x2 − yz) , L = V (y) ⊆ P2 ⇒ C ∩ L has exactly one point
P = (0, 0, 1)⇒ I (P ) = (x, y) and I (C) + I (L) = (x2 − yz) + (y). However
x ∈ I (P ) but x /∈ I (C) + I (L), hence I (C) + I (L) 6= I (P ).

Exercise 17 (by Chi-Kang).

(a) Let C(Y ) be the affine cone of Y in An+1, then we have

dimY = dimC(Y )− 1 = dimA(C(Y ))− 1 ≥ n+ 1− q − 1 = n− q

(b) Let Y be a variety of dimension r in Pn which is a strict complete intersection.
Then I(Y ) = (f1, ..., fn−r). Thus Y = V (I(Y )) = V (f1)∩...∩V (fn−r), which
is a complete intersection as set.

(c) To show Y is not a complete intersection, similar to 1.11, we can see that when
we give the weight v of variables by v(w) = 0, v(x) = 1, v(y) = 2, v(z) = 3,
then x2, yw are the only 2 degree 2 monomial of weight 2. xy, zw are the
only 2 degree 2 monomial of weight 3. And xz, y2 are the only 2 degree 2
monomial of weight 4. Since every variables have distinct weight, in I(Y )
there ia no monomial with degree or weight less that 1.
Now let f, g ∈ I(Y ), we claim that at least one of x2 − yw, xy − zw, xz − y2

is not in (f, g).
To prove this, first we write f =

∑
fd,v, g =

∑
gd,v for fd,v, gd,v be the

part of degree d and weight v in f, g. Then since fd,v(s, st, st
2, st3) =

gd,v(s, st, st
2, st3) = 0 for all t ∈ k, s ∈ k − 0 (s parametrized the degree, t

parametrized the weight.)Similar to 1.11 we must have

f2,2 = a1(x2 − yw),f2,3 = a2(xy − zw),f2,4 = a3(xz − y2)

g2,2 = b1(x2 − yw),g2,3 = b2(xy − zw),g2,4 = b3(xz − y2)

for some ai, bi ∈ k. Now if xz − y2, x3 − yz, x2y − z2 all lies in (f, g), then
for xz − y2, there is some h1, h2 ∈ k[x, y, z] s,t, h1f + h2g = xz − y2, since
x2 − yw, xy − zw, xz − y2 are the lowest degree term in I, let ci be the
constant term of hi we must have[

c1 c2

] [a1 a2 a3

b1 b2 b3

]
=
[
1 0 0

]
Similarly if xy − zw, xz − y2 ∈ (f, g), there is di, ei ∈ k s,t,c1 c2

d1 d2

e1 e2

[a1 a2 a3

b1 b2 b3

]
=

1 0 0
0 1 0
0 0 1


12



But by counting the rank it is obviously impossible. Hence at least one of
xz − y2, x3 − yz, x2y − z2 not lies in the ideal (f, g), so any 2 elements of
I(Y ) cannot generate the complete I(Y ).
Thus Y is not a strict complete intersection. To show Y is a set theoretic
complete intersection. Let H2 be defined by x2 − yw, H3 be defined by
y(xz − y2) + z(xy − zw) = 2xyz − y3 − z2w, the we have

H2 ∩H3 ={[1, x, y, z]|y = x2, z2 + y3 = 2xyz}
∪ {[0, x, y, z]|x2 = y(2xz − y) = 0}

={[1, t, t2, z]|(z − t3)2 = 0} ∪ {[0, 0, y, z]|y3 = 0}
={[1, t, t2, t3]|t ∈ K} ∪ {[0, 0, 0, 1]} = Y.

Hence Y is a set-theotetic complete intersection.
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3 Morphisms
Exercise 1 (by Zi-Li).

(a) By exercise 1.1, any conic Y is isomorphic to A1 or xy−1 = 0. Say Y = Z(xy−1),
let ϕ : Y −→ A1 − {0}, (x, y) 7−→ x, ψ : A1 − {0} −→ Y, x 7−→ (x, 1/x).The com-
positions of ϕ and ψ are identities, hence, Y ' A1 − {0}

(b) Let Y be an open set of A1, we may assume 0 /∈ Y , then f : Y −→ k, y 7−→ 1/y
is a regular function on Y . Suppose ϕ : A1 ∼−→ Y , then 1/ϕ(x) = g(x) for some
g(x) ∈ k[x]. However, the zeros of g(x) lead to a contradiction.

(c) Let F (x, y, z) = ax2 + by2 + cz2 +dxy+ eyz+ fzx be an irreducible polynomial.
Consider F (1, s, t), by technique in classification of conic of A2, there exists trans-

formation
[
s
t

]
=

[
A B
C D

] [
u
v

]
+

[
P
Q

]
such that F = u− v2 or F = uv − 1, where[

A B
C D

]
is invertible matrix. Let

xy
z

 =

1 0 0
P A B
Q C D

uv
w

, then F = uv − w2

or F = vw − u2, hence, we can assume conic Y = Z(xy − z2). Then, 2 − Uple
embedding of P1 gives us the isomorphism between P1 and Y .

(d) Any two curves in P2 intersects, however, there are two curves which do
not intersect in A2.

(e) If affine variety Y is isomorphic to projective variety, then A(Y ) ' k, hence
I(Y ) is maximal, and hence Y is one point.

Exercise 2 (by Wei).

(a) Recall that the map ϕ is defined by

ϕ : A1 → V (y2 − x3) ⊆ A2, t 7→ (t2, t3)

(a.1) Bijectivity : the inverse set map is given by

ϕ−1(x, y) =

{
yx−1, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

(a.2) Bicontinuity : ϕ is clearly continuous. If we can show continuity of
ϕ−1, then we are done, that is, the image of a closed subset of A1 (i.e.
a finite set of points) is closed in V (y2 − x2), which is obvious.
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(a.3) Not an isomorphism : if we can show that the induced map on rings
isn’t an isomorphism, then we are done. Notice that the induced map is

ϕ∗ : k[x, y]/(y2 − x3)→ k[t], x 7→ t2, y 7→ t3

but this maps misses t.

(b) Recall that the map F (Frobenius morphism) is defined by

F : A1 → A1, t 7→ tp

where k is algebraically closed and has characteristic p > 0.

(b.1) Bijectivity : Notice that F is surjective under the assumption that k
is algebraically closed, and that F is injection under the assumption
that char(F ) = p.

(b.2) Bicontinuity : By the fact that F is bijective and that the closed
subsets of A1 are finite points, this is true.

(b.3) Not an isomorphism : if we can show that the induced map on rings
isn’t an isomorphism, then we are done. Notice that the induced map is

F ∗ : k[Y ]→ k[X], Y 7→ Xp

which is clearly not surjective (since F ∗ misses X).

Exercise 3 (by Yi-Tsung).

(a) For 〈U, f〉 ∈ Oϕ(P ),Y , let ϕ∗P (〈U, f〉) := 〈ϕ−1 (U) , f ◦ ϕ〉. f is regular on
U ⇒ f ◦ ϕ is regular on ϕ−1 (U). Hence ϕ∗P is a map from Oϕ(P ),Y → OP,X ,
and it is clear that ϕ∗P is a homomorphism.

(b) (⇒) Since ϕ is bicontinuous and bijective, ϕ is a homeomorphism.
(⇐) For X f−→ k regular, since ϕ∗P (f) is regular and ϕ∗P

−1 (f) and ϕ∗P
−1 (f) =

f ◦ ϕ−1, hence ϕ−1 is a morphism, and hence ϕ is an isomorphism.

(c) For ϕ∗P (f) = 0,

f ◦ ϕ = 0 on an open subset of X
⇒ f ◦ ϕ = 0 on X
⇒ f = 0 on ϕ (X)

⇒ f = 0 on Y since ϕ (X) is dense in Y
⇒ ϕ∗P is injective.
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Exercise 4 (by Wei).

Previously, we’ve seen that the d-uple embedding

ρd : Pn → PN , a 7→ (Mi(a))Ni=0

is a homeomorphism of Pn onto its image P := ρd(Pn). It is clear from definition
that ρd is a morphism, so we have to check if its inverse is also a morphism.
Being a morphism is a local property; that is, if for a chosen open cover {Ui}ni=0 of
Pn that ρ−1

d is a morphism from ρd(Ui) to Ui, then ρ−1
d is a morphism.

Choose for Pn the typical affine open cover {Ui}ni=0 with isomorphisms to affine
spaces ϕi : Ui → An, define Pi as ρd(Ui). Assume that

i = 0, (M0,M1,M2, ...,Mn) = (x0x
d−1
0 , x1x

d−1
0 , x2x

d−1
0 , ..., xnx

d−1
0 )

Then among restricting ρ−1
d to P0 and composing with ϕ0, we obtain

ϕ0ρ
−1
d : P0 → An, [y0 : y1 :, ..., : yN ] 7→ [1 : y1/y0, : ..., : yn/y0] 7→ (y1/y0, ..., yn/y0)

This is a map into an affine variety with regular component functions. Therefore
ρ−1
d |P0 is a morphism.

Exercise 7 (by Wei).

(b) Suppose Y ∩H = ∅, then Y ⊂ Pn rH. Y being closed, irreducible in Pn, it
is also closed, irreducible in Pn rH, so along with Exercise 3.5, Y is then
an affine variety. Being both an affine variety and a projective variety, we
have by Exercise 3.1(e) that dim(Y ) = 0.

(a) Special case of (b).

Exercise 7 (by Yu-Chi).

I would like to give a direct proof on part (a) without using part (b). Given
two plane curves X, Y ⊂ P2. By Exercise I.2.8, we know that there exists
irreducible homogeneous polynomials f, g ∈ k[x, y, z] with positive degree such
that X = Z(f), Y = Z(g). Then X ∩ Y = Z(f, g). The homogeneous coordinate
ring of X ∩ Y is given by k[x, y, z]/(f, g) ∼= k[x̄, ȳ, z̄]/(ḡ), where the bar means the
image in the quotient ring k[x, y, z]/(f). Note that the quotient ring is a domain
since f is irreducible.

If g ∈ (f), then X ⊂ Y , and hence X ∩ Y = X 6= ∅. Therefore, we assume
g /∈ (f), then ḡ 6= 0 in k[x, y, z]. On the other hand, if g is a unit in the quotient ring,
then there exists some h ∈ k[x, y, z] such that hg + rf = 1 for some r ∈ k[x, y, z].
However, by comparing degree, f, g are homogeneous of positive degree, and thus
above situation is impossible.
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Thus, ḡ is neither a zero divisor nor a unit in k[x, y, z]/(f). By Krull’s principal
ideal theorem, any minimal prime in the quotient ring containing ḡ has height 1.
Therefore, ht(f, g) ≤ 2. Suppose that X ∩ Y = ∅, then (f, g) ⊃ (x, y, z), and the
latter ideal has height 3. This gives the contradiction.

Exercise 8 (by Tzu-Yang Tsai).

We extend this function to global and write it as f = h
g
in P \ (Hi ∩Hj) for

some f, g are homogeneous polynomials that have same degree. Then g has no
solution on P \Hi ⇒ g = xni , similarly, g has no solution on P \Hj ⇒ g = xnj ,
then these two conditions are mutually contradicts. Thus g is a constant, which
leads to f is a constant.

Exercise 9 (by Shi-Xin).

The idea is to show that S(Y ) = k[x, y, z]/(xz − y2) is not a UFD by checking
that x̄ is an irreducible element but not a prime element in S(Y ). Clearly, x̄
is not prime since ȳ · ȳ = x̄ · z̄ ∈ (x̄), but ȳ doesn’t lie in (x̄). Now, suppose
x̄ = f̄ · ḡ for some f̄ , ḡ ∈ S(Y ). Then x− fg = (xz− y2)h where f, g, h ∈ k[x, y, z].
Replacing y2 by xz, we can assume that f, g have at most degree 1 w.r.t y, and
hence h ∈ k[x, z] since x− fg has at most degree 2 w.r.t y. We may write

x− (a+ by)(c+ dy) = (xz − y2) · h for a, b, c, d, h ∈ k[x, z]

In the view of polynomials of y, we have the following equation from the coefficients:
x− ac = xz · h
ad+ bc = 0
bd = h

If h 6= 0, let n,m be the degree of h, ac w.r.t x. From the first equation, it follows
that m = n + 1. Moreover, one can derive m ≡ n(mod 2) from the other two
equations. However, it is impossible that n+ 1 ≡ n(mod 2), so h should be zero.
Since x is irreducible in k[x, y, z], either f or g is a unit, and hence either f̄ or ḡ is
a unit. Thus x̄ is irreducible.

Exercise 10 (by Yi-Heng).

For every open set V ⊂ Y ′, and for every regular function f : V → k, we want
to show that f ◦ ϕ|X′ : (ϕ|X′)−1(V )→ k is regular.

Let P ∈ (ϕ|X′)−1(V ) and Q = ϕ(P ) ∈ V . Since f is regular on V , we have
f = g/h on some open neighborhood U of Q in V . Note that g/h is regular on
W := Y − V (h). Thus, (g/h) ◦ ϕ is regular on ϕ−1(W ), and (g/h) ◦ ϕ = f ◦ ϕ|X′
on ϕ−1(W ) ∩ (ϕ|X′)−1(V ) ⊃ (ϕ|X′)−1(U) 3 P . Hence, f ◦ ϕ|X′ is regular.
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Exercise 11 (by Jung-Tao).

Consider an open affine cover Y of P , Op ∼= A(Y )mp , so prime ideals of Op
corresponds to prime ideas of A(Y )mp corresponds to prime ideals of A(Y ) inside
mp corresponds to the closed subvarieties of Y containing P . So we have to prove
that the closed subvarieties of Y containing P corresponds to closed subvarieties
of X containing P .

We have to prove that there are no closed subvarieties U and V , U ∩Y = V ∩Y .
If there are such U and V , Y C and U covers V , V is irreducible and P ∈ U ∩ Y
so V * Y C and V ⊂ U , similarly U ⊂ V =⇒ U = V , and we are done.

Exercise 12 (by Pei-Hsuan).

If X is affine, then by Theorem 3.2(c), it is done!
Now, suppose X ⊆ P2. For point p ∈ X, we use affine cover. There exists an

affine piece such that P ∈ Xi = X ∩Ui. By Theorem 3.2(c), dimOp,Xi
= dimXi =

dimX. So it is sufficient to show that Op,X = Op,Xi
. Op,X ⊆ Op,Xi

is clear. On
the other hand, for < U, f >∈ Op,Xi

(i.e. f is regular on U ⊆ Xi.) But U is also
an open subset of X. Thus, < U, f >∈ Op,X . The proof is complete.

Exercise 13 (by Yi-Tsung).

For any nonunit 〈U, f〉 ∈ OY,X , since f is vanishing on Y ⇒ 1 − f 6= 0 on

Y ⇒ 1

1− f
is defined on Y . Since f is regular on U , so is

1

1− f
. Hence〈

U,
1

1− f

〉
∈ OY,X . That is, 〈U, 1 − f〉 is a unit in OY,X . Therefore OY,X is a

local ring. Moreover,

dimX = dimA(X) = dimA(x)
/
I(Y ) + htI(Y )

= dimA(Y ) + dimOY,X
= dimY + dimOY,X

Hence dimOY,X = dimX − dimY .

Exercise 14 (by Yi-Tsung).

(a) By changing the coordinates, we may suppose that P = (1, 0, . . . , 0) and
Pn = V (x0). Then ϕ (a0, a1, . . . , an) = (0, a1, . . . , an). Hence ϕ is clear a
morphism.

(b) Y : (x, y, z, w) = (t3, t2u, tu2, u3) , P = (1, 0, 0, 0). Then ϕ (Y ) = {(t3, t2u, 0, u3)}
= V (y3 − x2w) is a cusp cubic curve with equation y3−x2w in P2 = {z = 0}.
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Exercise 15 (by Tzu-Yang Chou).

(a) Assume thatX×Y = Z1∪Z2 with Zi: closed. LetXi := {x ∈ X|x×Y ⊆ Zi}.
Then since Xi are closed in X, we have X = X1 or X2 and hence X×Y = Z1

or Z2 ⇒ X × Y is irreducible.

(b) Define α : A(X)⊗kA(Y ) −→ A(X×Y ) by α(f⊗g)(x, y) := f(x)g(y). Then
we see that α is epic. To show that α is a monomorphism, we express an
nonzero element in kernel as the sum of fi ⊗ gi, i = 1, · · · , n, with shortest
expression. Now, by plugging in a point of Y we can write gn as a linear
combination of g1, · · · , gn−1, and hence this leads to a contradiction.

(c) The projections are defined by polynomials and hence are morphisms. For
the universal property, given Z and f : Z −→ X,g : Z −→ Y , we may define
a map Z −→ X × Y by z 7→ (f(z), g(z)). Moreover, this map is a morphis,
since both f, g are defined by polynomials.

(d) Set a := dimX, b := dimY . Noether Normalization says that A(X)(resp.
A(Y )) is integral over a polynomial ring of a(resp. b) variables. This implies
A(X)⊗k A(Y ) is integral over a polynomial ring of a+ b variables. Hence
dimX×Y = dimA(X×Y ) = dimA(X)⊗kA(Y ) = dimA(X)+dimA(Y ) =
dimX + dimY .

Exercise 17 (by AY).

(a) Since any conic in P 2 is isomorphic to P 1, we only need to show that P 1 is
normal. But since S(P 1) = k[x] is integrally closed, OP ∼= S(P 1)(mP ) is also
integrally closed.

(b) (1) The coordinate rings of the affine covers of Q1 are all k[x, y, z]/(xy− z),
which is isomorphic to k[x, y, xy] = k[x, y] which is a UFD and thus
integrally closed. Hence Q1 is normal.

(2) The coordinate rings of the affine cover of Q2 are k[x, y, z]/(x − z2),
k[x, y, z]/(xy − 1), and k[x, y, z]/(xy − z2). The first two are integrally
closed since they are isomorphic to UFDs k[x, y] and (k[x, 1/x])[z],
respectively. Let α ∈ Q(R) be integral over R = k[x, y, z]/(xy−z2), then
α = az + b where a, b ∈ Q(k[x, y]). Consider the primitive polynomial
(α− b)2 − a2xy. It is the minimal polynomial of α in Q(k[x, y])[α] and
hence in k[x, y][α]. Thus the coefficients 2b and b2 − a2xy are in k[x, y],
and since xy is square-free, a, b ∈ k[x, y]. As a result, α ∈ R, and R is
integrally closed. Hence Q2 is normal.
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(c) Let Y = Z(x2 − y3). Then A(Y ) = k[x, y]/(x2 − y3) is isomorphic to
A = k[t2, t3], which is a proper subset of B = k[t] since t /∈ A. But
Q(B) = Q(A). Hence B is the integral closure of A and A is not integrally
closed.

(d) The statement follows from the fact that A = A′ ⇔ ∀ maximal m ∈ A[Am =
A′m]. ⇒ is a direct consequence of the preservation of integral closure under
localization. There remains the proof of ⇐. Suppose by contradiction that
there is a t ∈ Q(A) \ A that is integral over A , and consider the ideal
I = {a ∈ A|at ∈ A}. This is a proper ideal since 1 /∈ I, and hence I is in
some maximal ideal m. Then t /∈ Am, but t is integral over Am since A is a
subring of Am, which gives a contradiction.

(e) Let Ã = (A(Y ))′, then according to Theorem 3.9A, the domain A is finitely
generated k-algebra, and hence is a coordinate ring of some affine variety.
This affine variety is Ỹ , and π is the morphism associated with the natural
homomorphism h : A(Y ) → Ã. The remaining is to prove that for all
integrally closed finitely generated domain A and an injective homomorphism
f : A(Y ) → A, there exists a unique homomorphism g : Ã → A such that
g ◦ h = f . This is clear since A(Y ) ∼= f(A(Y )), Ã = (A(Y ))′ ∼= (f(A(Y )))′,
and g is the natural homomorphism between them.

Exercise 18 (by AY).

(a) S(Y ) = (S(Y ))′ ⇒ S(Y )mP
= (S(Y )mP

)′ ⇒ S(Y )(mP ) = (S(Y )(mP ))
′

(c) They are isomorphic with the map (t, u)↔ (x, y, z, w) = (t4, t3u, tu3, u4). A
regular function f(x, y, z, w)/g(x, y, z, w) on Y can be pulled back to a regular
function f(t4, t3u, tu3, u4)/g(t4, t3u, tu3, u4) on P 1, and a regular function
h(t, u) = f(t, u)/g(t, u) on P 1 can be pulled back to a regular function,
the equivalence class of (h(x/y, 1), Y \ Z(y = 0)), (h(1, y/x), Y \ Z(x =
0)), (h(z/w, 1), Y \ Z(w = 0)), (h(1, w/z), Y \ Z(z = 0)).

(b) It’s normal since it is isomorphic to P 1, which is normal. S(Y ) = k[x, y, z, w]/(xw−
yz, xz2−wy2, y3−x2z, z3−w2y), and X = xz/y ∈ Q(S(Y ))\S(Y ) is integral
over S(Y ) with the polynomial X2 − xw = 0. Hence S(Y ) is not integrally
closed. As a result, Y is not projectively normal.

Exercise 20 (by Chi-Kang).

(TO BE CONTINUED) (a) Since every variety are assumed be quasi-projective,
so P has a quasi-affine neighborhood, thus we may assume Y is quasi affine. Now
let Y ⊂ An be quasi affine, then f = g

h
for some g, h ∈ k[x1, ..., xn] and h(x) 6= 0
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for all x ∈ Y − P .
What we need to show is h(P ) 6= 0 i,e, h /∈ mP . Since Y is birational to Ȳ , we
have OP = A(Ȳ )mP

= ∩A(ȲQ), where the last equality is taking the intersection
over all height 1 prime ideal Q s,t, Q ⊂ mP .
So we can change to show that h /∈ Q for all such prime ideal. If h ∈ Q for some Q,
then h|V (Q)=0, since h(x) 6= 0 for any x ∈ Y − P , we have V (Q) ∩ Y = {P}. But
V (Q) ∩ Ȳ has each component has codimension 1, so since {P} is an component
of V (Q) ∩ Ȳ , we conclude that dimY=1, which is a contradiction.

(b) Let Y = A1, f = 1
x
, P = 0, then this is obviously f is a regular function on

Y − P which connot extend to P .

Exercise 21 (by Shuang-Yen).

(a) Since x + y and −y are polynomials, µ : A2 → A1 and ·−1 : A1 → A1 are
morphisms, so Ga is a group variety.

(b) Since 1/x is a rational function that defines on all of A1 − {(0)} and xy is a
polynomial, µ : (A1−{(0)})2 → A1−{(0)} and ·−1 : A1−{(0)} → A1−{(0)}
are morphisms, so Gm is a group variety.

(c) Let ϕ, ψ ∈ Hom(X,G), define (ϕ · ψ)(p) = ϕ(p) · ψ(p). Since [p 7→
(ϕ(p), ψ(p))] ∈ Hom(X,G×G), by the universal property of product variety,
ϕ · ψ = µ ◦ [p 7→ (ϕ(p), ψ(p))] ∈ Hom(X,G). Clearly, (ϕ · ψ) · η = ϕ · (ψ · η).
Let e ∈ G be the identity, then the map ẽ = [p 7→ e] is a morphism and
ϕ · ẽ = ẽ · ϕ = ϕ for any ϕ ∈ Hom(X,G). The inverse of ϕ ∈ Hom(X,G)
is defined by (ϕ−1)(p) = (ϕ(p))−1, it’s a morphism since inverse on G is a
morphism, also ϕ ·ϕ−1 = ϕ−1 ·ϕ = ẽ, so ϕ−1 is the inverse of ϕ in Hom(X,G).
Hence, Hom(X,G) is a group.

(d) Define θ : Hom(X,Ga) → O(X) by θ(ϕ) = ϕ, then it’s well-defined since
regular functions are morphisms to A1. It’s clerly a bijective homomorphism,
so Hom(X,Ga) ∼= O(X).

(e) Define θ : Hom(X,Gm)→ O(X)× by θ(ϕ) = ϕ, then it’s well-defined since
regular functions are morphisms to A1 and 0 /∈ Imϕ. It’s clerly a bijective
homomorphism, so Hom(X,Gm) ∼= O(X)×.
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4 Rational maps
Exercise 1 (by Yu-Ting).

Let F be a function defined on U ∪ V such that F |U = f and F |V = g. Then
F is regular on U and V , hence F is regular on U ∪ V .

Now, let f be a rational map with eqivalence class 〈Uα, fα〉, α ∈ Λ. According
to the above argument, f is regular on

⋃
α∈Λ, which is open in X. If ∃V ⊃

⋃
α∈Λ Uα

such that f is regular on V , then 〈U, fV 〉 = 〈Uα, f〉, contradiction. Hence,
⋃
α∈Λ is

the largest.

Exercise 2 (by Yu-Ting).

For 〈U, φU〉 = 〈V, φV 〉, define φU∪V such that φU∪V |U = φU and φU∪V |V = φV .
If f is regular on open subset W ⊂ Y , either φ−1

U∪V (W ) ⊂ U or φ−1
U∪V (W ) ⊂ V ,

then f ◦ φ is regular on φ−1
U∪V (W ), hence φU∪V is a morphism on U ∪ V . Let φ be

〈Uα, φα〉, α ∈ Λ. Similar to Exercise 1,
⋃
α∈Λ Uα is the largest open set on which φ

is represented by a morphism.

Exercise 3 (by Te-Lun).

(a) Note that f is itself a regular function on the open set P\Z(x0), and definitly
not regular on any point in Z(x0), so the set of points where f is defined is
then P \ Z(x0) and the regular function be f(x0 : x1 : x2) = x1

x0

(b) Compose the following:

ϕ : P2
f

99K A1 ↪→ P1

(x0 : x1 : x2) 7→ x1
x0

a 7→ (a : 1)

The resulting rational map is ϕ(x0 : x1 : x2) =
(
x1
x0

: 1
)

= (x1 : x0), which is
regular on P2 \ {(0 : 0 : 1)}.

Exercise 4 (by Pei-Hsuan).

(a) By exercise 1.3.1(b), any conic in P2 is isomorphic to P1. Since a morphsim
is a rational map by definition. Thus, it is rational.

(b) Let Y = Z(y2 − x3) ⊆ A2.

Consider
ϕ : P2 99K Y

(x0, x1) 7→ ((x1
x0

)2, (x1
x0

)3))
and ψ : Y 99K P2

(x, y) 7→ (x, y)

Clearly, ϕ and ψ are rational maps, and it is easy to check ϕ ◦ ψ = idP1 and
ψ ◦ ϕ = idY as rational maps.
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(c) Following the hint, it is easy to see ϕ(x, y, z) = (x, y).

Define ψ : P1 99K Y
(x0, x1) 7→ ((x2

1 − x2
0)x0, (x

2
1 − x2

0)x1, x
3
0)

, then ϕ ◦ ψ = idY

and ψ ◦ ϕ = idP1 as rational maps. Thus, Y is rational.

Exercise 5 (by Pei-Hsuan).

Since we know that Q is isomorphic to P1 × P1 through the Serge embedding.
P1 × P1 is birational to P2 since their function fields are isomorphic to each other.
(i.e. K(P1 × P1) ∼= K(P1)⊗k K(P1) ∼= k(x, y) ∼= K(P2).)

However, P1 × P1 is not isomorphism to P2, since any two curve in P2 must
intersect, but {s} × P1 and {t} × P1 has no interestion in P1 × P1 whenever s 6= t.

Remark. You can also prove that Q birational to P2 by considering the following
maps:
ϕ : Q 99K P2

(x, y, z, w) 7→ (x, y, z)
and ψ : P2 99K Q

(x, y, z) 7→ (zx, zy, z2, xy)
Then check that ϕ ◦ ψ = idP2 , ψ ◦ ϕ = idQ.

Exercise 6 (by Tai-Ning).

(a) Observe that ϕ : [a0, a1, a2] 7→ [a1a2, a0a2, a0a1] is a well-defined map from
P2 − {[0, 0, 1], [0, 1, 0], [1, 0, 0]} to P2, and it is defined by polynomials, hence ϕ is
a morphism. For [a0, a1, a2] ∈ P− V (xyz),

ϕ2([a0, a1, a2]) = [a2
0a1a2, a0a

2
1a2, a0a1a

2
2] = [a0, a1, a2].

So ϕ is it’s own inverse.
(b) Let U = V = P− V (xyz), then ϕ is a morphism from U to V , and ϕ is it’s

own inverse.
(c) ϕ can be defined on P2 − {[0, 0, 1], [0, 1, 0], [1, 0, 0]}. To see that ϕ can not

extend further, suppose otherwise, we can extend ϕ to P = [1, 0, 0], then, let
Q = ϕ(P ). Since Q has at least one non-zero coordinate, choose a regular function
f to be either y

x
, z
y
or y

z
, so that f can be defined on Q. By definition, g = f ◦ ϕ is

also a regular function. Since f can be defined on Q, g can be defined on P , so
g can be written as G

H
on V1 near P . But on P2 − {[0, 0, 1], [0, 1, 0], [1, 0, 0]}, g is

either a0
a1
, a1
a2

or a2
a1

on some V2. Let’s say g = a0
a1

(the other two cases are similar),
so g = G

H
= a0

a1
on their intersection V1 ∩ V2, so a1G− a0H = 0 on V1 ∩ V2, which

is dense in P2, therefore, a1G− a0H = 0. Thus, a1 | H, but H cannot be zero at
P . Contradiction. So, ϕ cannot extend.

Exercise 7 (by Tai-Ning).
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Take affine open neighborhood U ⊆ for P , since OP,X = OP,X∩U , we may
assume assume X ⊆ An, Y ⊆ Am are affine.

For any k-algebra homomorphism h : OP,X → OQ,Y , let xi be coordinate
functions on X, which can always defined on the entire X, let h(X, xi) = (Vi, ξi),
where ξi is a regular function defined on Vi near Q, take V = ∩iVi. Now we show
that θ(h) : V → X defined by θ(h)(y) = (ξ1(y), . . . , ξn(y)) is a morphism sends Q
to P . As the proof of prop 3.5 , we can see that θ(h) is a morphism, we only need
to check that θ(h) sends Q to P . Suppose not, say θ(h)(Q) = P ′, which means
P ′ = (ξ1(Q), . . . , ξn(Q)). Then suppose P and P ′ is different at index i. consider

h(1) = h(
1

xi − ξi(Q)
(xi − ξi(Q)))

= h(
1

xi − ξi(Q)
)h(xi − ξi(Q))

= h(
1

xi − ξi(Q)
)(ξi − ξi(Q))

Notice that 1
xi−ξi(Q)

is a well-defined regular function in OP,X . But the right-hand-
side is zero at Q, and left-hand-side is a constant 1, contradiction.

Finally, we can see that θ(hg) = θ(g)θ(h), so it is a contravariant functor, hence
isomorphism of k-algebras will induced an isomorphism of varieties.

Exercise 10 (by Wei-Ping).

Let (t, u) ∈ P1, and solve system of equation y2 = x3, xu = yt. Consider t 6= 0,
then set t = 1 and put the image in A3, which is (u2, u3, u) or x = y = 0, u arbitrary.
Clearly the latter is exceptional curve. Similarly do these with assumption u 6= 0,
and get Ȳ = (u2, u3, 1, u) and E ∩ Ȳ = (0, 0, 1, 0). Now let u → (u2, u3, 1, u), a
isomorphism from Ȳ to A1.(Since all coordinate can be express in polynomials.).
Now map from A1 to Ȳ is u→ (u2, u3), which is bijective, bicontinuous, but not
isomophism by 3.2(a).

24



5 Nonsingular Varieties
Exercise 1 (by Jung-Tao).

(a) f = x4 + y4 − x2, fx = 4x2 − 2x, fy = 4y3

fy = 0 =⇒ y = 0 =⇒ x4 − x2 = 4x3 − 2x = 0 =⇒ x = 0, and the only
singular point is (0, 0), its graph is a Tacnode.

(b) f = x6 + y6 − xy, fx = 6x5 − y, fy = 6y5 − x
fx = fy = 0 =⇒ 6x5 = y, 6y5 = x =⇒ 6x6 = xy = 6y6, x = 0 iff y = 0,
so we may assume x6 = y6, and f = −4x6 = 0 =⇒ x = 0, and the only
singular point is (0, 0), its graph is a Node.

(c) f = x4 − x3 + y4 + y2, fx = 4x3 − 3x2, fy = 4y3 + 2y,x = 0 iff y = 0,
if y 6= 0 =⇒ 2y2 = −1 =⇒ x4 − x3 = 1

4
, which is impossible. So the only

singular point is (0, 0), and its graph is a Cusp.

(d) f = x4+y4−x2y−xy2, fx = 4x3−2xy−y2, fy = 4y3−2xy−x2, x = 0 iff y = 0,
else fx = fy = 0 =⇒ 4x3 = y(2x+ y), 4y3 = x(2y + x) =⇒ 4xy(x+ y) =
4x4 + 4y4 = xy(3x+ 3y) =⇒ x+ y = 0, and xy(x+ y) = x4 + y4 = 2x4 =
0 =⇒ x = 0 and the only singular point is (0, 0), its graph is a Triple point.

Exercise 2 (by Jung-Tao).

(a) f = xy2 − z2, fx = y2, fy = 2xy, fz = −2z
fx = fy = fz = 0 =⇒ y = z = 0, and its graph is a pinch point.

(b) f = x2 + y2 − z2, fx = fy = fz = 0 =⇒ x = y = z = 0, and its graph is a
conical double point.

(c) f = xy + x3 + y3, fx = y + 3x2, fy = x+ 3y2, x = 0 iff y = 0,
else x = −3y2, y = −3x2 =⇒ −xy = 3x3 = 3y3, f = −x3 = 0 =⇒ x = 0.
So the singular points are of the form (0, 0, z), and its graph is a double line.

Exercise 3 (by Yi-Heng).

(a) µP (Y ) = 1 ⇔ f1 = ax + by with a, b not all zero ⇔ Df |(0,0) = (a, b) is of
rank 1.

(b) 2,2,2,3 (the multiplicity is the smallest degree in each equation)

Exercise 4 (by Yi-Heng).
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(a) To prove that (Y · Z) is finite, it suffices to show that OP/(f, g) is noethe-
rian and has dimention = 0. Note that OP ' AmP

is noetherian and
dim(OP/(f, g)) = dim(A(Y )mP

/g) = dim(Y )− ht(g) = 0.

Next, let I = (x, y), m = µP (Y ) and n = µP (Z). Then (Y · Z)P ≥
l(OP/(Im+n, f, g)) ≥ l(k[x, y]/(Im+n, f, g)) = dimk(k[x, y]/(Im+n, f, g)). Con-
sider the exact sequence

k[x, y]/In × k[x, y]/Im k[x, y]/In+m k[x, y]/(In+m, f, g) 0

(A,B) Af +Bg

Therefore, dimk(k[x, y]/(Im+n, f, g)) = dimk(k[x, y]/Im+n)−dimk(k[x, y]/In)−
dimk(k[x, y]/Im) = mn.

(b) Note that OP/(f, ax+ b) = (k[x]/f(x, −a
b
x))mP

if ab 6= 0. Thus (L · Y )P = µP (Y )
for ab 6= 0 and fn(x, −a

b
x)) 6= 0 (n = µP (Y )).

(c) We may assume L = V (x) by changing coordinate. Then P = (0, P1, P2) ∈
Y ∩ L has P1 6= 0 or P2 6= 0.

If P1 6= 0, then (L · Y )P = (V (x) · V (f(x, 1, z)))(0,P2) = µ(x=0,z=P2)(f(0, 1, z))
by the discussion in (b). Similarly, if P1 = 0, then (L·Y )P = µ(x=0,y=P1)(f(0, y, 1))

In conclusion, (L · Y )P =
∑

P1 6=0(L · Y )P +
∑

P1=0(L · Y )P = (the largest deg
of z in f(0, y, z)) + (the smallest deg of y in f(0, y, z)) = d.

Exercise 5 (by Pei-Hsuan).

case 1 If p - d or p = 0, then choose f(x0, x1, x2) = xd0 + xd1 + xd2. Notice that
x0, x1, x2 are not all zeros, so Df =

(
dxd−1

0 , dxd−1
1 , dxd−1

2

)
has rank 1.

case 2 If p | d, then choose f(x0, x1, x2) = xd−1
0 x1 + xd−1

1 x2 + xd2. Notice that
∂f
∂x2

= dxd−1
2 + xd−1

1 = xd−1. Thus, ∂f
∂x2

= 0⇔ x1 = 0. So

Df = (0, 0, 0)⇔ x1 = 0 and x0 = 0.

But f(0, 0, x2) = 0⇔ x2 = 0. So, Df |p = 0⇔ p = (0, 0, 0) which is not in
P2.

Exercise 6 (by Shuang-Yen).
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(a) Y = V (x3 − (y2 + x4 + y4)) is a cusp. Let t = y/x, then the equation
x3 = y2 +x4 + y4 can be written as (x− (t2 +x2 +x2t4))x2 = 0, so one of the
affine chart of the blowing-up image is isomorphic to V (x− (t2 + x2 + x2t4)).
It suffices to show the nonsingularity at (x, t) = (0, 0), which is clear since
fx(0, 0) = 1 6= 0, where f(x, t) = x− (t2 + x2 + x2t4). Another affine chart
of the blowing-up image is defined by ys3 = 1 + y2s4 + y2, which doesn’t
contain the preimage of O. Hence the blowing-up of Y is nonsingular.

(b) WLOG let P = (0, 0). Write f = f2 + · · · and fd = cd,0x
d + cd−1,1x

d−1y +
· · ·+ c0,dy

d, then P is a node implies that f1 = 0 has distinct solutions in P1,
say λ1, λ2. WLOG let λi ∈ D(x). Let t = y/x, then the equation f = 0 can
be written as

x2

(∑
e1,e2

ce1,e2x
e1+e2−2te2

)
= 0,

so one of the affine chart of the blowing-up image is isomorphic to V (f̃),
where

f̃(x, t) =
∑
e1,e2

ce1,e2x
e1+e2−2te2 .

The preimage of P in the affine chart is V (f̃) ∩ V (x), which is (0, λi), so the
preimage of P has two points. Since

f̃t(0, λi) = 2c2,0λi + c1,1 6= 0,

(0, λi) is nonsingular. So blowing-up resolves the singularity,

(c) The variety Y defined the equation x2 = x4 + y4 has a tacnode at P = (0, 0).
Let t = y/x, s = x/y, then the equation can be written as x2(1−x2−x2t4) =
0, y2(s2 − y2s4 − y2) = 0, so the preimage of P appears in the affine chart
which is defined by the equation g := s2 − y2s4 − y2 = 0, then it’s a node
since s2 − y2 = 0 has two solutions [1 : ±1].

(d) The multiplicity of (0, 0) on Y is 3. Let t = y/x, s = x/y, then the equation
y3 = x5 can be written as x3(t3 − x2) = 0, y3(1− y2s5) = 0, so the preimage
of O appears in the affine chart which is defined by the equation g := t3−x2,
and hence a cusp. One further blowing-up resolves the singularity by the
way similar to (a).

Exercise 7 (by Wei-Ping).

(a) Clearly f is non-singular at point not equal to P . Since deg f > 1, ∂f
∂x

(P ) =
∂f
∂y

(P ) = ∂f
∂z

(P ) = 0. Thus P is the only non-singular point.
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(b) Consider system of equations xv = yw, xw = zu, yw = zv, f(x, y, z) = 0.
Consider the open affine set that u 6= 0, then set u = 1 and get f(x, xv, xw) =
xdeg ff(1, v, w) = 0. If x = 0⇒ y = 0, z = 0, which is the exceptional curve.
Assume x 6= 0, let (x, y, z, v, w) → (x, v, w) be isomorphism from A5 to
A3. The blow up of X, say X̄, maps into closed set defined by equation
f(1, v, w) = 0.
To say that this set is non-singular, calculate (∂f(1,v,w)

∂x
, ∂f(1,v,w)

∂v
, ∂f(1,v,w)

∂w
) =

(0, fy(1, v, w), fz(1, v, w)). Note that (fx(1, v, w), fy(1, v, w), fz(1, v, w)) 6=
(0, 0, 0) since f is non-singular, and fx(1, v, w) + vfy(1, v, w) +wfz(1, v, w) =
deg f · f(1, v, w) = 0. This implies that (0, fy(1, v, w), fz(1, v, w)) 6= (0, 0, 0),
now cover X̄ with open affine sets to conclude it is non-singular.

(c) φ−1(p) is union of three sets: {(0, 0, 0, 1, v, w) | f(1, v, w) = 0}, {(0, 0, 0, u, 1, w) |
f(u, 1, w) = 0}, {(0, 0, 0, u, v, 1) | f(u, v, 1) = 0}. This is just (0, 0, 0)× Y .

Exercise 8 (by Yu-Ting).

Let P = (a0, . . . , an). For every i, j, λ 6= 0, ∂fi
∂xj

(λa0, . . . , λan) = λd−1 ∂fi
∂xj

(a0, . . . , an),

hence, the rank of
∥∥∥ ∂fi∂xj

(a0, . . . , an)
∥∥∥ is independent of the choice of coordinates.

Uk := Pn − Z(xk)
∼−→
φk

An and Yk := φk(Y ∩ Uk). For every k, 1 6= i 6= t,

define gi,k(x0, . . . , x̂k, . . . , xn) = fi(x0, . . . , xk−1, 1, xk+1, . . . , xn). P is nonsingu-
lar on Y if and only if P is nonsingular on Yk for all k satisfying ak 6= 0, i.e.
rk
∥∥∥∂gi,k∂xj

( a0
ak
, . . . , an

ak
)
∥∥∥ = n−r. For j 6= k, ∂gi,k

∂xj
( a0
ak
, . . . , an

ak
) = ∂fi

∂xj
( a0
ak
, . . . , ak−1

ak
, 1, ak+1

ak
. . . an

ak
) =

∂fi
∂xj

(P ). By Euler’s lemma,
∑n

j=0 aj

(
∂fi
∂xj

)
= df(P ) = 0, then the column

(
∂fi
∂xk

)
is

redundant. We have rk
∥∥∥ ∂fi∂xj

(a0, . . . , an)
∥∥∥ = n− r.

Exercise 9 (by Yu-Ting).

Suppose f is reducible and f = gh, where g, h 6= f . By Exercise 3.7, two
curves have intersection, then there exists P ∈ (Z(g) ∩ Z(h)) ⊂ Z(f). fx(P ) =
gx(P )h(P ) + g(P )hx(P ) = 0. Similarly, fy(P ) = fz(P ) = 0, contradiction. Hence,
f is irreducible.

Exercise 10 (by Wei).

Given variety X and point P ∈ X, recall that the Zariski tangent space on P
denoted by TP (X) is the k-vector space (mP/m

2
P )∧ := Homk(mP/m

2
P , k).

(a) We know that since mP/m
2
P is finite dimensional (by Noetherianess), we have

dimk Tp(X) = dimk(mP/m
2
P )∧ = dimkmP/m

2
P
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On the other hand, we have the inequality

dimkmP/m
2
P ≥ dimkOP,X

where equality holds iff P is a non-singular point.

(b) Suppose given

X Y
φ

We get a diagram
OP,X Oφ(P ),Y

mP mφ(P )

m2
P m2

φ(P )

φ∗P

In order to construct a map TP (X)→ Tφ(P )(Y ), it suffices (by duality) to
construct a map mP/m

2
P ← mφ(P )/m

2
φ(P ). The composition of maps

mP/m
2
P mP mφ(P ) m2

φ(P )

φ∗P

is 0 by above, so we may define mP/m
2
P ← mφ(P )/m

2
φ(P ) to be the map

making the diagram commutative

mP mφ(P )

mP/m
2
P mφ(P )/m

2
φ(P )

φ∗P

(TP (φ))∧

(c) Write X, Y as the following varieties

X = V (x− y2) ⊆ A2, Y = A1

with morphism
X Y

φ
, (x, y) 7→ x

Denote P as the point (0, 0) ∈ X, then φ induces a map

(k[x, y]/(y2 − x))(x,y) = OP,X Oφ(P ),Y = (k[t])t
φ∗P
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given by x← [ t. To show TP (φ) is 0, it suffices to show (TP (φ))∧ is 0, or

mP/m
2
P mφ(P )/m

2
φ(P ) mφ(P )

= mP/m
2
P mP mφ(P )

(TP (φ)∧)

φ∗P

is 0 (the equality above is by our definition in (b)). Choose f ∈ mφ(P ), that
is, a function vanishing on φ(P ) = 0, then f = tg for some g, so

φ∗P (f) = φ∗P (tg) = φ∗P (t)φ∗P (g) = xφ∗P (g) = y2φ∗P (g) ∈ m2
P

Therefore, we have (TP (φ))∧ = 0.

Exercise 11 (by Tai-Ning).

The statement is true only when char k 6= 2. Let’s assume char k 6= 2,

Y = {[x, y, z, w] ∈ P3 : x2 − xz − yw = 0, yz − xw − zw = 0}.

Z = {[x, y, z] ∈ P2 : y2z − x3 + xz2 = 0}

Now we show that ϕ : Y − [0, 0, 0, 1]→ Z − [1, 0,−1] defined by ϕ : [x, y, z, w] 7→
[x, y, z], and we could find ϕ−1 by

ϕ−1([x, y, z]) =

{
[x, y, z, x

2−xz
y

] ,if y 6= 0.

[x, y, z, yz
x+z

] ,if x+ z 6= 0.

Now we check well-defined.

• For any [x, y, z, w] ∈ Y − [0, 0, 0, 1], it’s impossible that y = 0 and x+ z = 0
at the same time, since otherwise, x2 = xz+ yw = −x2, so 2x2 = 0, so x, y, z
are all zero, contradiction. Therefore, if y 6= 0, we have w = x2−xz

y
, substitute

and get yz = (x+ z)x
2−xz
y

, so y2z − x3 + xz2 = 0. If otherwise x+ z 6= 0, we
have w = yz

x+z
and get x2 − xz − y yz

x+z
, also have y2z − x3 + xz2 = 0. And

[x, y, z] 6= [1, 0,−1]. Thus, ϕ is a morphism.

• For any [x, y, z] ∈ Z − [1, 0,−1], it’s impossible that y = 0 and x + z = 0
at the same time, for the first case, we check x2 − xz − y x

2−xz
y

= 0 and
yz − (x+ z)x

2−xz
y

= 0, which is true because [x, y, z] ∈ Z. Another case is
similar. Therefore ϕ−1 is a well-defined morphism.
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Since Z is defined by an irreducible polynomial, so Z is irreducible. And the
derivative matrix is

[−3x2 + z2, 2yz, y2 + 2xz]

The only possible to be all zero is x = y = z = 0. So Z is nonsingular. By
the isomorphism of ϕ, Y − [0, 0, 0, 1] is also irreducible and nonsingular. So it’s
sufficient to check Y is nonsingular at [0, 0, 0, 1]. The derivative matrix of Y is[

2x −w −x −y
−w z y − w −x− z

]
=

[
0 −1 0 0
−1 0 −1 0

]
.

which has rank 2, so is nonsingular.

Exercise 12 (by Shuang-Yen).

(a) A quadratic form over a field k with characteristic 6= 2 has an orthogonal
basis, after linear transformation, may assume f = x2

0 + · · ·+ x2
r.

(b) For r = 0, 1, f is clearly reducible. For r ≥ 2, induction on r. Suppose
not, say f = gh and g, h /∈ k×, denote degi the degree of xi, then degi g +
degi h = 2 for each i. If degi g 6= 1 for all i, then degi g = 2, degj h = 2
for some i 6= j, then there will be a term x2

ix
2
j in f with coefficient in

k[x0, . . . , x̂i, . . . , x̂j, . . . , xr], which is a contratiction. WLOG let deg0 g =
deg0 h = 1, write g = ax0 + b, h = cx0 + d, then ac = 1 implies a, c ∈ k×,
after scaling, may let a = c = 1, then b + d = 0 and bd = x2

1 + · · · + x2
r.

If r > 2, by induction hypothesis, one of b, d is a unit, then b + d = 0
implies the another one is a unit, but bd is not a unit. If r = 2, then
−b2 = bd = x2

1 + x2
2 = (x1 + ix2)(x1 − ix2), but k[x1, x2] is a UFD. So f is

irreducible if and only if r ≥ 2.

(c) Z = Sing Q is defined by the equations, f and ∂f/∂xi, which is

Z = V (x2
0 + · · ·+ x2

r, 2x0, . . . , 2xr, 0, . . . , 0) = V (x0, . . . , xr),

a linear variety of dimension n− r − 1.

(d) Let Q′ = V (x2
0 + · · · + x2

r, xr+1, . . . , xn) ⊂ V (xr+1, . . . , xn) ∼= Pr. For any
A = (a0, . . . , ar, 0, . . . , 0) ∈ Q′ and B = (0, . . . , 0, br+1, . . . , bn) ∈ Z, every
point C on the line AB can be written as (sa0, . . . , sar, tbr+1, . . . , tbn), then

(sa0)2 + · · ·+ (sar)
2 = s2(a2

0 + · · ·+ a2
r) = 0 =⇒ C ∈ Q,

so the cone of Q′ and Z is contianed in Q. For any point C = (c0, . . . , cn) ∈
Q, if at least one of c0, . . . , cr is not 0, then C lies on the line jointing
(c0, . . . , cr, 0, . . . , 0) ∈ Q′ and (0, . . . , 0, b′r+1, . . . , b

′
n) ∈ Z, where (tb′r+1, . . . , tb

′
n) =
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(br+1, . . . , bn) for some t such that (b′r+1, . . . , b
′
n) 6= (0, . . . , 0). If all of

c0, . . . , cr is 0, then C lies on the line jointing (1, i, 0, . . . , 0) ∈ Q′ and
(0, . . . , 0, cr+1, . . . , cn) ∈ Z.

Exercise 13 (by Zi-Li).

We can assume the variety X is affine, let R be the integral closure of A(X) in
its quotient field. By 3.9A, R =

∑k
i=1 A(X)fi, we may assume fi = gi/F .Then,

X−Z(F ) is nonempty and every points of X−Z(F ) is normal because 1/F ∈ OP
for every P ∈ X−Z(F ). Besides, if P is a normal point, write fi = ai/B,B(P ) 6= 0,
then P ∈ X − Z(B) and every points of X − Z(B) are normal points. Hence,
non-normal points of a variety form a proper closed set.

Exercise 14 (by Shi-Xin).

(a) Suppose P ∈ Y = Z(f) and Q ∈ Z = Z(g) are analytically isomorphic. By
suitable change of variables, we can assume P = Q = (0, 0) and write

f = fs + h.o.t., g = gt + h.o.t.

where fs, gt ∈ k[x, y] are the homogeneous polynomials of minimal degree s, t
in f, g respectively. WLOG, assume y is not their common tangent direction.
Denote L = Z(y). Since k[[x, y]]/(f) ∼= k[[x, y]]/(g), we have

k[[x]]/(xs) ∼= k[[x]]/(f(x, 0)) ∼= k[[x, y]]/(f, L) ∼= k[[x, y]]/(g, L) ∼= k[[x]]/(xt)

Then it forces s = t, and hence µP (Y ) = s = t = µQ(Z).

(b) Consider the same process in the textbook. The idea is that for any k > r,
find gk−t, hk−s such that

fk = gshk−s + gk−tht +
k−t−1∑
i=s+1

gihk−i

when all the other terms are known. Then it suffices to show that for
any homogeneous f of degree k > r, there are homogeneous polynomials
gk−t, hk−s of degree k − t, k − s respectively such that

f = gshk−s + gk−tht.

Write gs = ysg̃(z), ht = yth̃(z), f = ykf̃(z) where z = x/y and g̃, h̃, f̃ ∈ k[z].
Let m := deg g̃, n := deg h̃ and consider the linear map

φ : Pn × Pm → Pn+m defined by φ(A,B) = g̃A+ h̃B

where Pn denote the polynomial in z of degree less than n.
Since 0 = deg(gcd(g̃, h̃)) = m+ n− rank(φ), φ is surjective, and hence there
are A,B such that g̃A+ h̃B = f̃ . Just let gk−t = yk−tB, hk−s = yk−sA.
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(c) (i) (2-fold) According to b, we may write f = f1f2 with two distinct linear
factors f1, f2. Then there is an automorphism of k[[x, y]] sending f1, f2

to x, y respectively. It induces an isomorphism

k[[x, y]]/f ∼= k[[x, y]]/(xy).

Thus every ordinary 2-fold point is analytically isomorphic to (0, 0) of
Z(xy).

(ii) (3-fold) Write f = f1f2f3 with three distinct linear factors f1, f2, f3.
Then every ordinary 3-fold point is analytically isomorphic to (0, 0)
of Z(xy(x + y)) by considering an automorphism of k[[x, y]] sending
f1, f2, f3 to ax, by, x+ y for some a, b ∈ k.

(iii) (4-fold) Write f = f1f2f3f4 with three distinct linear factors f1, f2, f3, f4.
For the same reason, every ordinary 4-fold point is analytically isomor-
phic to (0, 0) of Z(xy(x+ y)(x+αy)) for some α ∈ k by considering an
automorphism of k[[x, y]] sending f1, f2, f3, f4 to ax, by, x+ y, c(x+ αy)
for some a, b, c ∈ k. Denote fα = xy(x + y)(x + αy), and consider
(0, 0) in Z(fα) and (0, 0) in Z(fβ). If they are analytically isomor-
phic, then there is a map φ : k[[x, y]]/(fα) → k[[x, y]]/(fα) such that
φ(x, y) = (x, y) and φ((fα)) = (fβ). It forces that α = β. Thus there
is a one-parameter family of mutually nonisomorphic ordinary 4-fold
points.

(d) Given any f = f2 + h.o.t. with f2 6= 0. If f2 has two distinct linear factors,
according to (c)(i), it is isomorphic to an ordinary 2-fold point, which is
isomorphic to the singularity (0, 0) of Z(y2 = x2). Now suppose f2 has
only one linear factor, by taking a suitable automorphism, we may assume
f = y2 +yg1(x, y) +h1(x) where deg g1 > 2 w.r.t y. By sending y+g1/2 to y,
we have f = y2 + yg2(x, y) + h2(x) where deg g2 > 3 w.r.t y. Continuing the
process, we can assume f = y2 + yg(x, y) + h(x) where deg g is sufficiently
large. Now we refer to some results in a useful textbook 1. Since the Milnor
number of f , denoted by µ, is finite, f is right (µ + 1)-determined, which
means we only need to care the part of f of degree no more than (µ + 1).
Hence by above process, f is right equivalent to y2 + h(x) for some h ∈ k[x].
Thus f defines a singularity which is isomorphic to (0, 0) of Z(y2 = xr).

1Greuel, G.M., Lossen, C., Shustin, E., 2007. Introduction to Singularities and Deformations,
Springer, Berlin, ch2
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6 Nonsingular Curves
Exercise 2 (by Tzu-Yang Chou).

(a) Let f := x3 − x− y2. Then fx = 3x2 − 1.fy = 2y. However, f, fx, fy cannot
all be zero, that is, any P ∈ Y = Z(f) is nonsingular. Also, smoothness
implies normality.

(b) x is clearly transcendental over k since if some g(x) ∈ (f), then g = 0. Thus
k[x] is a polynomial ring. Recall that UFD is integrally closed, so it suffices
to show that A is contained in the integral closure of k[x] in K. Now, y ∈ A
satisfies the equation −t2 +x3−x and hence it is integral over k ⇒ A = ¯k(x).

(c) The given map σ : A −→ A is its own inverse and hence is an automorphsim.
If a ∈ k[x], them σ(a) = a⇒ N(a) = a2 ∈ k[x]; if a ∈ A, then we may write
a = py+q with p, q ∈ k[x]⇒ N(a) ∈ k[x]. N(1) = 1 and N(ab) = N(a)N(b)
follows from σ(1) = 1 and σ(ab) = σ(a)σ(b).

(d) Given a ∈ A with ab = 1 for some b ∈ A, we have N(a)N(b) = 1, that
is, N(a) is a unit in k[x]. Again write a = py + q, we obtain that p(x) =
0, q(x) ∈ k ⇒ 0 6= a ∈ k.
The irreducibility of x, y follows from a degree argument on N(x), N(y).
Then A(Y ) is not a UFD since y2 = x3 − x = x(x2 − 1).

(e) If Y is rational, then Y is either P1 or an open subset of A1 and then A(Y )
is a UFD, which leads to a contradiction.

Exercise 3 (by Tai-Ning).

(a) Let X = P2, which is nonsingular and

ϕ : X − [0, 0, 1] −→ P1

[x, y, z] 7−→ [x, y]

cannot extend to [0, 0, 1].
(b) Let X = P1, Y = A1. Then,

ϕ : X − [0, 1] −→ A1

[x, y] 7−→ y
x

cannot extend to [0, 1]. Since a morphism to A1 is a regular function, but the only
regular function that can be defined on the entire P1 is constant.

Exercise 4 (by Chi-Kang).
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ϕ : Y → P1 is a morphism is just by the Riemann mapping theorem. To show
is ia surjective with finite fibres. Note that when Y ⊂ Pn, a rational function is
induced by a rational function of Pn, so it is in the form f

g
, f, g ∈ k[x0, ..., xn], and

f, g are homogeneous with same degree. Now realize P1 = A1 ∪∞ = {[a, 1]|a ∈
A1} ∪ {[1, 0]}. Then ϕ−1(a) in Pn is the set f(x)

g(x)
= a, which is equal to the

hypersurface defined by f − ag. (and ϕ−1(∞) = V (g)).

Exercise 6 (by Yi-Tsung).

(a) Let ϕ : P1 → P1, x 7→ ax+ b

cx+ d
, then consider ψ : P1 → P1, x 7→

1

ad− bc
dx− b
−cx+ a

. Then clearly ϕ ◦ ψ = ψ ◦ ϕ = id.P1 . Hence φ is an

isomorphism of P1.

(b) By cor 6.12, giving ϕ ∈ Aut (P1) is equivalent to giving ϕ′ ∈ Aut (k(x)).
Thus Aut (P1) ∼= Aut (k(x)).

(c) For ϕ ∈ Aut (k(x)), write ϕ(x) =
f(x)

g(x)
with gcd (f(x), g(x)) = 1. For

y =
f(x)

g(x)
, we have f(x) − yg(x) = 0. View y as a variable, then since

f − yg ∈ k [y] [x], we may write f − yg =
m∑
i=0

hi(y)xi for some hi(y) ∈ k [y]

with deg hi ≤ 1. Since (hm (y)x)m+
m−1∑
i=0

(hm (y)x)i hm−i−1
m (y)hi (y) = 0 and

k [y] is integrally closed, we see that hm (y)x ∈ k [y]. Say hm (y)x = a (y) ∈

k [y]. Now a (y)m +
m−1∑
i=0

a (y)i hm−i−1
m (y)hi (y) = 0. If deg (a) ≥ 2, since

deg

(
m−1∑
i=0

a (y)i hm−i−1
m (y)hi (y)

)
is at most max

1≤i≤m−1
{m− i+ i deg (a)} =

1 + (m − 1) deg (a), then we must have m deg (a) ≤ 1 + (m − 1) deg (a),

which is a contradiction. Hence deg (a) ≤ 1. Now x =
a (y)

hm (y)
with

deg (a) , deg (hm) ≤ 1, by part (a), y = φ (x) is a fractional linear trans-
formation. Thus PGL(1) ∼= Aut (k (x)), and thus PGL(1)

∼−→ AutP1.

Exercise 7 (by Jung-Tao).

Denote Pr+1 = Qs+1 =∞, the map from P 1−{P1, ..., Pr+1} to P 1−{Q1, ..., Qr+1}
be φ, and its inverse map φ−1.

All but finite point in P 1 is a nonsingular quasi-projective curve, and is an
abstract nonsingular curve, so we can extend φ (r + 1)-times to get a morphism
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φ̄ from P 1 to itself, similarly we can extend φ−1 to φ−1, then φ̄φ−1 is identity at
all but finite point, which is an open set. So φ̄ is an isomorphism and φ−1 is its
inverse, that means φ̄ sends {P1, ..., Pr+1} points to {Q1, ..., Qs+1} bijectively, and
r + 1 = s+ 1, r = s.

Note that from 6.6, every automorphism of P 1 is of the form x 7→ ax+ b

cx+ d
,

in most of the cases, three points will determine the map, and if we choose
the point arbitrarily, there won’t be a map intuitively. To prove it directly, we
want to determine the condition when three points identify an automorphism.
Suppose f(x1) = −y1, f(x2) = −y2, f(x3) = −y3, where xi’s and yi’s are different
respectively, we will get b+ xia+ xiyic+ yid = 0, consider the row [xi, yi, xiyi],
if xi = yi =∞, it becomes [0, 0, 1]
if xi =∞ 6= yi, it becomes [1, 0, yi]
if xi 6=∞ = yi, it becomes [0, 1, xi]
if xi, yi 6=∞, it is simply [xi, yi, xiyi]

Notice that even if we force one of the xi’s and yi’s to be ∞, the determinant
of the matrix determined by three rows [xi, yi, xiyi] is not a zero polynomial.

Denote x1 = y1 = ∞, pick x2, x3, x4, y2, y3 as indeterminate, enumerate the
bijections from three of the {x1, ..., x4} to {y1, ..., y3}, every such bijection deter-
mines a matrix, note that all of those determinants are not zero polynomial, so
the product of them is not a zero polynomial, and we can find x2, x3, x4, y2, y3 s.t.
the product of the determinants is not zero, that means all of the bijections from
three of the {x1, ..., x4} to {y1, ..., y3} determines an unique automorphism, and in
any situation, f(the left one) is determined, and we just choose y4 to avoid those
finite possibilities.
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7 Intersections in Projective Spaces
Exercise 1 (by Yu-Ting).

(a) Denote imρd by Y.

PY (x) = PPn(dx) =

(
dx+ n

n

)
=
dn

n!
xn + lower degree terms.

Then deg Y = dn.

(b) Denote the image of segre embbeding by Y . dimY = r + s.

PY (x) = PPr(x) · PPs(x) =

(
x+ r

x

)
·
(
x+ s

x

)
=
xr+s

r!s!
+ lower degree terms.

Then deg Y = (r+s)!
r!s!

=
(
r+s
r

)
.

Exercise 2 (by Yu-Ting).

(a) pa(Pn) = (−1)n(PPn(0)− 1) = (−1)n
((
n+0
n

)
− 1
)

= 0.

(b) Let Y = Z(f), where n = 2. The exact sequence 0 → S(−d)
f→ S →

S/(f) → 0 implies ϕS/(f)(l) = ϕS(l) − ϕS(l − d) =
(
l+2
2

)
−
(
l−d+2

2

)
. Then

pa(Y ) = (−1)1(PY (0)− 1) = −
((

2
2

)
−
(

2−d
2

)
− 1
)

= 1
2
(d− 1)(d− 2).

(c) Let H = Z(f). Similar to (b), we have ϕS/(f)(l) =
(
l+n
n

)
−
(
l−d+n
n

)
. Then

pa(H) = (−1)n−1
((
n
n

)
−
(
n−d
n

)
− 1
)

= (−1)n
(
n−d
n

)
=
(
d−1
n

)
.

(d) Suppose Y = H1 ∩H2, where H1 and H2 are of degree a and b respectively.
Let H1 = A(f) and H1 = Z(g). Consider the following short exact sequence:

0→ S/(fg)→ S/(f)⊕ S/(g)→ S/(f, g)

Then ϕS/(f,g)(l) = ϕS/(f)(l) + ϕS/(g)(l) − ϕS/(fg)(l) =
((
l+3
3

)
−
(
l−a+3

3

))
+((

l+3
3

)
−
(
l−b+3

3

))
−
((
l+3
3

)
−
(
l−a−b+3

3

))
.

Hence, pa(Y ) = (−1)
(
−
(

3−a
3

)
−
(

3−b
3

)
+
(

3−a−b
3

))
= 1

2
ab(a+ b− 4) + 1.

(e) ϕY×Z(l) = ϕY (l) · ϕZ(l). pa(Y × Z) = (−1)r+s(PY (0) · PZ(0) − 1) =
pa(Y )pa(Z) + (−1)spa(Y ) + (−1)rpa(Z).

Exercise 3 (by Shuang-Yen).
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Let Y = V (f) and let P = (b0, b1, b2) ∈ Y . Let g = a0x0 + a1x1 + a2x2 and
L = V (g) be a line pass through P , then

S(Y ∩ L) = k[x0, x1, x2]
/
〈f, g〉 ∼= k[x0, x1, x2]/〈g〉

/
〈f〉 .

Since one of a0, a1, a2 is not 0, say a0 6= 0, then k[x0, x1, x2]/〈g〉 ∼= k[x1, x2] and
f factors into linear functions {hi}di=1, where d = degf . By Chinese remainder
theorem,

S(Y ∩ L) ∼=
d∏
j=1

k[x1, x2]
/
〈hj〉

=⇒ i(Y, L;P ) = #{i | hi(b1, b2) = 0}.

Note that f has a multiple root at (x1, x2) = (b1, b2) if and only if

(b1, b2) =
∂f

∂x2

(b1, b2) = 0.

Since
f(x1, x2) = f

(
− 1

a0

(a1x1 + a2x2), x1, x2

)
, f(b1, b2) = f(P ).

Also,

∂f

∂x1

(b1, b2) = −a1

a0

∂f

∂x0

(P ) +
∂f

∂x1

(P ),
∂f

∂x2

(b1, b2) = −a2

a0

∂f

∂x0

(P ) +
∂f

∂x2

(P ).

So both of the derivatives equal to zero is equivalent to

[a0 : a1 : a2] =

[
∂f

∂x0

(P ),
∂f

∂x1

(P ),
∂f

∂x2

(P )

]
Hence the unique line TP (Y ) is

V

(
∂f

∂x0

(P )x0 +
∂f

∂x1

(P )x1 +
∂f

∂x2

(P )x2

)
.

So the map

P 7→
[
∂f

∂x0

(P ),
∂f

∂x1

(P ),
∂f

∂x2

(P )

]
is a morphism from Reg Y to (P2)∗ since ∂f/∂xi’s are polynomials.

Exercise 4 (by Pei-Hsuan).

38



If a line is not tangent to Y and doesn’t pass through any singular point of Y ,
then by Bezout’s Theorem, it must have exactly d intersection with Y . So our goal
is to show that the tangent lines and the lines pass through the singular points
are contained in a proper closed subset of (P2)∗.

By exercise 1.7.3, the tangent lines of Y is contained in Y ∗ which is proper.
Also, we have the following fact:

1 = dimY > dim Sing Y.

Thus, dim Sing Y = 0 which means Sing Y has only finitely many point. For each
singular point p, {Lines pass through p} ∼= P1.

Thus, U = (P2)∗ \ (Y ∗ ∪ {Lines pass through Sing Y } is what we require.

Exercise 6 (by Shi-Xin).

(⇒) By Prop.7.6(b) in textbook, Y is irreducible. Assume dimY = 1 first,
and let P,Q be two distinct points in Y . Consider H is a hyperplane containing
P,Q. Then if Y * H, every irreducible component of Y ∩ H has dimension 0.
Also, by Thm7.7, deg(Y ∩H) = 1. It follows that Y ∩H is a point, which leads
to a contradiction since P,Q ∈ Y ∩ H. Therefore, Y is contained in any such
hyperplane, and hence it must be a linear variety.

Now, assume dimY = r. By induction hypothesis, for any hyperplane H
doesn’t contain Y , we have Y ∩ H is a linear variety of dimension r − 1. Note
that for any two distinct points P,Q in Y , we can choose several hyperplanes
which doesn’t contain Y such that their intersection is the line PQ. It follows that
Y ∩ PQ is linear for any P 6= Q ∈ Y . Thus f must be a linear variety.

(⇐) Since Y is a linear variety, Y is the intersection of some hyperplanes. Note
that every hyperplane has degree 1. Thus by Thm7.7, it forces deg Y = 1.

Exercise 7 (by Chi-Kang).

(a) X is an algebraic set by the definition, to show X is irreducible, suppose
X = X1∪X2 be union of closed subsets. Then for any Q ∈ Y , PQ is an irreducible
variety, so PQ ⊂ Xi for some i.
Let Yi := {Q ∈ Y |PQ ⊂ Xi}, then Y = Y1 ∪ Y2, since Y is irreducible, some Yi is
equal to Y , say Y1, then we have X1 ⊃ ∪PQ, since X1 is closed, we have X1 = X,
so X is irreducible.

To show dimX= r+1, since Y is a proper closed subset of X, we have dimX>r.
And for each PQ, there is an isomorphism φQ : P1 → PQ s,t, φQ(0) = P, φQ(1) = Q.
Now we consider the map

ϕ : Y × P1 → X

[Q, z]→ φQ(z)

[P, z]→ P.
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Then we have r + 1 =dimY × P1 ≥ dim(imϕ)=dim∪PQ=dimX, so we conclude
r <dimX ≤ r + 1, hence dimX=r+1.

(b) For convinience to apply induction on zero dimensional case we remove the
condition Y is irreducible. When r = 0 we have degY is the number of the points
of Y , snd X is a union of degY -1 lines, so degX <degY .
Suppose the concequence holds for dimY < r, then for dimY=r, let H b a
hyperplane s,t, P ∈ H, Y + H, and the intersection multiplicity of H and X, Y
of all irreducible component is 1. Then by thm7.7 we have degY=degH ∩ Y ,
degX=degH ∩ X. Since P ∈ H we have H ∩ X = ∪Q∈H∩Y PQ. So by the
induction hypothesis we have degY ∩H > deg X ∩H, so degY >degX.

Exercise 8 (by Chi-Kang).

Applying the construction of exercise7.7, we have X is a variety of dimension
r+1 with degX < 2. So by exercise7.6 we have X is a linear variety i,e, X ∼= Pr+1,
and it is obviously Y ⊂ X.
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