THE CALDERON-ZYGMUND INEQUALITY AND PARAMETER
DEPENDENCE OF THE BELTRAMI EQUATION

ZHENG-WEI WU

1. INTRODUCTION

Let 1 be a complex measurable function on C with ||ullec < k < 1. We ask
whether there exists a quasiconformal mapping f with dilation uy = p. In other
words, we are looking for solutions to the Beltrami equation

(1) fZ = ,u‘fz

The solution f should be a homeomorphism with locally integrable distributional
derivatives. In order to solve this equation, we define two integral operators P and
T. The operator P is defined on functions h € LP with p > 2 by

Ph(¢) = —%/Ch(z) (zic - i) dz dy.

It is shown that Ph is continuous and that the operator P is continuous with Hoélder
constant 1 — 2/p, that is,

|PR(CL) — PR(G)| < K l|hllplcy — G =277,

where K, is a constant depending only on p. The second operator 7' is defined only
for compactly supported functions h € C3, by

1 h(z)
Th(é-) B !g% ™ ~/|ZC|>6 (Z - C)Q e dy

The operators P and T then satisfy the following relations.

Lemma 1.1. For h € CZ, Th is continuously differentiable (i.e., C*). Moreover,
we have

(2) (Ph)z = h, (Ph). =Th,

and
() /\Th|2dxdy:/\h|2dxdy.

The isometric property of T allows us to extend T to L? by continuity since
CZ2 in dense in L2, but it is difficult to extend P in a similar manner so that
Lemma 1.1 still holds for h € L2. Nevertheless, Calderén and Zygmund showed
that the isometric relation (3) can be replaced by

(4) ITh[ly < Cplihlp

for any p > 2. In addition, the constant C), tends to 1 as p — 2. This enables
us to extend T to LP. In particular, for p > 2 the differential relations (2) of P
is well-defined and hold in the distributional sense by approximating h € LP using
h,, € CZ. We shall use a fixed exponent p > 2 so that kC), < 1.
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Now, if 1 has compact support, then the Beltrami equation (1) can be uniquely
solved by expressing the solution in terms of 7" and P. Such solution is called a
normal solution.

Theorem 1.2. If u has compact support, there exists a unique solution f of (1)
such that f(0) =0 and f, —1 € LP.

The solution f is a homeomorphism if we first assume that p has distributional
derivative p, € LP, p > 2. Then, by choosing a sequence p, € C' with u, — p
almost everywhere, we can obtain a sequence of normal solutions f,, which converges
to the solution f with complex dilation . More generally, the assumption that
is compactly supported can be removed, and we have the following theorem.

Theorem 1.3. For any measurable p with ||p]lcc < 1, there exists a unique nor-
malized quasiconformal mapping f* with complex dilation p that leaves 0, 1, and
oo fized.

The first part of this report is dedicated to prove the Calderén-Zygmund in-
equality (4). After that, we will discuss the behavior of the solution f* as we vary
the parameter p.

2. THE CALDERON-ZYGMUND INEQUALITY
Let us first consider a one-dimensional analog to the problem.

Lemma 2.1. For f € C}(R), define

1 oo
Y
™ — 00
Then |H f|lp < Apllfllp for p > 2 with Ay = 1.
Proof. Let

f(z)

dx.
x—éx

F(C):u—i—iv:?lr/_(:f(_x)cdx,

where ( = £+in is defined on the upper half-plane. Then F'is by definition analytic.
Since the imaginary part

1 [ n
== —_— d
v(fﬂ?) W[m (33—5)2—1—172]0(1:) X
is the Poisson integral, we have v(£,0) = f(&£). On the other hand, for the real part
we write

wem == [ i@
LYt - fE-a)_a?
T

= dx.
’JJ2+’T]2 x

Then since f € Cg,

332

-1
22 + n?

dx

(€, n) — Hf()] < 1/°°‘f(£+a:);f(§_$)

™ Jo
[e%s} 772

SC/ ———5dz—0 as n—07.
o T°+n
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Now, noting that F' = u + iv is analytic, by a direct calculation we see that
Aluf” = p(p — D]ul? = (uf +ul)
AP = p(p — D)[o|P =2 (uf + u})
A|F|P = p?|F P72 (uf + ul)

holds almost everywhere. Thus, we find that
A <| F|P —

Let g = |F|P — ]%Mp. Applying Stokes theorem to a semicircle Sg, we have

L) = PP = ) ) 2 0

R
0< Agz/ gg(C)dICI—/_Rgn(C)df,

Sr AR

where Ap is the arc of Sg. Since

OF /°° f(z)

A N L
o Jowo (@—=0¢)?

we have g¢(¢) = O(|¢|72). It follows that by taking R — oo,

6 o0
aT;/ 9(¢) de <0,

from which we see that ffcoo g(¢) d¢ is decreasing in 1. Also, it is easy to see that
this integral vanishes as n — 0o, so we can deduce that

| perimraes P [ e inp e

for every n > 0. Now, observe that

D 2/p 2/p
<p—1) [0 ]],,/2 < (/ |de§>

< lu? + 02|z

< (|2 + [10°[l/2-

2/p —p/2
[l a < ((pfl) —1) [ 1ol ae.

and the proof concludes by letting n — 0. (]

Thus,

We proceed to prove the Calderon—Zygmund inequality. Recall that
1 h
Th:lim—f/ Lkdxdy
=0 |z—(|>€ (Z - C)
is defined for h € C’g. We will extend T to LP for p > 2 so that T satisfies
IThlp < Cplihllp

and Cp =+ lasp— 2.
Define the operator

710 = 57 [ 1+ 0T 1ech
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Let z = re’?. Then we have

T* f(C) /(/ f(Ctre?) = f(c_rew)dr)e_wd&

Taking the (two-dimensional) p-norm, we see that

/f<;+re —fl¢=re?)

T
I pr -2 ae[g)fr

P

Now, write { = £ + in and let gf,(ﬁ) = f(e"(¢ +1in)). Note that the norm on the
right does not change if we replace ¢ with (e, in which case the integral becomes

;/m F(e(C+7)) = f(e(¢C = 1)) d_;/w I+ =90 E=1) o e,
™ r 0 r

T - 3

Therefore, we can use Lemma 2.1 to obtain

IHg ()|l = /_ /_ [Hg? ()P de di

s/mAp</°O PG >|Pd£>d
_M/ / O dgdn = A2 £,

and we find that ||7%f[|, < FAu[f]l,-

Now, by continuity we extend T to LP. If we can show that T'f = —T*T* f for
f € C2, then T is natrually extended to LP and the proof is completed. Note that
%(I/M) = —1/2z|z|. Recall that integration by parts gives

dg .0 dg
“9 — lim -
/Cfaz du dy R 2 /Z<Rf32 dz/dz
[ rdgaz)
|z|<R
/ fgdff/ afgdz/\dz
|21=R lzl<r 0%

1
=1 dz — | =—gdxd
R;H;og/z_ng ? /Cazg vy

whenever it makes sense. If f € C2, we obtain

= lim
R— o

N =

= lim
R—o0

N | .

T f(¢ /f JrCaHda:dy
/fz(z+<>|z|dxdy

(5) dazdy

:wac/f 2= (]

1
— | dx dy.
wac/f (|z—<| |z|> vy
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For any test function ¢, it follows that

[rs@eacan = [ 1 ( - 1|) (C) d dy de dn,

This remains true for f € LP since the integral on the right is absolutely convergent.
In other words, (5) holds for f € LP in the distributional sense. Applying T* to (5)
again, we have

v =2 [ (Kd ; - & dean
z i 1
(©) :7T2(9w/</f|z—C| y) (C_ | |<|)d£dn
2ol ol as)es

1
=295 195 </|z—<|<|c ] |<|)d5d”>dxdy

We try to compute the integrand

B 1 1 1
—~ lim d
@) amiw/m wi<r T2~ <] (|<— | |<> dedn

The differentiation and limit can be interchanged, since

9 1 1
g de d
6z/|<_w<R |2 = (| (IC— | ICI> S

converges to zero as R — oo unifomly on compact sets. Moreover, we may replace

(7) with
_— / dedn / de dn
R0 02 Jic_wi<r 12 = ClIC—w]  Jicj<r IC]]z =]

for their difference converges to zero uniformly as R — co. By a change of variable
¢ — (|z — w| + w, the first term becomes

) dedn 0 de dn
0z Jic—wi<r 12 = ClIC —w| 0z Ji¢|<ryjz—w| 11 —C]IC]

Bflz=wl 2w gr gy
82/ / 1—rei®

B /271' do
2(z - w)lz —w| Jo 1= Re®/|z—w||’

which is easily seen to tend to —7/(z — w) as R — oo. Similarly, the second term
converges to —7/z. Putting them back into (6), we conclude that

T*T* f(w 7Taw/f (

= oL Pw) = ~Tf(w)

1
> dx dy
z

This completes the proof of (4).
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To see that C, — 1 as p — 2, we show more generally that logC), is a convex
function, and then the assertion follows by continuity since from (3) we know that
Cp = 2 when p = 2. This result is also called the Riesz—Thorin convexity theorem.

Theorem 2.2 (Riesz—Thorin). The best constant C,, is such that log Cy, is a convex
function of 1/p.

We first prove an easy lemma.

Lemma 2.3. Suppose 1 < p,q < oo with1/p+1/q=1. If f € LP, then

1flp = sup / f9.

llgllq=1

Proof. We follow the proof in [SS11]. If f = 0 then there is nothing to prove, so we
may assume f # 0. By Holder’s inequality, we have

/ £9 < 1ol

Taking the supremum over ||g|l; < 1 we have one side of the inequality. To prove
the reverse inequality, consider the sign function

1 if x >0,
sgn(x) ={—-1 ifz<O,
0 ifx =0.

If p=1and ¢ = oo, we may take g(z) = sgn f(z). Then clearly |g|sc = 1 and
Jfg=1flli. 1 < p,q < oo, then we set

p—1
o(z) = 'f(f”),, — san f(x).
Observe that 1)
e [ 1f@)r=t
Iolla = |7 o =

since q(p — 1) = p, and that [ fg = ||f]|,. Finally, if p = co and ¢ = 1, let € > 0,
and E a set of finite positive measure on which |f(z)| > || f]lc — € (whose existence
is from the defintion of co-norm). Take

o(z) = ’jf(f;)) sen f (),

where x g is the characteristic function of E. Then we see that ||g|; = 1, and also

/fg:ﬁ/Elf\zllf\\oo—e

This completes the proof. [

Proof of Theorem 2.2. Let p1 = 1/a; and ps = 1/ay with p1, ps > 2. Assume that
1T fll1/ar < Callfll1/ans
1T fll1/0s < Coll fll1/as-

If a = (1 —t)ag + tay for 0 <t <1, we show that

ITfl1/a < CTCHI fll1/a-
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We write o/ for the conjugate exponent of a, i.e., « + o’ = 1. For fixed f, g and
any complex (, define

Py = | Fle©/e
Q) =1f] Tk
G(¢) = |g|o©@ /e I
() =lgl T

where a({) = (1 — {)a; + Cas and () = 1 — «(¢), with the knowledge that
F(¢) = 0 and G(¢) = 0 whenever f = 0 and g = 0. Note that F(t) = f and
G(t) =g forreal 0 <t < 1. Set

¢m=/ﬂmwaoww

Notice that ¢ is viewed as a parameter and F'(¢), G(¢) are functions of z = x + iy.
Since simple functions with compact support are dense in any LP, we may assume
that f, g are such functions. It follows that F, G are also simple, and we may write

F(Q) =2, Fixi and G(C) = >_; G;xj. Thus,

60) = Y FGy [ T dedy,
0]

from which we see that ¢ is an exponential polynomial of the form ¢(¢) = >_, a;ei
with \; real. Therefore ¢ is bounded if & = Re( is bounded. Consider now the
special cases ¢ = 0and & = 1. If ¢ = 0 then Re a(¢) = v and hence |F(¢)| = | f|*1/«
and |G(C)| = |g|*/". Tt follows that

IE /e = (Flja) /e,

HG(C)HI/Q’l - (Hg\ll/a/)o‘l/"‘ = 1.

We may assume the normalization || f||;/, = 1 for simplicity, and we obtain

(O] < NTF (/a0 [G(Ol1/ay < Ch

A similar argument shows that |¢(¢)| < Cy when £ = 1. Hence we conclude that

log [p(Q)] = (1 = §)log C1 — Elog C2 < 0

on the boundary of the strip 0 < & < 1. Since the function on the left is subhar-
monic, the maximum principle applies and thus the inequality holds in the strip.
The theorem follows by taking ( = t. O

3. PARAMETER DEPENDENCE OF THE BELTRAMI EQUATION

Recall that f* is the solution of the Beltrami equation with fixpoints at 0, 1, cc.
We start with two lemmata.

Lemma 3.1 (Cauchy—Pompeiu formula). Let D C C be a region and let f: D — C
be a C' function. Then for any ¢ € U,

fo =L [ @z 1)

= dz dy.
21 Jap 2 —C T Jpz—C( vy
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Proof. For € > 0 let A.(¢) denote the disk with radius € at . Then by Stokes
theorem we have

f(z)dz f(2)dz (f(z) dz> f=(2) B
ez - FEASLC . 122) 4 ndz.
op Z—C /me(c) z=C /D\A€<<> z=C /D\Aé(C)Z_C Phe

Since

1 d 1 [ -
lim —/ fydz 1 Fz + eei®)do = f(2)
e—0 271 aAE(O z — C e—0 271 0

by continuity, the result follows by letting ¢ — 0. O

Lemma 3.2. If k = ||pt]|oc — 0, then ||f¥ — 1|1, — 0 for all p, where || - ||rp
denotes the p-norm over |z| < R.

Proof. We first show the case where p has compact support. Let F* be the normal
solution obtained in Theorem 1.2, in whose proof we recall that h = F¥ — 1 is
obtained from
h=T(uh)+ Tp.

This implies that || k||, < C||pll, — 0 as long as kCp < 1. Since f#* = F*/F'(1) is
just a normalization, and F'#(1) — 1, the assertion is clear for compactly supported
.

Let f(z) = 1/f(1/z). We show that || f# —1|;, — 0 as well when z has compact
support. Again it suffices to prove the corresponding statement for the normal
solution F*. Observe that

i 2F, " dud
/ |Fz—1|pd$dy:/ 2 (j) - x4y.
2] <1 lz1>1| F(2) |2
For 1 < |z| < R, the integral can be written as
/ 22(F,(2) — 1) n 22 _1 : dx dy
1<|2|<R F(z) F(2)? 2|t

which converges to zero since ||F, — 1|z, — 0 and F(z) — z uniformly. It is also
easy to see that the integral vanishes for |z| > R.

In the general case we write f = § o h with u; = py inside the unit disk, and h
analytic outside. Note that u, and py are both bounded by £ and have compact
support. Since

f-= (gz © h)hz + (gf o h)ﬁz = (gz © h)hza
in the unit disk, we have

1z = Uiy < M1((g= = 1) o h)hzlrp + [[he = 11

The second term tends to zero by our previous case. For the first term on the right,
we obtain by a change of variable

(g — 1) o h)h.}, = / (g — 1) o h|P|h.|P dx dy
|z|<1
o1
T 1=k Jua<an

. 1/2
L A ) B
1—k? </h<{z<1}> lsl<1

g — 1[P[hes o h_1|p_2 dx dy
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where we used the fact that the Jacobian determinant is J(h) = |h.|?(1 — u?). Note
that the region h({|z| < 1}) may be slightly different from the unit disk, but this
does not change the result as can be seen from the proof for f. This completes the
proof. ([l

Now, we assume that p depends on a parameter ¢ in the form
u(z,t) = tv(z) + te(z, t),

where v, e € L and ||e(z, )]0 — 0 as t — 0. We will derive a first-order approxi-
mation for f# = f(z,t) by finding a formula for the ¢-derivative f = 9f/0t at t = 0.
For |¢] < 1, we write

() fo =~ [ f@d 1 /I =) gay

2710 Jjz=1 2 —C A<1 2= C

Replacing z with 1/z, the first integral on the right becomes

1 f(/z)dz 1 1 2(?
270 J)2j=1 2(1—2¢)  2mi /|Z|—1 1/z) ( +C+ ZC) @

_ ? f2)'=
A+B<+2m/ et

¢? fz(2)z
= A 2 —=2""  dxd
T /|| Fe2(1—20 "

where the convergence at the last line holds for ¢ sufficiently small so that ||fi]|c =
K < 2 since |f(2)] > C|z|¥ for |z| = § small and

N

The constants A and B can be solved by the normalization f(0) =0, f(1) = 1, and
we obtain

A=~ ——dxd
/||<1 S

z

B N R R N | 1 fo(2)2
B_<+7T/Iz|<1 Z(Z)(Z—l Z) dxdy+7r/|2|<1 f(2)2(1=2) oy

Thus (8) becomes

IR N S S
10=c-1 [ (- Sty

IR A0 ay
7T/z<1 ()2 (1_2C 1—z>d dy.

We write fz = puf. = u(f. — 1) + p and use a corresgonding expression for f5 with
fu(z) = (2/2)?u(1/z). Since || fs — 1|l1p — 0 and ||fz — 1|1, — 0 by Lemma 3.2,

1
/ |f( )l |dz] < C'6* % -0 as §—0.
|z|=d
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and also p/t — v as t — oo, we have

fQ)—=¢

t—0 t

I N S S
— 7T/|z|<1 (z)(z_C z—1+ 2 )dmdy

1 1 %z (z
_ 7T/|Z|<1 y(l/z)? (1 v —z) dx dy,

where we used the fact that 22/ f(2)?> = 1. Note that the convergence is uniform
in a compact subset of |(| < 1. Now, observe that under inversion z — 1/z, the
integrand of the second integral is the same as that in the first integral, and the
domain becomes |z| > 1. Hence we find that

fo)=-1 /C V(2)R(z, ) dr dy,

™

where

B 1 ¢ C—l_ <(C_1)
Rz = e Y T T o6 =0

We now expand p(t) about an arbitrary g, that is, we assume

u(t) = pu(to) +v(to)(t —to) +o(t —to).

Consider
O = fA o prlto)

() — 1i(to) fLo por—1
A=A = (wwouoeo)'f‘;‘)) o)

by the composition of quasiconformal mappings. It is clear that A(t) = (t—to)A(to)+

o(t — tg) with
Ato) = <1 i(tZiP ‘ ;%Z> o (fro)~1.

where

It then follows that

af ; Ho
E(Cato) =fof
_ —l/ (V(tO) | 50) o (f1) " R(z, [0 (0)) dar dy

™ 1—|pol* 72°
1
=~ [ vlto, RGP, £0(0) dady,
This is the general perturbation formula. Our result is summarized as follows.

Theorem 3.3. Suppose

pult + s)(2) = p(t)(2) + sv(t)(2) + se(s, 1)(2)
with v(t),v(t),e(s,t) € L™, ||ut)]lco < 1, and |le(s,t)||cc = 0 as s — 0. Then

FHEIC) = Q) + s f (¢ 1) + ols)
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uniformly on compact sets, where

FG 0 == [vOEUEOE RO @), 140 (0) de dy.

REFERENCES

[AhlO6] Lars V. Ahlfors, Lectures on quasiconformal mappings, University lecture series, American
Mathematical Society, 2006.

[SS11] Elias M. Stein and Rami Shakarchi, Functional analysis: Introduction to further topics
in analysis, Princeton University Press, 2011.



	1. Introduction
	2. The Calderón–Zygmund Inequality
	3. Parameter Dependence of the Beltrami Equation
	References

