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1. Introduction

Let µ be a complex measurable function on C with ‖µ‖∞ ≤ k < 1. We ask
whether there exists a quasiconformal mapping f with dilation µf = µ. In other
words, we are looking for solutions to the Beltrami equation
(1) fz̄ = µfz.
The solution f should be a homeomorphism with locally integrable distributional
derivatives. In order to solve this equation, we define two integral operators P and
T . The operator P is defined on functions h ∈ Lp with p > 2 by

Ph(ζ) = − 1

π

∫
C
h(z)

(
1

z − ζ
− 1

z

)
dx dy.

It is shown that Ph is continuous and that the operator P is continuous with Hölder
constant 1− 2/p, that is,

|Ph(ζ1)− Ph(ζ2)| ≤ Kp‖h‖p|ζ1 − ζ2|1−2/p,
where Kp is a constant depending only on p. The second operator T is defined only
for compactly supported functions h ∈ C2

0 , by

Th(ζ) = lim
ϵ→0

− 1

π

∫
|z−ζ|>ϵ

h(z)

(z − ζ)2
dx dy.

The operators P and T then satisfy the following relations.

Lemma 1.1. For h ∈ C2
0 , Th is continuously differentiable (i.e., C1). Moreover,

we have
(2) (Ph)z̄ = h, (Ph)z = Th,
and

(3)
∫

|Th|2 dx dy =

∫
|h|2 dx dy.

The isometric property of T allows us to extend T to L2 by continuity since
C2

0 in dense in L2, but it is difficult to extend P in a similar manner so that
Lemma 1.1 still holds for h ∈ L2. Nevertheless, Calderón and Zygmund showed
that the isometric relation (3) can be replaced by
(4) ‖Th‖p ≤ Cp‖h‖p
for any p ≥ 2. In addition, the constant Cp tends to 1 as p → 2. This enables
us to extend T to Lp. In particular, for p > 2 the differential relations (2) of P
is well-defined and hold in the distributional sense by approximating h ∈ Lp using
hn ∈ C2

0 . We shall use a fixed exponent p > 2 so that kCp < 1.
1
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Now, if µ has compact support, then the Beltrami equation (1) can be uniquely
solved by expressing the solution in terms of T and P . Such solution is called a
normal solution.

Theorem 1.2. If µ has compact support, there exists a unique solution f of (1)
such that f(0) = 0 and fz − 1 ∈ Lp.

The solution f is a homeomorphism if we first assume that µ has distributional
derivative µz ∈ Lp, p > 2. Then, by choosing a sequence µn ∈ C1 with µn → µ
almost everywhere, we can obtain a sequence of normal solutions fn which converges
to the solution f with complex dilation µ. More generally, the assumption that µ
is compactly supported can be removed, and we have the following theorem.

Theorem 1.3. For any measurable µ with ‖µ‖∞ < 1, there exists a unique nor-
malized quasiconformal mapping fµ with complex dilation µ that leaves 0, 1, and
∞ fixed.

The first part of this report is dedicated to prove the Calderón–Zygmund in-
equality (4). After that, we will discuss the behavior of the solution fµ as we vary
the parameter µ.

2. The Calderón–Zygmund Inequality

Let us first consider a one-dimensional analog to the problem.

Lemma 2.1. For f ∈ C1
0 (R), define

Hf(ξ) = pr. v. 1
π

∫ ∞

−∞

f(x)

x− ξ
dx.

Then ‖Hf‖p ≤ Ap‖f‖p for p ≥ 2 with A2 = 1.

Proof. Let

F (ζ) = u+ iv =
1

π

∫ ∞

−∞

f(x)

x− ζ
dx,

where ζ = ξ+iη is defined on the upper half-plane. Then F is by definition analytic.
Since the imaginary part

v(ξ, η) =
1

π

∫ ∞

−∞

η

(x− ξ)2 + η2
f(x) dx

is the Poisson integral, we have v(ξ, 0) = f(ξ). On the other hand, for the real part
we write

u(ξ, η) =
1

π

∫ ∞

−∞

x− ξ

(x− ξ)2 + η2
f(x) dx

=
1

π

∫ ∞

0

f(ξ + x)− f(ξ − x)

x

x2

x2 + η2
dx.

Then since f ∈ C1
0 ,

|u(ξ, η)−Hf(ξ)| ≤ 1

π

∫ ∞

0

∣∣∣∣f(ξ + x)− f(ξ − x)

x

∣∣∣∣
∣∣∣∣∣ x2

x2 + η2
− 1

∣∣∣∣∣ dx
≤ C

∫ ∞

0

η2

x2 + η2
dx → 0 as η → 0+.
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Now, noting that F = u+ iv is analytic, by a direct calculation we see that
∆|u|p = p(p− 1)|u|p−2(u2

ξ + u2
η)

∆|v|p = p(p− 1)|v|p−2(u2
ξ + u2

η)

∆|F |p = p2|F |p−2(u2
ξ + u2

η)

holds almost everywhere. Thus, we find that

∆

(
|F |p − p

p− 1
|u|p

)
= p2(|F |p−2 − |u|p−2)(u2

ξ + u2
η) ≥ 0.

Let g = |F |p − p
p−1 |u|

p. Applying Stokes theorem to a semicircle SR, we have

0 ≤
∫
SR

∆g =

∫
AR

gζ(ζ) d|ζ| −
∫ R

−R

gη(ζ) dξ,

where AR is the arc of SR. Since
∂F

∂ζ
=

∫ ∞

−∞

f(x)

(x− ζ)2
dx,

we have gζ(ζ) = O(|ζ|−2). It follows that by taking R → ∞,
∂

∂η

∫ ∞

−∞
g(ζ) dξ ≤ 0,

from which we see that
∫∞
−∞ g(ζ) dξ is decreasing in η. Also, it is easy to see that

this integral vanishes as η → ∞, so we can deduce that∫ ∞

−∞
|F (ξ + iη)|p dξ ≥ p

p− 1

∫ ∞

−∞
|u(ξ + iη)|p dξ

for every η > 0. Now, observe that(
p

p− 1

)2/p

‖u2‖p/2 ≤
(∫

|F |p dξ
)2/p

≤ ‖u2 + v2‖p/2
≤ ‖u2‖p/2 + ‖v2‖p/2.

Thus, ∫
|u|p dξ ≤

((
p

p− 1

)2/p

− 1

)−p/2 ∫
|v|p dξ,

and the proof concludes by letting η → 0. □

We proceed to prove the Calderón–Zygmund inequality. Recall that

Th = lim
ϵ→0

− 1

π

∫
|z−ζ|>ϵ

h(z)

(z − ζ)2
dx dy

is defined for h ∈ C2
0 . We will extend T to Lp for p ≥ 2 so that T satisfies

‖Th‖p ≤ Cp‖h‖p
and Cp → 1 as p → 2.

Define the operator

T ∗f(ζ) =
1

2π

∫
f(z + ζ)

dx dy

z|z|
, f ∈ C2

0 .
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Let z = reiθ. Then we have

T ∗f(ζ) =
1

2

∫ π

0

(
1

π

∫ ∞

0

f(ζ + reiθ)− f(ζ − reiθ)

r
dr

)
e−iθ dθ.

Taking the (two-dimensional) p-norm, we see that

‖T ∗f‖p ≤ π

2
max
θ∈[0,π]

∥∥∥∥∥ 1π
∫ ∞

0

f(ζ + reiθ)− f(ζ − reiθ)

r
dr

∥∥∥∥∥
p

Now, write ζ = ξ + iη and let gθη(ξ) = f(eiθ(ξ + iη)). Note that the norm on the
right does not change if we replace ζ with ζeiθ, in which case the integral becomes

1

π

∫ ∞

0

f(eiθ(ζ + r))− f(eiθ(ζ − r))

r
dr =

1

π

∫ ∞

0

gθη(ξ + r)− gθη(ξ − r)

r
dr = Hgθξ (ξ).

Therefore, we can use Lemma 2.1 to obtain

‖Hgθη(ξ)‖pp =

∫ ∞

−∞

∫ ∞

−∞
|Hgθη(ξ)|p dξ dη

≤
∫ ∞

−∞
Ap

p

(∫ ∞

−∞
|gθη(ξ)|p dξ

)
dη

= Ap
p

∫ ∞

−∞

∫ ∞

−∞
|f(eiθζ)|p dξ dη = Ap

p‖f‖p,

and we find that ‖T ∗f‖p ≤ π
2Ap‖f‖p.

Now, by continuity we extend T ∗ to Lp. If we can show that Tf = −T ∗T ∗f for
f ∈ C2

0 , then T is natrually extended to Lp and the proof is completed. Note that
∂
∂z (1/|z|) = −1/2z|z|. Recall that integration by parts gives∫

C
f
∂g

∂z
dx dy = lim

R→∞

i

2

∫
|z|<R

f
∂g

∂z
dz ∧ dz̄

= lim
R→∞

i

2

∫
|z|<R

f d(g dz̄)

= lim
R→∞

i

2

(∫
|z|=R

fg dz̄ −
∫
|z|<R

∂f

∂z
g dz ∧ dz̄

)

= lim
R→∞

i

2

∫
|z|=R

fg dz̄ −
∫
C

∂f

∂z
g dx dy

whenever it makes sense. If f ∈ C2
0 , we obtain

T ∗f(ζ) = − 1

π

∫
f(z + ζ)

∂

∂z

1

|z|
dx dy

=
1

π

∫
fz(z + ζ)

1

|z|
dx dy

=
1

π

∂

∂ζ

∫
f(z)

dx dy

|z − ζ|

=
1

π

∂

∂ζ

∫
f(z)

(
1

|z − ζ|
− 1

|z|

)
dx dy.

(5)
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For any test function ϕ, it follows that∫
T ∗f(ζ)ϕ(ζ) dξ dη = − 1

π

∫
f(z)

(
1

|z − ζ|
− 1

|z|

)
ϕζ(ζ) dx dy dξ dη.

This remains true for f ∈ Lp since the integral on the right is absolutely convergent.
In other words, (5) holds for f ∈ Lp in the distributional sense. Applying T ∗ to (5)
again, we have

T ∗T ∗f(w) =
1

π

∂

∂w

∫
T ∗f(ζ)

(
1

|ζ − w|
− 1

|ζ|

)
dξ dη

=
1

π2

∂

∂w

∫ (∫
fz(z) dx dy

|z − ζ|

)(
1

|ζ − w|
− 1

|ζ|

)
dξ dη

=
1

π2

∂

∂w

∫
fz(z)

(∫
1

|z − ζ|

(
1

|ζ − w|
− 1

|ζ|

)
dξ dη

)
dx dy

= − 1

π2

∂

∂w

∫
f(z)

∂

∂z

(∫
1

|z − ζ|

(
1

|ζ − w|
− 1

|ζ|

)
dξ dη

)
dx dy.

(6)

We try to compute the integrand

(7) ∂

∂z
lim

R→∞

∫
|ζ−w|<R

1

|z − ζ|

(
1

|ζ − w|
− 1

|ζ|

)
dξ dη.

The differentiation and limit can be interchanged, since
∂

∂z

∫
|ζ−w|<R

1

|z − ζ|

(
1

|ζ − w|
− 1

|ζ|

)
dξ dη

converges to zero as R → ∞ unifomly on compact sets. Moreover, we may replace
(7) with

lim
R→∞

∂

∂z

∫
|ζ−w|<R

dξ dη

|z − ζ||ζ − w|
−
∫
|ζ|<R

dξ dη

|ζ||z − ζ|
,

for their difference converges to zero uniformly as R → ∞. By a change of variable
ζ 7→ ζ|z − w|+ w, the first term becomes

∂

∂z

∫
|ζ−w|<R

dξ dη

|z − ζ||ζ − w|
=

∂

∂z

∫
|ζ|<R/|z−w|

dξ dη

|1− ζ||ζ|

=
∂

∂z

∫ R/|z−w|

0

∫ 2π

0

dr dθ

1− reiθ

= − R

2(z − w)|z − w|

∫ 2π

0

dθ

|1−Reiθ/|z − w||
,

which is easily seen to tend to −π/(z − w) as R → ∞. Similarly, the second term
converges to −π/z. Putting them back into (6), we conclude that

T ∗T ∗f(w) =
1

π

∂

∂w

∫
f(z)

(
1

z − w
− 1

z

)
dx dy

= − ∂

∂w
P (w) = −Tf(w).

This completes the proof of (4).
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To see that Cp → 1 as p → 2, we show more generally that logCp is a convex
function, and then the assertion follows by continuity since from (3) we know that
Cp = 2 when p = 2. This result is also called the Riesz–Thorin convexity theorem.

Theorem 2.2 (Riesz–Thorin). The best constant Cp is such that logCp is a convex
function of 1/p.

We first prove an easy lemma.

Lemma 2.3. Suppose 1 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1. If f ∈ Lp, then

‖f‖p = sup
∥g∥q=1

∫
fg.

Proof. We follow the proof in [SS11]. If f = 0 then there is nothing to prove, so we
may assume f 6= 0. By Hölder’s inequality, we have∫

fg ≤ ‖f‖p‖g‖q.

Taking the supremum over ‖g‖q ≤ 1 we have one side of the inequality. To prove
the reverse inequality, consider the sign function

sgn(x) =


1 if x > 0,
−1 if x < 0,
0 if x = 0.

If p = 1 and q = ∞, we may take g(x) = sgn f(x). Then clearly ‖g‖∞ = 1 and∫
fg = ‖f‖1. If 1 < p, q < ∞, then we set

g(x) =
|f(x)|p−1

‖f‖p−1
p

sgn f(x).

Observe that
‖g‖qq =

∫
|f(x)|q(p−1)

‖f‖q(p−1)
p

= 1

since q(p − 1) = p, and that
∫
fg = ‖f‖p. Finally, if p = ∞ and q = 1, let ϵ > 0,

and E a set of finite positive measure on which |f(x)| ≥ ‖f‖∞− ϵ (whose existence
is from the defintion of ∞-norm). Take

g(x) =
χE(x)

µ(E)
sgn f(x),

where χE is the characteristic function of E. Then we see that ‖g‖1 = 1, and also∫
fg =

1

µ(E)

∫
E

|f | ≥ ‖f‖∞ − ϵ

This completes the proof. □

Proof of Theorem 2.2. Let p1 = 1/α1 and p2 = 1/α2 with p1, p2 ≥ 2. Assume that
‖Tf‖1/α1

≤ C1‖f‖1/α1
,

‖Tf‖1/α2
≤ C2‖f‖1/α2

.
If α = (1− t)α1 + tα2 for 0 ≤ t ≤ 1, we show that

‖Tf‖1/α ≤ C1−t
1 Ct

2‖f‖1/α.
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We write α′ for the conjugate exponent of α, i.e., α+ α′ = 1. For fixed f, g and
any complex ζ, define

F (ζ) = |f |α(ζ)/α f

|f |
,

G(ζ) = |g|α(ζ)
′/α′ g

|g|
,

where α(ζ) = (1 − ζ)α1 + ζα2 and α(ζ)′ = 1 − α(ζ), with the knowledge that
F (ζ) = 0 and G(ζ) = 0 whenever f = 0 and g = 0. Note that F (t) = f and
G(t) = g for real 0 ≤ t ≤ 1. Set

ϕ(ζ) =

∫
TF (ζ) ·G(ζ) dx dy.

Notice that ζ is viewed as a parameter and F (ζ), G(ζ) are functions of z = x+ iy.
Since simple functions with compact support are dense in any Lp, we may assume
that f, g are such functions. It follows that F,G are also simple, and we may write
F (ζ) =

∑
i Fiχi and G(ζ) =

∑
j Gjχ

∗
j . Thus,

ϕ(ζ) =
∑
i,j

FiGj

∫
Tχi · χ∗

j dx dy,

from which we see that ϕ is an exponential polynomial of the form ϕ(ζ) =
∑

i aie
λiζ

with λi real. Therefore ϕ is bounded if ξ = Re ζ is bounded. Consider now the
special cases ξ = 0 and ξ = 1. If ξ = 0 then Reα(ζ) = α1 and hence |F (ζ)| = |f |α1/α

and |G(ζ)| = |g|α′
1/α

′ . It follows that

‖F (ζ)‖1/α1
= (‖f‖1/α)α1/α,

‖G(ζ)‖1/α′
1
= (‖g‖1/α′)α

′
1/α

′
= 1.

We may assume the normalization ‖f‖1/α = 1 for simplicity, and we obtain

|ϕ(ζ)| ≤ ‖TF (ζ)‖1/α1
‖G(ζ)‖1/α′

1
≤ C1.

A similar argument shows that |ϕ(ζ)| ≤ C2 when ξ = 1. Hence we conclude that

log |ϕ(ζ)| − (1− ξ) logC1 − ξ logC2 ≤ 0

on the boundary of the strip 0 ≤ ξ ≤ 1. Since the function on the left is subhar-
monic, the maximum principle applies and thus the inequality holds in the strip.
The theorem follows by taking ζ = t. □

3. Parameter Dependence of the Beltrami Equation

Recall that fµ is the solution of the Beltrami equation with fixpoints at 0, 1,∞.
We start with two lemmata.

Lemma 3.1 (Cauchy–Pompeiu formula). Let D ⊆ C be a region and let f : D → C
be a C1 function. Then for any ζ ∈ U ,

f(ζ) =
1

2πi

∫
∂D

f(z) dz

z − ζ
− 1

π

∫
D

fz̄(z)

z − ζ
dx dy.
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Proof. For ϵ > 0 let ∆ϵ(ζ) denote the disk with radius ϵ at ζ. Then by Stokes
theorem we have∫
∂D

f(z) dz

z − ζ
−
∫
∂∆ϵ(ζ)

f(z) dz

z − ζ
=

∫
D\∆ϵ(ζ)

d

(
f(z) dz

z − ζ

)
= −

∫
D\∆ϵ(ζ)

fz̄(z)

z − ζ
dz ∧ dz̄.

Since
lim
ϵ→0

1

2πi

∫
∂∆ϵ(ζ)

f(z) dz

z − ζ
= lim

ϵ→0

1

2π

∫ 2π

0

f(z + ϵeiθ) dθ = f(z)

by continuity, the result follows by letting ϵ → 0. □

Lemma 3.2. If k = ‖µ‖∞ → 0, then ‖fµ
z − 1‖1,p → 0 for all p, where ‖ · ‖R,p

denotes the p-norm over |z| ≤ R.

Proof. We first show the case where µ has compact support. Let Fµ be the normal
solution obtained in Theorem 1.2, in whose proof we recall that h = Fµ

z − 1 is
obtained from

h = T (µh) + Tµ.
This implies that ‖h‖p ≤ C‖µ‖p → 0 as long as kCp < 1. Since fµ = Fµ/Fµ(1) is
just a normalization, and Fµ(1) → 1, the assertion is clear for compactly supported
µ.

Let f̌(z) = 1/f(1/z). We show that ‖f̌µ
z −1‖1,p → 0 as well when µ has compact

support. Again it suffices to prove the corresponding statement for the normal
solution F̌µ. Observe that∫

|z|<1

|F̌z − 1|p dx dy =

∫
|z|>1

∣∣∣∣∣z2Fz(z)

F (z)2
− 1

∣∣∣∣∣
p
dx dy

|z|4
.

For 1 < |z| < R, the integral can be written as∫
1<|z|<R

∣∣∣∣∣z2(Fz(z)− 1)

F (z)
+

z2

F (z)2
− 1

∣∣∣∣∣
p
dx dy

|z|4
,

which converges to zero since ‖Fz − 1‖R,p → 0 and F (z) → z uniformly. It is also
easy to see that the integral vanishes for |z| > R.

In the general case we write f = ǧ ◦ h with µh = µf inside the unit disk, and h
analytic outside. Note that µg and µh are both bounded by k and have compact
support. Since

fz = (ǧz ◦ h)hz + (ǧz̄ ◦ h)hz = (ǧz ◦ h)hz,
in the unit disk, we have

‖fz − 1‖1,p ≤ ‖((ǧz − 1) ◦ h)hz‖1,p + ‖hz − 1‖1,p.
The second term tends to zero by our previous case. For the first term on the right,
we obtain by a change of variable

‖((ǧz − 1) ◦ h)hz‖p1,p =

∫
|z|<1

|(ǧz − 1) ◦ h|p|hz|p dx dy

≤ 1

1− k2

∫
h({|z|<1})

|ǧz − 1|p|hcz ◦ h−1|p−2 dx dy

≤ 1

1− k2

(∫
h({|z|<1})

|ǧz − 1|2p
∫
|z|<1

|hz|2(p−2)

)1/2

→ 0,
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where we used the fact that the Jacobian determinant is J(h) = |hz|2(1−µ2). Note
that the region h({|z| < 1}) may be slightly different from the unit disk, but this
does not change the result as can be seen from the proof for f̌ . This completes the
proof. □

Now, we assume that µ depends on a parameter t in the form

µ(z, t) = tν(z) + tϵ(z, t),

where ν, ϵ ∈ L∞ and ‖ϵ(z, t)‖∞ → 0 as t → 0. We will derive a first-order approxi-
mation for fµ = f(z, t) by finding a formula for the t-derivative ḟ = ∂f/∂t at t = 0.
For |ζ| < 1, we write

(8) f(ζ) =
1

2πi

∫
|z|=1

f(z) dz

z − ζ
− 1

π

∫
|z|<1

fz̄(z)

z − ζ
dx dy.

Replacing z with 1/z, the first integral on the right becomes

1

2πi

∫
|z|=1

f(1/z) dz

z(1− zζ)
=

1

2πi

∫
|z|=1

f(1/z)

(
1

z
+ ζ +

zζ2

1− zζ

)
dz

= A+Bζ +
ζ2

2πi

∫
|z|=1

f̌(z)−1z

1− zζ
dz

= A+Bζ − ζ2

π

∫
|z|<1

f̌z̄(z)z

f̌(z)2(1− zζ)
dx dy,

where the convergence at the last line holds for t sufficiently small so that ‖µ̌‖∞ =
K < 2 since |f̌(z)| > C|z|K for |z| = δ small and∫

|z|=δ

|f̌(z)−1||z|
|1− zζ|

|dz| < C ′δ2−K → 0 as δ → 0.

The constants A and B can be solved by the normalization f(0) = 0, f(1) = 1, and
we obtain

A =
1

π

∫
|z|<1

fz̄(z)

z
dx dy,

B = ζ +
1

π

∫
|z|<1

fz̄(z)

(
1

z − 1
− 1

z

)
dx dy +

1

π

∫
|z|<1

f̌z̄(z)z

f̌(z)2(1− z)
dx dy.

Thus (8) becomes

f(ζ) = ζ − 1

π

∫
|z|<1

fz̄(z)

(
1

z − ζ
− ζ

z − 1
+

ζ − 1

z

)
dx dy

− 1

π

∫
|z|<1

f̌z̄(z)

f̌(z)2

(
ζ2z

1− zζ
− ζz

1− z

)
dx dy.

We write fz̄ = µfz = µ(fz − 1) + µ and use a corresponding expression for f̌z̄ with
µ̌(z) = (z/z̄)2µ(1/z). Since ‖fz̄ − 1‖1,p → 0 and ‖f̌z̄ − 1‖1,p → 0 by Lemma 3.2,
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and also µ/t → ν as t → ∞, we have

ḟ(ζ) = lim
t→0

f(ζ)− ζ

t

=− 1

π

∫
|z|<1

ν(z)

(
1

z − ζ
− ζ

z − 1
+

ζ − 1

z

)
dx dy

− 1

π

∫
|z|<1

ν(1/z)
1

z̄2

(
ζ2z

1− zζ
− ζz

1− z

)
dx dy,

where we used the fact that z2/f̌(z)2 → 1. Note that the convergence is uniform
in a compact subset of |ζ| < 1. Now, observe that under inversion z 7→ 1/z, the
integrand of the second integral is the same as that in the first integral, and the
domain becomes |z| > 1. Hence we find that

ḟ(ζ) = − 1

π

∫
C
ν(z)R(z, ζ) dx dy,

where
R(z, ζ) =

1

z − ζ
− ζ

z − 1
+

ζ − 1

z
=

ζ(ζ − 1)

z(z − 1)(z − ζ)
.

We now expand µ(t) about an arbitrary t0, that is, we assume

µ(t) = µ(t0) + ν(t0)(t− t0) + o(t− t0).

Consider
fµ(t) = fλ ◦ fµ(t0),

where

λ = λ(t) =

(
µ(t0)

1− µ(t)µ(t0)
· f

µ0
z

f
µ0

z

)
◦ (fµ0)−1

by the composition of quasiconformal mappings. It is clear that λ(t) = (t−t0)λ̇(t0)+
o(t− t0) with

λ̇(t0) =

(
ν(t0)

1− |µ0|2
· f

µ0
z

f
µ0

z̄

)
◦ (fµ0)−1.

It then follows that
∂f

∂t
(ζ, t0) = ḟ ◦ fµ0

= − 1

π

∫ (
ν(t0)

1− |µ0|2
· f

µ0
z

f
µ0

z̄

)
◦ (fµ0)−1R(z, fµ0(ζ)) dx dy

= − 1

π

∫
ν(t0, z)(f

µ0
z )2R(fµ0(z), fµ0(ζ)) dx dy.

This is the general perturbation formula. Our result is summarized as follows.

Theorem 3.3. Suppose

µ(t+ s)(z) = µ(t)(z) + sν(t)(z) + sϵ(s, t)(z)

with ν(t), ν(t), ϵ(s, t) ∈ L∞, ‖µ(t)‖∞ < 1, and ‖ϵ(s, t)‖∞ → 0 as s → 0. Then

fµ(t+s)(ζ) = fµ(t)(ζ) + sḟ(ζ, t) + o(s)
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uniformly on compact sets, where

ḟ(ζ, t) = − 1

π

∫
ν(t)(z)(fµ(t)

z (z))2R(fµ(t)(z), fµ(t)(ζ)) dx dy.
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