TOPICS IN COMPLEX GEOMETRY 2025 MIDTERM EXAM

1. Let $g \in C_0^{\infty}(\mathbb{C})$. (a) Solve $\partial f / \partial \bar{z} = g$ and (b) show that it has a solution $f \in C_0^{\infty}(\mathbb{C})$ if and only if $\int_{\mathbb{C}} z^n g(z) dz \wedge d\bar{z} = 0$ for all $n \in \mathbb{N}$.

2. Let *X* be a compact Riemann surface, \mathscr{D} the sheaf of meromorphic 1-forms η with res_{*x*} $\eta = 0$, $\forall x \in X$. Show that $H^1(X, \mathbb{C}) \cong \mathscr{D}(X)/d\mathscr{M}(X)$.

3. Prove Abel's theorem on a compact Riemann surface *X*: a divisor *D* with deg D = 0 is principal if and only if there is a one chain *c* with $D = \partial c$ such that $\int_c \omega = 0$ for all $\omega \in \Omega(X)$.

4. Prove Riemann's extension theorem: Let $f \in \mathcal{O}(U)$ with U open in \mathbb{C}^n , and let $g \in \mathcal{O}(U \setminus Z(f))$. If g is locally bounded near Z(f) then g extends uniquely to $\tilde{g} \in \mathcal{O}(U)$.

5. Compute the Kodaira dimension of a smooth hypersurface $X \subset \mathbb{P}^4$ of degree *d* in the following 3 cases: d = 4, 5, 6.

6. 6. Let (X, g) be a Kähler manifold of dimension n > 1. (a) Show that if $e^f g$ is another Kähler metric, then f is a constant function. (b) Let α be a closed (p, q)-form primitive at every point. Show that α is harmonic.

7. Prove the Hodge decomposition theorem on compact Riemannian manifolds by assuming the PDE results on compactness and regularity. Namely show that dim $\mathbb{H}^p < \infty$ and $A^p = \mathbb{H}^p \oplus^{\perp} \triangle A^p$.

* You may replace ONE problem by presenting a major topic or the proof of a major theorem you have well prepared but not given above.

** Each problem deserves 15 pts. Very good/complete answer to a problem might receive bonus points.

Date: April 9, am 10:10 - 13:10 at Room 101. An course by Chin-Lung Wang at NTU..