Final report: Bogomolov-Tian-Todorov theorem and its extension to dGBV categories

Jia Hua Chong

June 3, 2025

1 Introduction

Let X = (M, I) be a complex manifold. A small deformation of the complex structure gives a splitting $T^*M_{\mathbf{C}} = T_t^{1,0} \oplus T_t^{0,1}$, which is equivalently determined by a map

$$\varphi(t): T^{0,1} \to T^{1,0}$$

characterized by $v + \varphi(t)v \in T_t^{0,1}$ for small t. Conversely, if given a family of tensors $\varphi(t) = \varphi_{\mu}^{\nu}(t)d\overline{z}^{\mu} \otimes \frac{\partial}{\partial z^{\nu}} \in \mathcal{A}^{0,1}(\mathcal{T}_X)$, with $\varphi(0) = 0$,

1. the almost complex structure I(t) for small t is given, with respect to the basis $\{\partial/\partial z^{\mu}\} \cup \{\partial/\partial \overline{z}^{\mu}\}$ by

$$I(t) = P\begin{pmatrix} i \\ -i \end{pmatrix} p^{-1}, \ P = \begin{pmatrix} \delta^{\nu}_{\mu} & \varphi^{\nu}_{\mu}(t) \\ \overline{\varphi}^{\nu}_{\mu}(t) & \delta^{\nu}_{\mu} \end{pmatrix}.$$

2. $\overline{\partial}_{\varphi} := \overline{\partial}(t) = \overline{\partial} + \varphi(t)$

The almost complex structure is integrable (i.e. $\overline{\partial}_{\varphi}^2 = 0$, i.e. $[T_t^{0,1}, T_t^{0,1}] \subset T_t^{0,1}$) if and only if the Maurer-Cartan equation

$$\overline{\partial}\varphi(t) + \frac{1}{2}[\varphi(t),\varphi(t)] = 0 \tag{1}$$

holds in $\mathcal{A}^{0,2}(\mathcal{T}_X)$.

Remark 1.1. Instead of (1), the equation given in [Huy05] is $\overline{\partial}\varphi(t) + [\varphi(t), \varphi(t)] = 0$, which I believe is a mistake since the last 2 equations in p258 uses inconsistent conventions: $d\overline{z}^{\mu} \wedge d\overline{z}^{\gamma} = d\overline{z}^{\mu} \otimes d\overline{z}^{\gamma} - d\overline{z}^{\gamma} \wedge d\overline{z}^{\mu}$ and $d\overline{z}^{\mu} \wedge d\overline{z}^{\gamma} = (d\overline{z}^{\mu} \otimes d\overline{z}^{\gamma} - d\overline{z}^{\gamma} \wedge d\overline{z}^{\mu})/2$. Remark 1.2. [MK71] takes another approach in defining the \mathcal{T}_X -valued (0,1)-form φ , associated to a deformation. It turns out that they differ by a minus sign.

If we consider the power series expansion $\varphi = \sum_{i \ge 1} \varphi_i t^i$, (1) becomes a recursive system of equations :

$$0 = \overline{\partial}\varphi_1 \tag{2}$$

$$0 = \overline{\partial}\varphi_2 + \frac{1}{2}[\varphi_1, \varphi_1] \tag{3}$$

$$0 = \overline{\partial}\varphi_k + \frac{1}{2} \sum_{0 < i < k} [\varphi_i, \varphi_{k-i}].$$
(5)

Hence $\varphi(t)$ is determined by the tangential part φ_1 , the deformation theory asks whether there exists a convergent solution prescribing a $\overline{\partial}$ closed form φ_1 , i.e. deform the complex structure in direction $[\varphi_1] \in H^1_{\overline{\partial}}(X, T_X) \simeq H^1(X, T_X)$.

In this final report, we prove that for a compact Kähler Calabi-Yau manifold, the Bogomolov-Tian-Todorov lemma and solve the Maurer-Cartan equation (1) by "dualize" the \mathcal{T}_X -valued differential forms to the honest differential forms where we have the $\partial \overline{\partial}$ -lemma.

The existence theorem of Kodaira-Spencer-Nirenberg tells us that subject to the condition

$$\overline{\partial}^* \varphi = 0, \tag{6}$$

the recursively defined KSN ansatz

$$\varphi(t) = \varphi_1 t - \frac{1}{2} \overline{\partial}^* G[\varphi(t), \varphi(t)]$$
(7)

is a solution if and only if the harmonic part of $[\varphi, \varphi]$ is 0. We show that by choosing the Ricci-flat metric on X, the KSN-ansatz can be recovered, and the convergence follows.

In other words, the Kuranishi space of X is an open ball of $H^1(X, \mathcal{T}_X)$.

2 Bogomolov-Tian-Todorov lemma and solution to Maurer-Cartan equation

Definition 2.1. A compact Kähler manifold X is Calabi-Yau (CY) if $K_X \simeq \mathscr{O}_X$.

Let $\Omega \in H^0(X, K_X)$ be a holomorphic volume form, it induces a nondegenerate pairing

$$\wedge^{p}\mathcal{T}_{X} \otimes \wedge^{n-p}\mathcal{T}_{X} \to \mathscr{O}_{X}, \ \alpha \wedge \beta \mapsto \Omega(\alpha \wedge \beta)$$

inducing a natural isomorphism

$$\eta: \wedge^p \mathcal{T}_X \simeq \Omega_X^{n-p} \tag{8}$$

characterized by

$$\eta(\alpha)(\beta) = (-1)^{p(p-1)/2} \Omega(\alpha \wedge \beta).$$

In terms of local coordinate, $\eta(v_1 \wedge \cdots \wedge v_p) = \iota_{v_1} \cdots \iota_{v_p} \Omega$.

Moreover,

$$\eta: \mathcal{A}^{0,q}(\wedge^{p}\mathcal{T}_{X}) \simeq \mathcal{A}^{n-p,q}(X),$$
(9)

distinguished features such as ∂ and $\partial\overline{\partial}$ -lemma carried over.

Definition-Lemma. We define an operator $\Delta = \eta^{-1} \partial \eta : \mathcal{A}^{0,q}(\wedge^p \mathcal{T}_X) \to \mathcal{A}^{0,q}(\wedge^{p-1} \mathcal{T}_X).$ Then

1. $\Delta^2 = 0$,

2.
$$\overline{\partial} \circ \eta = \eta \circ \overline{\partial},$$

3. $\Delta \circ \overline{\partial} = -\overline{\partial} \circ \Delta$.

Note that φ is Δ -exact/closed if and only if $\eta(\varphi)$ is ∂ -exact/closed.

Proof. 2. holds trivially since Ω is holomorphic, $\overline{\partial}$ acts on (0, q)-form part while η contracts *p*-vector part. 1. and 2. follows from 2.

 $\mathcal{A}^{0,*}(\wedge^*\mathcal{T}_X)$ admits \mathbf{Z}_2 -graded product: $(\alpha \otimes v) \wedge (\beta \otimes w) = (-1)^{\overline{\beta}\overline{v}} \alpha \wedge \beta \otimes v \wedge w$

Lemma 2.2 (Bogomolov-Tian-Todorov). If $\alpha \in \mathcal{A}^{0,p}(\mathcal{T}_X), \ \beta \in \mathcal{A}^{0,q}(\mathcal{T}_X), \ then$

$$(-1)^{p}[\alpha,\beta] = \Delta(\alpha \wedge \beta) - \Delta\alpha \wedge \beta - (-1)^{p+1}\alpha \wedge \Delta\beta$$

Proof. Let $G(\alpha, \beta) = \Delta(\alpha \wedge \beta) - \Delta\alpha \wedge \beta - (-1)^{p+1}\alpha \wedge \Delta\beta$. We check the identity locally. Suppose $\alpha = d\overline{z}^I \otimes a\partial_i$, $\beta = d\overline{z}^J \otimes b\partial_j$ where $\partial_i := \partial/\partial z^i$.

$$\Delta(\alpha \wedge \beta) = (-1)^q \eta^{-1} (d\overline{z}^I \wedge d\overline{z}^J \otimes a\partial_i \wedge b\partial_j)$$
⁽¹⁰⁾

$$= (-1)^q \eta^{-1} \partial (d\overline{z}^I \wedge d\overline{z}^J \wedge \eta (a\partial_i \wedge b\partial_j)$$
(11)

$$= (-1)^{p} d\overline{z}^{I} \wedge d\overline{z}^{J} \otimes \Delta(a\partial_{i} \wedge b\partial_{j})$$

$$\tag{12}$$

$$\Delta \alpha \wedge \beta = (-1)^p d\overline{z}^I \otimes \Delta(a\partial_i) \wedge (d\overline{z}^J \otimes b\partial_j) \tag{13}$$

$$= (-1)^p d\overline{z}^I \wedge d\overline{z}^J \otimes (\Delta(a\partial_i) \wedge b\partial_j)$$
(14)

$$\alpha \wedge \Delta \beta = (d\overline{z}^I \otimes a\partial_i) \wedge (-1)^q (d\overline{z}^J \otimes \Delta(b\partial_j))$$
⁽¹⁵⁾

$$= d\overline{z}^{I} \wedge d\overline{z}^{J} \otimes (a\partial_{i} \wedge \Delta(b\partial_{j})).$$
⁽¹⁶⁾

Thus

$$G(\alpha,\beta) = (-1)^p d\overline{z}^I \wedge d\overline{z}^J \otimes G(a\partial_i, b\partial_j).$$
(17)

We claim that $G(a\partial_i, b\partial_j) = [a\partial_i, b\partial_j]$, since both G and [,] are skew-symmetric, it suffices to prove for the case i > j.

We assume that the holomorphic volume is $\Omega = f dz^1 \wedge \cdots \wedge dz^n$, then

$$\Delta(a\partial_i) = (-1)^{i-1} \eta^{-1} \partial(af \cdot dz^{[n]-i})$$
(18)

$$= (-1)^{i-1} \eta^{-1} (\partial_i (af) \cdot dz^i \wedge dz^{[n]-i})$$
(19)

$$= \eta^{-1} (\partial_i (af) \cdot dz^{[n]}$$
⁽²⁰⁾

$$=\frac{1}{f}\frac{\partial af}{\partial z^{i}}.$$
(21)

$$\Delta(a\partial_i \wedge b\partial_j) = (-1)^{i+j} \eta^{-1} \partial(abf \cdot dz^{[n]-i-j)}$$
(22)

$$= \eta^{-1}((-1)^{j-1}\partial_i(abf)dz^{[n]-j} + (-1)^i\partial_j(abf) \cdot dz^{[n]-i})$$
(23)

$$=\frac{1}{f}\left(\frac{\partial abf}{\partial z^{i}}\frac{\partial}{\partial z^{j}}-\frac{\partial abf}{\partial z^{j}}\frac{\partial}{\partial z^{i}}\right)$$
(24)

Applying the Leibniz rule and putting it altogether,

$$G(a\partial_i, b\partial_j) = \frac{1}{f} \left(af \frac{\partial b}{\partial z^i} \frac{\partial}{\partial z^j} - bf \frac{\partial a}{\partial z^j} \frac{\partial}{\partial z^i} \right)$$
(25)

$$= [a\partial_i, b\partial_j]. \tag{26}$$

2.1 Existence

Proposition 2.3. Let X be a Calabi-Yau manifold and let $v \in H^1(X, \mathcal{T}_X)$. The Maurer-Cartan equation (1) is solvable such that

1. $\varphi_1 \in v$

2.
$$\eta(\varphi_i) \in \mathcal{A}^{n-1,n}(X)$$
 is ∂ -exact for $i > 1$.

Proof. Pick $\varphi_1 \in v$ such that $\eta(\varphi_1)$ is a harmonic (n-1,1)-form, in any case φ_1 is $\overline{\partial}$ -closed. We solve for $\varphi_{i>1}$ inductively and to make the picture clearer, we first try to solve for φ_2 . By (2.2),

$$[\varphi_1, \varphi_1] = -\Delta(\varphi_1 \wedge \varphi_1), \tag{27}$$

in particular, $\eta[\varphi_1, \varphi_1]$ is ∂ -exact and $\overline{\partial}$ -closed (n-1, 1)-form. By $\partial\overline{\partial}$ -lemma, there exists $\alpha \in \mathcal{A}^{n-2,0}$ such that

$$\eta[\varphi_1,\varphi_1] = -\overline{\partial}\partial\beta. \tag{28}$$

Take $\varphi_2 = \frac{1}{2} \eta^{-1} \partial \beta$. For i > 1, suppose $\varphi_1, \ldots, \varphi_{k-1}$ are picked such that

$$\eta(\varphi_i)$$
 is ∂ -exact and $\overline{\partial}\varphi_l + \frac{1}{2}\sum_{0 \le i \le l} [\varphi_{l-i}, \varphi_i] = 0 \ \forall 2 \le l \le k-1.$ (29)

Then by (2.2),

$$-\eta \sum_{0 < i < k} [\varphi_{k-i}, \varphi_i] = \partial \eta \sum_{0 < i < k} \varphi_i \wedge \varphi_{k-i}$$
(30)

We claim that it is $\overline{\partial}$ -closed, then by $\partial\overline{\partial}$ -lemma, we obtain a Δ -exact φ_{k+1} .

$$\overline{\partial} \sum_{0 < i < k} [\varphi_i, \varphi_{k-i}] = -2 \sum_{0 < i < k} [\varphi_{k-i}, \overline{\partial} \varphi_i]$$
(31)

$$= -2 \sum_{0 < i < k} \sum_{0 < j < i} [\varphi_{k-i}, [\varphi_j, \varphi_{i-j}]]$$
(32)

$$= -2\sum_{0 < i < k} \sum_{0 < j < i} [\varphi_{k-i}, [\varphi_j, \varphi_{i-j}]]$$

$$(33)$$

$$= -2\sum_{\substack{a,b,c>0\\a+b+c=k}} [\varphi_a, [\varphi_b, \varphi_c]]$$
(34)

Since the summation is symmetric, by Jacobi identity, it is 0.

2.2 Convergence

Each step in (2.3) does not produce unique φ_i 's, for example, $\varphi'_2 = \varphi_2 + \partial \overline{\partial} \beta$ is another desired solution. To kill the ambiguity, we make a modification so that $\eta(\varphi_k) \in \operatorname{Im}\overline{\partial}^*$. By (2.2), $\gamma := \eta \sum_{0 \le i \le k} [\varphi_i, \varphi_{k-i}]$ is ∂ -exact, so

$$\gamma = \Delta_{\overline{\partial}} G \gamma = \overline{\partial} (\overline{\partial}^* G \gamma), \tag{35}$$

the $\overline{\partial}^* \overline{\partial}$ part vanishes since γ is also $\overline{\partial}$ -closed as shown in (2.3). Hence we take

$$\varphi_k = -\frac{1}{2}\eta^{-1}\overline{\partial}^* G\eta \sum_{0 < i < k} [\varphi_i, \varphi_{k-i}], \qquad (36)$$

which is already close to the KSN-ansatz (7). So far the choice of Kähler metric is irrelevant, in fact, one good choice of Kähler metric makes η commutes with $\overline{\partial}^*$ and G.

Lemma 2.4. Let $\wedge^p \mathcal{T}_X$ and Ω^{n-p} be endowed with the canonical hermitian metric. Then the isomorphism $\eta : \mathcal{T} \to \Omega^{n-1}$ is an isometry (up to a constant) if and only if

$$\omega^n = c \cdot \Omega \wedge \overline{\Omega} \tag{37}$$

for some constant c.

Proof.

$$\langle \eta(\partial/\partial z^i), \eta(\partial/\partial z^j)) \rangle = (-1)^{i+j} |f|^2 \langle \cdots \widehat{dz^i} \cdots, \cdots \widehat{dz^j} \cdots \rangle$$
(38)

$$=|f|^2 C^{ij} \tag{39}$$

$$= |f|^2 \det(g^{i\overline{j}}) \overline{g}_{j\overline{i}} \tag{40}$$

$$= |f|^2 \det(g^{ij})g_{i\overline{j}} \tag{41}$$

where $C^{i\overline{j}}$ is the (i, j)-cofactor of $(\langle dz^i, dz^j \rangle) = (\overline{g}^{i\overline{j}})$. Hence η is isometry if and only if $|f|^2 = \det(g_{i\overline{j}})$. On the other hand,

$$\frac{\omega^n}{\Omega \wedge \overline{\Omega}} = c \frac{\det(g)}{|f|^2} \tag{42}$$

for some constant c.

Suppose ω is the desired metric. In this case, η commutes with $\overline{\partial}^*$ (since it commutes with $\overline{\partial}$), and thus with G. Therefore, the arguments in the existence theorem of [MK71] apply.

Initially, we have $\omega_0^n = e^f \Omega \wedge \overline{\Omega}$ for some global smooth function f. By the $\partial \overline{\partial}$ -lemma, any other Kähler form in $[\omega_0]$ is of the form $\omega = \omega_0 + \partial \overline{\partial} \varphi$. Requiring $\omega^n = \Omega \wedge \overline{\Omega}$ is then equivalent to solving the complex Monge-Amperé equation:

$$\det(g_{i\bar{j}} + \varphi_{i\bar{j}}) = e^{-f} \det(g_{i\bar{j}}).$$
(43)

The existence of a smooth solution φ to this equation was established by Yau in his proof of the Calabi conjecture [Yau78].

3 dGBV algebra structure

Let X be a general complex manifold. The object of study in this section is the complex

$$L = \mathcal{A}_X = \bigoplus_{p,q} \mathcal{A}^{0,q}(X, \wedge^p \mathcal{T}_X)$$
(44)

and the general Maurer-Cartan equation on L. (L, d, [,]) has a structure of differential Lie \mathbb{Z}_2 -graded algebra:

- 1. (Grading) $L^k := \bigoplus_{p+q-1=k} L^{q,p}, \ L^{q,p} := \mathcal{A}^{0,q}(X, \wedge^p \mathcal{T}_X)$
- 2. (multiplication) If $\theta \otimes v \in L^{q,p}$, $\delta \otimes w \in L^{q',p'}$,

$$(\theta \otimes v) \land (\delta \otimes w) := (-1)^{pq'} (\theta \land \delta) \otimes (v \land w)$$

3. (Bracket) If $d\overline{z}^I \otimes v \in L^{q,p}$, $d\overline{z}^J \otimes w \in L^{q',p'}$,

$$[d\overline{z}^I \otimes v, d\overline{z}^J \otimes w] := (-1)^{q'(p+1)} (d\overline{z}^I \wedge d\overline{z}^J) \otimes [v, w]_{SN}$$

where the Schouten-Nijenhuis bracket

$$[,]_{SN}: \wedge^* \mathcal{T}_X \times \wedge^{*'} \mathcal{T}_X \to \wedge^{*+*'-1} \mathcal{T}_X$$

is the generalization of Lie bracket characterized as follows: If $v \in \wedge^p$, $w \in \wedge^{p'}$, $u \in \wedge^{p''}$,

- (a) (Graded skew-symmetry) $[v, w] = -(-1)^{(p+1)(p'+1)}[w, v]$
- (b) If $v \in \mathcal{T}_X$, then [v, -] is the unique extension of \mathcal{L}_v such that

$$[v, w \land u] = [v, w] \land u + w \land [v, u]$$

(c) If $f \in \mathcal{A}^0$,

$$[f, w \wedge u] = [f, w] \wedge u + (-1)^q w \wedge [f, u]$$

In general, we have

$$[v_1 \wedge \dots \wedge v_p, w_1 \wedge \dots \wedge w_{p'}] := \sum_{i,j} (-1)^{i+j} [v_i, w_j] v_1 \wedge \dots \wedge \widehat{v_i} \wedge \dots \wedge v_p \wedge w_1 \wedge \dots \wedge \widehat{w_j} \wedge \dots \wedge w_{p'}$$

$$(45)$$

and

$$[v, w \wedge u] = [v, w] \wedge u + (-1)^{(p+1)p'} w \wedge [v, u].$$
(46)

Remark 3.1. The degree is shifted by 1 to make $(\mathcal{A}_X, \overline{\partial}, [,])$ a \mathbb{Z}_2 -graded Lie algebra.

Proposition 3.2. If $\alpha \in L^k$, $\overline{\alpha} := k$. Then

1. $L^k \wedge L^\ell \subset L^{k+l-1}$ and $\alpha \wedge \beta = (-1)^{(\overline{\alpha}+1)(\overline{\beta}+1)}\beta \wedge \alpha$, 2. $[L^k, L^\ell] \subset L^{k+\ell}$ and $[\alpha, \beta] = -(-1)^{\overline{\alpha}\overline{\beta}}[\beta, \alpha]$, 3. $\overline{\partial}(\alpha \wedge \beta) = \overline{\partial}\alpha \wedge \beta + (-1)^{\overline{\alpha}+1}\alpha \wedge \overline{\partial}\beta$, $4. \ \overline{\partial}[\alpha,\beta] = [\overline{\partial}\alpha,\beta] + (-1)^{\overline{\alpha}}[\alpha,\overline{\partial}\beta],$

5.
$$[\alpha, \beta \wedge \gamma] = [\alpha, \beta] \wedge \gamma + (-1)^{\overline{\alpha}(\beta+1)} \beta \wedge [\alpha, \gamma],$$

6. (Jacobi-identity) $(-1)^{\overline{\alpha\gamma}}[\alpha, [\beta, \gamma]] + (-1)^{\overline{\gamma\beta}}[\gamma, [\alpha, \beta]] + (-1)^{\overline{\beta\alpha}}[\beta, [\gamma, \alpha]] = 0.$

Remark 3.3. Property 1, 2, 5, 6 make L[1] a Gerstenhaber algebra.

When X is a Calabi-Yau manifold, then \mathcal{A}_X carries another operator

$$\Delta: \mathcal{A}_X \to \mathcal{A}_X, \gamma \mapsto \iota_{\gamma} \Omega.$$

From now on, we consider a general Maurer-Cartan equation in \mathcal{A}_X ,

$$\overline{\partial}\gamma + \frac{1}{2}[\gamma,\gamma] = 0 \tag{47}$$

which occurs in the moduli problem of complex structure of a complex manifold, in that case we restrict ourselves to the Lie subalgebra $(\mathcal{A}^{0,*}(\mathcal{T}_X), [,], \overline{\partial})$.

We will see that when X is a Calabi-Yau manifold, the Maurer-Cartan equation is solvable in \mathcal{A}_X . Moreover, the multiplicative structure on \mathcal{A}_X which we don't have in $\mathcal{A}^{0,*}(\mathcal{T}_X)$ defines a Frobenius structure [BK98].

The starting point is the generalization of (2.2) in [BK98]

Lemma 3.4 (Generelized Bogomolov-Tian-Todorov lemma). For $\alpha \in L^k$, $\beta \in L^{\ell}$,

$$(-1)^{\overline{\alpha}}[\alpha,\beta] = \Delta(\alpha \wedge \beta) - \Delta\alpha \wedge \beta + (-1)^{\overline{\alpha}}\alpha \wedge \Delta\beta.$$
(48)

Proof. The idea of the proof of (2.2) applied here, except that we have to take care of the sign convention.

As a corollary, the Maurer-Cartan equation is solvable. There is a solution parametrized by $H(\mathcal{A}_X, \overline{\partial})$. Let $H = H(\mathcal{A}_X, \overline{\partial})$. We adjoin the \mathbb{Z}_2 -graded variables corresponding to elements in H^* , and denote the set of the formal series in t by $\mathcal{A}_X[[t]]$. The grading is given as follows:

Let $\Delta_0 = 1 \in H^0(X, \wedge^0 T_X)$ and $\{\Delta_a\}$ be a homogeneous basis of $H(\mathcal{A}_X, \overline{\partial}) = \bigoplus_{p,q} H^q(X, \wedge^p \mathcal{T}_X)$. We let $\deg \Delta_a = p + q - 2$ for $\Delta_a \in H^q(X, \wedge^p \mathcal{T}_X)$, while the corresponding dual coordinate t^a has $\deg t^a = -\deg \Delta_a$.

Under the convention, $\sum_{a} \varphi_a t^a$ has odd degree in H[[t]], where $\varphi_a \in \mathcal{A}_X^{0,q}(\wedge^p \mathcal{T}_X)$

Since there might be element of even degree, i.e. when p+q is odd, the product is only \mathbb{Z}_2 -commutative, so the space cohomology space $H(\mathcal{A}_X[[t]], \overline{\partial})$ is no longer a formal scheme.

The operation Δ , \wedge , [,] extended canonically to $\mathcal{A}_X[[t]]$ so that (3.2) holds.

Proposition 3.5 (Generalized Bogomolov-Tian-Todorov Theorem). There exists a solution to the Maurer-Cartan equation

$$\overline{\partial}\hat{\varphi}(t) + \frac{1}{2}[\hat{\varphi}(t),\hat{\varphi}(t)] = 0$$
(49)

in $\mathcal{A}_X[[t]]$

$$\hat{\varphi}(t) = \sum_{a} \varphi_{a} t^{a} + \frac{1}{2!} \sum_{a_{1}, a_{2}} \varphi_{a_{1}a_{2}} t^{a_{1}} t^{a_{2}} + \dots \in (\mathcal{A}_{X}[[t]])^{odd}.$$
(50)

such that

- 1. The cohomology classes $\{[\varphi_a]\}_a$ form a basis of $H(\mathcal{A}_X[[t]],\overline{\partial})$.
- 2. $\varphi_a \in \ker \Delta$ and $\varphi_{a_1 \cdots a_k} \in \operatorname{Im} \Delta$ for $k \geq 2$.
- 3. $\partial_0 \hat{\varphi}(t) = 1_H.$

Proof. The exact same proof of the classical case applied with the use of (3.4) and $\partial \overline{\partial}$ -lemma.

4 Deformation of algebra (H, \wedge)

So far we haven't seen advantages of considering the big complex \mathcal{A}_X , instead of the classical one $\mathcal{A}^{0,*}(\mathcal{T}_X)$, in this section we will see that a solution to Maurer-Cartan equation deforms the algebra structure of $H^{0,*}(X \wedge^* \mathcal{T}_X)$.

Proposition 4.1. Let $\varphi \in \mathcal{A}_X[[t]]^{odd}$, then $\overline{\partial}_{\varphi} = \overline{\partial} + [\varphi, -]$ is a differential of degree 1, and $\overline{\partial}_{\varphi}^2 = 0$ if and only if the (so-called master equation) holds

$$[\overline{\partial}\varphi + \frac{1}{2}[\varphi,\varphi], -] = 0 \tag{51}$$

Proof. When φ is odd, by (3.2), $[\varphi, -]$ is a derivation of type same as $\overline{\partial}$. On the other hand, by graded version of Jacobi identity,

$$\overline{\partial}_{\varphi}^{2}B = [\overline{\varphi} + \frac{1}{2}[\varphi, \varphi], B]$$

Suppose γ is a solution to (51), we define the deformed differential $\overline{\partial}_{\gamma} = \overline{\partial} + [\gamma, -]$, and consider

$$T_{\gamma} = H(\mathcal{A}_X[[t]], \overline{\partial}_{\gamma}).$$

If we restrict ourselves to the classscial case $H^1(X, \mathcal{T}_X)$, T_{γ} is nothing but the tangent space to the kuranishi space $S \subset H^1(X, \mathcal{T}_X)$ at γ : If $\gamma(t) \in S$ is a curve with $\gamma(0) = \gamma$, then by differentiating the Maurer-Cartan equation, we get

$$\overline{\partial}_{\gamma}\gamma'(0) = \overline{\partial}\gamma'(0) + [\gamma, \gamma'(0)] = 0.$$

Now we make use of the solution $\hat{\varphi}$ in (3.5), then by differintiating the Mauerer-Cartan equation with respect to the direction $\partial_a := \partial/\partial t^a$, we get that

1. the cohomology classes of $\partial_a \hat{\varphi} = \varphi_a + O(t)$ form a $\mathbf{C}[[t]]$ -basis of $T_{\hat{\varphi}}$.

And by (3.2),

2. $T_{\hat{\varphi}}$ is closed under wedge product.

Hence we have

Proposition-Definition. There exists formal (super)-power series $A_{ab}^c(t) \in \mathbf{C}[[t]]$ satisfying

$$\partial_a \hat{\varphi} \wedge \partial \hat{\varphi}_b = \sum_c A^c_{ab}(t) \partial_c \hat{\varphi} \ (mod \ \overline{\partial}_{\hat{\varphi}(t)}).$$
(52)

The series $A_{ab}^c(t)$ defines structure constant of a \mathbb{Z}_2 -commutative associative $\mathbb{C}[[t]]$ algebra structure on H[[t]]

4.1 Non-degenerate pairing

Introduce a linear functional on \mathcal{A}_X

$$\int \gamma = \int_X \eta(\gamma) \wedge \Omega = \int_X \iota_\gamma \Omega \wedge \Omega \tag{53}$$

which is supported on $\mathcal{A}^{0,n}(\wedge^n \mathcal{T}_X)$. The pairing $\langle \cdot, \cdot \rangle$ is defined to be

$$\langle \gamma_1, \gamma_2 \rangle = \int \gamma_1 \wedge \gamma_2, \tag{54}$$

which is graded symemetric and non-degenerate since Ω is nowhere vanishing. The operators behave well under the pairing:

$$\langle \overline{\partial} \gamma_1, \gamma_2 \rangle = (-1)^{\overline{\gamma_1}} \langle \gamma_1, \overline{\partial} \gamma_2 \rangle \tag{55}$$

$$\langle \Delta \gamma_1, \gamma_2 \rangle = (-1)^{\overline{\gamma_1} + 1} \langle \gamma_1, \Delta \gamma_2 \rangle \tag{56}$$

By associativity of $\wedge,$ the multiplication is compatible with the algebra structure.

The pairing is not positive definite (even hermitian), however, the deformed basis $\{\partial_a \hat{\varphi}(t)\}$ is flat in the following sense:

Proposition 4.2. The pairing $\langle \partial_a \hat{\gamma}(t), \partial_b \hat{\varphi}(t) \rangle$ is independent of t.

Proof. We have chosen φ so that the conditions in (3.5) are satisfied, but ker Δ and Im Δ are perpendicular with respect to the pairing by (55).

4.2 Flat connection

 $(H[[t]], \wedge_t, \langle \cdot, \cdot \rangle)$. We give a geometric interpretation of the algebra structure. Define a connection \mathcal{T}_H^* as follows: Let $\{p^a\}_a$ be framing dual to $\{\partial_a\}$, we define

$$\nabla_{\partial} p^c = A^c_{ab} p^b \tag{57}$$

Proposition 4.3. The connection is flat, i.e. $\nabla^2 = 0$. In fact, the connection matrix $A_{abc} = A^e_{ab}g_{ec} = \partial_a \partial_b \partial_c \Phi$ where

$$\Phi = \int -\frac{1}{2}\overline{\partial}\alpha \wedge \Delta\alpha + \frac{1}{6}\varphi^3,\tag{58}$$

if $\varphi = \varphi_1 + \Delta \alpha$.

Remark 4.4. Explicit flat sections was constructed in [BK98] using the deformed holomorphic volume form $\Omega(t) = e^{\iota_{\hat{\varphi}(t)}}\Omega$. In the classical case, $\Omega(t) \in H^0(X_t, K_{X_t})$.

Proof. For simplicity, we restrict ourselves to coordinate with even degree H^{odd} i.e. p + q is even. Let $\delta = \sum \tau^a \partial_a$, we claim that

$$\delta^3 \Phi = (\delta \hat{\varphi})^3.$$

We omit \wedge for brevity and denote $\varphi := \hat{\varphi}$. Note that φ is odd, it commutes with everything since $\varphi \psi = (-1)^{(\overline{\varphi}+1)(\overline{\psi}+1)}$. The main facts we use here is

1.
$$\langle \overline{\partial} \gamma_1, \gamma_2 \rangle = (-1)^{\overline{\gamma_1}} \langle \gamma_1, \overline{\partial} \gamma_2 \rangle$$

2. $\langle \Delta \gamma_1, \gamma_2 \rangle = (-1)^{\overline{\gamma_1}+1} \langle \gamma_1, \Delta \gamma_2 \rangle$

3. $\overline{\partial}\varphi = \frac{1}{2}\Delta\varphi^2$ (by (1), (3.4) and $\Delta\varphi = 0$).

$$\delta^3 \frac{1}{6} \int \varphi^3 = \int (\delta\varphi)^3 + 3\varphi \delta\varphi \delta^2 \varphi + \frac{1}{2} \varphi^2 \delta^3 \varphi \tag{59}$$

$$\frac{1}{2}\int\overline{\partial}\alpha\Delta\alpha = -\frac{1}{2}\int\alpha\overline{\partial}\Delta\alpha = -\frac{1}{2}\int\alpha\overline{\partial}\varphi = \frac{1}{2}\int\alpha\Delta\varphi^2 = \frac{1}{4}\int\Delta\alpha\cdot\varphi^2 \qquad (60)$$

$$\frac{1}{4}\delta^4 \int \Delta \alpha \cdot \varphi^2 = \frac{1}{4} \int \underbrace{\delta^3(\Delta \alpha) \cdot \varphi^2}_{=\delta^3 \varphi \cdot \varphi^2} + \underbrace{3\delta^2(\Delta \alpha)\delta\varphi^2}_{4\delta^2 \varphi \cdot \delta(\varphi^2)} + 3\delta(\Delta \alpha)\delta^2(\varphi^2) + \Delta \alpha \delta^3(\varphi^2) \tag{61}$$

$$\int \delta(\Delta \alpha) \delta^2(\varphi^2) = \int \delta(\varphi^2) \delta^2(\varphi)$$
(62)

$$\int \Delta \alpha \delta^3(\varphi^2) = \int \varphi^2 \delta^3 \varphi.$$
(63)

We then get the result by putting all together.

Hence $(H[[t]], \wedge_t, \langle \cdot, \cdot \rangle, \nabla)$ defines a Frobenius manifold:

Definition 4.5. Let $(H, \langle \cdot, \cdot \rangle)$ be a finite-dimensional \mathbb{Z}_2 -graded \mathbb{C} -vector space equipped with a nondegenerate graded-symmetric pairing. With respect to to a basis $\{\partial_a\}$, a formal power series $A_{ab}^c \in \mathbb{C}[[H^*]]$ defining structure constant of an algebra structure on $H[[H^*]]$:

$$\partial_a \circ \partial_b = A^c_{ab} \partial_c$$

such that

- 1. \circ is \mathbf{Z}_2 -commutative, associative,
- 2. $\langle \alpha \circ \beta, \gamma \rangle = \langle \alpha, \beta \circ \gamma \rangle$
- 3. $\forall a, b, c, d, \ \partial_d A^c_{ab} = (-1)^{\overline{a}\overline{d}} \partial_a A^c_{db}$

The construction of Frobenius manifold was generalized to arbitrary dGBV algebra on which (3.5) is valid [Man99].

Definition 4.6. A differential Lie \mathbb{Z}_2 -graded algebra (L, d, [,]) is called a differential Gerstenhaber-Batalin-Vilkovisky algebra (dGBV) if it is endowed with an odd \mathbb{C} -linear map $\Delta : L \to L$ such that

- 1. $\Delta^2 = 0$
- 2. for any $\alpha \in L$, the map

$$\delta_a: L \to L, \ \beta \mapsto (-1)^{\overline{\alpha}} (\Delta(\alpha \wedge \beta) - \Delta\alpha \wedge \beta + (-1)^{\overline{\alpha}} \alpha \wedge \Delta\beta).$$

is a derivation of parity $\overline{\alpha} + 1$.

References

- [BK98] Sergey Barannikov and Maxim Kontsevich. "Frobenius manifolds and formality of Lie algebras of polyvector fields". In: Internat. Math. Res. Notices 4 (1998), pp. 201–215. ISSN: 1073-7928,1687-0247. DOI: 10.1155/ S1073792898000166. URL: https://doi.org/10.1155/S1073792898000166.
- [Huy05] Daniel Huybrechts. *Complex geometry*. Universitext. An introduction. Springer-Verlag, Berlin, 2005, pp. xii+309. ISBN: 3-540-21290-6.
- [Man99] Yuri I. Manin. Frobenius manifolds, quantum cohomology, and moduli spaces. Vol. 47. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1999, pp. xiv+303.
 ISBN: 0-8218-1917-8. DOI: 10.1090/coll/047. URL: https://doi.org/10. 1090/coll/047.
- [MK71] James Morrow and Kunihiko Kodaira. *Complex manifolds*. Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1971, pp. vii+192.
- [Yau78] Shing Tung Yau. "On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I". In: Comm. Pure Appl. Math. 31.3 (1978), pp. 339–411. ISSN: 0010-3640,1097-0312. DOI: 10. 1002/cpa.3160310304. URL: https://doi.org/10.1002/cpa.3160310304.