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1 Introduction

Let X = (M, I) be a complex manifold. A small deformation of the complex
structure gives a splitting T ∗MC = T 1,0

t ⊕ T 0,1
t , which is equivalently determined

by a map
φ(t) : T 0,1 → T 1,0

characterized by v+φ(t)v ∈ T 0,1
t for small t. Conversely, if given a family of tensors

φ(t) = φνµ(t)dz
µ ⊗ ∂

∂zν
∈ A0,1(TX), with φ(0) = 0,

1. the almost complex structure I(t) for small t is given, with respect to the
basis {∂/∂zµ} ∪ {∂/∂zµ} by

I(t) = P

(
i

−i

)
p−1, P =

(
δνµ φνµ(t)

φνµ(t) δνµ

)
.

2. ∂φ := ∂(t) = ∂ + φ(t)

The almost complex structure is integrable (i.e. ∂
2

φ = 0, i.e. [T 0,1
t , T 0,1

t ] ⊂ T 0,1
t )

if and only if the Maurer-Cartan equation

∂φ(t) +
1

2
[φ(t), φ(t)] = 0 (1)

holds in A0,2(TX).
Remark 1.1. Instead of (1), the equation given in [Huy05] is ∂φ(t)+[φ(t), φ(t)] = 0,
which I believe is a mistake since the last 2 equations in p258 uses inconsistent
conventions: dzµ∧dzγ = dzµ⊗dzγ−dzγ ∧dzµ and dzµ∧dzγ = (dzµ⊗dzγ−dzγ ∧
dzµ)/2.
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Remark 1.2. [MK71] takes another approach in defining the TX-valued (0,1)-form
φ, associated to a deformation. It turns out that they differ by a minus sign.

If we consider the power series expansion φ =
∑
i≥1

φit
i, (1) becomes a recursive

system of equations :

0 = ∂φ1 (2)

0 = ∂φ2 +
1

2
[φ1, φ1] (3)

... (4)

0 = ∂φk +
1

2

∑
0<i<k

[φi, φk−i]. (5)

Hence φ(t) is determined by the tangential part φ1, the deformation theory asks
whether there exists a convergent solution prescribing a ∂ closed form φ1, i.e.
deform the complex structure in direction [φ1] ∈ H1

∂
(X,TX) ≃ H1(X,TX).

In this final report, we prove that for a compact Kähler Calabi-Yau manifold,
the Bogomolov-Tian-Todorov lemma and solve the Maurer-Cartan equation (1) by
”dualize” the TX-valued differential forms to the honest differential forms where
we have the ∂∂-lemma.

The existence theorem of Kodaira-Spencer-Nirenberg tells us that subject to
the condition

∂
∗
φ = 0, (6)

the recursively defined KSN ansatz

φ(t) = φ1t−
1

2
∂
∗
G[φ(t), φ(t)] (7)

is a solution if and only if the harmonic part of [φ, φ] is 0. We show that by
choosing the Ricci-flat metric on X, the KSN-ansatz can be recovered, and the
convergence follows.

In other words, the Kuranishi space of X is an open ball of H1(X, TX).

2 Bogomolov-Tian-Todorov lemma and solution

to Maurer-Cartan equation

Definition 2.1. A compact Kähler manifold X is Calabi-Yau (CY) if KX ≃ OX .

Let Ω ∈ H0(X,KX) be a holomorphic volume form, it induces a nondegenerate
pairing

∧pTX ⊗ ∧n−pTX → OX , α ∧ β 7→ Ω(α ∧ β)
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inducing a natural isomorphism

η : ∧pTX ≃ Ωn−p
X (8)

characterized by
η(α)(β) = (−1)p(p−1)/2Ω(α ∧ β).

In terms of local coordinate, η(v1 ∧ · · · ∧ vp) = ιv1 · · · ιvpΩ.
Moreover,

η : A0,q(∧pTX) ≃ An−p,q(X), (9)

distinguished features such as ∂ and ∂∂-lemma carried over.

Definition-Lemma. We define an operator ∆ = η−1∂η : A0,q(∧pTX) → A0,q(∧p−1TX).
Then

1. ∆2 = 0,

2. ∂ ◦ η = η ◦ ∂,

3. ∆ ◦ ∂ = −∂ ◦∆.

Note that φ is ∆-exact/closed if and only if η(φ) is ∂-exact/closed.

Proof. 2. holds trivially since Ω is holomorphic, ∂ acts on (0, q)-form part while η
contracts p-vector part. 1. and 2. follows from 2.

A0,∗(∧∗TX) admits Z2-graded product: (α⊗v)∧ (β⊗w) = (−1)βvα∧β⊗v∧w

Lemma 2.2 (Bogomolov-Tian-Todorov). If α ∈ A0,p(TX), β ∈ A0,q(TX), then

(−1)p[α, β] = ∆(α ∧ β)−∆α ∧ β − (−1)p+1α ∧∆β

Proof. Let G(α, β) = ∆(α∧ β)−∆α∧ β − (−1)p+1α∧∆β. We check the identity
locally. Suppose α = dzI ⊗ a∂i, β = dzJ ⊗ b∂j where ∂i := ∂/∂zi.

∆(α ∧ β) = (−1)qη−1(dzI ∧ dzJ ⊗ a∂i ∧ b∂j) (10)

= (−1)qη−1∂(dzI ∧ dzJ ∧ η(a∂i ∧ b∂j) (11)

= (−1)pdzI ∧ dzJ ⊗∆(a∂i ∧ b∂j) (12)

∆α ∧ β = (−1)pdzI ⊗∆(a∂i) ∧ (dzJ ⊗ b∂j) (13)

= (−1)pdzI ∧ dzJ ⊗ (∆(a∂i) ∧ b∂j) (14)

α ∧∆β = (dzI ⊗ a∂i) ∧ (−1)q(dzJ ⊗∆(b∂j)) (15)

= dzI ∧ dzJ ⊗ (a∂i ∧∆(b∂j)). (16)
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Thus
G(α, β) = (−1)pdzI ∧ dzJ ⊗G(a∂i, b∂j). (17)

We claim that G(a∂i, b∂j) = [a∂i, b∂j], since both G and [ , ] are skew-symmetric,
it suffices to prove for the case i > j.

We assume that the holomorphic volume is Ω = fdz1 ∧ · · · ∧ dzn, then

∆(a∂i) = (−1)i−1η−1∂(af · dz[n]−i) (18)

= (−1)i−1η−1(∂i(af) · dzi ∧ dz[n]−i) (19)

= η−1(∂i(af) · dz[n] (20)

=
1

f

∂af

∂zi
. (21)

∆(a∂i ∧ b∂j) = (−1)i+jη−1∂(abf · dz[n]−i−j) (22)

= η−1((−1)j−1∂i(abf)dz
[n]−j + (−1)i∂j(abf) · dz[n]−i) (23)

=
1

f

(
∂abf

∂zi
∂

∂zj
− ∂abf

∂zj
∂

∂zi

)
(24)

Applying the Leibniz rule and putting it altogether,

G(a∂i, b∂j) =
1

f

(
af

∂b

∂zi
∂

∂zj
− bf

∂a

∂zj
∂

∂zi

)
(25)

= [a∂i, b∂j]. (26)

2.1 Existence

Proposition 2.3. Let X be a Calabi-Yau manifold and let v ∈ H1(X, TX). The
Maurer-Cartan equation (1) is solvable such that

1. φ1 ∈ v

2. η(φi) ∈ An−1,n(X) is ∂-exact for i > 1.

Proof. Pick φ1 ∈ v such that η(φ1) is a harmonic (n − 1, 1)-form, in any case φ1

is ∂-closed. We solve for φi>1 inductively and to make the picture clearer, we first
try to solve for φ2. By (2.2),

[φ1, φ1] = −∆(φ1 ∧ φ1), (27)

in particular, η[φ1, φ1] is ∂-exact and ∂-closed (n−1, 1)-form. By ∂∂-lemma, there
exists α ∈ An−2,0 such that

η[φ1, φ1] = −∂∂β. (28)
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Take φ2 =
1

2
η−1∂β. For i > 1, suppose φ1, . . . , φk−1 are picked such that

η(φi) is ∂-exact and ∂φl +
1

2

∑
0<i<l

[φl−i, φi] = 0 ∀2 ≤ l ≤ k − 1. (29)

Then by (2.2),

−η
∑
0<i<k

[φk−i, φi] = ∂η
∑
0<i<k

φi ∧ φk−i (30)

We claim that it is ∂-closed, then by ∂∂-lemma, we obtain a ∆-exact φk+1.

∂
∑
0<i<k

[φi, φk−i] = −2
∑
0<i<k

[φk−i, ∂φi] (31)

= −2
∑
0<i<k

∑
0<j<i

[φk−i, [φj, φi−j]] (32)

= −2
∑
0<i<k

∑
0<j<i

[φk−i, [φj, φi−j]] (33)

= −2
∑
a,b,c>0
a+b+c=k

[φa, [φb, φc]] (34)

Since the summation is symmetric, by Jacobi identity, it is 0.

2.2 Convergence

Each step in (2.3) does not produce unique φi’s, for example, φ′
2 = φ2 + ∂∂β is

another desired solution. To kill the ambiguity, we make a modification so that

η(φk) ∈ Im∂
∗
. By (2.2), γ := η

∑
0<i<k

[φi, φk−i] is ∂-exact, so

γ = ∆∂Gγ = ∂(∂
∗
Gγ), (35)

the ∂
∗
∂ part vanishes since γ is also ∂-closed as shown in (2.3). Hence we take

φk = −1

2
η−1∂

∗
Gη

∑
0<i<k

[φi, φk−i], (36)

which is already close to the KSN-ansatz (7). So far the choice of Kähler metric
is irrelevant, in fact, one good choice of Kähler metric makes η commutes with ∂

∗

and G.
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Lemma 2.4. Let ∧pTX and Ωn−p be endowed with the canonical hermitian metric.
Then the isomorphism η : T → Ωn−1 is an isometry (up to a constant) if and only
if

ωn = c · Ω ∧ Ω (37)

for some constant c.

Proof.

⟨η(∂/∂zi), η(∂/∂zj))⟩ = (−1)i+j|f |2⟨· · · d̂zi · · · , · · · d̂zj · · ·⟩ (38)

= |f |2Cij (39)

= |f |2 det(gij)gji (40)

= |f |2 det(gij)gij (41)

where Cij is the (i, j)-cofactor of (⟨dzi, dzj⟩) = (gij). Hence η is isometry if and
only if |f |2 = det(gij). On the otherhand,

ωn

Ω ∧ Ω
= c

det(g)

|f |2
(42)

for some constant c.

Suppose ω is the desired metric. In this case, η commutes with ∂
∗
(since it

commutes with ∂), and thus with G. Therefore, the arguments in the existence
theorem of [MK71] apply.

Initially, we have ωn0 = efΩ ∧ Ω for some global smooth function f . By the
∂∂-lemma, any other Kähler form in [ω0] is of the form ω = ω0 + ∂∂φ. Requiring
ωn = Ω ∧ Ω is then equivalent to solving the complex Monge-Amperé equation:

det(gij + φij) = e−f det(gij). (43)

The existence of a smooth solution φ to this equation was established by Yau in
his proof of the Calabi conjecture [Yau78].

3 dGBV algebra structure

Let X be a general complex manifold. The object of study in this section is the
complex

L = AX =
⊕
p,q

A0,q(X,∧pTX) (44)

and the general Maurer-Cartan equation on L. (L, d, [, ]) has a structure of differ-
ential Lie Z2-graded algebra:
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1. (Grading) Lk :=
⊕

p+q−1=k

Lq,p, Lq,p := A0,q(X,∧pTX)

2. (multiplication) If θ ⊗ v ∈ Lq,p, δ ⊗ w ∈ Lq
′,p′ ,

(θ ⊗ v) ∧ (δ ⊗ w) := (−1)pq
′
(θ ∧ δ)⊗ (v ∧ w)

3. (Bracket) If dzI ⊗ v ∈ Lq,p, dzJ ⊗ w ∈ Lq
′,p′ ,

[dzI ⊗ v, dzJ ⊗ w] := (−1)q
′(p+1)(dzI ∧ dzJ)⊗ [v, w]SN

where the Schouten-Nijenhuis bracket

[ , ]SN : ∧∗TX × ∧∗′TX → ∧∗+∗′−1TX

is the generalization of Lie bracket characterized as follows: If v ∈ ∧p, w ∈
∧p′ , u ∈ ∧p′′ ,

(a) (Graded skew-symmetry) [v, w] = −(−1)(p+1)(p′+1)[w, v]

(b) If v ∈ TX , then [v, − ] is the unique extension of Lv such that

[v, w ∧ u] = [v, w] ∧ u+ w ∧ [v, u]

(c) If f ∈ A0,
[f, w ∧ u] = [f, w] ∧ u+ (−1)qw ∧ [f, u]

In general, we have

[v1∧· · ·∧vp, w1∧· · ·∧wp′ ] :=
∑
i,j

(−1)i+j[vi, wj]v1∧· · ·∧v̂i∧· · ·∧vp∧w1∧· · ·∧ŵj∧· · ·∧wp′

(45)
and

[v, w ∧ u] = [v, w] ∧ u+ (−1)(p+1)p′w ∧ [v, u]. (46)

Remark 3.1. The degree is shifted by 1 to make (AX , ∂, [ , ]) a Z2-graded Lie
algebra.

Proposition 3.2. If α ∈ Lk, α := k. Then

1. Lk ∧ Lℓ ⊂ Lk+l−1 and α ∧ β = (−1)(α+1)(β+1)β ∧ α,

2. [Lk, Lℓ] ⊂ Lk+ℓ and [α, β] = −(−1)αβ[β, α],

3. ∂(α ∧ β) = ∂α ∧ β + (−1)α+1α ∧ ∂β,
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4. ∂[α, β] = [∂α, β] + (−1)α[α, ∂β],

5. [α, β ∧ γ] = [α, β] ∧ γ + (−1)α(β+1)β ∧ [α, γ],

6. (Jacobi-identity) (−1)αγ[α, [β, γ]] + (−1)γβ[γ, [α, β]] + (−1)βα[β, [γ, α]] = 0.

Remark 3.3. Property 1, 2, 5, 6 make L[1] a Gerstenhaber algebra.

When X is a Calabi-Yau manifold, then AX carries another operator

∆ : AX → AX , γ 7→ ιγΩ.

From now on, we consider a general Maurer-Cartan equation in AX ,

∂γ +
1

2
[γ, γ] = 0 (47)

which occurs in the moduli problem of complex structure of a complex manifold,
in that case we restrict ourselves to the Lie subalgebra (A0,∗(TX), [, ], ∂).

We will see that whenX is a Calabi-Yau manifold, the Maurer-Cartan equation
is solvable in AX . Moreover, the multiplicative structure on AX which we don’t
have in A0,∗(TX) defines a Frobenius structure [BK98].

The starting point is the generalization of (2.2) in [BK98]

Lemma 3.4 (Generelized Bogomolov-Tian-Todorov lemma). For α ∈ Lk, β ∈ Lℓ,

(−1)α[α, β] = ∆(α ∧ β)−∆α ∧ β + (−1)αα ∧∆β. (48)

Proof. The idea of the proof of (2.2) applied here, except that we have to take
care of the sign convention.

As a corollary, the Maurer-Cartan equation is solvable. There is a solution
parametrized by H(AX , ∂). Let H = H(AX , ∂).We adjoin the Z2-graded variables
corresponding to elements in H∗, and denote the set of the formal series in t by
AX [[t]]. The grading is given as follows:

Let ∆0 = 1 ∈ H0(X,∧0TX) and {∆a} be a homogeneous basis of H(AX , ∂) =
⊕p,qH

q(X,∧pTX). We let deg∆a = p + q − 2 for ∆a ∈ Hq(X,∧pTX), while the
corresponding dual coordinate ta has deg ta = − deg∆a.

Under the convention,
∑
a

φat
a has odd degree inH[[t]], where φa ∈ A0,q

X (∧pTX)

Since there might be element of even degree, i.e. when p+q is odd, the product
is only Z2-commutative, so the space cohomology space H(AX [[t]], ∂) is no longer
a formal scheme.

The operation ∆, ∧, [ , ] extended canonically to AX [[t]] so that (3.2) holds.
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Proposition 3.5 (Generalized Bogomolov-Tian-Todorov Theorem). There exists
a solution to the Maurer-Cartan equation

∂φ̂(t) +
1

2
[φ̂(t), φ̂(t)] = 0 (49)

in AX [[t]]

φ̂(t) =
∑
a

φat
a +

1

2!

∑
a1,a2

φa1a2t
a1ta2 + · · · ∈ (AX [[t]])

odd. (50)

such that

1. The cohomology classes {[φa]}a form a basis of H(AX [[t]], ∂).

2. φa ∈ ker∆ and φa1···ak ∈ Im∆ for k ≥ 2.

3. ∂0φ̂(t) = 1H .

Proof. The exact same proof of the classical case applied with the use of (3.4) and
∂∂-lemma.

4 Deformation of algebra (H,∧)
So far we haven’t seen advantages of considering the big complexAX , instead of the
classical one A0,∗(TX), in this section we will see that a solution to Maurer-Cartan
equation deforms the algebra structure of H0,∗(X ∧∗ TX).

Proposition 4.1. Let φ ∈ AX [[t]]
odd, then ∂φ = ∂ + [φ,−] is a differential of

degree 1, and ∂
2

φ = 0 if and only if the (so-called master equation) holds

[∂φ+
1

2
[φ, φ],−] = 0 (51)

Proof. When φ is odd, by (3.2), [φ,−] is a derivation of type same as ∂. On the
other hand, by graded version of Jacobi identity,

∂
2

φB = [φ+
1

2
[φ, φ], B]
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Suppose γ is a solution to (51), we define the deformed differential ∂γ = ∂ +
[γ, −], and consider

Tγ = H(AX [[t]], ∂γ).

If we restrict ourselves to the classscial case H1(X, TX), Tγ is nothing but the
tangent space to the kuranishi space S ⊂ H1(X, TX) at γ: If γ(t) ∈ S is a curve
with γ(0) = γ, then by differentiating the Maurer-Cartan equation, we get

∂γγ
′(0) = ∂γ′(0) + [γ, γ′(0)] = 0.

Now we make use of the solution φ̂ in (3.5), then by diffentiating the Mauerer-
Cartan equation with respect to the direction ∂a := ∂/∂ta, we get that

1. the cohomology classes of ∂aφ̂ = φa +O(t) form a C[[t]]-basis of Tφ̂.

And by (3.2),

2. Tφ̂ is closed under wedge product.

Hence we have

Proposition-Definition. There exists formal (super)-power series Acab(t) ∈ C[[t]]
satisfying

∂aφ̂ ∧ ∂φ̂b =
∑
c

Acab(t)∂cφ̂ (mod ∂φ̂(t)). (52)

The series Acab(t) defines structure constant of a Z2-commutative associative C[[t]]-
algebra structure on H[[t]]

4.1 Non-degenerate pairing

Introduce a linear functional on AX∫
γ =

∫
X

η(γ) ∧ Ω =

∫
X

ιγΩ ∧ Ω (53)

which is supported on A0,n(∧nTX). The pairing ⟨·, ·⟩ is defined to be

⟨γ1, γ2⟩ =
∫
γ1 ∧ γ2, (54)

which is graded symemetric and non-degenerate since Ω is nowhere vanishing. The
operators behave well under the pairing:

⟨∂γ1, γ2⟩ = (−1)γ1⟨γ1, ∂γ2⟩ (55)

⟨∆γ1, γ2⟩ = (−1)γ1+1⟨γ1,∆γ2⟩ (56)
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By associativity of ∧, the multiplication is compatible with the algebra struc-
ture.

The pairing is not positive definite (even hermitian), however, the deformed
basis {∂aφ̂(t)} is flat in the following sense:

Proposition 4.2. The pairing ⟨∂aγ̂(t), ∂bφ̂(t)⟩ is independent of t.

Proof. We have chosen φ so that the conditions in (3.5) are satisfied, but ker∆
and Im∆ are perpendicular with respect to the pairing by (55).

4.2 Flat connection

(H[[t]],∧t, ⟨·, ·⟩). We give a geometric interpretation of the algebra structure. De-
fine a connection T ∗

H as follows: Let {pa}a be framing dual to {∂a}, we define

∇∂p
c = Acabp

b (57)

Proposition 4.3. The connection is flat, i.e. ∇2 = 0. In fact, the connection
matrix Aabc = Aeabgec = ∂a∂b∂cΦ where

Φ =

∫
−1

2
∂α ∧∆α +

1

6
φ3, (58)

if φ = φ1 +∆α.

Remark 4.4. Explicit flat sections was constructed in [BK98] using the deformed
holomorphic volume form Ω(t) = eιφ̂(t)Ω. In the classical case, Ω(t) ∈ H0(Xt, KXt).

Proof. For simplicity, we restrict ourselves to coordinate with even degree Hodd

i.e. p+ q is even. Let δ =
∑

τa∂a, we claim that

δ3Φ = (δφ̂)3.

We omit ∧ for brevity and denote φ := φ̂. Note that φ is odd, it commutes with

everything since φψ = (−1)(φ+1)(ψ+1). The main facts we use here is

1. ⟨∂γ1, γ2⟩ = (−1)γ1⟨γ1, ∂γ2⟩

2. ⟨∆γ1, γ2⟩ = (−1)γ1+1⟨γ1,∆γ2⟩

3. ∂φ =
1

2
∆φ2 (by (1), (3.4) and ∆φ = 0).
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δ3
1

6

∫
φ3 =

∫
(δφ)3 + 3φδφδ2φ+

1

2
φ2δ3φ (59)

1

2

∫
∂α∆α = −1

2

∫
α∂∆α = −1

2

∫
α∂φ =

1

2

∫
α∆φ2 =

1

4

∫
∆α · φ2 (60)

1

4
δ4

∫
∆α · φ2 =

1

4

∫
δ3(∆α) · φ2︸ ︷︷ ︸

=δ3φ·φ2

+3δ2(∆α)δφ2︸ ︷︷ ︸
4δ2φ·δ(φ2)

+3δ(∆α)δ2(φ2) + ∆αδ3(φ2)

(61)∫
δ(∆α)δ2(φ2) =

∫
δ(φ2)δ2(φ) (62)∫

∆αδ3(φ2) =

∫
φ2δ3φ. (63)

We then get the result by putting all together.

Hence (H[[t]],∧t, ⟨·, ·⟩,∇) defines a Frobenius manifold:

Definition 4.5. Let (H, ⟨·, ·⟩) be a finite-dimensional Z2-graded C-vector space
equipped with a nondegenerate graded-symmetric pairing. With respect to to a
basis {∂a}, a formal power series Acab ∈ C[[H∗]] defining structure constant of an
algebra structure on H[[H∗]] :

∂a ◦ ∂b = Acab∂c

such that

1. ◦ is Z2-commutative, associative,

2. ⟨α ◦ β, γ⟩ = ⟨α, β ◦ γ⟩

3. ∀a, b, c, d, ∂dAcab = (−1)ad∂aA
c
db

The construction of Frobenius manifold was generalized to arbitrary dGBV algebra
on which (3.5) is valid [Man99].

Definition 4.6. A differential Lie Z2-graded algebra (L, d, [, ]) is called a differen-
tial Gerstenhaber-Batalin-Vilkovisky algebra (dGBV) if it is endowed with an odd
C-linear map ∆ : L→ L such that

1. ∆2 = 0

2. for any α ∈ L, the map

δa : L→ L, β 7→ (−1)α(∆(α ∧ β)−∆α ∧ β + (−1)αα ∧∆β).

is a derivation of parity α + 1.
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