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The main reference is [Dem12], especially chapter VIIL, and the reference looks like
VII, 4.2 means the (4.2) in chapter VIl in [Dem12].

1 Preliminaries about functional ananysis

Let #, #, be complex Hilbert spaces. A linear operator T defined on a subspace
DomT C #; into #5. Then T is said to be densely defined if DomT is dense in #7,
and closed if its graph

GrT = {(x,Tx)|x € DomT}

is closed in #; x #,. (closed imply continuous if Dom T = #.)
Assume T is closed and densely defined.

Definition 1.1. The adjoint T* of T in Von Neumann’s sense is constructed as follows:
Dom T* is the set of y € %, such that the linear functional define on x € Dom T by

fy(x) :=(Tx,y)

is bounded in #-norm. Since DomT is dense, we can extend the bounded opera-
tor from Dom T uniquely to a bounded linear functional on the whole 7, then by
Riesz representation theorem we get a unique element T*y € #; such that (Tx, y), =
(x,T*y); for all x € DomT.

undone

Theorem 1.1 (Von Neumann 1929). If T : Z| — 5 is closed and densely defined. then
its adjoint T* is also closed and densely defined and (T*)* = T. We also have Ker T* =
(ImT)* and its dual (Ker T)* = Im T*.

Now for two closed and densely defined operators T, S:
T S
Hy— Hy— K3
suchthat Se T =0 (i.e. ImT = T(DomT) C Ker S C Dom S), we have:

Theorem 1.2.

Hy=(KerSnKerT*)®ImT & Im S*,
KerS = (KerSnKerT*) @ ImT.

And in order that ImT = Ker S (i.e. exact), it suffices that

IT*x]|? + [|Sx||2 > Cl|x||3, Vx € DomS n Dom T* (1)
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for some constant C > 0. In this case, Vv € #5 with Sv = 0, there existsu € #| such that
1 .
Tu = v and |Julf < E||v||§ In particular,

InT =ImT = KerS, ImS*=ImS* = KerT".
Proof.
2 Preliminaries on complete Riemannian manifolds

3 L* Hodge theory on complete Riemannian manifolds



4 General estimates for 0 on complete Hermitian mani-

folds

Let (X, ) be a complete hermitian manifold and E a holomorphic hermitian vector
bundle of rank r over X. Consider now the operator

AE,w = [i6(E), A] + T,

on APAT*X @ E (cf. Chapter VIl in [Dem12]). This operator comes from the difference
of two Laplace operators:

Theorem 4.1 (VII-Thm 1.4). The operator A, = [D’ +1,8’ +1*] is a positive and formally
self-adjoint operator. Moreover

A" = AL+ [i6(E), Al + T,
where T,, is an operator of order 0 depending only on the torsion of w.

Proof. see [Dem12]. O

Thus the operator is formally self-adjoint (pointwise?) acting pointwise on APIT*X®
E. As a corollary, we have the following important inequality

Lemma 4.1 (Bochner-Kodaira-Nakano inequality, VII-2.1). For u € €;4(X,E) (com-
pactly supported E-valued (p, q)-forms), we have

1D ull? + 67 ul > j (Ap o, YAV @)
X
Proof.
(") = j (N, w)dV = D" ull2 + 67 ul]
X

AZu,uY = ||D"u + tul® + ||6"u + *ul*> > o.
]

Assume now that Ag , is semi-positive on APAT*X @ E (i.e. (Ap,u,u) > 0 point-
wise). Then by density of €, (X, E) in Dom D” n Dom 6", we can find u; € €, (X, E)
such that u; — u, D”"u; > D"u,6"u; — §”u in L? norm. Then by taking a subse-
quence, we have u; — u pointwise almost everywhere. And since Ag,, act pointwise
on fiber, we have (Ag ,u;, u;) = (Ag ,u, u) pointwise almost everywhere. Then

L KAp oty w)ldV = JX<AE,wu,~,u,->dv < 1D wl> + 167w l12 ~ (1Dl + (16" ull
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and thus by Fatou’s lemma
I (Appu, uydV = J lim inf(Ag ,,uj, u;)dV < lim infj (AE ot uj)dV < ||D”ul |2 +||6" ul|>.
X X X

(i.e. Equation 2 holds for all u € Dom D” n Dom §”.)

Now given g € L%,q(X , E) such that

D”g=0. (3)

In addition to this, we also assume that g satisfies condition (x):

1. for almost every x € X, there exists a(x) € [0, o) such that

Kg(x0), w? < o Apoou, u)
for every u € (AP4T*X ® E),..

Remark. If the operator Af, is invertible (i.e. positive), the minimal such « is
<Aglw g(x), g(x)), so we denoted « this way even when Ag , is not invertible.

Proof. By the Cauchy-Schwarz inequality on (u,v) 4 := (Au,v), we have

Kgw)l = (AT g u)al’ < (A7 g, A7l g)a - (wuya = (A7 g, &) - (Auu).

2. Additionally, we assume the global constraint
L((Ag’lwg, g)dV < +oo.

Then the basic result of L? theory can be stated as follows.

Theorem 4.2 (VIII-Thm 4.5). If (X, ) is complete and A, > 0 in bidegree (p,q), then
forany g € Lf,,q(X, E) satisfying (%) and D" g = 0, there exists f € Li’q_l(X, E) such
that D” f = g and

112 < jX<Ag}wg, g)dv.

Proof. For every u € Dom D” n Dom §” we have

2

()P =1 | vt < (| fugiav)
X X

1 12

< ([ Aponwi izl piav)
X ,

gJ (Al g g)dV-J (AE ou, u)dV
X ’ X



by the definition of <Aglw g, g) and the Cauchy-Schwarz inequality. Then
implies
|Cu, gH? < CUID”ull? + |6”ul|?), Vu € Dom D” n Dom §”
where C is the integral J (Aglw g, &) dV. We now repeat the proof of Thm 1.2: For any
" E

u € Domé”", let us write
u=u; +uy;, u €KerD”, u,e (KerD”): =Imé”.

Then D”u; = 0 and §”uy = 0 (Since §”uy; = 0 <= {(uy, D”h) = 0, Yh € €). Since
g € Ker D”, we get

[€u, @) = [€ur, @HI < Cll6"w|? = ClI5" ull*

The Hahn-Banach theorem shows that the bounded linear functional defined on Im §”
8" u - (u, g)

1
can be extended to a linear functional v — (v, f)), f € L?)’q_l, of norm || f|| < C2. This
means that

(u,gh = (6"u, f), vueDomd”,

i.e. that D” f = g (as we define D” in distribution sense, or by §”* = D”). The theorem

is proved.
O

Remark. We can always find a solution f € (Ker D”)! by taking the orthogonal pro-
jection to (Ker D”)*. Then this solution is clearly unique and is precisely the one with
minimal L? norm of equation D” f = g. We thus have

(A" £.h) = (£.6” D"k + (£, D"8"h) = (£,6” D" h)
= (D" £.D"h) = (& D"h) = (5" g.h)

for all h € %;" g—1(X, E) and consequently A” f = §” g in distribution sense. Hence if

g € Cpy(X, E), the ellipticity of A” shows that f € C;%, (X, E).

5 Estimates on weakly pseudoconvex manifolds

We now introduce a large class of complex manifolds such that the L? estimates will
still be easily tractable.

'we don’t need u € Dom D” n Dom §” since we only aply the estimate on u; € Ker D” n Dom §”



Definition 5.1. A complex manifolds X is said to be weakly pseudoconvex if there exists
a plurisubharmonic exhaustion function ¢y € C*(X,R). That is iddy > 0 on X, and
Ve € R, the subset X, = {x € X;(x) < c} is relatively compact in X.

Examples

Theorem 5.1 (VIII-Thm 5.2). Every weakly pseudoconvex Kdhler manifold (X, w) carries
a complete Kdhler metric ©.

Proof. Let € C*(X,R) be the plurisubharmonic exhaustive function on X. As ¢ is
exhaustive, we have {i < 0} is relative compact. Thus infy) > —oo and we may assume
i > 0 by adding a constant to it. Then & = w + i9a(y/?) is Kahler and

O = @+ 2Py + 200y A Y > w + 2i0Y A Y > 0.

o = loy + oyl < 2l0yl, < V2. Then by Lem 2.4 we have & is complete
» bounded is enough). O]

We have |dy/
(Idy

More generally, we can set & = w + idd(y o 1) where y is a convex increasing
function (so y’ > 0, y” > 0). Then

&= +i(Y 9)3dy +i(x" )y noy
> 0+ YWY "X WY = o +idpey)ndlpey) =o',

t
where p(t) = J' \x”(u)du. Then we have |9(p » ¥)|; < |9(p ° )|,y < 1 since we can
0

choose coorinates such that wj = 5ij at xg, then for real function f,

IW@%ﬁZﬂ%+ﬁ@*ﬁ=ﬁ%—Tf%%ﬁ
e S B
i 1+ 5 1AP 1+ XAl
we can regard this as adding the direction of dy to the metric to control |dy//|.
And for p » ¢/ to remain exhaustive we need

)i

t
tli)rglo JO x”(w)du = +oo
so that there does not exist ¢ < oo such that {p < ¢} = {ff < o} = X may not be
relatively compact. We can take for example y(t) = t? or y(t) =t — logt fort > 1.

Then many vanish theorems can now be generalized to weakly pseudoconvex do-
main and reduced to finding suitable Kahler metric on X and hermitian metric on E
such that the conditions for Theorem 4.2 are satisfied.

see [Dem12] VIII-5



6 Hormander’s L estimates for non complete Kiihler met-
rics

In this section, we generalize the previous results to estimates in non complete Kahler
metric, for example the standard metric on a bounded domain Q ¢ C". The idea is to
approximate the given metric by complete Kéhler metrics.

Theorem 6.1 (VIII-6.1). Let (X,&) be a complete Kdhler manifold, « another Kdhler
metric, and E — X a m-positive ° bundle. Let g € L,Z,’q(X, E) with D” g = 0 and

J;((Aalg, g)dV < +oo (%)

with respect to w, with Ay = [i6(E), A] in bidegree (n,q) andq > 1, m > min{n —q + 1,1}
(We have A is positive definite by VII-Lem 7.2). Then there exist f € L,Zl,q_l(X, E) such
that D” f = g and

IfIF < JX(Aglg, g)dv.

Proof. First note that by Hopf-Rinow, we have a metric g is complete iff every closed
geodesic ball B4(r) is compact. Then for every ¢ > 0, the Kéhler metric w, = @ + ¢&
is complete. (Since B,;(r) = Bg(er), and for g = h we have dg(x,y) > dp(x,y) and
Eg(r) C By(r) which is compact if h is complete.)

Now let us put an index ¢ on objects depending on w,. It follows from

below that
lu2dV, < |ul?dV, (A;}u, w), dV, < <A(;1u, wydV. (4)

Then applies to w, (as g € L,zl,q(X , E), and (%) holds in w,) yields a solution
fe € L,zl’q_l(X , E), such that D” f, = g in distribution sense with respect to w, and

J |fg|?dVgSJ (Agig 8):dV, < J (Ag'g. g)dv.
X X X

This means that the family ( £.) is bounded in L? norm (in ») on every compact subset
of X (as w, are quasi isometric to w for ¢ small on a fixed compact set’). Now fixed a
compact exhaustion X;, then by the Banach-Alaoglu theorem, there is a weakly con-
vergent subsequence of (f,) in L}zz,q—l(*Xi’ E). By the diagonal method, we get a subse-
quence weakly converges to f € leoc’ » on every X;. Now for every h € €,3(X, E), said
Supp h C X;, we want

(f.87R) < (for8"BY <= (for 87RY < (o 87RYe = (g, BYe — (g, ).

?It’s m-semi-positive in [Dem12], I don’t know whether this is enough for A, to be positive definite.
Compare VII-Lem 7.2
3by controlling the biggest eigenvalues of & with respect to w on compact set.




First, we have I is due to the weak convergence of f, — f in L2(X;). Then for II, we
have

(fe: 6”0 = 67 hY) < | fell - 116" h = 87hll < Cl felle - 16" h = 67 Al

1

<c ( j (A7lg, g>dv)2 1167 — 7,
X

and &;’h are uniformly bounded on X; and converge to §”h pointwise. Hence by the
Dominated convergence theorem, we get II.
For III,

j <fg,5£’h>dVJ (o 8 B)edV,
X X

undone
For IV, we have

(8, h)edV, — (g, h)dV

pointwise and

| @ mave= | @mav.< | v, <c | lg-mav<c | av-| igrav
X X; Xi Xi X; Xi
For the last inequality, we use that |h| is bounded on X; and Cauchy-Schwarz. Therefore
by DCT again, we have IV.

For the norm of f, on every compact set X;, we have by Cauchy-Schwarz inequality

(F. Px, = lim fes Py, < liminf|£ x| lx;
and thus

Ifll, < liminfl £, < liminfC, x|fll.

1 1
<liminfC, y - (J (A(;lg, g)dV)2 = (J (A(;lg, g)dV)2 :
>0 0 \x X

Where C, y. depend on largest eigenvalues of w, with respect to @ on X;, and hence
Cex, = 1 as ¢ — 0. Finally, let X; increase to X * and we get

I1£11? < JX<AC;1g, g)dv.

]

“LetY, = X, — X_,, then X = |_|Y,~ and so J |[fl2dV = ZJ | f12dV, with ZJ [f|?dV < M bounded
X Y; i=1 Y

and increasing, thus || f|* < M.



Lemma 6.1 (VIII-Lem 6.3). Let w, y be hermitian metrics on X such thaty > w. Then for
everyu € AMT*X ® E, q > 1, we have

|u|)2,dVY < |uf?dv, (Aa}l,u, u)y, dV, < <A;1u, wydv
where an indexy means the term is computed in terms of y instead of w.

Proof. Locally at xy € X, there exists a coordinates 7 (21,...,2") such that

w=iZdzj/\de, y:iZyjdzj/\de at xp,
J J

where y; < - <y, are the eigen values with respect to . Then y > w implies y; > 1.

We have |dzf|}2, = yj_l and |de|}2, = yi! where yx = H}/k. Now for any (n, q) form
keK

u= Z ug adz' A+ ndZ" rdzK ® e, K| = g, {es}_, is a orthonormal frame of E. Then

|u|)2’ = Z(h yn)_l)/Izl'uK,ﬂ.F’ dVy =Y }/ndV,
KA
ulfdv, = Y vic'lug aPdV < Y lu s Pdv = fulfv,
KA

Ayu = Z Z i(—l)”+j_1yj_1uj1’/1(dzj) rndz ®e,
|Il=¢—1 j,A
where (c?z\f) — dz' A~ ndZ) A ndZ". And thus for iIO(E) =i Z c;;—ddzj rdZF @ ey ®ey,

since u is (n, q)-form,

Agytt = [IO(E), A, Ju = iO(E) A (Ayu)

= 2 Hogi sk PRV A B BT R

= Z i chk/ldz AdZ A (( 1) Y; ujradz ndz ) ®e,
ll=g-1  Jj.A

= Z Z yjflc;;-duﬂ,,l(—l)”ﬂdzf ndZ AdZF A dE @ e,
|I|:q_1 ]’A

— -1 .H 1. .. n skI
= Z Zyj cﬂ-duﬂ,,ldz A ANdZTAAZE ey,
Il=g—1 j.A

<Aq,yu> u>y = (YI "'Yn)_l Z YI_I Z YJ_

q

1 U _
Yk cﬂ'c)[uﬂ,/lukl,,u

-1
l=g-1  jkAu
-1 —2 1,-1H .
> (1Y) Z Y1 Z Vi Vi CaWiLAYklLpy
=g—-1  JjkAn

=1 Yn(AqSyus Syu>

We can first use linear coordinate change to let w; = &, then use unitary diagonalization to diago-
nalize y and preserve w = §;.



where
Spu = Z(Yl yn)_l)/]}luK,Adzl AndZ' ndZK @ ey,
K
Therefore we get
vy 2 = K S, = (AT S0 P < (A7 1w, A s - (59,00,
= (A(;lu, uAgS,v, S, v)
< (YI YH)_1<AC;1u, u><Aq,st V)y,
and letv = A(;)l,u we get
(AC;)I,u, uy < (yp - yn)_l(Aglu, u), <AC;)1,u, u),dv, < (A;lu, u)dV.
[

We are now interested in the case where E is a line bundle, then iO(E) is a closed
real valued (1,1)-form. In general, for a real (1,1)-form y € AMT*X. There exist
w-orthogonal basis ({1, ..., ,) in T X which diagonalizes both w and y:

n x n —%
a):izgj’“/\{j, y:iZngj*/\gvj, i €R.
j=1 j=1
Proposition 6.1 (VI-Porp 5.8). For every formu = Z uydy A ZK °, one has
n *
ly, Alu = Z(Z i+ Z Yk — Z ¥us s ALk

J.K jeJ keK j=1

Proof. For (p,q)-form u, we have
Au=i(=1)F Y up (G 58 A G 2 G-

JKl

yAu=i(—DF Y yupx o a5 A Gn a8
J,K,m

[Y’A]u = Z YmUJj K (gl* (e évf)/\écl* /\(Zm | le) —(Gm 2 (gl* /\gj)/\gm | (gl* /\gK)))

JK,Im
n —
NS e S Tk
J.K jeJj kek j=1

] = (ji, - Jp) is a multi-index with j, < - < jj,.
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With this we can apply to an important special case of semi-positive
line bundle E. If we let 0 < A;(x) < -+ < A,(x) be the eigenvalues of iO(E), with
respect to w, for all x € X, then implies for (n, q)-form u

(Agu.u) > (A + -+ + Aq)lulz,

and thus .
) < g Juff < ————|gA(Aqu.u).
(g0 < gl < 5=l A

By previous remark 1, we have

_ 1 _
<%@gx—————m%:J;%@ywsL

1 2
1 |gPav.
S A+t 7.8

A+ A

For example, we can apply this to the case when E is the trivial line bundle X x C
with metric given by a weight e™. One can assume that ¢ is plurisubharmonic and
i00g has at least n — q + 1 positive eigenvalues at every point, i.e. A; > 0 on X. This

leads to the L? estimates originally given by [Hor65]. We state here a slightly more
general result.

Theorem 6.2 (VIII-Thm 6.5). Let (X, ) be a weakly pseudoconvex Kdhler manifold, E
a hermitian line bundle on X, ¢ € C*(X,R) a weight function such that the eigenvalues
A < - < A, of iO(E) + iddp are > 0. Then for every form g, of type (n,q), ¢ > 1, with
leoc (resp. C™) coefficients such that D” g = 0 and

1
—|g|26_(/’dV < 400,
,[X A+t g

we can find a L% _ (resp. C*°) form of type (n,q — 1) such that D” f = g and

1

2e0dV <J ——|gl?e™?av.
Jeersar < [ 5t

Proof. We apply the general result on E, (E with metric twisted by e”¥), then iO(E,) =

—i99 log(e~?h) = iO(E) + iddp. We can exhaust X by relatively compact weakly pseu-
doconvex domains
X, = {x € Xy() < &

where € C*(X, R) is a plurisubharmonic exhaustion function. Then —log(c — ¢) is
a psh. exhaustion function on X, and since

1 1 _
A , dV < —_— 2dV=J — = |g|2e7?dV < +oo.
| gz, _Lh+m+%m¢ e o

12



By , we get solution f, on X, with

2 _(pdV<J L —dv.
chlfcle <] et

As before, by the Banach-Alaoglu theorem and diagonal method, we get a subsequence
that weakly converges to f € leoc on every X.. Then clearly D” f = g in distribution
sense, and again we have

J |fl2e—PdV < limian |f.PPeedv gj L |gl2evav,
K K X A

A+t Ay

for K a compact subset of X. Let K increase to X, and we get the estimates we want.

]

If we need estimates for (p, q)-forms instead of (n, q)-forms, we can use the iso-
morphism APT;LO = A"7P T)l(’o ® A”T)’zl’0 obtained by contraction of n-forms with (n-
p)-vectors to get

APAT*X @ E = AMT*X @ (A" PTy° ® E).

In case of p = 0, we have
Definition 6.1. Ricw = iO(A"Ty") = i Tr O(Ty").

For any local coordinates (z%,...,2"), the holomorphic n-form dz' A ndZ" is alocal
section of A"T*10X hence we have

Ric w = iO(A"TX) = idd log |dz! A - A dZ"?, = —idd log det Wjf
Then can be apply to (0, g)-form g, with condition on eigenvalues of
iO(E) + Ric w + iddep

in the place of iO(E,).

7 Extension of holomorphic functions from subvarieties

With the capability of solving 9-equation, we can now try to extend holomorphic sec-
tion defined on (a neighborhood of) subvariety. Suppose f is a section of line bundle
L defined on a neighborhood U of subvariety Y of X, the idea is to first multiply by
a bump function to get a global section i/ f on X, then consider g = a(¢/ f) satisfying
dg = 0. If we can find u such that ou = g = d(y f) and uly = 0, then F = ¢/ f — u satisfy
dF = 0 and Fly = fly is the holomorphic extension we want.

13



Now the difficulty lies in how to ensure uly = 0 and to find a suitable weight
function ¢ such that we can apply the L? estimates on iO(L,) (for example we need
i0(L,) = 0 and some control on the L? norm of |g|%e™?, see ). A method is

to use a non integrable weight on Y like e~ = |d(x, Y)| 2P, where d(x,Y) is the distance
to Y and p is the codimension of Y. Then the estimates from will gives

J lu|?e?dV < oo,
X

which will make sure uly = 0.

Suppose now Y = ¢~ 1(0), where ¢ is a holomorphic section of a hermitian vector
bundle E, we may replace d(x,Y) by o(x) in above discussion. That is, consider the
weight ¢ = plog|o|?, which will contribute ipdd log |o|? in the curvature. To calculate
it, we define fors = 0, ® ¢ € APT*X ® E, t = 7, ®e, € MT"X ®E,

{s,t} ::0,1/\5®<e,1,ep) e APIQE

and we have d{s,t} = {Ds, t} + (—1)P{s, Dt} since Chern connection is compatible with
metric. (see V-7.2 in [Dem12]). Then

dlof? = n0(d|o?) = n°({ Do, o} + {0, Do})
={D", 0} + {0, D*'c} = {D¥00, 5}

dlof? 3 {DY, o}

as D! = 9 and o is holomorphic. Therefore dlog|o]? = of - P and also
o o
D% DYs = D26 = O(E)o. Then
— _ _ Dl,O ,
199 log 0| = —idalog |o]? = —id (m)
o[
—{o, D6} A {DY5,06}  {D%'DY5 6}  {D'Y0s, D100}
= —i —1i +i
jol* jof* o2
B {DYo, D5}  {DYo,0} A {0, D06}  {iO(E)o, o} .
e o] G ©
And we have o o o o
D*Yo,D> D Yo, ,D>
l_{ o o} B {D"o,0} A {o o} >0, ©)

1
o2 |o|*
as
1,0
o2 4 DMo|? — K€ 5 DYo,0)g|* > 0, V& € Ty

by the Cauchy-Schwarz inequality.

14



Similarly,

i09 log(1 + |o]?) = i(1 +|o|»){D", D5} — {D 0, 5} A {0, D'}  {iO(E)o, 0}

(1 +|of?)? 1+ ol
«1L0 _ L0 -
S {D"Yo,D" o} B {i6O(E)o, 0'}' )
(1+of?)? 1+ |o]?

This turns out will be the what we use to control the contribution of bump function
in curvature. Now since the weight is singular along Y, we actually want to apply the
theorem to X\Y, then we need to know whether X\Y has a complete metric.

Lemma 7.1 (VIII-Lem 7.2). Let (X, ) be a Kihler manifold, andY = o~ 1(0) an analytic
subset defined by a section of a hermitian vector bundle E. If X is weakly pseudoconvex
and exhausted by X. = {{/ < c}, then X.\Y has a complete Kdhler metric for allc € R.

Proof. We need to take care of two parts, when we approach Y and when we near 9X..
undone ]

We can now prove the following,

Theorem 7.1 (VIII-Thm 7.1). Let (X, w) be a weakly pseudoconvex Kihler manifold, L a
hermitian line bundle and E a hermitian vector bundle over X. LetY = o~ 1(0) for some
section o of E, and p the maximal codimension of the irreducible components of Y. Let
f be a holomorphic section of Kx ® E defined in the open setY Cc U = {lo| < 1}. If

J |fI2dV < +oo and if the curvature form of L satisfies
U

iO(L) > (i + L) {O(E)s, o)

ol* 1+ of?

for some ¢ > 0. Then there is a section F € H'(X, Kx ® L) such that Fy = fly and

2 1
J Ldvg (1 + i)I |f|2dV.
x (1 + |o]2)Pre € U

Proof. Let h be the continuous section of L defined by h = (1 —|o|P™!) f on U and h =0
on X\U. ' We have hly = fl|y and since f is holomorphic, the nontrivial term in oh
only comes from the bump function. Therefore

p+1

oh=——
2

lolP~Y4o, D6} ® fonU, oh=0onX\U.

"We may replace o by (1 + n)o to assume f is defined in a neighborhood of U, then let § — 0. So
that f is bounded and (1 — |o]?*!) f will tend to 0 when approaching dU. undone
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We consider g = oh as a (n, 1)-form with values in L. And we twist the metric by
weight e”? given by

¢ = ploglol? + elog(1 + |o]?).
Note that ¢ is singular along Y. The above calculation and the condition on curvature
of L imply that

i0(L,) = iO(L) + piddlog|o|* + £iddlog(1 + |o]*)

p i{D0s, D10}
> iO(L) — ( + ) {i6(E)o,0} + e—————————
o2 | 2 (1+1of?)
~D1,0 ’DIO DlO DlO
S D70 . U} 5 D700 AZ{G 0}(1 +o2)? >o0. ®)
(1+1ol) o
N +1 ;o
Set d(1 — |o|PTl) = & = —pT|0'|p_1{D1’0cr, o} = Z &d7/ % in a w—orthonomal basis

i. at xp, and let 52 = Z ,fji br the dual (0, 1)—vector field (same coefficients since
oz/ o7)

% orthonormal). Then for every L-valued (n, 1)-form v, we find (on U)
z

[@h, v = KEA .0 = K. £ ol < If1-IE Lol
Now for 5 1V, We can write
«f_.v = Z—ifjdzj/\/lv = —iE A A,
since v is of type (n, 1). Then

@R, ) < [fIEIE 4 VP = | fX(=iE A Av,E )
= | fIP(=iE n& A Av,v) = |f([iE A E, Alv,v)

PCERYs +17 2
<ol (1 + oI f*([iB(L,), Alv, v),

since we have by Equation 6,

(p+1)°

2
iend = P 210G o1 s (o, pLogy < LED
4 4¢

lo?P(1 + |o1)?| fI7iO(L,)-

And for y > 0 € AMIT*X, we get {[y, Alv,v) > 0 like in Theorem 6.2. Thus in the
notation of previous section (see 4), the form g = dh satisfies

(p+ (p J; 1)? (p+1)* e,

) o1 + o2 < Pl <

(AL, 8.8 <

8There’s a difference of sign compare to [Dem12].
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where we use (1 + |0]%)? <4 onU = {|o| < 1} D Supp g. Hence we have

(p+ 1)

£

J (Alg, g),dV = J (A7lg, ge™PdV < J |f2dV < co.

X U U

Then Lemma 7.1 shows that Theorem 6.1 can be applied on each set X, \Y. Let ¢ tend
to infinity and taking the weak limit like before, we then get a L-valued (n, 0)-form u
such that ou = g on X\Y and

2 +1 2
J B J uPerav < LY J |F2dV
x\v lo[2P(1 + |o]?)¢ X\Y e Ju

2
| is locally L! near Y. Now as g is continuous almost ev-

In particular, we have
lo]2P

erywhere, Lemma 7.2 below shows that the equality du = g = dh extends to X, thus
F = h — u is holomorphic everywhere. Thus u = h — F is continuous on X, and
as o(x) < Cd(x,Y) in a neighborhood of every point of Y, we see that |o|72 is non
integrable at every point xj € Ypep since codimY < p. It follows that u = 0 on Y, so

Fly = hly = fly.
Finally, we have
FR = b= uf? < (1 + [0 2P)uf? + (1 + lo[22)| fundone

which implies

|F|? Jul?
7 < o +f
(I +lo*)P — |of=P
since
14022 < (1 + |o)P.
So
2 2 2
J B L dVgJ ul + dV§(1+—p+1>J |F2dV.
x (1+ |o]?)Pte X lo2P(1 +1o?) (1 +|o?) 3 U

]

Lemma 7.2 (VIII-Lem 7.3). Let Q be an open subset of C" and Y an analytic subset of
Q. Assume that v is a (p,q — 1)-form with L2 . coefficients and w a (p, q)-form with Lj. |

coefficients such that ov = w on Q\Y (in the sense of distribution theory). Then dv = w
on Q.
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Proof. An induction on the dimension of Y shows that it suffices to prove the result in
a neighborhood of a regular point a € Y. By using local isomorphism, we reduced to
the case where Y is contained in the hyperplane z! = 0, with a = 0. Let 1 € C®(R,R)

be a function with A(t) = 0 for ¢t < % and A(t) = 1 for t > 1. We must show that

J W/\a:(—l)PJqu VA da 9)
Q Q

1
for all @ € 6,2, ,_4(Q). Set A.(z) = /1(@) and replace « in the integral by A.a. Then
£

Aea € 6,2 g(2\Y) and we have
J wA da = (-1)PHe J vad(da) = (—1)PTe J v A (0. + A.00).
Q Q Q

As w,v has Llloc coeflicients on Q,

J W/\/lga—>J wAQ, J V/\/lggaej vAada ase— 0.
Q Q Q Q

The remaining term can be estimated by Cauchy-Schwarz inequality:

U VA Aa| < J v Aal2dV - J |0A|2dV;
Q |z1|<e Supp @

asv € LZZOC(Q), then

2

J lvAal?dV — 0
2! |<e

as ¢ = 0, whereas
31 12 C 1 ”
J |04¢|“dV < = Vol(Suppa n{lz'| < e}) < C”.
Supp €

Hence follows when ¢ tends to 0. ]

Corollary 7.1 (VIII-Cor. 7.5). Let Q C C" be a weakly pseudoconvex domain and let ¢,
be plurisubharmonic functions on 2, where { is finite and continuous. Let o = (01, ...,0)
be a family of holomorphic functions on Q, letY = o~ 1(0), p be the maximal codimension
of Y and set

1. U={z€XloG)P <e V@

2. U ={z € Qlo(z))? < /D3,
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Then for every ¢ > 0 and every holomorphic function f on U (resp. U’), there exists a
holomorphic function F on Q such that Fly = f|y and

2o=0+pY +1)2
L j LI A (1+ (p+1) ) J [flPeetPVav,
Q 3 U

(1 + |o|2eV)Pte

2 —Q 1 2
2 J Ldvg (1+ (p*1) )J |f2e—e—+preW gy,
& U’

a (e +a?)pe

Proof. Assume ¢, smooth’. Either case will follows when we apply Theorem 7.1 to

1. E = Q x C" with the weight eV, L = Q x C with the weight e_‘p+p¢, and U =
{loc|%¢¥ < 1}. Then

iO(E) = —iddy @ Idg <0, iO(L) = iddp — piddy > piO(E).

2. E = Q x C" with the weight eV, L = Qx C with the weight e_q’_(pﬂ)‘/’, and
U’ = {lo|% ¥ < 1}. Then

iO(E) = —iddy @ Idg >0, iO(L) = iddp + (p + €)iday > (p + €)iO(E).

Then the curvature condition is satisfied and Ky is trivial. O

Theorem 7.2 (Hormander-Bombieri-Skoda theorem, VIII-Thm 7.6). Let Q C C" be a
weakly pseudoconvex domain and ¢ a plurisubharmonic function on 2. For everye > 0
and every point zy € Q2 auch that e”? is integrable in a neighborhood of z, there exists a
holomorphic function F on Q such that F(zy) = 1 and

2,—¢(2)
[ e, .
Q

(1 + |Z|2)n+£

Proof. Apply Corollary 7.1to f = 1,0(z) = z— 2z, p = nand ¥y = logr? where

U = B(z,r) is a ball such that J e ?dV < oo, O
U

Corollary 7.2. Let ¢ be a plurisubharmonic function on a complex manifold X. Let A be
the set of points z € X such thate™? is not locally integrable in a neighborhood of z. Then
A is an analytic subset of X.

Proof. undone [

By taking convolution with smooth kernels on the pseudoconvex domain Q, C Q.
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