Hormander's L^2 estimate and extension theorem

Chiang, Yu-Zhe

June 5, 2025

Contents

1	Preliminaries about functional ananysis	2
2	Preliminaries on complete Riemannian manifolds	3
3	L^2 Hodge theory on complete Riemannian manifolds	3
4	General estimates for $\overline{\partial}$ on complete Hermitian manifolds	4
5	Estimates on weakly pseudoconvex manifolds	6
6	Hormander's L^2 estimates for non complete Kähler metrics	8
7	Extension of holomorphic functions from subvarieties	13
References		20

The main reference is [Dem12], especially chapter VIII, and the reference looks like VII, 4.2 means the (4.2) in chapter VII in [Dem12].

1 Preliminaries about functional ananysis

Let $\mathcal{H}_1, \mathcal{H}_2$ be complex Hilbert spaces. A linear operator T defined on a subspace Dom $T \subset \mathcal{H}_1$ into \mathcal{H}_2 . Then T is said to be *densely defined* if Dom T is dense in \mathcal{H}_1 , and *closed* if its graph

$$\operatorname{Gr} T = \{(x, Tx) | x \in \operatorname{Dom} T\}$$

is closed in $\mathcal{H}_1 \times \mathcal{H}_2$. (closed imply continuous if Dom $T = \mathcal{H}_1$.)

Assume *T* is closed and densely defined.

Definition 1.1. The adjoint T^* of T in Von Neumann's sense is constructed as follows: Dom T^* is the set of $y \in \mathcal{H}_2$ such that the linear functional define on $x \in \text{Dom } T$ by

$$f_{\gamma}(x) := \langle Tx, y \rangle_2$$

is bounded in \mathscr{H}_1 -norm. Since Dom *T* is dense, we can extend the bounded operator from Dom *T* uniquely to a bounded linear functional on the whole \mathscr{H}_1 , then by Riesz representation theorem we get a unique element $T^*y \in \mathscr{H}_1$ such that $\langle Tx, y \rangle_2 = \langle x, T^*y \rangle_1$ for all $x \in \text{Dom } T$.

undone

Theorem 1.1 (Von Neumann 1929). If $T : \mathscr{H}_1 \to \mathscr{H}_2$ is closed and densely defined. then its adjoint T^* is also closed and densely defined and $(T^*)^* = T$. We also have Ker $T^* = (\operatorname{Im} T)^{\perp}$ and its dual (Ker T)^{$\perp} = \overline{\operatorname{Im} T^*}$.</sup>

Now for two closed and densely defined operators *T*, *S*:

$$\mathcal{H}_1 \xrightarrow{T} \mathcal{H}_2 \xrightarrow{S} \mathcal{H}_3$$

such that $S \circ T = 0$ (i.e. Im $T = T(\text{Dom } T) \subset \text{Ker } S \subset \text{Dom } S$), we have:

Theorem 1.2.

$$\mathcal{H}_2 = (\operatorname{Ker} S \cap \operatorname{Ker} T^*) \oplus \overline{\operatorname{Im} T} \oplus \overline{\operatorname{Im} S^*},$$
$$\operatorname{Ker} S = (\operatorname{Ker} S \cap \operatorname{Ker} T^*) \oplus \overline{\operatorname{Im} T}.$$

And in order that $\operatorname{Im} T = \operatorname{Ker} S$ (i.e. exact), it suffices that

$$||T^*x||_1^2 + ||Sx||_3^2 \ge C||x||_2^2, \quad \forall x \in \text{Dom}\, S \cap \text{Dom}\, T^*$$
(1)

for some constant C > 0. In this case, $\forall v \in \mathcal{H}_2$ with Sv = 0, there exists $u \in \mathcal{H}_1$ such that Tu = v and $||u||_1^2 \leq \frac{1}{C} ||v||_2^2$. In particular,

$$\overline{\operatorname{Im} T} = \operatorname{Im} T = \operatorname{Ker} S, \quad \overline{\operatorname{Im} S^*} = \operatorname{Im} S^* = \operatorname{Ker} T^*.$$

Proof.

2 Preliminaries on complete Riemannian manifolds

3 L^2 Hodge theory on complete Riemannian manifolds

4 General estimates for $\overline{\partial}$ on complete Hermitian manifolds

Let (X, ω) be a *complete* hermitian manifold and *E* a holomorphic hermitian vector bundle of rank *r* over *X*. Consider now the operator

$$A_{E,\omega} = [i\Theta(E), \Lambda] + T_{\omega}$$

on $\Lambda^{p,q}T^*X \otimes E$ (cf. Chapter VII in [Dem12]). This operator comes from the difference of two Laplace operators:

Theorem 4.1 (VII-Thm 1.4). The operator $\Delta'_{\tau} = [D' + \tau, \delta' + \tau^*]$ is a positive and formally self-adjoint operator. Moreover

$$\Delta'' = \Delta'_{\tau} + [i\Theta(E), \Lambda] + T_{\omega}$$

where T_{ω} is an operator of order 0 depending only on the torsion of ω .

Proof. see [Dem12].

Thus the operator is formally self-adjoint (pointwise?) acting pointwise on $\Lambda^{p,q}T^*X \otimes E$. As a corollary, we have the following important inequality

Lemma 4.1 (Bochner-Kodaira-Nakano inequality, VII-2.1). For $u \in \mathscr{C}_{p,q}^{\infty}(X, E)$ (compactly supported *E*-valued (p,q)-forms), we have

$$||D''u||^2 + ||\delta''u||^2 \ge \int_X \langle A_{E,\omega}u, u \rangle dV$$
(2)

Proof.

$$\langle\!\langle \Delta'' u, u \rangle\!\rangle = \int_X \langle \Delta'' u, u \rangle dV = ||D''u||^2 + ||\delta''u||^2$$
$$\langle\!\langle \Delta'_\tau u, u \rangle\!\rangle = ||D'u + \tau u||^2 + ||\delta'u + \tau^* u||^2 \ge 0.$$

Assume now that $A_{E,\omega}$ is semi-positive on $\Lambda^{p,q}T^*X \otimes E$ (i.e. $\langle A_{E,\omega}u,u \rangle \geq 0$ pointwise). Then by density of $\mathscr{C}_{p,q}^{\infty}(X, E)$ in Dom $D'' \cap$ Dom δ'' , we can find $u_j \in \mathscr{C}_{p,q}^{\infty}(X, E)$ such that $u_j \to u$, $D''u_j \to D''u, \delta''u_j \to \delta''u$ in L^2 norm. Then by taking a subsequence, we have $u_j \to u$ pointwise almost everywhere. And since $A_{E,\omega}$ act pointwise on fiber, we have $\langle A_{E,\omega}u_j, u_j \rangle \to \langle A_{E,\omega}u, u \rangle$ pointwise almost everywhere. Then

$$\int_X |\langle A_{E,\omega} u_j, u_j \rangle| dV = \int_X \langle A_{E,\omega} u_j, u_j \rangle dV \le ||D'' u_j||^2 + ||\delta'' u_j||^2 \to ||D'' u||^2 + ||\delta'' u||^2$$

and thus by Fatou's lemma

$$\int_X \langle A_{E,\omega} u, u \rangle dV = \int_X \liminf \langle A_{E,\omega} u_j, u_j \rangle dV \le \liminf \int_X \langle A_{E,\omega} u_j, u_j \rangle dV \le \|D'' u\|^2 + \|\delta'' u\|^2$$

(i.e. Equation 2 holds for all $u \in \text{Dom } D'' \cap \text{Dom } \delta''$.)

Now given $g \in L^2_{p,q}(X, E)$ such that

$$D''g = 0. (3)$$

In addition to this, we also assume that *g* satisfies condition (\star):

1. for almost every $x \in X$, there exists $\alpha(x) \in [0, \infty)$ such that

$$|\langle g(x), u \rangle|^2 \le \alpha \langle A_{E,\omega} u, u \rangle$$

for every $u \in (\Lambda^{p,q}T^*X \otimes E)_x$.

Remark. If the operator $A_{E,\omega}$ is invertible (i.e. positive), the minimal such α is $\langle A_{E,\omega}^{-1}g(x), g(x) \rangle$, so we denoted α this way even when $A_{E,\omega}$ is not invertible.

Proof. By the Cauchy-Schwarz inequality on $\langle u, v \rangle_A := \langle Au, v \rangle$, we have

$$|\langle g, u \rangle|^2 = |\langle A^{-1}g, u \rangle_A|^2 \le \langle A^{-1}g, A^{-1}g \rangle_A \cdot \langle u, u \rangle_A = \langle A^{-1}g, g \rangle \cdot \langle Au, u \rangle.$$

2. Additionally, we assume the global constraint

$$\int_X \langle A_{E,\omega}^{-1}g,g \rangle \, dV < +\infty.$$

Then the basic result of L^2 theory can be stated as follows.

Theorem 4.2 (VIII-Thm 4.5). If (X, ω) is complete and $A_{E,\omega} \ge 0$ in bidegree (p,q), then for any $g \in L^2_{p,q}(X, E)$ satisfying (\star) and D''g = 0, there exists $f \in L^2_{p,q-1}(X, E)$ such that D''f = g and

$$||f||^2 \le \int_X \langle A_{E,\omega}^{-1} g, g \rangle dV.$$

Proof. For every $u \in \text{Dom } D'' \cap \text{Dom } \delta''$ we have

$$\begin{split} |\langle\!\langle u,g\rangle\!\rangle|^2 &= |\int_X \langle u,g\rangle dV|^2 \le \left(\int_X |\langle u,g\rangle| dV\right)^2 \\ &\le \left(\int_X \langle A_{E,\omega} u,u\rangle^{\frac{1}{2}} \langle A_{E,\omega}^{-1}g,g\rangle^{\frac{1}{2}} dV\right)^2 \\ &\le \int_X \langle A_{E,\omega}^{-1}g,g\rangle dV \cdot \int_X \langle A_{E,\omega} u,u\rangle dV \end{split}$$

by the definition of $\langle A_{E,\omega}^{-1}g,g \rangle$ and the Cauchy-Schwarz inequality. Then Equation 2 implies $\| \| u \|_{\infty} \| \|^2 \leq C(\| D'' u \|^2 + \| \delta'' u \|^2)$ for $\Delta U \in \text{Dom } D'' \circ \text{Dom } \delta''$

$$|\langle\!\langle u, g \rangle\!\rangle|^2 \le C(||D''u||^2 + ||\delta''u||^2), \quad \forall u \in \operatorname{Dom} D'' \cap \operatorname{Dom} \delta'$$

where *C* is the integral $\int_X \langle A_{E,\omega}^{-1}g, g \rangle dV$. We now repeat the proof of Thm 1.2: For any $u \in \text{Dom } \delta''^1$, let us write

$$u = u_1 + u_2, \quad u_1 \in \operatorname{Ker} D'', \quad u_2 \in (\operatorname{Ker} D'')^{\perp} = \operatorname{Im} \delta''.$$

Then $D''u_1 = 0$ and $\delta''u_2 = 0$ (Since $\delta''u_2 = 0 \iff \langle \langle u_2, D''h \rangle \rangle = 0$, $\forall h \in \mathscr{C}^{\infty}$). Since $g \in \text{Ker } D''$, we get

$$|\langle\!\langle u,g\rangle\!\rangle|^2 = |\langle\!\langle u_1,g\rangle\!\rangle|^2 \le C||\delta''u_1||^2 = C||\delta''u||^2.$$

The Hahn-Banach theorem shows that the bounded linear functional defined on ${\rm Im}\,\delta''$

$$\delta'' u \mapsto \langle\!\langle u, g \rangle\!\rangle$$

can be extended to a linear functional $v \mapsto \langle\!\langle v, f \rangle\!\rangle$, $f \in L^2_{p,q-1}$, of norm $||f|| \le C^{\frac{1}{2}}$. This means that

$$\langle\!\langle u, g \rangle\!\rangle = \langle\!\langle \delta'' u, f \rangle\!\rangle, \quad \forall u \in \operatorname{Dom} \delta'',$$

i.e. that D'' f = g (as we define D'' in distribution sense, or by $\delta''^* = D''$). The theorem is proved.

Remark. We can always find a solution $f \in (\text{Ker } D'')^{\perp}$ by taking the orthogonal projection to $(\text{Ker } D'')^{\perp}$. Then this solution is clearly unique and is precisely the one with minimal L^2 norm of equation D'' f = g. We thus have

$$\langle\!\langle \Delta''f,h\rangle\!\rangle = \langle\!\langle f,\delta''D''h\rangle\!\rangle + \langle\!\langle f,D''\delta''h\rangle\!\rangle = \langle\!\langle f,\delta''D''h\rangle\!\rangle = \langle\!\langle D''f,D''h\rangle\!\rangle = \langle\!\langle g,D''h\rangle\!\rangle = \langle\!\langle \delta''g,h\rangle\!\rangle$$

for all $h \in \mathscr{C}^{\infty}_{p,q-1}(X, E)$ and consequently $\Delta'' f = \delta'' g$ in distribution sense. Hence if $g \in C^{\infty}_{p,q}(X, E)$, the ellipticity of Δ'' shows that $f \in C^{\infty}_{p,q-1}(X, E)$.

5 Estimates on weakly pseudoconvex manifolds

We now introduce a large class of complex manifolds such that the L^2 estimates will still be easily tractable.

¹we don't need $u \in \text{Dom } D'' \cap \text{Dom } \delta''$ since we only apply the estimate on $u_1 \in \text{Ker } D'' \cap \text{Dom } \delta''$

Definition 5.1. A complex manifolds *X* is said to be *weakly pseudoconvex* if there exists a plurisubharmonic exhaustion function $\psi \in C^{\infty}(X, \mathbb{R})$. That is $i\partial \overline{\partial} \psi \ge 0$ on *X*, and $\forall c \in \mathbb{R}$, the subset $X_c = \{x \in X; \psi(x) < c\}$ is relatively compact in *X*.

Examples

Theorem 5.1 (VIII-Thm 5.2). Every weakly pseudoconvex Kähler manifold (X, ω) carries a complete Kähler metric $\hat{\omega}$.

Proof. Let $\psi \in C^{\infty}(X, \mathbb{R})$ be the plurisubharmonic exhaustive function on X. As ψ is exhaustive, we have $\{\psi < 0\}$ is relative compact. Thus $\inf \psi > -\infty$ and we may assume $\psi \ge 0$ by adding a constant to it. Then $\hat{\omega} = \omega + i\partial\overline{\partial}(\psi^2)$ is Kähler and

$$\hat{\omega} = \omega + 2i\psi\partial\overline{\partial}\psi + 2i\partial\psi\wedge\overline{\partial}\psi \ge \omega + 2i\partial\psi\wedge\overline{\partial}\psi > 0.$$

We have $|d\psi|_{\hat{\omega}} = |\partial\psi + \overline{\partial}\psi|_{\hat{\omega}} \le 2|\partial\psi|_{\hat{\omega}} \le \sqrt{2}$. Then by Lem 2.4 we have $\hat{\omega}$ is complete $(|d\psi|_{\hat{\omega}} \text{ bounded is enough})$.

More generally, we can set $\hat{\omega} = \omega + i\partial\overline{\partial}(\chi \circ \psi)$ where χ is a convex increasing function (so $\chi' > 0$, $\chi'' > 0$). Then

$$\hat{\omega} = \omega + i(\chi' \circ \psi)\partial\overline{\partial}\psi + i(\chi'' \circ \psi)\partial\psi \wedge \overline{\partial}\psi$$

$$\geq \omega + i\sqrt{\chi''(\psi)}\partial\psi \wedge \sqrt{\chi''(\psi)}\overline{\partial}\psi = \omega + i\partial(\rho \circ \psi) \wedge \overline{\partial}(\rho \circ \psi) := \omega'$$

where $\rho(t) = \int_0^t \sqrt{\chi''(u)} \, du$. Then we have $|\partial(\rho \circ \psi)|_{\hat{\omega}} \le |\partial(\rho \circ \psi)|_{\omega'} \le 1$ since we can choose coorinates such that $\omega_{i\bar{j}} = \delta_{ij}$ at x_0 , then for real function f,

$$\begin{aligned} \partial f|_{\delta_{ij}+f_i f_j}^2 &= \bar{f}_i (\delta_{ij} + f_i \bar{f}_j)^{-1} f_j = \bar{f}_i (\delta_{ij} - \frac{f_i \bar{f}_j}{1 + \sum_i |f_i|^2}) f_j \\ &= \sum_i |f_i|^2 - \frac{(\sum_i |f_i|^2)^2}{1 + \sum_i |f_i|^2} = \frac{\sum_i |f_i|^2}{1 + \sum_i |f_i|^2} < 1. \end{aligned}$$

we can regard this as adding the direction of $d\psi$ to the metric to control $|d\psi|$.

And for $\rho \circ \psi$ to remain exhaustive we need

$$\lim_{t\to\infty}\int_0^t\sqrt{\chi''(u)}du=+\infty$$

so that there does not exist $c < \infty$ such that $\{\rho < c\} = \{\psi < \infty\} = X$ may not be relatively compact. We can take for example $\chi(t) = t^2$ or $\chi(t) = t - \log t$ for $t \ge 1$.

Then many vanish theorems can now be generalized to weakly pseudoconvex domain and reduced to finding suitable Kähler metric on X and hermitian metric on Esuch that the conditions for Theorem 4.2 are satisfied.

see [Dem12] VIII-5

6 Hormander's L² estimates for non complete Kähler metrics

In this section, we generalize the previous results to estimates in non complete Kähler metric, for example the standard metric on a bounded domain $\Omega \subset \mathbb{C}^n$. The idea is to approximate the given metric by complete Kähler metrics.

Theorem 6.1 (VIII-6.1). Let $(X, \hat{\omega})$ be a complete Kähler manifold, ω another Kähler metric, and $E \to X$ a *m*-positive ² bundle. Let $g \in L^2_{n,q}(X, E)$ with D''g = 0 and

$$\int_{X} \langle A_q^{-1} g, g \rangle dV < +\infty \tag{(\star)}$$

with respect to ω , with $A_q = [i\Theta(E), \Lambda]$ in bidegree (n, q) and $q \ge 1, m \ge \min\{n - q + 1, r\}$ (We have A_q is positive definite by VII-Lem 7.2). Then there exist $f \in L^2_{n,q-1}(X, E)$ such that D''f = g and

$$||f||^2 \le \int_X \langle A_q^{-1}g, g \rangle dV.$$

Proof. First note that by Hopf-Rinow, we have a metric g is complete iff every closed geodesic ball $\overline{B}_g(r)$ is compact. Then for every $\varepsilon > 0$, the Kähler metric $\omega_{\varepsilon} = \omega + \varepsilon \hat{\omega}$ is complete. (Since $\overline{B}_{\varepsilon \hat{\omega}}(r) = \overline{B}_{\hat{\omega}}(\varepsilon r)$, and for $g \ge h$ we have $d_g(x, y) \ge d_h(x, y)$ and $\overline{B}_g(r) \subset \overline{B}_h(r)$ which is compact if h is complete.)

Now let us put an index ε on objects depending on ω_{ε} . It follows from Lemma 6.1 below that

$$|u|_{\varepsilon}^{2}dV_{\varepsilon} \leq |u|^{2}dV, \quad \langle A_{q,\varepsilon}^{-1}u, u \rangle_{\varepsilon} \, dV_{\varepsilon} \leq \langle A_{q}^{-1}u, u \rangle dV. \tag{4}$$

Then Theorem 4.2 applies to ω_{ε} (as $g \in L^2_{n,q}(X, E)_{\varepsilon}$ and (\star) holds in ω_{ε}) yields a solution $f_{\varepsilon} \in L^2_{n,q-1}(X, E)_{\varepsilon}$ such that $D'' f_{\varepsilon} = g$ in distribution sense with respect to ω_{ε} and

$$\int_X |f_{\varepsilon}|_{\varepsilon}^2 dV_{\varepsilon} \leq \int_X \langle A_{q,\varepsilon}^{-1}g, g \rangle_{\varepsilon} dV_{\varepsilon} \leq \int_X \langle A_q^{-1}g, g \rangle dV$$

This means that the family (f_{ε}) is bounded in L^2 norm (in ω) on every compact subset of X (as ω_{ε} are quasi isometric to ω for ε small on a fixed compact set³). Now fixed a compact exhaustion X_i , then by the Banach–Alaoglu theorem, there is a weakly convergent subsequence of (f_{ε}) in $L^2_{n,q-1}(X_i, E)$. By the diagonal method, we get a subsequence weakly converges to $f \in L^2_{loc,\omega}$ on every X_i . Now for every $h \in \mathscr{C}^{\infty}_{n,q}(X, E)$, said Supp $h \subset X_i$, we want

$$\langle\!\langle f, \delta''h \rangle\!\rangle \stackrel{\mathbf{I}}{\leftarrow} \langle\!\langle f_{\varepsilon}, \delta''h \rangle\!\rangle \stackrel{\mathbf{II}}{\leftarrow} \langle\!\langle f_{\varepsilon}, \delta_{\varepsilon}''h \rangle\!\rangle \stackrel{\mathbf{III}}{\leftarrow} \langle\!\langle f_{\varepsilon}, \delta_{\varepsilon}''h \rangle\!\rangle_{\varepsilon} = \langle\!\langle g, h \rangle\!\rangle_{\varepsilon} \xrightarrow{\mathbf{IV}} \langle\!\langle g, h \rangle\!\rangle_{\varepsilon}$$

²It's *m*-semi-positive in [Dem12], I don't know whether this is enough for A_q to be positive definite. Compare VII-Lem 7.2

³by controlling the biggest eigenvalues of $\hat{\omega}$ with respect to ω on compact set.

First, we have I is due to the weak convergence of $f_{\varepsilon} \to f$ in $L^2(X_i)$. Then for II, we have

$$\begin{split} \langle\!\langle f_{\varepsilon}, \delta''h - \delta_{\varepsilon}''h \rangle\!\rangle &\leq \|f_{\varepsilon}\| \cdot \|\delta''h - \delta_{\varepsilon}''h\| \leq C \|f_{\varepsilon}\|_{\varepsilon} \cdot \|\delta''h - \delta_{\varepsilon}''h\| \\ &\leq C \left(\int_{X} \langle A_{q}^{-1}g, g \rangle dV \right)^{\frac{1}{2}} \cdot \|\delta''h - \delta_{\varepsilon}''h\|, \end{split}$$

and $\delta_{\varepsilon}^{"}h$ are uniformly bounded on X_i and converge to $\delta^{"}h$ pointwise. Hence by the Dominated convergence theorem, we get II.

For III,

$$\int_{X_i} \langle f_{\varepsilon}, \delta_{\varepsilon}^{\prime\prime} h \rangle dV \int_{X_i} \langle f_{\varepsilon}, \delta_{\varepsilon}^{\prime\prime} h \rangle_{\varepsilon} dV_{\varepsilon}$$

undone

For IV, we have

$$\langle g,h\rangle_{\varepsilon}dV_{\varepsilon} \to \langle g,h\rangle dV$$

pointwise and

$$\int_{X} \langle g,h \rangle_{\varepsilon} dV_{\varepsilon} = \int_{X_{i}} \langle g,h \rangle_{\varepsilon} dV_{\varepsilon} \leq \int_{X_{i}} |g|_{\varepsilon} |h|_{\varepsilon} dV_{\varepsilon} \leq C \int_{X_{i}} |g| \cdot |h| dV \leq C' \int_{X_{i}} dV \cdot \int_{X_{i}} |g|^{2} dV.$$

For the last inequality, we use that |h| is bounded on X_i and Cauchy-Schwarz. Therefore by DCT again, we have **IV**.

For the norm of f, on every compact set X_i , we have by Cauchy-Schwarz inequality

$$\langle\!\langle f, f \rangle\!\rangle_{X_i} = \lim_{\varepsilon \to 0} \langle\!\langle f_\varepsilon, f \rangle\!\rangle_{X_i} \le \liminf \|f_\varepsilon\|_{X_i} \|f\|_{X_i},$$

and thus

$$\begin{split} \|f\|_{X_i} &\leq \liminf_{\varepsilon \to 0} \|f_{\varepsilon}\|_{X_i} \leq \liminf_{\varepsilon \to 0} C_{\varepsilon, X_i} \|f_{\varepsilon}\|_{\varepsilon, X_i} \\ &\leq \liminf_{\varepsilon \to 0} C_{\varepsilon, X_i} \cdot \left(\int_X \langle A_q^{-1} g, g \rangle dV \right)^{\frac{1}{2}} = \left(\int_X \langle A_q^{-1} g, g \rangle dV \right)^{\frac{1}{2}}. \end{split}$$

Where C_{ε,X_i} depend on largest eigenvalues of ω_{ε} with respect to ω on X_i , and hence $C_{\varepsilon,X_i} \to 1$ as $\varepsilon \to 0$. Finally, let X_i increase to X^{4} and we get

$$||f||^2 \le \int_X \langle A_q^{-1} g, g \rangle dV.$$

⁴Let $Y_i = X_i - X_{i-1}$, then $X = \bigsqcup Y_i$ and so $\int_X |f|^2 dV = \sum \int_{Y_i} |f|^2 dV$, with $\sum_{i=1}^n \int_{Y_i} |f|^2 dV \le M$ bounded and increasing, thus $||f||^2 \le M$.

Lemma 6.1 (VIII-Lem 6.3). Let ω , γ be hermitian metrics on X such that $\gamma \ge \omega$. Then for every $u \in \Lambda^{n,q}T^*X \otimes E$, $q \ge 1$, we have

$$|u|_{\gamma}^{2}dV_{\gamma} \leq |u|^{2}dV, \quad \langle A_{q,\gamma}^{-1}u,u\rangle_{\gamma}\,dV_{\gamma} \leq \langle A_{q}^{-1}u,u\rangle dV$$

where an index γ means the term is computed in terms of γ instead of ω .

Proof. Locally at $x_0 \in X$, there exists a coordinates $(z^1, ..., z^n)$ such that

$$\omega = i \sum_j dz^j \wedge dar z^j, \quad \gamma = i \sum_j \gamma_j \, dz^j \wedge dar z^j \quad ext{at } x_0,$$

where $\gamma_1 \leq \cdots \leq \gamma_n$ are the eigen values with respect to ω . Then $\gamma \geq \omega$ implies $\gamma_1 \geq 1$. We have $|dz^j|_{\gamma}^2 = \gamma_j^{-1}$ and $|dz^K|_{\gamma}^2 = \gamma_K^{-1}$ where $\gamma_K = \prod_{k \in K} \gamma_k$. Now for any (n, q) form $u = \sum u_{K,\lambda} dz^1 \wedge \cdots \wedge dz^n \wedge d\bar{z}^K \otimes e_{\lambda}, |K| = q, \{e_{\lambda}\}_{\lambda=1}^r$ is a orthonormal frame of *E*. Then $|u|^2 = \sum (\gamma_k \cdots \gamma_k)^{-1} \gamma_k^{-1} |u_{K,\lambda}|^2 = dV = \gamma_k \cdots \gamma_k dV$

$$|u|_{\overline{Y}}^{2} = \sum_{K,\lambda} (\gamma_{1} \cdots \gamma_{n})^{-1} \gamma_{K}^{-1} |u_{K,\lambda}|^{2}, \quad dv_{\overline{Y}} = \gamma_{1} \cdots \gamma_{n} dv,$$

$$|u|_{\overline{Y}}^{2} dV_{\overline{Y}} = \sum_{K,\lambda} \gamma_{K}^{-1} |u_{K,\lambda}|^{2} dV \leq \sum |u_{K,\lambda}|^{2} dV = |u|^{2} dV,$$

$$\Lambda_{\overline{Y}} u = \sum_{|I|=q-1} \sum_{j,\lambda} i(-1)^{n+j-1} \gamma_{j}^{-1} u_{jI,\lambda}(\widehat{dz^{j}}) \wedge d\overline{z}^{I} \otimes e_{\lambda},$$

where $(\widehat{dz^{j}}) = dz^{1} \wedge \cdots \wedge \widehat{dz^{j}} \wedge \cdots \wedge dz^{n}$. And thus for $i\Theta(E) = i \sum c_{j\bar{k}\lambda}^{\mu} dz^{j} \wedge d\bar{z}^{k} \otimes e_{\lambda}^{*} \otimes e_{\mu}$, since u is (n, q)-form,

$$\begin{split} A_{q,\gamma}u &= [i\Theta(E), \Lambda_{\gamma}]u = i\Theta(E) \wedge (\Lambda_{\gamma}u) \\ &= \sum_{|I|=q-1} i^{2} \sum_{j,\lambda} c_{j\bar{k}\lambda}^{\mu} dz^{j} \wedge d\bar{z}^{k} \wedge \left((-1)^{n+j-1} \gamma_{j}^{-1} u_{jI,\lambda} \widehat{dz^{j}} \wedge d\bar{z}^{I}\right) \otimes e_{\mu} \\ &= \sum_{|I|=q-1} \sum_{j,\lambda} \gamma_{j}^{-1} c_{j\bar{k}\lambda}^{\mu} u_{jI,\lambda} (-1)^{n+j} \widehat{dz^{j}} \wedge dz^{j} \wedge d\bar{z}^{k} \wedge d\bar{z}^{I} \otimes e_{\mu} \\ &= \sum_{|I|=q-1} \sum_{j,\lambda} \gamma_{j}^{-1} c_{j\bar{k}\lambda}^{\mu} u_{jI,\lambda} dz^{1} \wedge \cdots \wedge dz^{n} \wedge d\bar{z}^{kI} \otimes e_{\mu}, \\ \langle A_{q,\gamma}u, u \rangle_{\gamma} &= (\gamma_{1} \cdots \gamma_{n})^{-1} \sum_{|I|=q-1} \gamma_{I}^{-1} \sum_{j,k,\lambda,\mu} \gamma_{j}^{-1} \gamma_{k}^{-1} c_{j\bar{k}\lambda}^{\mu} u_{jI,\lambda} \bar{u}_{kI,\mu} \\ &\geq (\gamma_{1} \cdots \gamma_{n})^{-1} \sum_{|I|=q-1} \gamma_{I}^{-2} \sum_{j,k,\lambda,\mu} \gamma_{j}^{-1} \gamma_{k}^{-1} c_{j\bar{k}\lambda}^{\mu} u_{jI,\lambda} \bar{u}_{kI,\mu} \\ &= \gamma_{1} \cdots \gamma_{n} \langle A_{q}S_{\gamma}u, S_{\gamma}u \rangle \end{split}$$

⁵We can first use linear coordinate change to let $\omega_{ij} = \delta_{ij}$, then use unitary diagonalization to diagonalize γ and preserve $\omega = \delta_{ij}$.

where

$$S_{\gamma}u = \sum_{K} (\gamma_1 \cdots \gamma_n)^{-1} \gamma_K^{-1} u_{K,\lambda} dz^1 \wedge \cdots \wedge dz^n \wedge d\bar{z}^K \otimes e_{\lambda}.$$

Therefore we get

$$\begin{split} |\langle u, v \rangle_{\gamma}|^{2} &= |\langle u, S_{\gamma} v \rangle|^{2} = |\langle A_{q}^{-1}u, S_{\gamma} v \rangle_{A_{q}}|^{2} \leq \langle A_{q}^{-1}u, A_{q}^{-1}u \rangle_{A_{q}} \cdot \langle S_{\gamma} v, S_{\gamma} v \rangle_{A_{q}} \\ &= \langle A_{q}^{-1}u, u \rangle \langle A_{q} S_{\gamma} v, S_{\gamma} v \rangle \\ &\leq (\gamma_{1} \cdots \gamma_{n})^{-1} \langle A_{q}^{-1}u, u \rangle \langle A_{q,\gamma} v, v \rangle_{\gamma}, \end{split}$$

and let $v = A_{q,\gamma}^{-1}u$ we get

$$\langle A_{q,\gamma}^{-1}u,u\rangle_{\gamma} \leq (\gamma_{1}\cdots\gamma_{n})^{-1}\langle A_{q}^{-1}u,u\rangle, \quad \langle A_{q,\gamma}^{-1}u,u\rangle_{\gamma}dV_{\gamma} \leq \langle A_{q}^{-1}u,u\rangle dV.$$

We are now interested in the case where *E* is a line bundle, then $i\Theta(E)$ is a closed real valued (1, 1)-form. In general, for a real (1, 1)-form $\gamma \in \Lambda^{1,1}T^*X$. There exist ω -orthogonal basis $(\zeta_1, \ldots, \zeta_n)$ in $T^{1,0}X$ which diagonalizes both ω and γ :

$$\omega = i \sum_{j=1}^{n} \zeta_j^* \wedge \overline{\zeta}_j^*, \quad \gamma = i \sum_{j=1}^{n} \gamma_j \zeta_j^* \wedge \overline{\zeta}_j^*, \ \gamma_j \in \mathbb{R}.$$

Proposition 6.1 (VI-Porp 5.8). For every form $u = \sum u_{J,K} \zeta_J^* \wedge \overline{\zeta}_K^* {}^6$, one has

$$[\gamma,\Lambda]u = \sum_{J,K} (\sum_{j\in J} \gamma_j + \sum_{k\in K} \gamma_k - \sum_{j=1}^n \gamma_j) u_{J,K} \zeta_J^* \wedge \overline{\zeta}_K^*.$$

Proof. For (p, q)-form u, we have

$$\Lambda u = i(-1)^p \sum_{J,K,l} u_{J,K}(\zeta_l \,\lrcorner \, \zeta_J^*) \wedge (\bar{\zeta}_l \,\lrcorner \, \bar{\zeta}_K^*).$$
$$\gamma \wedge u = i(-1)^p \sum_{J,K,m} \gamma_m u_{J,K} \, \zeta_m^* \wedge \zeta_J^* \wedge \bar{\zeta}_m^* \wedge \bar{\zeta}_K^*,$$

$$\begin{split} [\gamma,\Lambda]u &= \sum_{J,K,l,m} \gamma_m u_{J,K} \left(\zeta_l^* \wedge (\zeta_m \,\lrcorner\, \zeta_J^*) \wedge \bar{\zeta}_l^* \wedge (\bar{\zeta}_m \,\lrcorner\, \bar{\zeta}_K^*) - (\zeta_m \,\lrcorner\, (\zeta_l^* \wedge \zeta_J) \wedge \bar{\zeta}_m \,\lrcorner\, (\bar{\zeta}_l^* \wedge \bar{\zeta}_K)) \right) \\ &= \sum_{J,K} (\sum_{j \in J} \gamma_j + \sum_{k \in K} \gamma_k - \sum_{j=1}^n \gamma_j) u_{J,K} \zeta_J^* \wedge \overline{\zeta}_K^*. \end{split}$$

⁶ $J = (j_1, \dots, j_p)$ is a multi-index with $j_1 < \dots < j_p$.

With this we can apply Theorem 6.1 to an important special case of semi-positive line bundle *E*. If we let $0 \le \lambda_1(x) \le \dots \le \lambda_n(x)$ be the eigenvalues of $i\Theta(E)_x$ with respect to ω_x for all $x \in X$, then Proposition 6.1 implies for (n, q)-form u

$$\langle A_q u, u \rangle \ge (\lambda_1 + \dots + \lambda_q) |u|^2$$

and thus

$$\langle g, u \rangle \leq |g|^2 \cdot |u|^2 \leq \frac{1}{\lambda_1 + \dots + \lambda_q} |g|^2 \langle A_q u, u \rangle.$$

By previous remark 1, we have

$$\langle A_q^{-1}g,g\rangle \leq \frac{1}{\lambda_1 + \dots + \lambda_q} |g|^2 \implies \int_X \langle A_q^{-1}g,g\rangle dV \leq \int_X \frac{1}{\lambda_1 + \dots + \lambda_q} |g|^2 dV.$$

For example, we can apply this to the case when *E* is the trivial line bundle $X \times \mathbb{C}$ with metric given by a weight $e^{-\varphi}$. One can assume that φ is plurisubharmonic and $i\partial\overline{\partial}\varphi$ has at least n - q + 1 positive eigenvalues at every point, i.e. $\lambda_q > 0$ on *X*. This leads to the L^2 estimates originally given by [Hör65]. We state here a slightly more general result.

Theorem 6.2 (VIII-Thm 6.5). Let (X, ω) be a weakly pseudoconvex Kähler manifold, E a hermitian line bundle on X, $\varphi \in C^{\infty}(X, \mathbb{R})$ a weight function such that the eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ of $i\Theta(E) + i\partial\overline{\partial}\varphi$ are ≥ 0 . Then for every form g, of type (n, q), $q \geq 1$, with L^2_{loc} (resp. C^{∞}) coefficients such that D''g = 0 and

$$\int_X \frac{1}{\lambda_1 + \dots + \lambda_q} |g|^2 e^{-\varphi} dV < +\infty,$$

we can find a L^2_{loc} (resp. C^{∞}) form of type (n, q - 1) such that D'' f = g and

$$\int_X |f|^2 e^{-\varphi} dV \le \int_X \frac{1}{\lambda_1 + \dots + \lambda_q} |g|^2 e^{-\varphi} dV.$$

Proof. We apply the general result on E_{φ} (*E* with metric twisted by $e^{-\varphi}$), then $i\Theta(E_{\varphi}) = -i\partial\overline{\partial}\log(e^{-\varphi}h) = i\Theta(E) + i\partial\overline{\partial}\varphi$. We can exhaust *X* by relatively compact weakly pseudoconvex domains

$$X_c = \{ x \in X | \psi(x) < c \}$$

where $\psi \in C^{\infty}(X, \mathbb{R})$ is a plurisubharmonic exhaustion function. Then $-\log(c - \psi)$ is a psh. exhaustion function on X_c , and since

$$\int_X \langle A_{q,E_{\varphi}}g,g \rangle_{\varphi} dV \leq \int_X \frac{1}{\lambda_1 + \dots + \lambda_q} |g|_{\varphi}^2 dV = \int_X \frac{1}{\lambda_1 + \dots + \lambda_q} |g|_E^2 e^{-\varphi} dV < +\infty.$$

By Theorem 6.1, we get solution f_c on X_c with

$$\int_{X_c} |f_c|^2 e^{-\varphi} dV \leq \int_X \frac{1}{\lambda_1 + \dots + \lambda_q} |g|^2 e^{-\varphi} dV.$$

As before, by the Banach-Alaoglu theorem and diagonal method, we get a subsequence that weakly converges to $f \in L^2_{loc}$ on every X_c . Then clearly D''f = g in distribution sense, and again we have

$$\int_{K} |f|^{2} e^{-\varphi} dV \leq \liminf \int_{K} |f_{c}|^{2} e^{-\varphi} dV \leq \int_{X} \frac{1}{\lambda_{1} + \dots + \lambda_{q}} |g|^{2} e^{-\varphi} dV,$$

for *K* a compact subset of *X*. Let *K* increase to *X*, and we get the estimates we want. \Box

If we need estimates for (p,q)-forms instead of (n,q)-forms, we can use the isomorphism $\Lambda^p T_X^{*1,0} \simeq \Lambda^{n-p} T_X^{1,0} \otimes \Lambda^n T_X^{*1,0}$ obtained by contraction of n-forms with (np)-vectors to get

$$\Lambda^{p,q}T^*X \otimes E \simeq \Lambda^{n,q}T^*X \otimes (\Lambda^{n-p}T^{1,0}_X \otimes E).$$

In case of p = 0, we have

Definition 6.1. Ric $\omega = i\Theta(\Lambda^n T_X^{1,0}) = i \operatorname{Tr} \Theta(T_X^{1,0}).$

For any local coordinates $(z^1, ..., z^n)$, the holomorphic *n*-form $dz^1 \wedge \cdots \wedge dz^n$ is a local section of $\Lambda^n T^{*1,0}X$, hence we have

$$\operatorname{Ric} \omega = i\Theta(\Lambda^n TX) = i\partial\overline{\partial} \log |dz^1 \wedge \dots \wedge dz^n|_{\omega}^2 = -i\partial\overline{\partial} \log \det \omega_{j\bar{k}}$$

Then Theorem 6.2 can be apply to (0, q)-form g, with condition on eigenvalues of

$$i\Theta(E) + \operatorname{Ric}\omega + i\partial\overline{\partial}\varphi$$

in the place of $i\Theta(E_{\varphi})$.

7 Extension of holomorphic functions from subvarieties

With the capability of solving $\overline{\partial}$ -equation, we can now try to extend holomorphic section defined on (a neighborhood of) subvariety. Suppose f is a section of line bundle L defined on a neighborhood U of subvariety Y of X, the idea is to first multiply by a bump function to get a global section ψf on X, then consider $g = \overline{\partial}(\psi f)$ satisfying $\overline{\partial}g = 0$. If we can find u such that $\overline{\partial}u = g = \overline{\partial}(\psi f)$ and $u|_Y = 0$, then $F = \psi f - u$ satisfy $\overline{\partial}F = 0$ and $F|_Y = f|_Y$ is the holomorphic extension we want.

Now the difficulty lies in how to ensure $u|_Y = 0$ and to find a suitable weight function φ such that we can apply the L^2 estimates on $i\Theta(L_{\varphi})$ (for example we need $i\Theta(L_{\varphi}) \ge 0$ and some control on the L^2 norm of $|g|^2 e^{-\varphi}$, see Theorem 6.2). A method is to use a non integrable weight on *Y* like $e^{-\varphi} = |d(x, Y)|^{-2p}$, where d(x, Y) is the distance to *Y* and *p* is the codimension of *Y*. Then the estimates from Theorem 6.2 will gives

$$\int_X |u|^2 e^{-\varphi} dV < \infty,$$

which will make sure $u|_Y = 0$.

Suppose now $Y = \sigma^{-1}(0)$, where σ is a holomorphic section of a hermitian vector bundle *E*, we may replace d(x, Y) by $\sigma(x)$ in above discussion. That is, consider the weight $\varphi = p \log |\sigma|^2$, which will contribute $ip\partial\overline{\partial} \log |\sigma|^2$ in the curvature. To calculate it, we define for $s = \sigma_\lambda \otimes e_\lambda \in \Lambda^p T^* X \otimes E$, $t = \tau_\mu \otimes e_\mu \in \Lambda^q T^* X \otimes E$,

$$\{s,t\} := \sigma_{\lambda} \wedge \overline{\tau_{\mu}} \otimes \langle e_{\lambda}, e_{\mu} \rangle \in \Lambda^{p+q} \otimes E$$

and we have $d\{s,t\} = \{Ds,t\} + (-1)^p\{s,Dt\}$ since Chern connection is compatible with metric. (see V-7.2 in [Dem12]). Then

$$\partial |\sigma|^2 = \pi^{1,0} (d|\sigma|^2) = \pi^{1,0} (\{D\sigma,\sigma\} + \{\sigma, D\sigma\})$$
$$= \{D^{1,0}\sigma,\sigma\} + \{\sigma, D^{0,1}\sigma\} = \{D^{1,0}\sigma,\sigma\}$$

as $D^{0,1} = \overline{\partial}$ and σ is holomorphic. Therefore $\partial \log |\sigma|^2 = \frac{\partial |\sigma|^2}{|\sigma|^2} = \frac{\{D^{1,0}\sigma,\sigma\}}{|\sigma|^2}$ and also $D^{0,1}D^{1,0}\sigma = D^2\sigma = \Theta(E)\sigma$. Then

$$i\partial\overline{\partial}\log|\sigma|^{2} = -i\overline{\partial}\partial\log|\sigma|^{2} = -i\overline{\partial}\left(\frac{\{D^{1,0}\sigma,\sigma\}}{|\sigma|^{2}}\right)$$

$$= -i\frac{-\{\sigma, D^{1,0}\sigma\} \wedge \{D^{1,0}\sigma,\sigma\}}{|\sigma|^{4}} - i\frac{\{D^{0,1}D^{1,0}\sigma,\sigma\}}{|\sigma|^{4}} + i\frac{\{D^{1,0}\sigma, D^{1,0}\sigma\}}{|\sigma|^{2}}$$

$$= i\frac{\{D^{1,0}\sigma, D^{1,0}\sigma\}}{|\sigma|^{2}} - i\frac{\{D^{1,0}\sigma,\sigma\} \wedge \{\sigma, D^{1,0}\sigma\}}{|\sigma|^{4}} - \frac{\{i\Theta(E)\sigma,\sigma\}}{|\sigma|^{4}}$$
(5)

And we have

$$i\frac{\{D^{1,0}\sigma, D^{1,0}\sigma\}}{|\sigma|^2} - i\frac{\{D^{1,0}\sigma, \sigma\} \land \{\sigma, D^{1,0}\sigma\}}{|\sigma|^4} \ge 0,$$
(6)

as

$$|\sigma|^2 |\xi \lrcorner D^{1,0}\sigma|^2 - |\langle \xi \lrcorner D^{1,0}\sigma,\sigma\rangle_E|^2 \ge 0, \ \forall \xi \in T_X^{1,0}$$

by the Cauchy-Schwarz inequality.

Similarly,

$$i\partial\overline{\partial}\log(1+|\sigma|^{2}) = \frac{i(1+|\sigma|^{2})\{D^{1,0}\sigma, D^{1,0}\sigma\} - i\{D^{1,0}\sigma, \sigma\} \wedge \{\sigma, D^{1,0}\sigma\}}{(1+|\sigma|^{2})^{2}} - \frac{\{i\Theta(E)\sigma, \sigma\}}{1+|\sigma|^{2}}$$

$$\geq \frac{i\{D^{1,0}\sigma, D^{1,0}\sigma\}}{(1+|\sigma|^{2})^{2}} - \frac{\{i\Theta(E)\sigma, \sigma\}}{1+|\sigma|^{2}}.$$
(7)

This turns out will be the what we use to control the contribution of bump function in curvature. Now since the weight is singular along *Y*, we actually want to apply the theorem to $X \setminus Y$, then we need to know whether $X \setminus Y$ has a complete metric.

Lemma 7.1 (VIII-Lem 7.2). Let (X, ω) be a Kähler manifold, and $Y = \sigma^{-1}(0)$ an analytic subset defined by a section of a hermitian vector bundle *E*. If *X* is weakly pseudoconvex and exhausted by $X_c = \{\psi < c\}$, then $X_c \setminus Y$ has a complete Kähler metric for all $c \in \mathbb{R}$.

Proof. We need to take care of two parts, when we approach *Y* and when we near ∂X_c . undone

We can now prove the following,

Theorem 7.1 (VIII-Thm 7.1). Let (X, ω) be a weakly pseudoconvex Kähler manifold, L a hermitian line bundle and E a hermitian vector bundle over X. Let $Y = \sigma^{-1}(0)$ for some section σ of E, and p the maximal codimension of the irreducible components of Y. Let f be a holomorphic section of $K_X \otimes E$ defined in the open set $Y \subset U = \{|\sigma| < 1\}$. If $\int_U |f|^2 dV < +\infty$ and if the curvature form of L satisfies

$$i\Theta(L) \ge \left(\frac{p}{|\sigma|^2} + \frac{\varepsilon}{1+|\sigma|^2}\right) \{i\Theta(E)\sigma,\sigma\}$$

for some $\varepsilon > 0$. Then there is a section $F \in H^0(X, K_X \otimes L)$ such that $F_Y = f|_Y$ and

$$\int_X \frac{|F|^2}{(1+|\sigma|^2)^{p+\varepsilon}} dV \le \left(1+\frac{p+1}{\varepsilon}\right) \int_U |f|^2 dV.$$

Proof. Let *h* be the continuous section of *L* defined by $h = (1 - |\sigma|^{p+1})f$ on *U* and h = 0 on $X \setminus U$.⁷ We have $h|_Y = f|_Y$ and since *f* is holomorphic, the nontrivial term in $\overline{\partial}h$ only comes from the bump function. Therefore

$$\overline{\partial}h = -\frac{p+1}{2}|\sigma|^{p-1}\{\sigma, D^{1,0}\sigma\} \otimes f \text{ on } U, \quad \overline{\partial}h = 0 \text{ on } X \setminus U.$$

⁷We may replace σ by $(1 + \eta)\sigma$ to assume f is defined in a neighborhood of \overline{U} , then let $\eta \to 0$. So that f is bounded and $(1 - |\sigma|^{p+1})f$ will tend to 0 when approaching ∂U . undone

We consider $g = \overline{\partial}h$ as a (n, 1)-form with values in *L*. And we twist the metric by weight $e^{-\varphi}$ given by

$$\varphi = p \log |\sigma|^2 + \varepsilon \log(1 + |\sigma|^2).$$

Note that φ is singular along *Y*. The above calculation and the condition on curvature of *L* imply that

$$i\Theta(L_{\varphi}) = i\Theta(L) + pi\partial\overline{\partial}\log|\sigma|^{2} + \varepsilon i\partial\overline{\partial}\log(1+|\sigma|^{2})$$

$$\geq i\Theta(L) - \left(\frac{p}{|\sigma|^{2}} + \frac{\varepsilon}{1+|\sigma|^{2}}\right)\{i\Theta(E)\sigma,\sigma\} + \varepsilon \frac{i\{D^{1,0}\sigma,D^{1,0}\sigma\}}{(1+|\sigma|^{2})}$$

$$\geq \varepsilon \frac{i\{D^{1,0}\sigma,D^{1,0}\sigma\}}{(1+|\sigma|^{2})} \geq i\varepsilon \frac{\{D^{1,0}\sigma,\sigma\} \wedge \{\sigma,D^{1,0}\sigma\}}{|\sigma|^{2}}(1+|\sigma|^{2})^{2} \geq 0.$$
(8)

Set $\overline{\overline{\partial}(1-|\sigma|^{p+1})} = \xi = -\frac{p+1}{2}|\sigma|^{p-1}\{D^{1,0}\sigma,\sigma\} = \sum \xi_j dz^{j-8}$ in a ω -orthonomal basis $\frac{\partial}{\partial z^j}$ at x_0 , and let $\hat{\xi} = \sum \xi_j \frac{\partial}{\partial \overline{z}^j}$ br the dual (0,1)-vector field (same coefficients since $\frac{\partial}{\partial z^j}$ orthonormal). Then for every *L*-valued (n,1)-form ν , we find (on *U*)

$$|\langle \overline{\partial}h, v \rangle| = |\langle \overline{\xi} \wedge f, v \rangle| = |\langle f, \widehat{\xi} \, \lrcorner \, v \rangle| \le |f| \cdot |\widehat{\xi} \, \lrcorner \, v|.$$

Now for $\hat{\xi} \lrcorner v$, we can write

$$\hat{\xi} \lrcorner v = \sum -i\xi_j dz^j \wedge \Lambda v = -i\xi \wedge \Lambda v,$$

since v is of type (n, 1). Then

$$\begin{split} |\langle \overline{\partial}h, v \rangle|^2 &\leq |f|^2 |\hat{\xi} \lrcorner v|^2 = |f|^2 \langle -i\xi \land \Lambda v, \hat{\xi} \lrcorner v \rangle \\ &= |f|^2 \langle -i\bar{\xi} \land \xi \land \Lambda v, v \rangle = |f|^2 \langle [i\xi \land \bar{\xi}, \Lambda] v, v \rangle \\ &\leq \frac{(p+1)^2}{4\varepsilon} |\sigma|^{2p} (1+|\sigma|^2)^2 |f|^2 \langle [i\Theta(L_{\varphi}), \Lambda] v, v \rangle, \end{split}$$

since we have by Equation 6,

$$i\xi \wedge \bar{\xi} = \frac{(p+1)^2}{4} |\sigma|^{2p-2} \{D^{1,0}\sigma, \sigma\} \wedge \{\sigma, D^{1,0}\sigma\} \le \frac{(p+1)^2}{4\varepsilon} |\sigma|^{2p} (1+|\sigma|^2)^2 |f|^2 i\Theta(L_{\varphi}).$$

And for $\gamma \ge 0 \in \Lambda^{1,1}T^*X$, we get $\langle [\gamma, \Lambda]v, v \rangle \ge 0$ like in Theorem 6.2. Thus in the notation of previous section (see 4), the form $g = \overline{\partial}h$ satisfies

$$\langle A_{L_{\varphi}}^{-1}g,g\rangle \leq \frac{(p+1)^2}{4\varepsilon} |\sigma|^{2p} (1+|\sigma|^2)^2 |f|^2 \leq \frac{(p+1)^2}{\varepsilon} |f|^2 |\sigma|^{2p} \leq \frac{(p+1)^2}{\varepsilon} |f|^2 e^{\varphi},$$

⁸There's a difference of sign compare to [Dem12].

where we use $(1 + |\sigma|^2)^2 \le 4$ on $U = \{|\sigma| < 1\} \supset$ Supp g. Hence we have

$$\int_X \langle A^{-1}g,g \rangle_{\varphi} dV = \int_U \langle A^{-1}g,g \rangle e^{-\varphi} dV \le \frac{(p+1)^2}{\varepsilon} \int_U |f|^2 dV < \infty$$

Then Lemma 7.1 shows that Theorem 6.1 can be applied on each set $X_c \setminus Y$. Let *c* tend to infinity and taking the weak limit like before, we then get a *L*-valued (*n*, 0)-form *u* such that $\overline{\partial}u = g$ on $X \setminus Y$ and

$$\int_{X\setminus Y} \frac{|u|^2}{|\sigma|^{2p}(1+|\sigma|^2)^{\varepsilon}} dV = \int_{X\setminus Y} |u|^2 e^{-\varphi} dV \le \frac{(p+1)^2}{\varepsilon} \int_U |f|^2 dV$$

In particular, we have $\frac{|u|^2}{|\sigma|^{2p}}$ is locally L^1 near Y. Now as g is continuous almost everywhere, Lemma 7.2 below shows that the equality $\overline{\partial}u = g = \overline{\partial}h$ extends to X, thus F = h - u is holomorphic everywhere. Thus u = h - F is continuous on X, and as $\sigma(x) \leq Cd(x, Y)$ in a neighborhood of every point of Y, we see that $|\sigma|^{-2p}$ is non integrable at every point $x_0 \in Y_{\text{reg}}$ since codim $Y \leq p$. It follows that u = 0 on Y, so

$$F|_Y = h|_Y = f|_Y$$

Finally, we have

$$|F|^2 = |h - u|^2 \le (1 + |\sigma|^{-2p})|u|^2 + (1 + |\sigma|^{2p})|f|^2$$
 undone

which implies

$$\frac{|F|^2}{(1+|\sigma|^2)^p} \leq \frac{|u|^2}{|\sigma|^{2p}} + |f|^2$$

since

$$1 + |\sigma|^{2p} \le (1 + |\sigma|^2)^p.$$

So

$$\int_{X} \frac{|F|^2}{(1+|\sigma|^2)^{p+\varepsilon}} dV \le \int_{X} \frac{|u|^2}{|\sigma|^{2p}(1+|\sigma|^2)^{\varepsilon}} + \frac{|f|^2}{(1+|\sigma|^2)^{\varepsilon}} dV \le \left(1+\frac{p+1}{\varepsilon}\right) \int_{U} |f|^2 dV.$$

Lemma 7.2 (VIII-Lem 7.3). Let Ω be an open subset of \mathbb{C}^n and Y an analytic subset of Ω . Assume that v is a (p, q - 1)-form with L^2_{loc} coefficients and w a (p, q)-form with L^1_{loc} coefficients such that $\overline{\partial}v = w$ on $\Omega \setminus Y$ (in the sense of distribution theory). Then $\overline{\partial}v = w$ on Ω .

Proof. An induction on the dimension of *Y* shows that it suffices to prove the result in a neighborhood of a regular point $a \in Y$. By using local isomorphism, we reduced to the case where *Y* is contained in the hyperplane $z^1 = 0$, with a = 0. Let $\lambda \in C^{\infty}(\mathbb{R}, \mathbb{R})$ be a function with $\lambda(t) = 0$ for $t \leq \frac{1}{2}$ and $\lambda(t) = 1$ for $t \geq 1$. We must show that

$$\int_{\Omega} w \wedge \alpha = (-1)^{p+q} \int_{\Omega} v \wedge \overline{\partial} \alpha \tag{9}$$

for all $\alpha \in \mathscr{C}_{n-p,n-q}^{\infty}(\Omega)$. Set $\lambda_{\varepsilon}(z) = \lambda(\frac{|z^1|}{\varepsilon})$ and replace α in the integral by $\lambda_{\varepsilon}\alpha$. Then $\lambda_{\varepsilon}\alpha \in \mathscr{C}_{n-p,n-q}^{\infty}(\Omega \setminus Y)$ and we have

$$\int_{\Omega} w \wedge \lambda_{\varepsilon} \alpha = (-1)^{p+q} \int_{\Omega} v \wedge \overline{\partial} (\lambda_{\varepsilon} \alpha) = (-1)^{p+q} \int_{\Omega} v \wedge (\overline{\partial} \lambda_{\varepsilon} \alpha + \lambda_{\varepsilon} \overline{\partial} \alpha).$$

As w, v has L^1_{loc} coefficients on Ω ,

$$\int_{\Omega} w \wedge \lambda_{\varepsilon} \alpha \to \int_{\Omega} w \wedge \alpha, \quad \int_{\Omega} v \wedge \lambda_{\varepsilon} \overline{\partial} \alpha \to \int_{\Omega} v \wedge \overline{\partial} \alpha \quad \text{as } \varepsilon \to 0.$$

The remaining term can be estimated by Cauchy-Schwarz inequality:

$$\left|\int_{\Omega} v \wedge \overline{\partial} \lambda_{\varepsilon} \wedge \alpha\right|^{2} \leq \int_{|z^{1}| \leq \varepsilon} |v \wedge \alpha|^{2} dV \cdot \int_{\operatorname{Supp} \alpha} |\overline{\partial} \lambda_{\varepsilon}|^{2} dV;$$

as $v \in L^2_{loc}(\Omega)$, then

$$\int_{|z^1|\leq\varepsilon} |v\wedge\alpha|^2 dV \to 0$$

as $\varepsilon \to 0$, whereas

$$\int_{\operatorname{Supp} \alpha} |\overline{\partial} \lambda_{\varepsilon}|^2 dV \leq \frac{C}{\varepsilon^2} \operatorname{Vol}(\operatorname{Supp} \alpha \cap \{|z^1| \leq \varepsilon\}) \leq C''.$$

Hence Equation 9 follows when ε tends to 0.

Corollary 7.1 (VIII-Cor. 7.5). Let $\Omega \subset \mathbb{C}^n$ be a weakly pseudoconvex domain and let φ, ψ be plurisubharmonic functions on Ω , where ψ is finite and continuous. Let $\sigma = (\sigma_1, ..., \sigma_r)$ be a family of holomorphic functions on Ω , let $Y = \sigma^{-1}(0)$, p be the maximal codimension of Y and set

- 1. $U = \{z \in \Omega; |\sigma(z)|^2 < e^{-\psi(z)}\},\$
- 2. $U' = \{z \in \Omega; |\sigma(z)|^2 < e^{\psi(z)}\}.$

Then for every $\varepsilon > 0$ and every holomorphic function f on U (resp. U'), there exists a holomorphic function F on Ω such that $F|_Y = f|_Y$ and

$$1. \quad \int_{\Omega} \frac{|F|^2 e^{-\varphi + p\psi}}{(1+|\sigma|^2 e^{\psi})^{p+\varepsilon}} dV \le \left(1 + \frac{(p+1)^2}{\varepsilon}\right) \int_{U} |f|^2 e^{-\varphi + p\psi} dV,$$
$$2. \quad \int_{\Omega} \frac{|F|^2 e^{-\varphi}}{(e^{\psi} + |\sigma|^2)^{p+\varepsilon}} dV \le \left(1 + \frac{(p+1)^2}{\varepsilon}\right) \int_{U'} |f|^2 e^{-\varphi - +(p+\varepsilon)\psi} dV$$

Proof. Assume φ, ψ smooth⁹. Either case will follows when we apply Theorem 7.1 to

1. $E = \Omega \times \mathbb{C}^r$ with the weight e^{ψ} , $L = \Omega \times \mathbb{C}$ with the weight $e^{-\varphi + p\psi}$, and $U = \{|\sigma|^2 e^{\psi} < 1\}$. Then

$$i\Theta(E) = -i\partial\overline{\partial}\psi \otimes \mathrm{Id}_E \le 0, \quad i\Theta(L) = i\partial\overline{\partial}\varphi - pi\partial\overline{\partial}\psi \ge pi\Theta(E).$$

2. $E = \Omega \times \mathbb{C}^r$ with the weight $e^{-\psi}$, $L = \Omega \times \mathbb{C}$ with the weight $e^{-\varphi - (p+\varepsilon)\psi}$, and $U' = \{|\sigma|^2 e^{-\psi} < 1\}$. Then

$$i\Theta(E) = -i\partial\overline{\partial}\psi \otimes \mathrm{Id}_E \ge 0, \quad i\Theta(L) = i\partial\overline{\partial}\varphi + (p+\varepsilon)i\partial\overline{\partial}\psi \ge (p+\varepsilon)i\Theta(E).$$

Then the curvature condition is satisfied and K_X is trivial.

Theorem 7.2 (Hörmander-Bombieri-Skoda theorem, VIII-Thm 7.6). Let $\Omega \subset \mathbb{C}^n$ be a weakly pseudoconvex domain and φ a plurisubharmonic function on Ω . For every $\varepsilon > 0$ and every point $z_0 \in \Omega$ auch that $e^{-\varphi}$ is integrable in a neighborhood of z_0 , there exists a holomorphic function F on Ω such that $F(z_0) = 1$ and

$$\int_{\Omega} \frac{|F(z)|^2 e^{-\varphi(z)}}{(1+|z|^2)^{n+\varepsilon}} dV < \infty.$$

Proof. Apply Corollary 7.1 to $f \equiv 1$, $\sigma(z) = z - z_0$, p = n and $\psi = \log r^2$ where $U = B(z_0, r)$ is a ball such that $\int_U e^{-\varphi} dV < \infty$.

Corollary 7.2. Let φ be a plurisubharmonic function on a complex manifold X. Let A be the set of points $z \in X$ such that $e^{-\varphi}$ is not locally integrable in a neighborhood of z. Then A is an analytic subset of X.

Proof. undone

⁹By taking convolution with smooth kernels on the pseudoconvex domain $\Omega_c \subset \Omega$.

References

- [Dem12] Jean-Pierre Demailly. *Complex Analytic and Differential Geometry*. Version of Thursday June 21, 2012.
- [Hör65] Lars Hörmander. " L^2 Estimates and Existence Theorems for the $\bar{\partial}$ Operator". In: Acta Math. 113, 89–152 (1965).