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Themain reference is [Dem12], especially chapter VIII, and the reference looks like
VII, 4.2 means the (4.2) in chapter VII in [Dem12].

1 Preliminaries about functional ananysis
Let ℋ1,ℋ2 be complex Hilbert spaces. A linear operator 𝑇 defined on a subspace
Dom 𝑇 ⊂ ℋ1 into ℋ2. Then 𝑇 is said to be densely defined if Dom 𝑇 is dense in ℋ1,
and closed if its graph

Gr 𝑇 = {(𝑥, 𝑇 𝑥)|𝑥 ∈ Dom 𝑇 }
is closed in ℋ1 × ℋ2. (closed imply continuous if Dom 𝑇 = ℋ1.)

Assume 𝑇 is closed and densely defined.

Definition 1.1. The adjoint 𝑇 ∗ of 𝑇 in Von Neumann’s sense is constructed as follows:
Dom 𝑇 ∗ is the set of 𝑦 ∈ ℋ2 such that the linear functional define on 𝑥 ∈ Dom 𝑇 by

𝑓𝑦 (𝑥) ∶= ⟨𝑇𝑥, 𝑦⟩2
is bounded in ℋ1-norm. Since Dom 𝑇 is dense, we can extend the bounded opera-
tor from Dom 𝑇 uniquely to a bounded linear functional on the whole ℋ1, then by
Riesz representation theorem we get a unique element 𝑇 ∗𝑦 ∈ ℋ1 such that ⟨𝑇 𝑥, 𝑦⟩2 =
⟨𝑥, 𝑇 ∗𝑦⟩1 for all 𝑥 ∈ Dom 𝑇 .

undone

Theorem 1.1 (Von Neumann 1929). If 𝑇 ∶ ℋ1 → ℋ2 is closed and densely defined. then
its adjoint 𝑇 ∗ is also closed and densely defined and (𝑇 ∗)∗ = 𝑇 . We also have Ker 𝑇 ∗ =
(Im 𝑇 )⟂ and its dual (Ker 𝑇 )⟂ = Im 𝑇 ∗.

Now for two closed and densely defined operators 𝑇 , 𝑆:

ℋ1
𝑇−→ ℋ2

𝑆−→ ℋ3

such that 𝑆 ∘ 𝑇 = 0 (i.e. Im 𝑇 = 𝑇 (Dom 𝑇 ) ⊂ Ker 𝑆 ⊂ Dom 𝑆), we have:

Theorem 1.2.

ℋ2 = (Ker 𝑆 ∩ Ker 𝑇 ∗) ⊕ Im 𝑇 ⊕ Im 𝑆∗,
Ker 𝑆 = (Ker 𝑆 ∩ Ker 𝑇 ∗) ⊕ Im 𝑇 .

And in order that Im 𝑇 = Ker 𝑆 (i.e. exact), it suffices that

||𝑇 ∗𝑥||21 + ||𝑆𝑥||23 ≥ 𝐶||𝑥||22, ∀𝑥 ∈ Dom 𝑆 ∩ Dom 𝑇 ∗ (1)
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for some constant 𝐶 > 0. In this case, ∀𝑣 ∈ ℋ2 with 𝑆𝑣 = 0, there exists 𝑢 ∈ ℋ1 such that
𝑇𝑢 = 𝑣 and ||𝑢||21 ≤ 1

𝐶 ||𝑣 ||
22. In particular,

Im 𝑇 = Im 𝑇 = Ker 𝑆, Im 𝑆∗ = Im 𝑆∗ = Ker 𝑇 ∗.
Proof.

2 Preliminaries on complete Riemannian manifolds

3 𝐿2 Hodge theory on complete Riemannian manifolds
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4 General estimates for 𝜕 on complete Hermitian mani-
folds

Let (𝑋 , 𝜔) be a complete hermitian manifold and 𝐸 a holomorphic hermitian vector
bundle of rank 𝑟 over 𝑋 . Consider now the operator

𝐴𝐸,𝜔 = [𝑖𝛩(𝐸), 𝛬] + 𝑇𝜔
on 𝛬𝑝,𝑞𝑇 ∗𝑋 ⊗𝐸 (cf. Chapter VII in [Dem12]). This operator comes from the difference
of two Laplace operators:

Theorem 4.1 (VII-Thm 1.4). The operator 𝛥′𝜏 = [𝐷′+𝜏 , 𝛿′+𝜏∗] is a positive and formally
self-adjoint operator. Moreover

𝛥″ = 𝛥′𝜏 + [𝑖𝛩(𝐸), 𝛬] + 𝑇𝜔
where 𝑇𝜔 is an operator of order 0 depending only on the torsion of 𝜔.
Proof. see [Dem12].

Thus the operator is formally self-adjoint (pointwise?) acting pointwise on𝛬𝑝,𝑞𝑇 ∗𝑋⊗
𝐸. As a corollary, we have the following important inequality

Lemma 4.1 (Bochner-Kodaira-Nakano inequality, VII-2.1). For 𝑢 ∈ 𝒞∞𝑝,𝑞(𝑋 , 𝐸) (com-
pactly supported 𝐸-valued (𝑝, 𝑞)-forms), we have

||𝐷″𝑢||2 + ||𝛿″𝑢||2 ≥ ∫𝑋 ⟨𝐴𝐸,𝜔𝑢, 𝑢⟩𝑑𝑉 (2)

Proof.

⟨⟨𝛥″𝑢, 𝑢⟩⟩ = ∫𝑋 ⟨𝛥
″𝑢, 𝑢⟩𝑑𝑉 = ||𝐷″𝑢||2 + ||𝛿″𝑢||2

⟨⟨𝛥′𝜏𝑢, 𝑢⟩⟩ = ||𝐷′𝑢 + 𝜏𝑢||2 + ||𝛿′𝑢 + 𝜏∗𝑢||2 ≥ 0.

Assume now that 𝐴𝐸,𝜔 is semi-positive on 𝛬𝑝,𝑞𝑇 ∗𝑋 ⊗ 𝐸 (i.e. ⟨𝐴𝐸,𝜔𝑢, 𝑢⟩ ≥ 0 point-
wise). Then by density of 𝒞∞𝑝,𝑞(𝑋 , 𝐸) in Dom𝐷″ ∩Dom 𝛿″, we can find 𝑢𝑗 ∈ 𝒞∞𝑝,𝑞(𝑋 , 𝐸)
such that 𝑢𝑗 → 𝑢, 𝐷″𝑢𝑗 → 𝐷″𝑢, 𝛿″𝑢𝑗 → 𝛿″𝑢 in 𝐿2 norm. Then by taking a subse-
quence, we have 𝑢𝑗 → 𝑢 pointwise almost everywhere. And since 𝐴𝐸,𝜔 act pointwise
on fiber, we have ⟨𝐴𝐸,𝜔𝑢𝑗 , 𝑢𝑗⟩ → ⟨𝐴𝐸,𝜔𝑢, 𝑢⟩ pointwise almost everywhere. Then

∫𝑋 |⟨𝐴𝐸,𝜔𝑢𝑗 , 𝑢𝑗⟩|𝑑𝑉 = ∫𝑋 ⟨𝐴𝐸,𝜔𝑢𝑗 , 𝑢𝑗⟩𝑑𝑉 ≤ ||𝐷″𝑢𝑗 ||2 + ||𝛿″𝑢𝑗 ||2 → ||𝐷″𝑢||2 + ||𝛿″𝑢||2
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and thus by Fatou’s lemma

∫𝑋 ⟨𝐴𝐸,𝜔𝑢, 𝑢⟩𝑑𝑉 = ∫𝑋 lim inf⟨𝐴𝐸,𝜔𝑢𝑗 , 𝑢𝑗⟩𝑑𝑉 ≤ lim inf∫𝑋 ⟨𝐴𝐸,𝜔𝑢𝑗 , 𝑢𝑗⟩𝑑𝑉 ≤ ||𝐷″𝑢||2+||𝛿″𝑢||2.

(i.e. Equation 2 holds for all 𝑢 ∈ Dom𝐷″ ∩ Dom 𝛿″.)
Now given 𝑔 ∈ 𝐿2𝑝,𝑞(𝑋 , 𝐸) such that

𝐷″𝑔 = 0. (3)

In addition to this, we also assume that 𝑔 satisfies condition (★):

1. for almost every 𝑥 ∈ 𝑋 , there exists 𝛼(𝑥) ∈ [0, ∞) such that

|⟨𝑔(𝑥), 𝑢⟩|2 ≤ 𝛼⟨𝐴𝐸,𝜔𝑢, 𝑢⟩
for every 𝑢 ∈ (𝛬𝑝,𝑞𝑇 ∗𝑋 ⊗ 𝐸)𝑥 .
Remark. If the operator 𝐴𝐸,𝜔 is invertible (i.e. positive), the minimal such 𝛼 is
⟨𝐴−1𝐸,𝜔𝑔(𝑥), 𝑔(𝑥)⟩, so we denoted 𝛼 this way even when 𝐴𝐸,𝜔 is not invertible.

Proof. By the Cauchy-Schwarz inequality on ⟨𝑢, 𝑣⟩𝐴 ∶= ⟨𝐴𝑢, 𝑣⟩, we have

|⟨𝑔, 𝑢⟩|2 = |⟨𝐴−1𝑔, 𝑢⟩𝐴|2 ≤ ⟨𝐴−1𝑔, 𝐴−1𝑔⟩𝐴 ⋅ ⟨𝑢, 𝑢⟩𝐴 = ⟨𝐴−1𝑔, 𝑔⟩ ⋅ ⟨𝐴𝑢, 𝑢⟩.

2. Additionally, we assume the global constraint

∫𝑋 ⟨𝐴
−1𝐸,𝜔𝑔, 𝑔⟩ 𝑑𝑉 < +∞.

Then the basic result of 𝐿2 theory can be stated as follows.

Theorem 4.2 (VIII-Thm 4.5). If (𝑋 , 𝜔) is complete and 𝐴𝐸,𝜔 ≥ 0 in bidegree (𝑝, 𝑞), then
for any 𝑔 ∈ 𝐿2𝑝,𝑞(𝑋 , 𝐸) satisfying (★) and 𝐷″𝑔 = 0, there exists 𝑓 ∈ 𝐿2𝑝,𝑞−1(𝑋 , 𝐸) such
that 𝐷″𝑓 = 𝑔 and

||𝑓 ||2 ≤ ∫𝑋 ⟨𝐴
−1𝐸,𝜔𝑔, 𝑔⟩𝑑𝑉 .

Proof. For every 𝑢 ∈ Dom𝐷″ ∩ Dom 𝛿″ we have

|⟨⟨𝑢, 𝑔⟩⟩|2 = |∫𝑋 ⟨𝑢, 𝑔⟩𝑑𝑉 |
2 ≤ (∫𝑋 |⟨𝑢, 𝑔⟩|𝑑𝑉 )

2

≤ (∫𝑋 ⟨𝐴𝐸,𝜔𝑢, 𝑢⟩
1
2 ⟨𝐴−1𝐸,𝜔𝑔, 𝑔⟩

1
2 𝑑𝑉 )

2

≤ ∫𝑋 ⟨𝐴
−1𝐸,𝜔𝑔, 𝑔⟩𝑑𝑉 ⋅ ∫𝑋 ⟨𝐴𝐸,𝜔𝑢, 𝑢⟩𝑑𝑉
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by the definition of ⟨𝐴−1𝐸,𝜔𝑔, 𝑔⟩ and the Cauchy-Schwarz inequality. Then Equation 2
implies

|⟨⟨𝑢, 𝑔⟩⟩|2 ≤ 𝐶(||𝐷″𝑢||2 + ||𝛿″𝑢||2), ∀𝑢 ∈ Dom𝐷″ ∩ Dom 𝛿″

where 𝐶 is the integral ∫𝑋 ⟨𝐴
−1𝐸,𝜔𝑔, 𝑔⟩ 𝑑𝑉 . We now repeat the proof of Thm 1.2: For any

𝑢 ∈ Dom 𝛿″1, let us write

𝑢 = 𝑢1 + 𝑢2, 𝑢1 ∈ Ker𝐷″, 𝑢2 ∈ (Ker𝐷″)⟂ = Im 𝛿″.
Then 𝐷″𝑢1 = 0 and 𝛿″𝑢2 = 0 (Since 𝛿″𝑢2 = 0 ⟺ ⟨⟨𝑢2, 𝐷″ℎ⟩⟩ = 0, ∀ℎ ∈ 𝒞∞). Since
𝑔 ∈ Ker𝐷″, we get

|⟨⟨𝑢, 𝑔⟩⟩|2 = |⟨⟨𝑢1, 𝑔⟩⟩|2 ≤ 𝐶||𝛿″𝑢1||2 = 𝐶||𝛿″𝑢||2.
The Hahn-Banach theorem shows that the bounded linear functional defined on Im 𝛿″

𝛿″𝑢 ↦ ⟨⟨𝑢, 𝑔⟩⟩

can be extended to a linear functional 𝑣 ↦ ⟨⟨𝑣 , 𝑓 ⟩⟩, 𝑓 ∈ 𝐿2𝑝,𝑞−1, of norm ||𝑓 || ≤ 𝐶 1
2 . This

means that
⟨⟨𝑢, 𝑔⟩⟩ = ⟨⟨𝛿″𝑢, 𝑓 ⟩⟩, ∀𝑢 ∈ Dom 𝛿″,

i.e. that𝐷″𝑓 = 𝑔 (as we define𝐷″ in distribution sense, or by 𝛿″∗ = 𝐷″). The theorem
is proved.

Remark. We can always find a solution 𝑓 ∈ (Ker𝐷″)⟂ by taking the orthogonal pro-
jection to (Ker𝐷″)⟂. Then this solution is clearly unique and is precisely the one with
minimal 𝐿2 norm of equation 𝐷″𝑓 = 𝑔. We thus have

⟨⟨𝛥″𝑓 , ℎ⟩⟩ = ⟨⟨𝑓 , 𝛿″𝐷″ℎ⟩⟩ + ⟨⟨𝑓 , 𝐷″𝛿″ℎ⟩⟩ = ⟨⟨𝑓 , 𝛿″𝐷″ℎ⟩⟩
= ⟨⟨𝐷″𝑓 , 𝐷″ℎ⟩⟩ = ⟨⟨𝑔, 𝐷″ℎ⟩⟩ = ⟨⟨𝛿″𝑔, ℎ⟩⟩

for all ℎ ∈ 𝒞∞𝑝,𝑞−1(𝑋 , 𝐸) and consequently 𝛥″𝑓 = 𝛿″𝑔 in distribution sense. Hence if
𝑔 ∈ 𝐶∞𝑝,𝑞(𝑋 , 𝐸), the ellipticity of 𝛥″ shows that 𝑓 ∈ 𝐶∞𝑝,𝑞−1(𝑋 , 𝐸).

5 Estimates on weakly pseudoconvex manifolds
We now introduce a large class of complex manifolds such that the 𝐿2 estimates will
still be easily tractable.

1we don’t need 𝑢 ∈ Dom𝐷″ ∩ Dom 𝛿″ since we only aply the estimate on 𝑢1 ∈ Ker𝐷″ ∩ Dom 𝛿″
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Definition 5.1. A complexmanifolds𝑋 is said to beweakly pseudoconvex if there exists
a plurisubharmonic exhaustion function 𝜓 ∈ 𝐶∞(𝑋 , ℝ). That is 𝑖𝜕𝜕𝜓 ≥ 0 on 𝑋 , and
∀𝑐 ∈ ℝ, the subset 𝑋𝑐 = {𝑥 ∈ 𝑋 ; 𝜓 (𝑥) < 𝑐} is relatively compact in 𝑋 .

Examples

Theorem 5.1 (VIII-Thm 5.2). Every weakly pseudoconvex Kähler manifold (𝑋 , 𝜔) carries
a complete Kähler metric 𝜔̂.
Proof. Let 𝜓 ∈ 𝐶∞(𝑋 , ℝ) be the plurisubharmonic exhaustive function on 𝑋 . As 𝜓 is
exhaustive, we have {𝜓 < 0} is relative compact. Thus inf 𝜓 > −∞ and we may assume
𝜓 ≥ 0 by adding a constant to it. Then 𝜔̂ = 𝜔 + 𝑖𝜕𝜕(𝜓 2) is Kähler and

𝜔̂ = 𝜔 + 2𝑖𝜓𝜕𝜕𝜓 + 2𝑖𝜕𝜓 ∧ 𝜕𝜓 ≥ 𝜔 + 2𝑖𝜕𝜓 ∧ 𝜕𝜓 > 0.
We have |𝑑𝜓 |𝜔̂ = |𝜕𝜓 + 𝜕𝜓 |𝜔̂ ≤ 2|𝜕𝜓 |𝜔̂ ≤ √2. Then by Lem 2.4 we have 𝜔̂ is complete
(|𝑑𝜓 |𝜔̂ bounded is enough).

More generally, we can set 𝜔̂ = 𝜔 + 𝑖𝜕𝜕(𝜒 ∘ 𝜓 ) where 𝜒 is a convex increasing
function (so 𝜒 ′ > 0, 𝜒″ > 0). Then

𝜔̂ = 𝜔 + 𝑖(𝜒 ′ ∘ 𝜓 )𝜕𝜕𝜓 + 𝑖(𝜒″ ∘ 𝜓 )𝜕𝜓 ∧ 𝜕𝜓
≥ 𝜔 + 𝑖√𝜒″(𝜓 )𝜕𝜓 ∧ √𝜒″(𝜓 )𝜕𝜓 = 𝜔 + 𝑖𝜕(𝜌 ∘ 𝜓 ) ∧ 𝜕(𝜌 ∘ 𝜓 ) ∶= 𝜔′,

where 𝜌(𝑡) = ∫
𝑡

0 √𝜒
″(𝑢) 𝑑𝑢. Then we have |𝜕(𝜌 ∘ 𝜓 )|𝜔̂ ≤ |𝜕(𝜌 ∘ 𝜓 )|𝜔′ ≤ 1 since we can

choose coorinates such that 𝜔𝑖 ̄𝑗 = 𝛿𝑖𝑗 at 𝑥0, then for real function 𝑓 ,

|𝜕𝑓 |2𝛿𝑖𝑗+𝑓𝑖𝑓𝑗 = ̄𝑓𝑖(𝛿𝑖𝑗 + 𝑓𝑖 ̄𝑓𝑗)−1𝑓𝑗 = ̄𝑓𝑖(𝛿𝑖𝑗 −
𝑓𝑖 ̄𝑓𝑗

1 + ∑𝑖 |𝑓𝑖|2
)𝑓𝑗

= ∑
𝑖
|𝑓𝑖|2 −

(∑𝑖 |𝑓𝑖|2)2
1 + ∑𝑖 |𝑓𝑖|2

= ∑𝑖 |𝑓𝑖|2
1 + ∑𝑖 |𝑓𝑖|2

< 1.

we can regard this as adding the direction of 𝑑𝜓 to the metric to control |𝑑𝜓 |.
And for 𝜌 ∘ 𝜓 to remain exhaustive we need

lim𝑡→∞∫
𝑡

0 √𝜒
″(𝑢)𝑑𝑢 = +∞

so that there does not exist 𝑐 < ∞ such that {𝜌 < 𝑐} = {𝜓 < ∞} = 𝑋 may not be
relatively compact. We can take for example 𝜒(𝑡) = 𝑡2 or 𝜒(𝑡) = 𝑡 − log 𝑡 for 𝑡 ≥ 1.

Then many vanish theorems can now be generalized to weakly pseudoconvex do-
main and reduced to finding suitable Kähler metric on 𝑋 and hermitian metric on 𝐸
such that the conditions for Theorem 4.2 are satisfied.

see [Dem12] VIII-5
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6 Hormander’s 𝐿2 estimates for non complete Kählermet-
rics

In this section, we generalize the previous results to estimates in non complete Kähler
metric, for example the standard metric on a bounded domain 𝛺 ⊂ ℂ𝑛. The idea is to
approximate the given metric by complete Kähler metrics.

Theorem 6.1 (VIII-6.1). Let (𝑋 , 𝜔̂) be a complete Kähler manifold, 𝜔 another Kähler
metric, and 𝐸 → 𝑋 a 𝑚-positive 2 bundle. Let 𝑔 ∈ 𝐿2𝑛,𝑞(𝑋 , 𝐸) with 𝐷″𝑔 = 0 and

∫𝑋 ⟨𝐴
−1𝑞 𝑔, 𝑔⟩𝑑𝑉 < +∞ (★)

with respect to 𝜔, with 𝐴𝑞 = [𝑖𝛩(𝐸), 𝛬] in bidegree (𝑛, 𝑞) and 𝑞 ≥ 1, 𝑚 ≥ min{𝑛 − 𝑞 + 1, 𝑟}
(We have 𝐴𝑞 is positive definite by VII-Lem 7.2). Then there exist 𝑓 ∈ 𝐿2𝑛,𝑞−1(𝑋 , 𝐸) such
that 𝐷″𝑓 = 𝑔 and

||𝑓 ||2 ≤ ∫𝑋 ⟨𝐴
−1𝑞 𝑔, 𝑔⟩𝑑𝑉 .

Proof. First note that by Hopf-Rinow, we have a metric 𝑔 is complete iff every closed
geodesic ball 𝐵𝑔(𝑟) is compact. Then for every 𝜀 > 0, the Kähler metric 𝜔𝜀 = 𝜔 + 𝜀𝜔̂
is complete. (Since 𝐵𝜀𝜔̂(𝑟) = 𝐵𝜔̂(𝜀𝑟), and for 𝑔 ≥ ℎ we have 𝑑𝑔(𝑥, 𝑦) ≥ 𝑑ℎ(𝑥, 𝑦) and
𝐵𝑔(𝑟) ⊂ 𝐵ℎ(𝑟) which is compact if ℎ is complete.)

Now let us put an index 𝜀 on objects depending on 𝜔𝜀 . It follows from Lemma 6.1
below that

|𝑢|2𝜀 𝑑𝑉𝜀 ≤ |𝑢|2𝑑𝑉 , ⟨𝐴−1𝑞,𝜀𝑢, 𝑢⟩𝜀 𝑑𝑉𝜀 ≤ ⟨𝐴−1𝑞 𝑢, 𝑢⟩𝑑𝑉 . (4)

Then Theorem 4.2 applies to 𝜔𝜀 (as 𝑔 ∈ 𝐿2𝑛,𝑞(𝑋 , 𝐸)𝜀 and (★) holds in 𝜔𝜀 ) yields a solution
𝑓𝜀 ∈ 𝐿2𝑛,𝑞−1(𝑋 , 𝐸)𝜀 such that 𝐷″𝑓𝜀 = 𝑔 in distribution sense with respect to 𝜔𝜀 and

∫𝑋 |𝑓𝜀 |2𝜀 𝑑𝑉𝜀 ≤ ∫𝑋 ⟨𝐴
−1𝑞,𝜀𝑔, 𝑔⟩𝜀𝑑𝑉𝜀 ≤ ∫𝑋 ⟨𝐴

−1𝑞 𝑔, 𝑔⟩𝑑𝑉 .

This means that the family (𝑓𝜀) is bounded in 𝐿2 norm (in 𝜔) on every compact subset
of 𝑋 (as 𝜔𝜀 are quasi isometric to 𝜔 for 𝜀 small on a fixed compact set3). Now fixed a
compact exhaustion 𝑋𝑖, then by the Banach–Alaoglu theorem, there is a weakly con-
vergent subsequence of (𝑓𝜀) in 𝐿2𝑛,𝑞−1(𝑋𝑖, 𝐸). By the diagonal method, we get a subse-
quence weakly converges to 𝑓 ∈ 𝐿2𝑙𝑜𝑐,𝜔 on every 𝑋𝑖. Now for every ℎ ∈ 𝒞∞𝑛,𝑞(𝑋 , 𝐸), said
Supp ℎ ⊂ 𝑋𝑖, we want

⟨⟨𝑓 , 𝛿″ℎ⟩⟩ I←− ⟨⟨𝑓𝜀 , 𝛿″ℎ⟩⟩
II←− ⟨⟨𝑓𝜀 , 𝛿″𝜀 ℎ⟩⟩

III←−− ⟨⟨𝑓𝜀 , 𝛿″𝜀 ℎ⟩⟩𝜀 = ⟨⟨𝑔, ℎ⟩⟩𝜀
IV−−→ ⟨⟨𝑔, ℎ⟩⟩.

2It’s 𝑚-semi-positive in [Dem12], I don’t know whether this is enough for 𝐴𝑞 to be positive definite.
Compare VII-Lem 7.2

3by controlling the biggest eigenvalues of 𝜔̂ with respect to 𝜔 on compact set.
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First, we have I is due to the weak convergence of 𝑓𝜀 → 𝑓 in 𝐿2(𝑋𝑖). Then for II, we
have

⟨⟨𝑓𝜀 , 𝛿″ℎ − 𝛿″𝜀 ℎ⟩⟩ ≤ ||𝑓𝜀 || ⋅ ||𝛿″ℎ − 𝛿″𝜀 ℎ|| ≤ 𝐶||𝑓𝜀 ||𝜀 ⋅ ||𝛿″ℎ − 𝛿″𝜀 ℎ||

≤ 𝐶 (∫𝑋 ⟨𝐴
−1𝑞 𝑔, 𝑔⟩𝑑𝑉 )

1
2 ⋅ ||𝛿″ℎ − 𝛿″𝜀 ℎ||,

and 𝛿″𝜀 ℎ are uniformly bounded on 𝑋𝑖 and converge to 𝛿″ℎ pointwise. Hence by the
Dominated convergence theorem, we get II.

For III,

∫𝑋𝑖
⟨𝑓𝜀 , 𝛿″𝜀 ℎ⟩𝑑𝑉 ∫𝑋𝑖

⟨𝑓𝜀 , 𝛿″𝜀 ℎ⟩𝜀𝑑𝑉𝜀

undone
For IV, we have

⟨𝑔, ℎ⟩𝜀𝑑𝑉𝜀 → ⟨𝑔, ℎ⟩𝑑𝑉
pointwise and

∫𝑋 ⟨𝑔, ℎ⟩𝜀𝑑𝑉𝜀 = ∫𝑋𝑖
⟨𝑔, ℎ⟩𝜀𝑑𝑉𝜀 ≤ ∫𝑋𝑖

|𝑔|𝜀 |ℎ|𝜀𝑑𝑉𝜀 ≤ 𝐶 ∫𝑋𝑖
|𝑔| ⋅ |ℎ|𝑑𝑉 ≤ 𝐶′ ∫𝑋𝑖

𝑑𝑉 ⋅ ∫𝑋𝑖
|𝑔|2𝑑𝑉 .

For the last inequality, we use that |ℎ| is bounded on𝑋𝑖 and Cauchy-Schwarz. Therefore
by DCT again, we have IV.

For the norm of 𝑓 , on every compact set𝑋𝑖, we have by Cauchy-Schwarz inequality

⟨⟨𝑓 , 𝑓 ⟩⟩𝑋𝑖 = lim𝜀→0⟨⟨𝑓𝜀 , 𝑓 ⟩⟩𝑋𝑖 ≤ lim inf ||𝑓𝜀 ||𝑋𝑖 ||𝑓 ||𝑋𝑖 ,

and thus

||𝑓 ||𝑋𝑖 ≤ lim inf𝜀→0 ||𝑓𝜀 ||𝑋𝑖 ≤ lim inf𝜀→0 𝐶𝜀,𝑋𝑖 ||𝑓𝜀 ||𝜀,𝑋𝑖

≤ lim inf𝜀→0 𝐶𝜀,𝑋𝑖 ⋅ (∫𝑋 ⟨𝐴
−1𝑞 𝑔, 𝑔⟩𝑑𝑉 )

1
2 = (∫𝑋 ⟨𝐴

−1𝑞 𝑔, 𝑔⟩𝑑𝑉 )
1
2 .

Where 𝐶𝜀,𝑋𝑖 depend on largest eigenvalues of 𝜔𝜀 with respect to 𝜔 on 𝑋𝑖, and hence
𝐶𝜀,𝑋𝑖 → 1 as 𝜀 → 0. Finally, let 𝑋𝑖 increase to 𝑋 4 and we get

||𝑓 ||2 ≤ ∫𝑋 ⟨𝐴
−1𝑞 𝑔, 𝑔⟩𝑑𝑉 .

4Let 𝑌𝑖 = 𝑋𝑖 −𝑋𝑖−1, then 𝑋 = ⨆𝑌𝑖 and so ∫𝑋 |𝑓 |2𝑑𝑉 = ∑∫𝑌𝑖
|𝑓 |2𝑑𝑉 , with

𝑛
∑
𝑖=1

∫𝑌𝑖
|𝑓 |2𝑑𝑉 ≤ 𝑀 bounded

and increasing, thus ||𝑓 ||2 ≤ 𝑀 .
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Lemma 6.1 (VIII-Lem 6.3). Let 𝜔, 𝛾 be hermitian metrics on 𝑋 such that 𝛾 ≥ 𝜔. Then for
every 𝑢 ∈ 𝛬𝑛,𝑞𝑇 ∗𝑋 ⊗ 𝐸, 𝑞 ≥ 1, we have

|𝑢|2𝛾 𝑑𝑉𝛾 ≤ |𝑢|2𝑑𝑉 , ⟨𝐴−1𝑞,𝛾𝑢, 𝑢⟩𝛾 𝑑𝑉𝛾 ≤ ⟨𝐴−1𝑞 𝑢, 𝑢⟩𝑑𝑉
where an index 𝛾 means the term is computed in terms of 𝛾 instead of 𝜔.
Proof. Locally at 𝑥0 ∈ 𝑋 , there exists a coordinates 5 (𝑧1, … , 𝑧𝑛) such that

𝜔 = 𝑖∑
𝑗
𝑑𝑧𝑗 ∧ 𝑑 ̄𝑧𝑗 , 𝛾 = 𝑖∑

𝑗
𝛾𝑗 𝑑𝑧𝑗 ∧ 𝑑 ̄𝑧𝑗 at 𝑥0,

where 𝛾1 ≤ ⋯ ≤ 𝛾𝑛 are the eigen values with respect to 𝜔. Then 𝛾 ≥ 𝜔 implies 𝛾1 ≥ 1.
We have |𝑑𝑧𝑗 |2𝛾 = 𝛾−1𝑗 and |𝑑𝑧𝐾 |2𝛾 = 𝛾−1𝐾 where 𝛾𝐾 = ∏

𝑘∈𝐾
𝛾𝑘 . Now for any (𝑛, 𝑞) form

𝑢 = ∑𝑢𝐾,𝜆𝑑𝑧1 ∧⋯ ∧ 𝑑𝑧𝑛 ∧ 𝑑 ̄𝑧𝐾 ⊗ 𝑒𝜆, |𝐾 | = 𝑞, {𝑒𝜆}𝑟𝜆=1 is a orthonormal frame of 𝐸. Then
|𝑢|2𝛾 = ∑

𝐾,𝜆
(𝛾1⋯𝛾𝑛)−1𝛾−1𝐾 |𝑢𝐾,𝜆 |2, 𝑑𝑉𝛾 = 𝛾1⋯𝛾𝑛𝑑𝑉 ,

|𝑢|2𝛾 𝑑𝑉𝛾 = ∑
𝐾,𝜆

𝛾−1𝐾 |𝑢𝐾,𝜆 |2𝑑𝑉 ≤ ∑ |𝑢𝐾,𝜆 |2𝑑𝑉 = |𝑢|2𝑑𝑉 ,

𝛬𝛾𝑢 = ∑
|𝐼 |=𝑞−1

∑
𝑗,𝜆

𝑖(−1)𝑛+𝑗−1𝛾−1𝑗 𝑢𝑗𝐼 ,𝜆(𝑑𝑧𝑗) ∧ 𝑑 ̄𝑧𝐼 ⊗ 𝑒𝜆,

where (𝑑𝑧𝑗) = 𝑑𝑧1 ∧⋯ ∧ 𝑑𝑧𝑗 ∧⋯ ∧ 𝑑𝑧𝑛. And thus for 𝑖𝛩(𝐸) = 𝑖∑𝑐𝜇𝑗𝑘̄𝜆𝑑𝑧𝑗 ∧ 𝑑 ̄𝑧𝑘 ⊗ 𝑒∗𝜆 ⊗ 𝑒𝜇 ,
since 𝑢 is (𝑛, 𝑞)-form,

𝐴𝑞,𝛾𝑢 = [𝑖𝛩(𝐸), 𝛬𝛾 ]𝑢 = 𝑖𝛩(𝐸) ∧ (𝛬𝛾𝑢)
= ∑

|𝐼 |=𝑞−1
𝑖2∑

𝑗,𝜆
𝑐𝜇𝑗𝑘̄𝜆𝑑𝑧𝑗 ∧ 𝑑 ̄𝑧𝑘 ∧ ((−1)𝑛+𝑗−1𝛾−1𝑗 𝑢𝑗𝐼 ,𝜆𝑑𝑧𝑗 ∧ 𝑑 ̄𝑧𝐼 ) ⊗ 𝑒𝜇

= ∑
|𝐼 |=𝑞−1

∑
𝑗,𝜆

𝛾−1𝑗 𝑐𝜇𝑗𝑘̄𝜆𝑢𝑗𝐼 ,𝜆(−1)𝑛+𝑗𝑑𝑧𝑗 ∧ 𝑑𝑧𝑗 ∧ 𝑑 ̄𝑧𝑘 ∧ 𝑑 ̄𝑧𝐼 ⊗ 𝑒𝜇

= ∑
|𝐼 |=𝑞−1

∑
𝑗,𝜆

𝛾−1𝑗 𝑐𝜇𝑗𝑘̄𝜆𝑢𝑗𝐼 ,𝜆𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛 ∧ 𝑑 ̄𝑧𝑘𝐼 ⊗ 𝑒𝜇 ,

⟨𝐴𝑞,𝛾𝑢, 𝑢⟩𝛾 = (𝛾1⋯𝛾𝑛)−1 ∑
|𝐼 |=𝑞−1

𝛾−1𝐼 ∑
𝑗,𝑘,𝜆,𝜇

𝛾−1𝑗 𝛾−1𝑘 𝑐𝜇𝑗𝑘̄𝜆𝑢𝑗𝐼 ,𝜆 ̄𝑢𝑘𝐼 ,𝜇

≥ (𝛾1⋯𝛾𝑛)−1 ∑
|𝐼 |=𝑞−1

𝛾−2𝐼 ∑
𝑗,𝑘,𝜆,𝜇

𝛾−1𝑗 𝛾−1𝑘 𝑐𝜇𝑗𝑘̄𝜆𝑢𝑗𝐼 ,𝜆 ̄𝑢𝑘𝐼 ,𝜇

= 𝛾1⋯𝛾𝑛⟨𝐴𝑞𝑆𝛾𝑢, 𝑆𝛾𝑢⟩
5We can first use linear coordinate change to let 𝜔𝑖𝑗 = 𝛿𝑖𝑗 , then use unitary diagonalization to diago-

nalize 𝛾 and preserve 𝜔 = 𝛿𝑖𝑗 .
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where
𝑆𝛾𝑢 = ∑

𝐾
(𝛾1⋯𝛾𝑛)−1𝛾−1𝐾 𝑢𝐾,𝜆𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛 ∧ 𝑑 ̄𝑧𝐾 ⊗ 𝑒𝜆.

Therefore we get

|⟨𝑢, 𝑣⟩𝛾 |2 = |⟨𝑢, 𝑆𝛾 𝑣⟩|2 = |⟨𝐴−1𝑞 𝑢, 𝑆𝛾 𝑣⟩𝐴𝑞 |2 ≤ ⟨𝐴−1𝑞 𝑢, 𝐴−1𝑞 𝑢⟩𝐴𝑞 ⋅ ⟨𝑆𝛾 𝑣 , 𝑆𝛾 𝑣⟩𝐴𝑞
= ⟨𝐴−1𝑞 𝑢, 𝑢⟩⟨𝐴𝑞𝑆𝛾 𝑣 , 𝑆𝛾 𝑣⟩
≤ (𝛾1⋯𝛾𝑛)−1⟨𝐴−1𝑞 𝑢, 𝑢⟩⟨𝐴𝑞,𝛾 𝑣 , 𝑣⟩𝛾 ,

and let 𝑣 = 𝐴−1𝑞,𝛾𝑢 we get

⟨𝐴−1𝑞,𝛾𝑢, 𝑢⟩𝛾 ≤ (𝛾1⋯𝛾𝑛)−1⟨𝐴−1𝑞 𝑢, 𝑢⟩, ⟨𝐴−1𝑞,𝛾𝑢, 𝑢⟩𝛾 𝑑𝑉𝛾 ≤ ⟨𝐴−1𝑞 𝑢, 𝑢⟩𝑑𝑉 .

We are now interested in the case where 𝐸 is a line bundle, then 𝑖𝛩(𝐸) is a closed
real valued (1, 1)-form. In general, for a real (1, 1)-form 𝛾 ∈ 𝛬1,1𝑇 ∗𝑋 . There exist
𝜔-orthogonal basis (𝜁1, … , 𝜁𝑛) in 𝑇 1,0𝑋 which diagonalizes both 𝜔 and 𝛾 :

𝜔 = 𝑖
𝑛
∑
𝑗=1

𝜁 ∗𝑗 ∧ 𝜁 ∗𝑗 , 𝛾 = 𝑖
𝑛
∑
𝑗=1

𝛾𝑗𝜁 ∗𝑗 ∧ 𝜁 ∗𝑗 , 𝛾𝑗 ∈ ℝ.

Proposition 6.1 (VI-Porp 5.8). For every form 𝑢 = ∑𝑢𝐽 ,𝐾 𝜁 ∗𝐽 ∧ 𝜁 ∗𝐾 6, one has

[𝛾 , 𝛬]𝑢 = ∑
𝐽 ,𝐾

(∑
𝑗∈𝐽

𝛾𝑗 + ∑
𝑘∈𝐾

𝛾𝑘 −
𝑛
∑
𝑗=1

𝛾𝑗)𝑢𝐽 ,𝐾 𝜁 ∗𝐽 ∧ 𝜁 ∗𝐾 .

Proof. For (𝑝, 𝑞)-form 𝑢, we have

𝛬𝑢 = 𝑖(−1)𝑝 ∑
𝐽 ,𝐾 ,𝑙

𝑢𝐽 ,𝐾 (𝜁𝑙 ⌟ 𝜁 ∗𝐽 ) ∧ ( ̄𝜁𝑙 ⌟ ̄𝜁 ∗𝐾 ).

𝛾 ∧ 𝑢 = 𝑖(−1)𝑝 ∑
𝐽 ,𝐾 ,𝑚

𝛾𝑚𝑢𝐽 ,𝐾 𝜁 ∗𝑚 ∧ 𝜁 ∗𝐽 ∧ ̄𝜁 ∗𝑚 ∧ ̄𝜁 ∗𝐾 ,

[𝛾 , 𝛬]𝑢 = ∑
𝐽 ,𝐾 ,𝑙,𝑚

𝛾𝑚𝑢𝐽 ,𝐾 (𝜁 ∗𝑙 ∧ (𝜁𝑚 ⌟ 𝜁 ∗𝐽 ) ∧ ̄𝜁 ∗𝑙 ∧ ( ̄𝜁𝑚 ⌟ ̄𝜁 ∗𝐾 ) − (𝜁𝑚 ⌟ (𝜁 ∗𝑙 ∧ 𝜁𝐽 ) ∧ ̄𝜁𝑚 ⌟ ( ̄𝜁 ∗𝑙 ∧ ̄𝜁𝐾 )))

= ∑
𝐽 ,𝐾

(∑
𝑗∈𝐽

𝛾𝑗 + ∑
𝑘∈𝐾

𝛾𝑘 −
𝑛
∑
𝑗=1

𝛾𝑗)𝑢𝐽 ,𝐾 𝜁 ∗𝐽 ∧ 𝜁 ∗𝐾 .

6𝐽 = (𝑗1, … , 𝑗𝑝) is a multi-index with 𝑗1 < ⋯ < 𝑗𝑝 .
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With this we can apply Theorem 6.1 to an important special case of semi-positive
line bundle 𝐸. If we let 0 ≤ 𝜆1(𝑥) ≤ ⋯ ≤ 𝜆𝑛(𝑥) be the eigenvalues of 𝑖𝛩(𝐸)𝑥 with
respect to 𝜔𝑥 for all 𝑥 ∈ 𝑋 , then Proposition 6.1 implies for (𝑛, 𝑞)-form 𝑢

⟨𝐴𝑞𝑢, 𝑢⟩ ≥ (𝜆1 + ⋯ + 𝜆𝑞)|𝑢|2,
and thus

⟨𝑔, 𝑢⟩ ≤ |𝑔|2 ⋅ |𝑢|2 ≤ 1
𝜆1 + ⋯ + 𝜆𝑞

|𝑔|2⟨𝐴𝑞𝑢, 𝑢⟩.

By previous remark 1, we have

⟨𝐴−1𝑞 𝑔, 𝑔⟩ ≤ 1
𝜆1 + ⋯ + 𝜆𝑞

|𝑔|2 ⟹ ∫𝑋 ⟨𝐴
−1𝑞 𝑔, 𝑔⟩𝑑𝑉 ≤ ∫𝑋

1
𝜆1 + ⋯ + 𝜆𝑞

|𝑔|2𝑑𝑉 .

For example, we can apply this to the case when 𝐸 is the trivial line bundle 𝑋 × ℂ
with metric given by a weight 𝑒−𝜑 . One can assume that 𝜑 is plurisubharmonic and
𝑖𝜕𝜕𝜑 has at least 𝑛 − 𝑞 + 1 positive eigenvalues at every point, i.e. 𝜆𝑞 > 0 on 𝑋 . This
leads to the 𝐿2 estimates originally given by [Hör65]. We state here a slightly more
general result.

Theorem 6.2 (VIII-Thm 6.5). Let (𝑋 , 𝜔) be a weakly pseudoconvex Kähler manifold, 𝐸
a hermitian line bundle on 𝑋 , 𝜑 ∈ 𝐶∞(𝑋 , ℝ) a weight function such that the eigenvalues
𝜆1 ≤ ⋯ ≤ 𝜆𝑛 of 𝑖𝛩(𝐸) + 𝑖𝜕𝜕𝜑 are ≥ 0. Then for every form 𝑔, of type (𝑛, 𝑞), 𝑞 ≥ 1, with
𝐿2𝑙𝑜𝑐 (resp. 𝐶∞) coefficients such that 𝐷″𝑔 = 0 and

∫𝑋
1

𝜆1 + ⋯ + 𝜆𝑞
|𝑔|2𝑒−𝜑𝑑𝑉 < +∞,

we can find a 𝐿2𝑙𝑜𝑐 (resp. 𝐶∞) form of type (𝑛, 𝑞 − 1) such that 𝐷″𝑓 = 𝑔 and

∫𝑋 |𝑓 |2𝑒−𝜑𝑑𝑉 ≤ ∫𝑋
1

𝜆1 + ⋯ + 𝜆𝑞
|𝑔|2𝑒−𝜑𝑑𝑉 .

Proof. We apply the general result on 𝐸𝜑 (𝐸 with metric twisted by 𝑒−𝜑), then 𝑖𝛩(𝐸𝜑) =
−𝑖𝜕𝜕 log(𝑒−𝜑ℎ) = 𝑖𝛩(𝐸) + 𝑖𝜕𝜕𝜑. We can exhaust 𝑋 by relatively compact weakly pseu-
doconvex domains

𝑋𝑐 = {𝑥 ∈ 𝑋 |𝜓 (𝑥) < 𝑐}
where 𝜓 ∈ 𝐶∞(𝑋 , ℝ) is a plurisubharmonic exhaustion function. Then − log(𝑐 − 𝜓) is
a psh. exhaustion function on 𝑋𝑐 , and since

∫𝑋 ⟨𝐴𝑞,𝐸𝜑𝑔, 𝑔⟩𝜑𝑑𝑉 ≤ ∫𝑋
1

𝜆1 + ⋯ + 𝜆𝑞
|𝑔|2𝜑𝑑𝑉 = ∫𝑋

1
𝜆1 + ⋯ + 𝜆𝑞

|𝑔|2𝐸𝑒−𝜑𝑑𝑉 < +∞.
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By Theorem 6.1, we get solution 𝑓𝑐 on 𝑋𝑐 with

∫𝑋𝑐
|𝑓𝑐 |2𝑒−𝜑𝑑𝑉 ≤ ∫𝑋

1
𝜆1 + ⋯ + 𝜆𝑞

|𝑔|2𝑒−𝜑𝑑𝑉 .

As before, by the Banach-Alaoglu theorem and diagonal method, we get a subsequence
that weakly converges to 𝑓 ∈ 𝐿2𝑙𝑜𝑐 on every 𝑋𝑐 . Then clearly 𝐷″𝑓 = 𝑔 in distribution
sense, and again we have

∫𝐾 |𝑓 |2𝑒−𝜑𝑑𝑉 ≤ lim inf∫𝐾 |𝑓𝑐 |2𝑒−𝜑𝑑𝑉 ≤ ∫𝑋
1

𝜆1 + ⋯ + 𝜆𝑞
|𝑔|2𝑒−𝜑𝑑𝑉 ,

for 𝐾 a compact subset of 𝑋 . Let 𝐾 increase to 𝑋 , and we get the estimates we want.

If we need estimates for (𝑝, 𝑞)-forms instead of (𝑛, 𝑞)-forms, we can use the iso-
morphism 𝛬𝑝𝑇 ∗1,0𝑋 ≃ 𝛬𝑛−𝑝𝑇 1,0𝑋 ⊗ 𝛬𝑛𝑇 ∗1,0𝑋 obtained by contraction of n-forms with (n-
p)-vectors to get

𝛬𝑝,𝑞𝑇 ∗𝑋 ⊗ 𝐸 ≃ 𝛬𝑛,𝑞𝑇 ∗𝑋 ⊗ (𝛬𝑛−𝑝𝑇 1,0𝑋 ⊗ 𝐸).
In case of 𝑝 = 0, we have

Definition 6.1. Ric𝜔 = 𝑖𝛩(𝛬𝑛𝑇 1,0𝑋 ) = 𝑖Tr𝛩(𝑇 1,0𝑋 ).
For any local coordinates (𝑧1, … , 𝑧𝑛), the holomorphic 𝑛-form 𝑑𝑧1∧⋯∧𝑑𝑧𝑛 is a local

section of 𝛬𝑛𝑇 ∗1,0𝑋 , hence we have

Ric𝜔 = 𝑖𝛩(𝛬𝑛𝑇𝑋) = 𝑖𝜕𝜕 log |𝑑𝑧1 ∧ ⋯ ∧ 𝑑𝑧𝑛|2𝜔 = −𝑖𝜕𝜕 log det𝜔𝑗𝑘̄
Then Theorem 6.2 can be apply to (0, 𝑞)-form 𝑔, with condition on eigenvalues of

𝑖𝛩(𝐸) + Ric𝜔 + 𝑖𝜕𝜕𝜑
in the place of 𝑖𝛩(𝐸𝜑).

7 Extension of holomorphic functions from subvarieties

With the capability of solving 𝜕-equation, we can now try to extend holomorphic sec-
tion defined on (a neighborhood of) subvariety. Suppose 𝑓 is a section of line bundle
𝐿 defined on a neighborhood 𝑈 of subvariety 𝑌 of 𝑋 , the idea is to first multiply by
a bump function to get a global section 𝜓𝑓 on 𝑋 , then consider 𝑔 = 𝜕(𝜓𝑓 ) satisfying
𝜕𝑔 = 0. If we can find 𝑢 such that 𝜕𝑢 = 𝑔 = 𝜕(𝜓𝑓 ) and 𝑢|𝑌 = 0, then 𝐹 = 𝜓𝑓 − 𝑢 satisfy
𝜕𝐹 = 0 and 𝐹 |𝑌 = 𝑓 |𝑌 is the holomorphic extension we want.
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Now the difficulty lies in how to ensure 𝑢|𝑌 = 0 and to find a suitable weight
function 𝜑 such that we can apply the 𝐿2 estimates on 𝑖𝛩(𝐿𝜑) (for example we need
𝑖𝛩(𝐿𝜑) ≥ 0 and some control on the 𝐿2 norm of |𝑔|2𝑒−𝜑 , see Theorem 6.2). A method is
to use a non integrable weight on 𝑌 like 𝑒−𝜑 = |𝑑(𝑥, 𝑌 )|−2𝑝 , where 𝑑(𝑥, 𝑌 ) is the distance
to 𝑌 and 𝑝 is the codimension of 𝑌 . Then the estimates from Theorem 6.2 will gives

∫𝑋 |𝑢|2𝑒−𝜑𝑑𝑉 < ∞,

which will make sure 𝑢|𝑌 = 0.
Suppose now 𝑌 = 𝜎−1(0), where 𝜎 is a holomorphic section of a hermitian vector

bundle 𝐸, we may replace 𝑑(𝑥, 𝑌 ) by 𝜎(𝑥) in above discussion. That is, consider the
weight 𝜑 = 𝑝 log |𝜎 |2, which will contribute 𝑖𝑝𝜕𝜕 log |𝜎 |2 in the curvature. To calculate
it, we define for 𝑠 = 𝜎𝜆 ⊗ 𝑒𝜆 ∈ 𝛬𝑝𝑇 ∗𝑋 ⊗ 𝐸, 𝑡 = 𝜏𝜇 ⊗ 𝑒𝜇 ∈ 𝛬𝑞𝑇 ∗𝑋 ⊗ 𝐸,

{𝑠, 𝑡} ∶= 𝜎𝜆 ∧ 𝜏𝜇 ⊗ ⟨𝑒𝜆, 𝑒𝜇⟩ ∈ 𝛬𝑝+𝑞 ⊗ 𝐸
and we have 𝑑{𝑠, 𝑡} = {𝐷𝑠, 𝑡} + (−1)𝑝{𝑠, 𝐷𝑡} since Chern connection is compatible with
metric. (see V-7.2 in [Dem12]). Then

𝜕|𝜎 |2 = 𝜋1,0(𝑑|𝜎 |2) = 𝜋1,0({𝐷𝜎, 𝜎} + {𝜎 , 𝐷𝜎})
= {𝐷1,0𝜎, 𝜎} + {𝜎 , 𝐷0,1𝜎} = {𝐷1,0𝜎, 𝜎}

as 𝐷0,1 = 𝜕 and 𝜎 is holomorphic. Therefore 𝜕 log |𝜎 |2 = 𝜕|𝜎 |2
|𝜎 |2 = {𝐷1,0𝜎, 𝜎}

|𝜎 |2 and also

𝐷0,1𝐷1,0𝜎 = 𝐷2𝜎 = 𝛩(𝐸)𝜎 . Then

𝑖𝜕𝜕 log |𝜎 |2 = −𝑖𝜕𝜕 log |𝜎 |2 = −𝑖𝜕 ({𝐷
1,0𝜎, 𝜎}
|𝜎 |2 )

= −𝑖−{𝜎, 𝐷
1,0𝜎} ∧ {𝐷1,0𝜎, 𝜎}

|𝜎 |4 − 𝑖{𝐷
0,1𝐷1,0𝜎, 𝜎}

|𝜎 |4 + 𝑖{𝐷
1,0𝜎, 𝐷1,0𝜎}

|𝜎 |2

= 𝑖{𝐷
1,0𝜎, 𝐷1,0𝜎}

|𝜎 |2 − 𝑖{𝐷
1,0𝜎, 𝜎} ∧ {𝜎 , 𝐷1,0𝜎}

|𝜎 |4 − {𝑖𝛩(𝐸)𝜎 , 𝜎}
|𝜎 |4 (5)

And we have

𝑖 {𝐷
1,0𝜎, 𝐷1,0𝜎}

|𝜎 |2 − 𝑖{𝐷
1,0𝜎, 𝜎} ∧ {𝜎 , 𝐷1,0𝜎}

|𝜎 |4 ≥ 0, (6)

as
|𝜎 |2|𝜉 ⌟ 𝐷1,0𝜎|2 − |⟨𝜉 ⌟ 𝐷1,0𝜎, 𝜎⟩𝐸 |2 ≥ 0, ∀𝜉 ∈ 𝑇 1,0𝑋

by the Cauchy-Schwarz inequality.

14



Similarly,

𝑖𝜕𝜕 log(1 + |𝜎 |2) = 𝑖(1 + |𝜎 |2){𝐷1,0𝜎, 𝐷1,0𝜎} − 𝑖{𝐷1,0𝜎, 𝜎} ∧ {𝜎 , 𝐷1,0𝜎}
(1 + |𝜎 |2)2 − {𝑖𝛩(𝐸)𝜎 , 𝜎}

1 + |𝜎 |2

≥ 𝑖{𝐷1,0𝜎, 𝐷1,0𝜎}
(1 + |𝜎 |2)2 − {𝑖𝛩(𝐸)𝜎 , 𝜎}

1 + |𝜎 |2 . (7)

This turns out will be the what we use to control the contribution of bump function
in curvature. Now since the weight is singular along 𝑌 , we actually want to apply the
theorem to 𝑋\𝑌 , then we need to know whether 𝑋\𝑌 has a complete metric.

Lemma 7.1 (VIII-Lem 7.2). Let (𝑋 , 𝜔) be a Kähler manifold, and 𝑌 = 𝜎−1(0) an analytic
subset defined by a section of a hermitian vector bundle 𝐸. If 𝑋 is weakly pseudoconvex
and exhausted by 𝑋𝑐 = {𝜓 < 𝑐}, then 𝑋𝑐\𝑌 has a complete Kähler metric for all 𝑐 ∈ ℝ.
Proof. We need to take care of two parts, when we approach 𝑌 and when we near 𝜕𝑋𝑐 .
undone

We can now prove the following,

Theorem 7.1 (VIII-Thm 7.1). Let (𝑋 , 𝜔) be a weakly pseudoconvex Kähler manifold, 𝐿 a
hermitian line bundle and 𝐸 a hermitian vector bundle over 𝑋 . Let 𝑌 = 𝜎−1(0) for some
section 𝜎 of 𝐸, and 𝑝 the maximal codimension of the irreducible components of 𝑌 . Let
𝑓 be a holomorphic section of 𝐾𝑋 ⊗ 𝐸 defined in the open set 𝑌 ⊂ 𝑈 = {|𝜎 | < 1}. If

∫𝑈 |𝑓 |2𝑑𝑉 < +∞ and if the curvature form of 𝐿 satisfies

𝑖𝛩(𝐿) ≥ ( 𝑝
|𝜎 |2 + 𝜀

1 + |𝜎 |2) {𝑖𝛩(𝐸)𝜎 , 𝜎}

for some 𝜀 > 0. Then there is a section 𝐹 ∈ 𝐻 0(𝑋 , 𝐾𝑋 ⊗ 𝐿) such that 𝐹𝑌 = 𝑓 |𝑌 and

∫𝑋
|𝐹 |2

(1 + |𝜎 |2)𝑝+𝜀 𝑑𝑉 ≤ (1 + 𝑝 + 1
𝜀 )∫𝑈 |𝑓 |2𝑑𝑉 .

Proof. Let ℎ be the continuous section of 𝐿 defined by ℎ = (1− |𝜎 |𝑝+1)𝑓 on 𝑈 and ℎ = 0
on 𝑋\𝑈 . 7 We have ℎ|𝑌 = 𝑓 |𝑌 and since 𝑓 is holomorphic, the nontrivial term in 𝜕ℎ
only comes from the bump function. Therefore

𝜕ℎ = −𝑝 + 1
2 |𝜎 |𝑝−1{𝜎 , 𝐷1,0𝜎} ⊗ 𝑓 on 𝑈 , 𝜕ℎ = 0 on 𝑋\𝑈 .

7We may replace 𝜎 by (1 + 𝜂)𝜎 to assume 𝑓 is defined in a neighborhood of 𝑈 , then let 𝜂 → 0. So
that 𝑓 is bounded and (1 − |𝜎 |𝑝+1)𝑓 will tend to 0 when approaching 𝜕𝑈 . undone
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We consider 𝑔 = 𝜕ℎ as a (𝑛, 1)-form with values in 𝐿. And we twist the metric by
weight 𝑒−𝜑 given by

𝜑 = 𝑝 log |𝜎 |2 + 𝜀 log(1 + |𝜎 |2).
Note that 𝜑 is singular along 𝑌 . The above calculation and the condition on curvature
of 𝐿 imply that

𝑖𝛩(𝐿𝜑) = 𝑖𝛩(𝐿) + 𝑝𝑖𝜕𝜕 log |𝜎 |2 + 𝜀𝑖𝜕𝜕 log(1 + |𝜎 |2)

≥ 𝑖𝛩(𝐿) − ( 𝑝
|𝜎 |2 + 𝜀

1 + |𝜎 |2) {𝑖𝛩(𝐸)𝜎 , 𝜎} + 𝜀 𝑖{𝐷
1,0𝜎, 𝐷1,0𝜎}
(1 + |𝜎 |2)

≥ 𝜀 𝑖{𝐷
1,0𝜎, 𝐷1,0𝜎}
(1 + |𝜎 |2) ≥ 𝑖𝜀 {𝐷

1,0𝜎, 𝜎} ∧ {𝜎 , 𝐷1,0𝜎}
|𝜎 |2 (1 + |𝜎 |2)2 ≥ 0. (8)

Set 𝜕(1 − |𝜎 |𝑝+1) = 𝜉 = −𝑝 + 1
2 |𝜎 |𝑝−1{𝐷1,0𝜎, 𝜎} = ∑𝜉𝑗𝑑𝑧𝑗 8 in a 𝜔−orthonomal basis

𝜕
𝜕𝑧𝑗 at 𝑥0, and let ̂𝜉 = ∑𝜉𝑗 𝜕

𝜕 ̄𝑧𝑗 br the dual (0, 1)−vector field (same coefficients since

𝜕
𝜕𝑧𝑗 orthonormal). Then for every 𝐿-valued (𝑛, 1)-form 𝑣 , we find (on 𝑈 )

|⟨𝜕ℎ, 𝑣⟩| = |⟨ ̄𝜉 ∧ 𝑓 , 𝑣⟩| = |⟨𝑓 , ̂𝜉 ⌟ 𝑣⟩| ≤ |𝑓 | ⋅ | ̂𝜉 ⌟ 𝑣 |.
Now for ̂𝜉 ⌟ 𝑣 , we can write

̂𝜉 ⌟ 𝑣 = ∑−𝑖𝜉𝑗𝑑𝑧𝑗 ∧ 𝛬𝑣 = −𝑖𝜉 ∧ 𝛬𝑣,
since 𝑣 is of type (𝑛, 1). Then

|⟨𝜕ℎ, 𝑣⟩|2 ≤ |𝑓 |2| ̂𝜉 ⌟ 𝑣 |2 = |𝑓 |2⟨−𝑖𝜉 ∧ 𝛬𝑣, ̂𝜉 ⌟ 𝑣⟩
= |𝑓 |2⟨−𝑖 ̄𝜉 ∧ 𝜉 ∧ 𝛬𝑣, 𝑣⟩ = |𝑓 |2⟨[𝑖𝜉 ∧ ̄𝜉 , 𝛬]𝑣 , 𝑣⟩

≤ (𝑝 + 1)2
4𝜀 |𝜎 |2𝑝(1 + |𝜎 |2)2|𝑓 |2⟨[𝑖𝛩(𝐿𝜑), 𝛬]𝑣 , 𝑣⟩,

since we have by Equation 6,

𝑖𝜉 ∧ ̄𝜉 = (𝑝 + 1)2
4 |𝜎 |2𝑝−2{𝐷1,0𝜎, 𝜎} ∧ {𝜎 , 𝐷1,0𝜎} ≤ (𝑝 + 1)2

4𝜀 |𝜎 |2𝑝(1 + |𝜎 |2)2|𝑓 |2𝑖𝛩(𝐿𝜑).

And for 𝛾 ≥ 0 ∈ 𝛬1,1𝑇 ∗𝑋 , we get ⟨[𝛾 , 𝛬]𝑣 , 𝑣⟩ ≥ 0 like in Theorem 6.2. Thus in the
notation of previous section (see 4), the form 𝑔 = 𝜕ℎ satisfies

⟨𝐴−1𝐿𝜑 𝑔, 𝑔⟩ ≤
(𝑝 + 1)2

4𝜀 |𝜎 |2𝑝(1 + |𝜎 |2)2|𝑓 |2 ≤ (𝑝 + 1)2
𝜀 |𝑓 |2|𝜎 |2𝑝 ≤ (𝑝 + 1)2

𝜀 |𝑓 |2𝑒𝜑 ,
8There’s a difference of sign compare to [Dem12].
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where we use (1 + |𝜎 |2)2 ≤ 4 on 𝑈 = {|𝜎 | < 1} ⊃ Supp 𝑔. Hence we have

∫𝑋 ⟨𝐴
−1𝑔, 𝑔⟩𝜑𝑑𝑉 = ∫𝑈 ⟨𝐴

−1𝑔, 𝑔⟩𝑒−𝜑𝑑𝑉 ≤ (𝑝 + 1)2
𝜀 ∫𝑈 |𝑓 |2𝑑𝑉 < ∞.

Then Lemma 7.1 shows that Theorem 6.1 can be applied on each set 𝑋𝑐\𝑌 . Let 𝑐 tend
to infinity and taking the weak limit like before, we then get a 𝐿-valued (𝑛, 0)-form 𝑢
such that 𝜕𝑢 = 𝑔 on 𝑋\𝑌 and

∫𝑋\𝑌
|𝑢|2

|𝜎 |2𝑝(1 + |𝜎 |2)𝜀 𝑑𝑉 = ∫𝑋\𝑌
|𝑢|2𝑒−𝜑𝑑𝑉 ≤ (𝑝 + 1)2

𝜀 ∫𝑈 |𝑓 |2𝑑𝑉

In particular, we have
|𝑢|2
|𝜎 |2𝑝 is locally 𝐿1 near 𝑌 . Now as 𝑔 is continuous almost ev-

erywhere, Lemma 7.2 below shows that the equality 𝜕𝑢 = 𝑔 = 𝜕ℎ extends to 𝑋 , thus
𝐹 = ℎ − 𝑢 is holomorphic everywhere. Thus 𝑢 = ℎ − 𝐹 is continuous on 𝑋 , and
as 𝜎(𝑥) ≤ 𝐶𝑑(𝑥, 𝑌 ) in a neighborhood of every point of 𝑌 , we see that |𝜎 |−2𝑝 is non
integrable at every point 𝑥0 ∈ 𝑌reg since codim 𝑌 ≤ 𝑝. It follows that 𝑢 = 0 on 𝑌 , so

𝐹 |𝑌 = ℎ|𝑌 = 𝑓 |𝑌 .
Finally, we have

|𝐹 |2 = |ℎ − 𝑢|2 ≤ (1 + |𝜎 |−2𝑝)|𝑢|2 + (1 + |𝜎 |2𝑝)|𝑓 |2𝑢𝑛𝑑𝑜𝑛𝑒
which implies

|𝐹 |2
(1 + |𝜎 |2)𝑝 ≤ |𝑢|2

|𝜎 |2𝑝 + |𝑓 |2

since
1 + |𝜎 |2𝑝 ≤ (1 + |𝜎 |2)𝑝 .

So

∫𝑋
|𝐹 |2

(1 + |𝜎 |2)𝑝+𝜀 𝑑𝑉 ≤ ∫𝑋
|𝑢|2

|𝜎 |2𝑝(1 + |𝜎 |2)𝜀 +
|𝑓 |2

(1 + |𝜎 |2)𝜀 𝑑𝑉 ≤ (1 + 𝑝 + 1
𝜀 )∫𝑈 |𝑓 |2𝑑𝑉 .

Lemma 7.2 (VIII-Lem 7.3). Let 𝛺 be an open subset of ℂ𝑛 and 𝑌 an analytic subset of
𝛺. Assume that 𝑣 is a (𝑝, 𝑞 − 1)-form with 𝐿2𝑙𝑜𝑐 coefficients and 𝑤 a (𝑝, 𝑞)-form with 𝐿1𝑙𝑜𝑐
coefficients such that 𝜕𝑣 = 𝑤 on 𝛺\𝑌 (in the sense of distribution theory). Then 𝜕𝑣 = 𝑤
on 𝛺.
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Proof. An induction on the dimension of 𝑌 shows that it suffices to prove the result in
a neighborhood of a regular point 𝑎 ∈ 𝑌 . By using local isomorphism, we reduced to
the case where 𝑌 is contained in the hyperplane 𝑧1 = 0, with 𝑎 = 0. Let 𝜆 ∈ 𝐶∞(ℝ, ℝ)
be a function with 𝜆(𝑡) = 0 for 𝑡 ≤ 1

2 and 𝜆(𝑡) = 1 for 𝑡 ≥ 1. We must show that

∫𝛺 𝑤 ∧ 𝛼 = (−1)𝑝+𝑞 ∫𝛺 𝑣 ∧ 𝜕𝛼 (9)

for all 𝛼 ∈ 𝒞∞𝑛−𝑝,𝑛−𝑞(𝛺). Set 𝜆𝜀(𝑧) = 𝜆( |𝑧
1|
𝜀 ) and replace 𝛼 in the integral by 𝜆𝜀𝛼 . Then

𝜆𝜀𝛼 ∈ 𝒞∞𝑛−𝑝,𝑛−𝑞(𝛺\𝑌 ) and we have

∫𝛺 𝑤 ∧ 𝜆𝜀𝛼 = (−1)𝑝+𝑞 ∫𝛺 𝑣 ∧ 𝜕(𝜆𝜀𝛼) = (−1)𝑝+𝑞 ∫𝛺 𝑣 ∧ (𝜕𝜆𝜀𝛼 + 𝜆𝜀𝜕𝛼).

As 𝑤, 𝑣 has 𝐿1𝑙𝑜𝑐 coefficients on 𝛺,

∫𝛺 𝑤 ∧ 𝜆𝜀𝛼 → ∫𝛺 𝑤 ∧ 𝛼, ∫𝛺 𝑣 ∧ 𝜆𝜀𝜕𝛼 → ∫𝛺 𝑣 ∧ 𝜕𝛼 as 𝜀 → 0.

The remaining term can be estimated by Cauchy-Schwarz inequality:

|∫𝛺 𝑣 ∧ 𝜕𝜆𝜀 ∧ 𝛼|
2
≤ ∫|𝑧1|≤𝜀 |𝑣 ∧ 𝛼|

2𝑑𝑉 ⋅ ∫
Supp 𝛼

|𝜕𝜆𝜀 |2𝑑𝑉 ;

as 𝑣 ∈ 𝐿2𝑙𝑜𝑐(𝛺), then
∫|𝑧1|≤𝜀 |𝑣 ∧ 𝛼|

2𝑑𝑉 → 0

as 𝜀 → 0, whereas

∫
Supp 𝛼

|𝜕𝜆𝜀 |2𝑑𝑉 ≤ 𝐶
𝜀2 Vol(Supp 𝛼 ∩ {|𝑧1| ≤ 𝜀}) ≤ 𝐶″.

Hence Equation 9 follows when 𝜀 tends to 0.
Corollary 7.1 (VIII-Cor. 7.5). Let 𝛺 ⊂ ℂ𝑛 be a weakly pseudoconvex domain and let 𝜑, 𝜓
be plurisubharmonic functions on 𝛺, where 𝜓 is finite and continuous. Let 𝜎 = (𝜎1, … , 𝜎𝑟 )
be a family of holomorphic functions on 𝛺, let 𝑌 = 𝜎−1(0), 𝑝 be the maximal codimension
of 𝑌 and set

1. 𝑈 = {𝑧 ∈ 𝛺; |𝜎(𝑧)|2 < 𝑒−𝜓(𝑧)},
2. 𝑈 ′ = {𝑧 ∈ 𝛺; |𝜎(𝑧)|2 < 𝑒𝜓(𝑧)}.
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Then for every 𝜀 > 0 and every holomorphic function 𝑓 on 𝑈 (resp. 𝑈 ′), there exists a
holomorphic function 𝐹 on 𝛺 such that 𝐹 |𝑌 = 𝑓 |𝑌 and

1. ∫𝛺
|𝐹 |2𝑒−𝜑+𝑝𝜓

(1 + |𝜎 |2𝑒𝜓 )𝑝+𝜀 𝑑𝑉 ≤ (1 + (𝑝 + 1)2
𝜀 )∫𝑈 |𝑓 |2𝑒−𝜑+𝑝𝜓 𝑑𝑉 ,

2. ∫𝛺
|𝐹 |2𝑒−𝜑

(𝑒𝜓 + |𝜎 |2)𝑝+𝜀 𝑑𝑉 ≤ (1 + (𝑝 + 1)2
𝜀 )∫𝑈 ′

|𝑓 |2𝑒−𝜑−+(𝑝+𝜀)𝜓 𝑑𝑉 .

Proof. Assume 𝜑, 𝜓 smooth9. Either case will follows when we apply Theorem 7.1 to

1. 𝐸 = 𝛺 × ℂ𝑟 with the weight 𝑒𝜓 , 𝐿 = 𝛺 × ℂ with the weight 𝑒−𝜑+𝑝𝜓 , and 𝑈 =
{|𝜎 |2𝑒𝜓 < 1}. Then

𝑖𝛩(𝐸) = −𝑖𝜕𝜕𝜓 ⊗ Id𝐸 ≤ 0, 𝑖𝛩(𝐿) = 𝑖𝜕𝜕𝜑 − 𝑝𝑖𝜕𝜕𝜓 ≥ 𝑝𝑖𝛩(𝐸).

2. 𝐸 = 𝛺 × ℂ𝑟 with the weight 𝑒−𝜓 , 𝐿 = 𝛺 × ℂ with the weight 𝑒−𝜑−(𝑝+𝜀)𝜓 , and
𝑈 ′ = {|𝜎 |2𝑒−𝜓 < 1}. Then

𝑖𝛩(𝐸) = −𝑖𝜕𝜕𝜓 ⊗ Id𝐸 ≥ 0, 𝑖𝛩(𝐿) = 𝑖𝜕𝜕𝜑 + (𝑝 + 𝜀)𝑖𝜕𝜕𝜓 ≥ (𝑝 + 𝜀)𝑖𝛩(𝐸).

Then the curvature condition is satisfied and 𝐾𝑋 is trivial.

Theorem 7.2 (Hörmander-Bombieri-Skoda theorem, VIII-Thm 7.6). Let 𝛺 ⊂ ℂ𝑛 be a
weakly pseudoconvex domain and 𝜑 a plurisubharmonic function on 𝛺. For every 𝜀 > 0
and every point 𝑧0 ∈ 𝛺 auch that 𝑒−𝜑 is integrable in a neighborhood of 𝑧0, there exists a
holomorphic function 𝐹 on 𝛺 such that 𝐹(𝑧0) = 1 and

∫𝛺
|𝐹 (𝑧)|2𝑒−𝜑(𝑧)
(1 + |𝑧|2)𝑛+𝜀 𝑑𝑉 < ∞.

Proof. Apply Corollary 7.1 to 𝑓 ≡ 1, 𝜎(𝑧) = 𝑧 − 𝑧0, 𝑝 = 𝑛 and 𝜓 = log 𝑟2 where

𝑈 = 𝐵(𝑧0, 𝑟 ) is a ball such that ∫𝑈 𝑒−𝜑𝑑𝑉 < ∞.

Corollary 7.2. Let 𝜑 be a plurisubharmonic function on a complex manifold 𝑋 . Let 𝐴 be
the set of points 𝑧 ∈ 𝑋 such that 𝑒−𝜑 is not locally integrable in a neighborhood of 𝑧. Then
𝐴 is an analytic subset of 𝑋 .

Proof. undone

9By taking convolution with smooth kernels on the pseudoconvex domain 𝛺𝑐 ⊂ 𝛺.
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