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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

In this report, our final goal is to present the unobstructedness of deformations of smooth
Calabi–Yau varieties via Ran-Kawamata T 1-lifting theorem (Theorem 2.7). Before doing so,
we require the foundational terminology and framework established by Schlessinger in [Sch68].
The preliminary of deformation theory, particularly the following topics:

• T i functor (for the smooth case, only T 0 relevant, as T 1 and T 2 vanish),

• the deformations of smooth schemes,

• obstruction for extensions of deformations, the exact sequences of deformations, and
automorphisms of deformation (cf. Theorem B.5 and Remark B.6)

will be included in the Appendix. Throughout this report, we assume everything [Har77].

1 Functors of artin rings and Schlessinger’s criterion
In this section, we adopt notations in [Sch68].

1.1 The category CΛ
Let Λ be a complete noetherian local ring, µ be its maximal ideal, and k = Λ/µ be the residue
field. Let C = CΛ be the category of artinian local Λ-algebras having residue field k induces
from structure map Λ → A. Morphisms in C are local homomorphisms of Λ-algebras. Let
Ĉ = ĈΛ be the category of complete noetherian local Λ-algebras A for which A/mn ∈ C for all
n. Notice that C is a full subcategory of Ĉ.

If p : A→ B, q : C → B are morphisms in C, let

A×B C := {(a, c) ∈ A× C | p(a) = q(b)} ∈ C

For any A ∈ C, let
t∗A := m

/
m2 + µA

be the Zariski cotangent space of A over Λ, or abbreviate as t∗A. It is clear that the dual
vector space tA is isomorphic to DerΛ(A, k).

Lemma 1.1
A morphism B → A in Ĉ is surjective if and only if the induced map t∗B → t∗A is surjective.

Proof. Notice that A as the Λ-module is generated by mA and the image of Λ in A, since
Λ/µ ' A/mA. Thus, the induced map µ/µ2 → µA/(m2

A ∩ µA) is surjective. If B → A is a
morphism in Ĉ, then we get commutative diagram

0 µA/(µA+m2
A) mA/m

2
A t∗A 0

0 µB/(µB +m2
B) mB/m

2
B t∗B 0.
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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

If t∗B → t∗A is surjective, then mB/m
2
B → mA/m

2
A is surjective. By induction, we have B/mk

B →
A/mk

A is surjective for all k, and thus

B ' lim←−B/mk
B ↠ lim←−A/m

k
A ' A.

Conversely, if B → A is surjective, then it is clear that t∗B → t∗A is surjective.

Definition 1.2. Let p : B → A be a surjection in C.

• p is a small extension if ker p = (t) 6= 0 such that mBt = (0), namely, ker p is a k-vector
space of dimension 1.

• p is essential if for any morphism q : C → B in C such that pq is surjective will implies
q is surjective.

Lemma 1.3
Let p : B → A be a surjection in C. Then

(1) p is essential if and only the induced map p∗ : t
∗
B → t∗A is an isomorphism.

(2) If p is a small extension, then p is not essential if and only if p has a section s : A→ B

with ps = 1A.

Proof.

(1) If p∗ is an isomorphism, then p is essential by Lemma 1.1. Conversely, let {t̃1, . . . , t̃r} be
a basis of t∗A and lift the t̃i back to elements ti in B. Set

C = Λ[t1, . . . , tr] ⊆ B.

Then p induces a surjection from C to A, and thus C = B by p is essential. This forces

dimk t
∗
B ≤ r = dimk t

∗
A =⇒ t∗B ' t∗A.

(2) If p has a section s, then s is not surjective implies p is not essential. If p is not essential,
then the subring C constructed above is a proper subring of B. Since p is a small
extension, we have length(B) = length(A) + 1, and thus C ' A yields the section.

1.2 Functors on C
We shall consider only covariant functors F from C to Sets such that |F (k)| = 1. A couple for
F means a pair (A, ξ), where A ∈ C and ξ ∈ F (A). A morphism of couples u : (A, ξ)→ (A′, ξ′)

is a morphism u : A→ A′ in C such that F (u)(ξ) = ξ′. If we extend F to Ĉ by

F̂ (A) = lim←−F (A/m
n),
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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

then we may speak analogously of pro-couples and morphisms of pro-couples.
For any ring R in Ĉ, we define a functor hR = Hom(R,−) on C. For any functor F on C, we

have a canonical bijection
F̂ (R)

∼−−→ Hom(hR, F ).

Indeed, notice that every morphism u : R → A factors through un : R/mn
R → A for some n,

since A is an artinian local ring implies
√

keru = mR. For any ξ = lim←− ξn in F̂ (R), we may
assign u ∈ hR(A) to the element F (un)(ξn) ∈ F (A), which is well-defined since ξn form a inverse
system. Conversely, let πn : R→ R/mn

R be the canonical projection. For any η ∈ Hom(hR, F ),
ξn = η(R/mn

R)(πn) form a inverse system and obtains ξ = lim←− ξn ∈ F̂ (R). It is clear that this
two map give a canonical bijection.

Definition 1.4. A pro-couple (R, ξ) for F is pro-represents F if the morphism hR → F

induced by ξ is an isomorphism.

Example 1.5
Let G be a contravariant functor on the category of scheme over SpecΛ and fixed e ∈
G(Spec k). For A ∈ C, define

F (A) = {ξ ∈ G(SpecA) | G(i)(ξ) = e},

where i : Spec k → SpecA induces by residue field. If G is represented by a scheme X,
then e determines a k-rational point x ∈ X, and it is clear that F (a) = HomΛ(OX,x, A).
Thus the completion of OX,x is pro-represents F .

Unfortunately, many interesting functors are not pro-representable. However, one can still
look for a “universal object” in some sense.

Definition 1.6. A morphism F → G of functors is smooth if for any surjection B → A in C,
the morphism

F (B)→ F (A)×G(A) G(B) (1)

Remark 1.7.

(1) It is enough to check surjectivity in (1) for small extensions B → A.

(2) If F → G is smooth, then F̂ → Ĝ is surjective, in the sense that F̂ (A) → Ĝ(A) is
surjective for all A in Ĉ.

Proposition 1.8
(1) Let R→ S be a morphism in Ĉ. Then hS → hR is smooth if and only if S is a power

series ring over R.

(2) If F → G and G → H are smooth morphism of functors, then the composition
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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

F → H is smooth.

(3) If u : F → G and v ∈ G → H are morphisms of functors such that u is surjective
and vu is smooth, then v is smooth.

(4) If F → G and H → G are morphisms of functors such that F → G is smooth, then
F ×G H → H is smooth.

Proof.

(1) Pick x1, . . . , xn in S which induce a basis of t∗S/R = mS/(m
2
S +mRS), then

mS = m2
S +mRS +

∑
Sxi =⇒ mS = mRS +

∑
Sxi

by Nakayama’s lemma. Set T = R[[X1, . . . , Xn]] and define a morphism of local R-algebra
u1 : S → T/(m2

T +mRT ) by xi 7→ X i. We check that u1 is well-defined. Notice that

S = R · 1S +mS = R · 1S +mR(R · 1S +mRS) +
∑

(R · 1S +mRS)xi,

and m2
RS +

∑
mRSxi maps to m2

T +mRT under xi 7→ Xi. Suppose that

0 = r · 1S +
∑

rixi + λ

for some r, ri ∈ R and λ ∈ (m2
RS +

∑
mRxi). Then r · 1S ∈ mS, and thus r ∈ mR. Then∑

rixi ≡ 0 (mod m2
S +mRS) =⇒ ri ∈ mR,

and thus
u1(r · 1S +

∑
rixi + λ) =

∑
riX i = 0.

By smoothness, we may lift u1 to u2 : S → T/m2
T . By induction, we may lift u1 to

uk : S → T/mk
T for all k ∈ N, and thus we get u : S → T = lim←−T/m

k
T which induces

an isomorphism of t∗S/R with t∗T/R by the choice of u1. By Lemma 1.1, u is surjective.
Choose yi ∈ S such that u(yi) = Xi. Then Xi 7→ yi define a morphism of local R-algebra
v : T → S such that uv = idT . In particular, v is injective. Since v induces a bijection
on the cotangent spaces, it follows that v is surjective by Lemma 1.1. Hence, v induces
an isomorphism of T = R[[X1, . . . , Xn]] with S.

Conversely, if S is a power series ring over R, then it is obvious that hS → hR is smooth.

R B

R[[X1, . . . , Xn]] A

∃
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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

(2) For any surjection B → A in C, we have the following diagram

F (B)

F (A)×G(A) G(B) G(B)

F (A)×H(A) H(B) G(A)×H(A) H(B),

⌟

and thus F (B)→ F (A)×H(A) H(B) is surjective.

(3) For any surjection B → A in C. Since F (A)→ G(A) is surjective, we have

F (A)×H(A) H(B) ↠ G(A)×H(A) H(B)

Since vu is smooth, we have F (B) ↠ F (A)×H(A) H(B). Hence,

F (B) ↠ G(A)×H(A) H(B).

(4) For any surjection B → A in C, we have the following diagram

F (B)×G(B) H(B) F (A)×G(A) H(B) H(B)

F (B) F (A)×G(A) G(B) G(B)

F (A) G(A)

⌟ ⌟

⌟
.

Hence,

F (B)×G(B) H(B) ↠ F (A)×G(A) H(B) ' (F (A)×G(A) H(A))×H(A) H(B)

implies F ×G H → H is smooth.

The ring of dual numbers over k is denoted by k[ε], where ε2 = 0. For any functor F , the
set F (k[ε]) is called the tangent space to F , and is denoted by tF . If F = hR, then there is a
canonical isomorphism tF ' tR given by

HomΛ(R, k[ε]) DerΛ(R, k) ' tR

f π ◦ f,

where π : k[ε]→ k defined by π(a+ bε) = b.
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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

Definition 1.9. A pro-couple (R, ξ) for a functor F is called a pro-representable hull of F
(or abbreviated as hull of F ), if the induced map hR → F is smooth and tR → tF of tangent
spaces is a bijection.

If (R, ξ) pro-represents F , then (R, ξ) is a hull of F . In this case, (R, ξ) is unique up to
canonical isomorphism. In general, we only have non-canonical isomorphism in the following
proposition.

Proposition 1.10
Let (R, ξ) and (R′, ξ′) be hulls of F . Then there exists an isomorphism u : R → R′ such
that F (u)(ξ) = ξ′.

Proof. Since hR → F is smooth, by Remark 1.7 we have the surjection

Hom(R,R′) ' ĥR(R
′) F̂ (R′)

u lim←−F (un)(ξn),

where un : R/mn
R → R′/mn

R′ induces from u : R → R′. So there exists u ∈ Hom(R,R′) such
that ξ′ = lim←−F (un)(ξn), that is, u : (R, ξ)→ (R′, ξ′) define a morphism of pro-couple. Then u

induces the morphism on tangent space

HomΛ(R
′, k[ε]) HomΛ(R, k[ε]) F (k[ε])

g F (g2)(ξ2)

f f ◦ u F (f2 ◦ u2)(ξ2) = F (f2)(ξ
′
2)

and the bijection is given by (R, ξ) is a hull of F . Since (R′, ξ′) is a hull of F , the map f 7→
F (f2)(ξ

′
2) is bijection, and thus u induces isomorphism between tangent space. By Lemma 1.1, u

is surjective. Similarly, we have a surjective morphism u′ : (R′, ξ′)→ (R, ξ). Then u′u : R→ R

is a surjective endomorphism.

Claim. The surjective endomorphism of a Noetherian ring A is an isomorphism.

subproof. Let f ∈ End(A) and I = ker f . Then

0→ I ⊗A κ(m)→ κ(p)
f−−→ κ(p)→ 0

as κ(p)-module for all p ∈ SpecA. By Nakayama’s lemma, 0 = I ⊗A κ(p) = Ip ⊗ Ap/p implies
Ip = 0 for all p ∈ SpecA. Hence, I = 0.

By Claim, we conclude that u′u and uu′ are isomorphisms, and thus u : R→ R′ as required.

Remark 1.11. Let (R, ξ) be a hull of F . Then R is a power series ring over Λ if and only if
F transforms surjections B → A in C into surjections F (B) → F (A). Indeed, the stated
condition on F is equivalent to the smoothness of the natural transform F → hΛ. Applying
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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

Proposition 1.8 (2) and (3) to the diagram

hR hΛ

F

sm.

we conclude that hR → hΛ is smooth if and only if F → hΛ is (notice that hR → F is
surjective by Remark 1.7).

Lemma 1.12
Suppose F is a functor such that the canonical map

F (k[V ]×k k[W ]) −→ F (k[V ])× F (k[W ])

is bijective for every k-vector spaces V and W , where k[V ] denotes the ring k ⊕ V such
that V is a square zero ideal. Then F (k[V ]) has a canonical vector space structure, such
that F (k[V ]) ' tF ⊗ V as k-vector space.

Proof. Define the addition map k[V ]×k k[V ]→ k[V ] by (x, y) 7→ x+ y for x, y ∈ V , and the
scalar multiplication x 7→ ax (a ∈ k) on V . Since F is commutes with the necessary products,
F (k[V ]) inherent a k-vector space structure. Under the identification,

Hom(k[ε], k[V ]) V

f f(ε)

we get a map
tF ⊗ V F (k[V ])

ξ ⊗ f F (f)(ξ)

which is an k-vector space isomorphism, since k[V ] is the product of dimV copies of k[ε].

Remark 1.13. Suppose F is a functor in Lemma 1.12. For any R ∈ Ĉ and η ∈ Hom(hR, F ),
by functoriality, the map η(k[V ]) is a k-vector space homomorphism.

Theorem 1.14
Let F : C → Sets be a functor such that F (k) = {e} consists of one element. Let A′ → A

and A′′ → A be morphisms in C, and consider the canonical map

F (A′ ×A A′′) −→ F (A′)×F (A) F (A
′′). (2)

Then

(1) F has a hull if and only if F has properties (H1), (H2), (H3) below:

Author: Tsung-Chen Chen 8



1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

(H1) (2) is a surjection whenever A′′ → A is a small extension.

(H2) (2) is a bijection when A = k, A′′ = k[ε].

(H3) dimk(tF ) <∞.

(2) F is pro-representable if and only if F has the additional property (H4):

F (A′ ×A A′)
∼−−→ F (A′)×F (A) F (A

′) (3)

for any small extension A′ → A.

As preparation for the proof, we investigate what these conditions entail.

(a) If F is isomorphic to some hR, then (2) is an isomorphism for any morphism A′ → A,
A′′ → A by the universal property of fiber product.

(b) By (H2) and induction, it is clear that the hypothesis of Lemma 1.12 holds, and thus tF
is a vector space.

(c) By induction on lengthA′′ A, it follows from (H1) that (2) is surjective for any surjection
A′′ → A.

(d) Let I be the kernel of small extension A′ → A, then we have an isomorphism

A′ ×A A′ A×k k[I]

(x, y) (x, x+ y − x),

∼

where x ∈ k and y − x ∈ I. Then (H2) induces

F (A′ ×k k[I]) F (A′ ×A A′)

F (A′)× (tF ⊗ I) F (A′)×F (A) F (A
′)

∼

∼

∃

a tF ⊗I action on F (A′). For any η ∈ F (A), tF ⊗I acts on the subset F (p)−1(η) ⊆ F (A′).
Then (H1) implies this action is transitive, while (H4) is precisely the condition that tF⊗I
action make F (p)−1(η) be a formally principal homogeneous space.

Proof. Suppose that F satisfies (H1), (H2), (H3). Let r = dim tF and set S = Λ[[T1, . . . , Tr]].
We will construct R as the inverse limit of successive quotients Rn of S. To begin,

R2 = S/(m2
S + µS) ' k[ε]×k · · · ×k k[ε] (r times).

By (H2), we have

Hom(hR2 , F ) F (R2)
∏
F (k[ε])

∏
Hom(hk[ε], F )

η
(
(η ◦ π∗

i )(k[ε])(idk[ε])
)
i

(η ◦ π∗
i )i

∼ ∼ ∼
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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

where πi : R2 → k[ε] is projection to i-th component. Since η(k[ε]) is a k-vector space ho-
momorphism between two k-vector space of dimension r, it follows that η(k[ε]) is bijective if
and only if

{
(η ◦ π∗

i )(k[ε])(idk[ε])
∣∣1 ≤ i ≤ r

}
form a basis of tF . Hence, there exists ξ2 ∈ F (R2)

which induces a bijection between tR2 and tF .
Suppose we have found (Rq, ξq), where Rq = S/Jq. Let S be the set of ideals J in S such

that mSJq ⊆ J ⊆ Jq and ξq can be lifted to S/J . We claim that S has the minimal element.
Notice that Jq ∈ S and J ∈ S can be regard as a subset of finite dimensional k-vector space
Jq/mSJq, so it suffices to show that S is stable under pairwise intersection. Suppose that J
and J ′ are in S , enlarge J without changing the intersection J∩J ′ if necessary, we may assume
J + J ′ = Jq. Apply (H1) on

S/J ×S/Jq S/J ′ ' S/(J ∩ J ′),

we conclude that J ∩J ′ ∈J ∈ S . Let Jq+1 be the minimal element in S and pick any lifting
ξq+1 ∈ F (Rq+1) of ξq ∈ F (Rq).

Let J =
⋂
n≥2 Jn and R = S/J . Since mq

S ⊆ Jq, it follows that {Jn/J}n≥2 form a base for
topology in R. Hence, R = lim←−S/Jq, and ξ := lim←− ξn ∈ F̂ (R) is defined. By our choice of R2,
we have tF ' tR.

Claim. hR → F is smooth.

subproof. Let p : (A′, η′) → (A, η) be a morphism of couples of F , where p is a small
extension and let A = A′/I. To lift the given morphism u : (R, ξ)→ (A, η) to (R, ξ)→ (A′, η′),
it suffices to find a u′ : R→ A′ such that pu′ = u. Indeed, we have a transitive action of tF ⊗ I
on F (p)−1(η). Given such a u′, there exists σ ∈ tF ⊗ I such that (F (u′)(ξ))σ = η′. Since the
action is functorial and tR ' tF , the following diagram

hR(A
′)⊗ (tR ⊗ I) hR(A

′)×hR(A) hR(A
′)

F (A′)⊗ (tF ⊗ I) F (A′)×F (A) F (A
′)

implies v′ := (u′)σ will satisfy F (v′)(ξ) = η′ and pv′ = u.
Now, u factors as (R, ξ)→ (Rn, ξn)→ (A, η) for some n. It suffices to complete the diagram

Rn+1 A′

Rn A

∃

p

or equivalently, the diagram

S Rq ×A A′

Rq+1 Rq

Λ[[T1, . . . , Tr]] =
w

pr1v
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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

where w has been chosen to make the square commute. If the small extension pr1 has a section,
then v obviously exists. Otherwise, by Lemma 1.3, pr1 is essential, and thus w is surjective.
Apply (H1) on Rn×AA′, (ξn, η′) ∈ F (Rn)×F (A) F (A

′) lifts to Rn×AA′. By our choice of Jn+1,
kerw ⊇ Jn+1, and thus w factors through S/Jn+1 = Rn+1. This completes the proof that (R, ξ)
is a hull of F .

Conversely, suppose that (R, ξ) is a hull of F . To verify (H1), let p′ : (A′, η′) → (A, η)

and p′′ : (A′′, η′′) → (A, η) be morphisms of couples, where p′′ is surjective. Since hR → F

is surjective, there exists a u′ : (R, ξ) → (A′, η′). By smoothness, there exists u′′ : (R, ξ) →
(A′′, η′′). Consider u′ × u′′ : R → A′ ×A A′′, then ζ := F (u′ × u′′)(ξ) projects onto η′ and η′′.
Hence, (H1) is satisfied.

For the case of (A, η) = (k, e) and A′′ = k[ε]. If ζ1, ζ2 ∈ F (A′ ×k k[ε]) have same projections
η′ and η′′ on F (A′) and F (k[ε]), respectively. Let u′ : (R, ξ) → (A′, η′) as above. Apply
smoothness to the projection A′ ×k k[ε]→ A′, we get morphisms

u′ × ui : (R, ξ) −→ (A′ ×k k[ε], ζi)

for i = 1, 2, that is, ui ∈ hR(k[ε]) send to η′′ via ξ under the isomorphism

ξ ∈ F̂ (R) ' Hom(hR, F ).

Since (R, ξ) is a hull of F , ξ induces an isomorphism on tR
∼−−→ tF , and thus u1 = u2. Therefore,

ζ1 = ζ2, which proves (H2). From tR ' tF , we also have (H3).
For part (2), suppose that F satisfies (H1), . . . , (H4). By part (1), there exists a hull (R, ξ)

of F . We prove that hR(A) ' F (A) by induction on lengthΛ(A). Consider a small extension
p : A′ → A = A′/I, and assume that hR(A)

∼−−→ F (A). For each η ∈ F (A), both hR(p)
−1(η)

and F (p)−1(η) are formally principal homogeneous spaces under tF ⊗ I. Since hR(A′) surjects
to F (A′), we conclude that hR(A′)

∼−−→ F (A′).

1.3 Picard functor
If X is scheme, we define Pic(X) = H1(X,O∗

X). Recall that the group of automorphisms of an
invertible sheaf is canonically isomorphic to H0(X,O∗

X).
Suppose that X is a scheme over SpecΛ. Abbreviate X ×SpecΛ SpecA as XA for any A in C,

and set X0 = Xk. Notice that |XA| = |X0| as the topological space, since mAOX contained in
the nilradical ideal of OX . If η ∈ Pic(XA), let η ⊗A B ∈ Pic(XB) denoted the pull-back of η.
Fix ξ0 ∈ Pic(X0) in this discussion, and let

P(A) := {η ∈ Pic(XA) | η ⊗A k = ξ0}.

Proposition 1.15
Assume that

(i) X is flat over Λ,

(ii) A
∼−−→ H0(XA,OXA

) for each A ∈ C,
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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

(iii) dimkH
1(X0,OX0) <∞.

Then P is pro-representable by a pro-couple (R, ξ) such that tR ' H1(X0,OX0).

Remark 1.16. Under the condition (i), the condition (ii) is equivalent to H0(X0,OX0) = k.
Indeed, the functor M 7→ H0(X,OX ⊗M) of Λ-module is left exact, since X is flat over
Λ. By induction on length and five lemma, the natural map M 7→ H0(X,OX ⊗M) is an
isomorphism for all M of finite length.

Before proving Proposition 1.15, we need two simple lemmas on flatness.

Lemma 1.17
Lett A be a ring, J be a nilpotent ideal in A, and u : M → N be a homomorphism of
A-modules, with N flat over A. If u : M/JM → N/JN is an isomorphism, then u is an
isomorphism.

Proof. Let K = cokeru. Tensor the exact sequence

M → N → K → 0

with A/J , we have K/JK = 0. Since J is nilpotent, we have K = 0. If K ′ = keru, then we
get an exact sequence

0→ K ′/JK ′ →M/JM → N/JN → 0

by the flatness of N . Hence, K ′ = 0.

Lemma 1.18
Consider a commutative diagram

N M2

M1 M

B A2

A1 A

p2

p1
u2

u1

of compatible ring and module homomorphisms, where B = A1 ×A A2, N = M1 ×M M2,
and Mi is a flat Ai-module for i = 1, 2. Suppose that A1 is an artinian ring and

(i) A2/J
∼−−→ A, where J is an nilpotent ideal in A2.
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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

(ii) ui induces Mi ⊗Ai
A

∼−−→M .

Then N is flat over B, and pi induces N ⊗B Ai
∼−−→Mi.

Proof. Let {x1,i}i∈I ⊆M1 such that {x1,i}i∈I form a basis of M1/mA1M1. Then
∐

i∈I A1 →M

defined by ei 7→ x1,i is an isomorphism by Lemma 1.17. Hence, M1 is a free A1-module with
basis {x1,i}i∈I . By (ii), M is the free module with basis {u1(x1,i)}i∈I . Choosing x2,i ∈M2 such
that u2(x2,i) = u1(x1,i). Then A2-module homomorphism

∑
A2x2,i →M2 is isomorphism after

modulo the ideal J . Again, by Lemma 1.17, M2 is free module with basis {x2,i}i∈I , and it is
clear that N is free B-module with basis {x1,i × x2,i}i∈I . Then the projection pi induces the
isomorphism N ⊗B Ai

∼−−→Mi.

Corollary 1.19
With the notations in Lemma 1.18. Let L be a B-module satisfies the commutative diagram

L M2

M1 M

q1

q2

u2

u1

where q1 induces L ⊗B A1
∼−−→ M1. Then the canonical morphism q1 × q2 : L → N =

M1 ×M M2 is an isomorphism.

Proof. Apply Lemma 1.17 to the morphism u = q1 × q2.

Proof of Proposition 1.15. Let u′ : (A′, η′) → (A, η), u′′ : (A′′, η′′) → (A, η) be morphisms
of couples, where u′′ is a surjection. Let L′, L, L′′ be corresponding invertible sheaves on XA′ ,
XA, XA′′ , respectively. Let B = A′ ×A A′′, then we have a commutative diagram

OXB
OXA′′

OXA
OXA

(4)

of sheaves on |X0|. Indeed, if SpecS is an affine open subset of Z, then the diagram (4) give
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1 FUNCTORS OF ARTIN RINGS AND SCHLESSINGER’S CRITERION

the commutative diagram

OXB
(SpecS) OXA′′ (SpecS ⊗B A′′)

OXA′ (SpecS ⊗B A′) OXA
(SpecS ⊗B A)

B A′′

A′ A

which is compatible with localization map. By Corollary 1.19, there is a canonical isomorphism,
there is a canonical isomorphism

OXB

∼−−→ OXA′ ×OX
OX′′ .

Replace O by L in the above diagram, by Lemma 1.18, N := L′ ×L L′′ is locally free sheaf of
rank 1 on XB, and the projections to L′ and L′′ induce isomorphisms N ⊗B A′ ∼−−→ L′ and
N ⊗B A′′ ∼−−→ L′′. Hence, (2) is surjective for any surjection A′′ → A.

For the injectivity, if M is another invertible sheaf on XB with the isomorphisms

M⊗B A′ ∼−−→ L′, M⊗B A′′ ∼−−→ L′′,

then we have morphisms q′ :M→ L′, q′′ :M→ L′′ induce these isomorphisms. Then we have
the following commutative diagram

L L

L′ L′′

M

θu′ u′′

q′ q′′

where θ is the automorphism of L given by the composition

L ∼−−→ L′ ⊗A′ A
∼−−→M⊗B A

∼−−→ L′′ ⊗A′′ A
∼−−→ L.

By hypothesis (ii), θ is multiplication by some unit a ∈ A. Take any a′′ ∈ A′′ such that
u′′(a′′) = a. Change q′′ to a′′q′′, we may assume that u′q′ = u′′q′′. By Corollary 1.19, we
conclude that M ∼−−→ N .

Finally, let Y = Xk[ε], we have OY = OX0 ⊕ εOX0 , so there is a split exact sequence

0 OX0 O∗
Y O∗

X0
1,

exp

where exp(f) = 1 + εf . Hence,

F (k[ε]) ' ker
(
H1(X0,O∗

Y ) −→ H1(X0,O∗
X0
)
)
' H1(X0,OX0)

has finite dimension by assumption. By Theorem 1.14, P as required.
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1.4 Formal moduli
Fix a scheme X over k. An (infinitesimal) deformation of X over A ∈ C is a flat scheme Y
over SpecA with an immersion i : X ↪→ Y inducing an isomorphism X

∼−−→ Y ×A k

X Y

Spec k SpecA.

i

⌟

If Y ′ is another deformation to A, then Y and Y ′ are isomorphic if there exists a morphism
f : Y → Y ′ over A which induces the identity on the closed fiber X. By Lemma 1.17, f must
be an isomorphism of schemes. Given the deformation Y over A and a morphism A→ B in C,
one has evidently an induced deformation Y ⊗A B over B.

Define the deformation functor D = DefX by

D(A) = {isomorphism classes of deformations of X/k to A}.

Unfortunately, D is not pro-representable. But in some finiteness restrictions on X, D will have
a hull.

Suppose that (A′, η′)→ (A, η) and (A′′, η′′)→ (A, η) are morphisms of couples, where A′′ →
A is a surjection. Let Y ′, Y , Y ′′ denote deformations in the class of η′, η, η′′, respectively. Then
we have a diagram

Y ′ Y ′′

Y
u′ u′′

of deformations. As in the proof of Proposition 1.15, the sheaf OY ′ ×OY
OY ′′ of A′ ×A A′′-

algebras defined a scheme Z on |X0|, which is flat over B := A′ ×A A′′. Moreover, Z ∈ D(B)

maps to (η′, η′′) ∈ D(A′)×D(A) D(A′). Hence, D satisfies the condition (H1) in Theorem 1.14.
Suppose that W is another deformation over B with morphism of deformation q′ : Y ′ → W

and q′′ : Y ′′ → W . Then we have the commutative diagram of deformations

Y Y

Y ′ Y ′′

W

θu′ u′′

q′ q′′

where θ is the composition

Y
∼−−→ Y ′ ⊗A′ A

∼−−→ W ⊗B A
∼−−→ Y ′′ ⊗A′′ A

∼−→ Y.

If θ can be lifted to an automorphism θ′ of Y ′ such that θ′u′ = u′θ, then we can replace q′ with
q′θ′ and get an isomorphism W

∼−−→ Z by Corollary 1.19. In particular, such θ′ exists when
A = k, since Y = X and θ = id in this case. Hence, the condition (H2) is satisfied.
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Lemma 1.20
Let p : (A′, η′)→ (A, η) be a morphism of couples, where p is a small extension. For each
morphism B → A in C, let

Dη(B) = {ζ ∈ D(B) | ζ ⊗B A = η}.

Pick a deformation Y ′ in the class of η′, then the following are equivalent

(i) Dη(A
′ ×A A′)

∼−−→ Dη(A
′)× Dη(A

′).

(ii) Every automorphism of the deformation Y = Y ′⊗A′A is induced by an automorphism
of the deformation Y ′.

Proof.

• (i) =⇒ (ii). Let u : Y → Y ′ be the induced morphism of deformations. If θ is an
automorphism of Y , by (H1), there exists deformations Z, W over A′ ×A A′ fit into the
diagram of deformations

Y ′ Y ′ Y ′ Y ′

Y Y

Z W

uθ u u u

Since Z and W have isomorphic projections on both factors, there is an isomorphism
ρ : Z

∼−−→ W by assumption. Then ρ induces automorphism θ1 and θ2 of Y ′ and an
automorphism of Y such that

θ1uθ = uφ, θ2u = uφ.

Therefore, uθ = θ−1
1 θ2u implies θ−1

1 θ2 induces θ.

• By the discussion in (H2), every automorphism θ of Y has a lifting on Y ′ by assumption,
which guarantee the injectivity.

Remark 1.21. Suppose that H0(X, TX) = 0, then the condition (ii) in Lemma 1.20 is
automatically satisfied. We will show, by induction on dimk A, that for any deformation
Y of X over A, the automorphism group Aut(Y /X) = {id}.

For A = k is clear. Now suppose p : A → A′ be a small extension and let Y ′ be a
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deformation of X over A′, with Y = Y ′ ×A′ A. Then there is an exact sequence

Aut(Y ′/Y )→ Aut(Y ′/X)→ Aut(Y /X) = {id}.

By Theorem B.5, we have

Aut(Y ′/Y ) ' H0(X0, TX0) = 0.

It follow that Aut(Y ′/X) = {id} as desired.
To verify condition (H3), recall that Theorem B.5 states that for any scheme X locally of

finite type over k, there is an exact sequence

0 H1(X, T 0
X) tD H0(X, T 1

X) H2(X, T 0
X).

In particular, if X is proper over k, then since T iX are coherent sheaves on a proper scheme,
their cohomology groups are finite-dimensional k-vector spaces. It follows that

dimk tD ≤ dimkH
1(X, T 0) + dimH0(X, T 1) <∞.

If X is nonsingular over k, then T 0
X = TX and T 1

X = 0, and thus tD ' H1(X, TX). Affine
schemes form another class of examples where tD is more explicitly computable.

Proposition 1.22
If X is affine with only isolated singularities, then D has a hull.

Proof. We remain to verify the Schlessinger condition (H3).
Let X = SpecB be an affine scheme with only isolated singularities. By Theorem B.3,

tD ' T 1(B/k,B). Since T i functor compatible with localization and Theorem A.17, it follows
that T 1(B/k,B) is supported at finite number of points SingX. Hence, tF has finite length.
In other word, dimk tF <∞.
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2 Ran-Kawamata T 1-lifting

2.1 T 1-lifting
Let k be a field of characteristic zero. LetD : C → Sets be a deformation functor, i.e., a covariant
functor such that |D(k)| = 1 and satisfies Schlessinger’s conditions (H1), (H2), (H3). We also
assume that the obstruction can be calculated by a k-vector space T 2 (cf. Definition B.8).

For n ∈ Z≥0, let

An = k[t]/(tn+1), Bn = An ⊗k A1 = k[x, y]/(xn+1, y2), Cn = k[x, y]/(xn+1, xny, y2).

We have natural homomorphism αn : An+1 → An, βn : Bn → An, and γn : Bn → Cn, where
βn(x) = t, βn(y) = 0.

For Xn ∈ D(An), let

T 1(Xn/An) = {Yn ∈ D(Bn) | D(βn)(Yn) = Xn}.

Example 2.1
Suppose that D = DefX is pro-representable, and that Xn is a smooth deformation of X
over An. By Lemma 1.20, we have an bijection

T 1(Xn/An) = Def(Xn/An, Bn).

By Remark B.6, the deformation space can be computed via the following exact sequence

0 H1(Xn, T 0(Xn/An, f
∗J̃)) Def(Xn/An, Bn) H0(Xn, T 1(Xn/An, f

∗J̃)),

where f : Xn → An is the structure morphism and J = ker βn. Since ker βn is a free
An-module and Xn is smooth over An, it follows from Theorem A.18 that

T i(Xn/An, f
∗J̃) = T iXn/An

=

TXn/An if i = 0,

0 if i = 1.

So we conclude that
T 1(Xn/An) = H1(Xn, TXn/An).

Theorem 2.2 (Version in [Kaw92])
Assume that D is pro-representable by (R, ξ), and that the following T 1 lifting property
holds: for any positive integer n and any Xn+1 ∈ D(An+1), the natural homomorphism

T 1(αn) : T
1(Xn+1/An+1)→ T 1(Xn/An)

is surjective for Xn = D(αn)(Xn+1). Then D is unobstructed, i.e., the hull of R is smooth.
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Proof. It suffices to show that D(αn) is surjective for all n. Indeed, according to the proof in
Schlessinger’s criterion, we have R = k[[x1, . . . , xr]]/I, where I ⊆ m2

R and r = dim tD. Since
R ⊆ m2

R, we can define the morphism g2 : R → A1 by xi 7→ ait for any ai ∈ k. Since D(αn)

is surjective for all n, there is a lifting gn : R → An of gn−1 by induction for all n ≥ 3. This
define a morphism g : R → k[[t]] by xi 7→ ait. Suppose that I contains a nonzero power series
f = fd + fd+1 + · · · , where fn is the homogeneous polynomial of degree n, fd 6= 0 and d 6= 0.
Take ai such that fd(a1, . . . , ar) 6= 0, then

g(f) = tdfd(a1, . . . , ar) + td+1fd+1(a1, . . . , ar) + · · · 6= 0

leading a contradiction. Hence, R = k[[x1, . . . , xr]] is smooth.
Consider the following commutative diagram

D(An+1) D(An) T 2 ⊗ (tn+1)

D(Bn) D(Cn) T 2 ⊗ (xny)

D(αn)

D(εn) D(ε′n)

δ1

φ

D(γn) δ2

where εn(t) = x+ y and ε′n(t) = x+ y. By the definition of T 2, we have

ImD(αn) = {Xn ∈ D(An) | δ1(Xn) = 0}, ImD(γn) = {Yn ∈ D(Cn) | δ2(Yn) = 0}.

Notice that ϕ is an isomorphism, since ϕ : tn+1 7→ (n + 1)xny and char k = 0. Hence, to show
that D(αn) is surjective, it suffices to show that D(γn) is surjective.

From the following diagram

Cn An

Bn−1 An−1

Bn

Bn−1 ×An−1 An =

αn−1

βn−1

βnγn

and the pro-representability of D, we have

D(Bn)
D(γn)−−−−→ D(Cn) ' D(Bn−1)×D(An−1) D(An).

By the T 1 lifting property, for any Zn ∈ D(Cn), there exists Yn ∈ D(Bn) whose image in
D(Bn−1) and D(An) coincide with image of Yn, respectively. Hence, D(γn)(Yn) = Zn.

Remark 2.3. In [Kaw97], for the situation of D = DefX , Kawamata replaced the definition
of T 1 space by T 1(Xn/An) := Def(Xn/An, Bn). With this new definition, Theorem 2.2
holds without the assumption that D is pro-representable.

As in the argument above, it suffices to show that the map D(γn) : D(Bn) → D(Cn) is
surjective. For Zn ∈ D(Cn), let

Yn−1 = Zn ×Cn Bn−1, Xn = Zn ×Cn An, Xn−1 = Zn ×Cn An−1.
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Let [Yn] be the equivalent classes in Def(Xn/An, Bn) maps to [Yn−1] ∈ Def(Xn−1/An−1, Bn−1).
Then there exists an isomorphism σ : Yn−1 → Yn−1×Bn Bn compatible with the closed im-
mersion Xn−1, and we get a diagram such that

Zn

Yn−1

Xn

Xn−1

Yn ×Bn Bn−1

Yn ×Bn Cn Yn

θ

?

By Corollary 1.19, there exists an isomorphism Yn ×Bn Cn
∼−−→ Zn compatible with the

closed immersion Xn−1. This show that D(γn)(Yn) = Zn.

2.2 Deformation of smooth Calabi-Yau varieties
Before proving the unobstructness of deformations of Calabi-Yau varieties, we need the following
essential technique. In fact, this is the generalization of Hodge theorem.

Theorem 2.4 ([Del68, Theorem 5.5])
Let f : X → S = SpecAn be a proper and smooth morphism, where An = C[t]/(tn+1).
Then Hq(X,Ωp

X/S) is a free An-module.

Proof. Let A = An. Consider the mA-adic filtration

Ω•,an
X/S ⊇ mAΩ

•,an
X/S ⊇ m2

AΩ
•,an
X/S ⊇ · · · ⊇ mN

AΩ
•,an
X/S = 0

of Ω•,an
X/S, which is biregular, and denote the associated graded object by

gr• Ω
•,an
X/S =

⊕
griΩ

•,an
X/S, where griΩ

•,an
X/S

:= mi
AΩ

•,an
X/S

/
mi+1
A Ω•,an

X/S
.

Notice that
gr0 Ω

•,an
X/S = Ω•,an

X/S

/
mAΩ

•,an
X/S

= Ω•,an
X0/ SpecC

resolves the constant sheaf C, where X0 = Xred is the smooth fiber of SpecC ↪→ SpecA. Then

grmA
A⊗Cgr0 Ω

•,an
X/S =

⊕
n≥0

mn
A/m

n+1
A ⊗A/mA

Ω•,an
X/S

/
mAΩ

•,an
X/S

=
⊕
n≥0

mn
AΩ

•,an
X/S

/
mn+1
A Ω•,an

X/S
= gr• Ω

•,an
X/S.

resolves grmA
A, and hence Ω•,an

X/S resolves the constant sheaf A. Since X is compact, by the
GAGA principle we have

RnΓ(X,Ω•
X/S) ' RnΓ(Xan,Ω•,an

X/S) = Hn(Xan, A) = Hn(Xan,C)⊗C A,

and thus
lengthA RnΓ(Ω•

X/S) = lengthA(A) · dimCH
n(Xan,C). (5)
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Lemma 2.5 ([Gro63, EGA III, Proposition 6.10.5])
Let Y = SpecA be a noetherian affine scheme, and let f : X → Y be a proper morphism.
For any complex F • ∈ D+(Coh(X)) that is flat over Y , there exists a complex L • ∈
D+(Coh(X)), whose terms Li has the form Omi

Y , and a functorial quasi-isomorphism

Rf∗(F • ⊗ Lf ∗G ) L • ⊗L
OY

G •

for any complex G ∈ D+(Qcoh(Y )). Moreover, for arbitrary base change diagram

X ′ X

Y ′ Y

u′

f ′ f

u

there is a natural quasi-isomorphism

Rf ′
∗(Lu′∗F • ⊗L

OX′ Lf ′∗G ) u∗L • ⊗L
OY

G •.

for any G • ∈ D−(Qcoh(Y ′)).

Since f is smooth, the sheaf ΩX/S is locally free on X. Applying Lemma 2.5 to the pair
(F •,G •) = (Ωp

X/S,OY ) and the base change morphism u : SpecC→ SpecA, we obtain

Rf∗Ωp
X/S ' L •, Rf ′

∗Ω
p
X0/ SpecC ' Rf ′

∗(u
′∗Ωp

X/S) ' u∗L •.

Therefore
Hq(X,Ωp

X/S) = H0(SpecA,Rqf∗Ωp
X/S) = Γ(SpecA,Hq(L •))

is finite generated A-module, and the natural isomorphism of base change

Hq(X,Ωp
X/S)⊗A C ' Γ(SpecC, Hq(u∗L •)) = Hq(X0,Ω

p
X0
) = Hq(Xred,Ω

p
Xred

).

Lemma 2.6
Let (A,mA) be the noetherian local ring with residue field k. For any finite generated
A-module M , we have the inequality

lengthA(M) ≤ lengthA(A) · dimk(M ⊗A k).

Equality holds if and only if M is free A-module.

Proof. Let d = dimk(M ⊗A k). By Nakayama’s lemma, there exists a surjection f : Ad ↠M .
Then

lengthA(M) = d · lengthA(A) + lengthA(ker f)

and lengthA(ker f) = 0 if and only if ker f = 0.
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By the algebra lemma as above, we have

lengthAHq(X,Ωp
X/S) ≤ lengthA(A) · dimHq(Xred,Ω

p
Xred

) (6)

and the equality holds if and only if Hq(X,Ωp
X/S) is free A-module. Consider Hodge to de

Rham spectral sequence

Ep,q
1 = Hq(X,Ωp

X/S) =⇒ Rp+qΓ(Ω•
X/S).

Since Ep,q
∞ is the subquotient of Ep,q

1 , we deduce that

lengthA RnΓ(Ω•
X/S) =

∑
p+q−n

lengthAEp,q
∞ ≤

∑
p+q=n

lengthAHq(X,Ωp
X/S). (7)

Finally, combining inequalities (5), (6), and (7), we obtain that

lengthA(A) dimCH
n(Xan,C) = lengthA RnΓ(Ω•

X/S)

≤
∑
p+q=n

lengthAHq(X,Ωp
X/S)

≤ lengthA(A)
∑
p+q=n

dimHq(Xred,Ω
p
Xred

) (8)

By Hodge decomposition in analytic setting and the GAGA principle, we have

Hn(Xan,C) '
⊕
p+q=n

Hq(Xan,Ωp,an
Xred

) '
⊕
p+q=n

Hq(X,Ω•
Xred

),

and hence equality holds throughout in (8). It follows that each

Hq(X,Ωp
X/S) = Γ(SpecA,Rqf∗Ωp

X/S)

is a free A-module.

Theorem 2.7
Let X be a smooth projective variety over C. If ωX ' OX , then the flat deformations of
X are unobstructed.

Proof. By Remark 2.3, it suffices to show that

Def(Xn+1/An+1, Bn+1) −→ Def(Xn/An, Bn)

is surjective for all positive integer n and Xn = D(αn)(Xn+1). By Example 2.1, the problem
becomes to show that

H1(Xn+1, TXn+1/An+1) −→ H1(Xn, TXn/An). (9)

is surjective.
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Let f : Xn → SpecAn be the deformation of X over An, which is proper by Stack Project.
By Theorem 2.4, it follows that

Hq(Xn,Ω
p
Xn/An

)

is a free An-module of rank hp,qn . By cohomology and base change, we have the isomorphisms

Hq(Xn,Ω
p
Xn/An

)⊗An k Hq(X0,Ω
p
X),

∼

and thus hp,qn = hp,q(X) is independent on n. In particular,

H0(X,ωX) = k =⇒ H0(Xn, ωXn/ SpecAn) = An.

Take a non-trivial section s : OXn → ωXn/An , then s ⊗Xn X is an isomorphism on X. Since
ωXn/An is flat over SpecAn, by Lemma 1.17, s is an isomorphism. From the perfect pairing

Ω1
Xn/An

⊗ Ωd−1
Xn/An

ωXn/An ' OXn ,

we have TXn/An ' Ωd−1
Xn/An

. Now, we may rewrite (9) to

Ah
d−1,1

n+1 Ah
d−1,1

n ,

which is a surjection as desired.
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A FIRST ORDER DEFORMATIONS

A First order deformations
The main reference for Appendix is [Har10].

A.1 The T i Functors
Let A→ B be a homomorphism of rings and let M be a B-module. Choose the set of variables
x = {xi} and a free R-module F such that

0 I R B 0, 0 Q F I 0
j

and let
F0 = 〈j(a)b− j(b)a | a, b ∈ F 〉R ⊆ F.

Define a complex of B-modules, called the cotangent complex

L2 L1 L0
d2 d1

as follows.

• Take L2 = Q/F0, which is a B-module. Indeed, if x ∈ I and a ∈ Q. Write x = j(x′) for
some x′ ∈ F , then

xa = j(x′)a ≡ j(a)x′ = 0 (mod F0).

• Take L1 = F ⊗RB = F/IF , and let d2 : L2 → L1 be the map induced from the inclusion
Q→ F .

• Take L0 = ΩR/A ⊗R B, where ΩR/A is the module of relative Kähler differential. Let d1
be the composition of

L1 I/I2 ΩR/A ⊗R B

x dR/A(x)⊗ 1
.

It is clear that d1d2 = 0, so we defined a complex of B-modules. Notice that L0, L1 are
free B-module, since R is a polynomial ring over A.

• Indeed, the second fundamental exact sequence of Kähler differential

I/I2 ΩR/A ⊗R B ΩB/A 0d

give the exact sequence

L2 L1 L0 ΩB/A 0.
d2 d1 (10)
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Lemma A.1
For any B-module M , define

T i(B/A,M) := H i(HomB(L•,M)),

which is independent of the choice of F and R.

Proof. First, we fixed the polynomial R. If F and F ′ are two choices of free R-modules
mapping onto I, then F ⊕ F ′ gives the third choice. Since F ′ is free, the map j′ : F ′ → I

factors through F , i.e., j′ = jp for some map p : F ′ → F . Replacing each generator e′ of
F ′ ⊆ F ⊕ F ′ by e′ − p(e′), we may assume that the map F ⊕ F ′ → I is just (j, 0). Then
ker(j, 0) = Q ⊕ F ′ and thus (F ⊕ F ′)0 = F0 + IF ′. Let L′

• be the complex obtained from
(F ⊕ F ′, R), then

L′
2 = L2 ⊕ F ′/IF ′, L′

1 = L1 ⊕ (F ′ ⊗R B), L′
0 = L0.

Hence, L′
• is obtained by the direct sum of L• with the free acyclic complex F ′ ⊗R B →

F ′ ⊗R B → 0, which induces same cohomology after taking Hom functor.
Second, it suffices to compare R = A[x] with R′ = A[x, y]. Again, the map A[y] → B can

be factored through A[x] by a homomorphism p : A[y]→ A[x]. Replacing each yi ∈ A[x, y] by
yi−p(yi), we may assume the ring homomorphism A[x, y]→ B maps yi to 0, then it has kernel
IR′ + yR′. Since T i is independent of the choice of F , we may take F ′ = F ⊗R R′ and G be a
free R′-module on the index set of the y variables. Then we have the following diagram

0 Q′ F ′ ⊕G′ IR′ + yR′ 0

0 Q F I 0

and it is clear that

Q′ = QR′ + 〈yia− j(a)ei | a ∈ F 〉R′ + 〈yiej − yjei〉R′ .

Since 〈yia− j(a)ei | a ∈ F 〉R′ + 〈yiej − yjei〉R′′ ⊆ (F ′ ⊕G′)0, we have L′
2 = L2.

On the other hand, L′
1 = L1⊕ (G′⊗R′ B) and L′

0 = L0⊕ (ΩA[y]/A⊗B). Then L′
• is obtained

by the direct sum of L• with the free acyclic complex

G′ ⊗R′ B ΩA[y]/A ⊗ B 0

ei dyi,

and thus induces same cohomology after taking Hom functor.

Remark A.2. The proof also show that L• is a well-defined element in the derived category
of the category of B-modules.
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Theorem A.3
Let A→ B be a homomorphism of rings. Then T i(B/A,−) is covariant, additive functor
from ModB to itself. If

0→M ′ →M →M ′′ → 0

is a short exact sequence of B-modules, then there is a long exact sequence

0 T 0(B/A,M ′) T 0(B/A,M) T 0(B/A,M ′′)

T 1(B/A,M ′) T 1(B/A,M) T 1(B/A,M ′′)

T 2(B/A,M ′) T 2(B/A,M) T 2(B/A,M ′′).

Proof. By construction, T i(B/A,−) is a covariant additive functors. Since the terms L1 and
L0 of the complex L• are free, we get a sequence of complexes

0 HomB(L•,M
′) HomB(L•,M) HomB(L•,M

′′) 0

that is exact except possibly for the map

HomB(L2,M)→ HomB(L2,M
′′)

may not be surjective. This sequence of complexes gives the long exact sequence of cohomology
above.

Theorem A.4
Let A→ B → C be homomorphisms of rings, and let M be a C-module. Then there is a
long exact sequence

0 T 0(C/B,M) T 0(C/A,M) T 0(B/A,M)

T 1(C/B,M) T 1(C/A,M) T 1(B/A,M)

T 2(C/B,M) T 2(C/A,M) T 2(B/A,M).

Proof. Choose

0 I A[x] B 0, 0 Q F I 0
j

0 J B[y] C 0, 0 P G J 0

to calculate T i(B/A,M) and T i(C/B,M). Then A[x, y]→ B[y]→ C is surjective, and denoted
it kernel by K. It induces an exact sequence

0 I[y] K J 0

of A-module. Let F ′ and G′ be free A[x, y]-modules on the same index sets as F and G,
respectively. Choose a lifting of the map G → J to a map G′ → K. From the map F → I,
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we get the natural map F ′ → I[y]. Hence, we get the surjection F ′ ⊕G′ → K, and let S be it
kernel. Now, we can calculate T i(C/A,M) by

0 K A[x, y] C 0, 0 S F ′ ⊕G′ K 0.
j

Now, we have the following diagram

0 Q[y] F ′ I[y] 0

0 S F ′ ⊕G′ K 0

0 P G J 0

which is exact for each horizontal sequence, but not exact for vertical sequence. It induces the
maps of complexes

L•(B/A)⊗B C L•(C/A) L•(C/B).

Indeed, on the degree 0 level we have split exact sequence

ΩA[x]/A ⊗A[x] C ΩA[x,y]/A ⊗A[x,y] C ΩB[y]/B ⊗B[y] C

dxi dxi

dxi, dyj 0, dyj

On the degree 1 level we have split exact sequence

F ⊗A[x] C (F ′ ⊕G′)⊗A[x,y] C G⊗B[y] C

of free C-modules. On the degree 2 level we have

(Q/F0)⊗B C S/(F ′ ⊕G′)0 P/G0. (11)

We claim that S → P is surjective. Indeed, if p ∈ P . Take (f ′, g′) ∈ F ′ ⊕G′ maps to p. Then
the image of (f ′, g′) in K is contained in I[y]. Since F ′ → I[y] is surjective, there exists f̃ ∈ F ′

has same image in K with (f ′, g′). Hence, (f ′ − f̃ , g′) ∈ S maps to p.
To complete the proof, we remain to show the exactness of (11) in the middle. Let s = f + g

be an element of S ⊆ F ′ ⊕G′ such that it image in P is contained in G0. Then the image g of
g′ in G belongs to G0, write g = j(a)b− j(b)a for some a, b ∈ G. Lift a, b to elements a′, b′ in
G′, then j(a′)b′ − j(b′)a′ ∈ S. Let g′′ = g− j(a′)b′ + j(b′)a′, then g′′ ∈ ker(G′ → G) = IG′. Say
g′′ = xh and x = j(x′) for some x ∈ I, h ∈ G′, and x′ ∈ F . Then

xh = j(x′)h ≡ j(h)x′ (mod (F ′ +G′)0).

Therefore,
s ≡ f ′ + g′′ ≡ f ′ + j(h)x′ (mod (F ′ +G′)0)

and f ′ + j(h)x′ ∈ F ′ ∩ S = Q[y].
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Proposition A.5
For any morphism A→ B and M ∈ModB,

T 0(B/A,M) = HomB(ΩB/A,M) = DerA(B,M).

In particular,
T 0(B/A,B) = HomB(ΩB/A, B) = TB/A

is the tangent module of B over A.

Proof. Taking Hom(−,M) to the exact sequence (10), we have the exact sequence

0→ Hom(ΩB/A,M)→ Hom(L0,M)→ Hom(L1,M).

Proposition A.6
If B is a polynomial ring over A, then T i(B/A,M) = 0 for i = 1, 2 and for all M .

Proof. We may take R = B and F = 0 in our construction. Hence, the cotangent complex
only has L0 term.

Proposition A.7
If A→ B is a surjective ring homomorphism with kernel I, then

T 0(B/A,M) = 0, T 1(B/A,M) = HomB(I/I
2,M)

for any M ∈ MobB. In particular, T 1(B/A,B) = HomB(I/I
2, B) is the normal module

NB/A of SpecB in SpecA.

Proof. In this case, we can take R = A, and thus L0 = 0. Hence, T 0 = 0 for any module M .
Furthermore, the exact sequence

0 Q F I 0
j

tensored with B with get

Q⊗A B F ⊗A B I/I2 0.

Q/F0 F/IF

j

∼

Hence, we have an exact sequence

L2 L1 I/I2 0,

and thus T 1(B/A,M) = HomB(I/I
2,M).
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Corollary A.8
Suppose that A is a local ring and B = A/I, where I is generated by a regular sequence
a1, . . . , ar. Then T 2(B/A,M) = 0 for all M .

Proof. Since the Koszul complex of regular sequence is exact, we conclude that Q = F0.
Hence, L2 = 0 and T 2(B/A,M) = 0 for all M .

Proposition A.9
Suppose that A = k[x1, . . . , xn] and B = A/I. Then for any M , there is an exact sequence

0 T 0(B/k,M) HomA(ΩA/k,M) HomB(I/I
2,M) T 1(B/k,M) 0

and an isomorphism

T 2(B/A,M) T 2(B/k,M).∼

Proof. It follows from the long exact sequence of T i-functors for k → A → B and Proposi-
tion A.5, A.6, and A.7.

Remark A.10. In this section, we have not made any finiteness assumptions on the rings
and modules. It is clear that if A is a noetherian ring, B is a finitely generated A-
algebra, and M is a finitely generated B-module, then T i(B/A,M) are finitely generated
B-modules.

Lemma A.11
The construction of the T i functors is compatible with localization, and thus we may
defined sheaves T i(X/Y,F) for any morphism of schemes f : X → Y and any sheaf F
of OX-modules, such that for any open affine SpecA ⊆ Y and any open affine SpecB ⊆
f−1(SpecA), where F|SpecB = M̃ , the section T i(X/Y,F)(SpecB) = T i(B/A,M).

For the sake of convenience, denote the modules T i(B/A,B) and T i(B/k,B) by T iB/A and
T iB/k (or T iB) if there is no confusion will happen. Furthermore, T 0

B/A will be written the tangent
module TB/A of B over A. Similarly for the sheaves T i(X/Y,OX) and T i(X/k,OX) will write
T iX/Y and T iX/k (or T iX). The sheaf T 0

X will be written the tangent sheaf TX of X.

Proposition A.12 (Base change)
Assume that A is noetherian and B is a finitely generated A-algebra.

(1) Let M ∈ MobB and A → A′ be a flat morphism. Let B′ = B ⊗A A′ and M ′ =

M ⊗B B′. Then T i(B/A,M)⊗A A′ ' T i(B′/A′,M ′) for each i.
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(2) Let A→ A′ be arbitrary ring homomorphism and B is flat over A. Let B′ = B⊗AA′

and M ′ ∈MobB′ . Then T i(B/A,M ′) = T i(B′/A′,M ′) for each i.

A.2 The infinitesimal Lifting Property

Proposition A.13 (Infinitesimal Lifting Property)
Let X be a nonsingular affine scheme of finite type over k, let f : Y → X be a morphism
from an affine scheme Y over k, and let Y ⊆ Y ′ be an infinitesimal thickening of Y . Then
the morphism f lifts to a morphism g : Y ′ → X such that g|Y = f .

Proof. Since Y ′
red = Yred is affine, we also have Y ′ is affine. We may transfer the problem to

algebra setting. Let f : A→ B be the ring homomorphism over k corresponding to f : Y → X,
where B = B′/I with In = 0 for some n. We want to find a homomorphism g : A→ B′ lifting
f .

Consider the sequence B′ = B′/In → B′/In−1 → · · · → B′/I2 → B′/I, it will suffice to lift
one step at time. So we may assume that I2 = 0.

Since X is finite type over k, we may write A = k[x1, . . . , xn]/J . Consider any lifting
h : k[x1, . . . , xn] → B′ of k[x1, . . . , xn] → A → B. Then h induces a map J → I, and thus
induces h : J/J2 → I since I2 = 0.

Embed X ↪→ An
k by P = k[x1, . . . , xn]→ A. Since X is smooth, we obtain an exact sequence

0 J/J2 Ω1
P/k ⊗P A Ω1

A/k 0.

Notice that those modules correspond to locally free sheaves on X, and thus are projective
A-modules. Via the maps h, f , we get a P -module structure on B′, and A-module structures
on B, I. Applying HomA(−, I) will get another exact sequence

0 HomA(Ω
1
A/k, I) HomP (Ω

1
P/k, I) HomA(J/J

2, I) 0.

Let θ ∈ HomP (Ω
1
P/k, I) = Derk(P, I) be an element whose image is h ∈ HomA(J/J

2, I). We
claim that h′ := h− θ : P → B′ is a ring homomorphism lifting of f with h′(J) = 0. The first
assertion follows by the following easy lemma.

Lemma A.14
Let B′ → B be a surjective homomorphism of k-algebras with kernel I is square zero. Let
R→ B be a homomorphism of k-algebras.

(a) If f , g : R → B′ are two liftings of the map R → B to B′, then θ = g − f is a
k-derivation of R to I.

(b) Conversely, if f : R→ B′ is one lifting, and θ : R→ I is a derivation, then g = f + θ

is another homomorphism of R to B′ lifting the given map R→ B.

In other words, if it is nonempty, the set of liftings R→ B to k-algebra homomorphisms of
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R→ B′ is a principal homogeneous space under the Derk(R, I) = HomR(ΩR/k, I) action.

Since h′(J) ⊆ I, we have h′(J2) ⊆ I2 = 0. Then h′ descends to P/J2 → B′, and thus
h′|J/J2 = h − h = 0 by the choice of θ. Hence, h′ descends to the desired homomorphism
g : A→ B′ lifting f .

For the converse statement of Proposition A.13, we only need to check special cases of the
infinitesimal lifting property.

Proposition A.15
Let X be a scheme of finite type over algebraically closed field k. Suppose that for every
morphism f : Y → X finite over k, where Y = SpecR is the spectrum of a local artinian
ring R, and for every infinitesimal thickening Y ⊆ Y ′ with ideal sheaf of square zero, there
is a lifting g : Y ′ → X. Then X is nonsingular.

Proof. It suffices to show that the local ring OX,x is a regular local ring for every closed point
x ∈ X, so the problem is local and can reformulate to the algebra problem. Let (A,m) be
a local k-algebra, essentially of finite type over k with residue field k. Assume that for every
homomorphism f : A→ B, where B is a local artinian k-algebra, and for every thickening

0 I B′ B 0

with I2 = 0, there is a lifting g : A→ B′. Then we want to show that A is a regular local ring.
Let a1, . . . , an ∈ A such that {ai}ni=1 form a basis of m/m2. By the structure theorem of

complete local ring, there is a surjective homomorphism f : P := k[[x1, . . . , xn]] → Â defined
by xi 7→ ai, which induces an isomorphism of P/m2

P → A/m2.
Consider the thickening P/mn+1

P → P/mn
P and start with the map A→ A/m2 ' P/m2

P , we
can lift to the maps A → P/mn

P for every n by assumption, and thus get a map g : Â → P .
Then the morphism P

f−−→ Â
g−−→ P induces an isomorphism on P/m2

P .

Claim. Let (A,m) be a local noetherian k-algebra with residue field k. Let f ∈ Endk A induces
an isomorphism on A/m2, then f is an isomorphism.

subproof. If Im f ⊆ m, then A = Im f +m2 ⊆ m gives a contradiction. Tensoring A/m, we
have

0 ker f/m ker f A/m A/m 0,
f

and thus ker f = 0 by Nakayama’s lemma.
By Claim, g ◦ f is an automorphism, and hence f is injective. This shows that f is an

isomorphism and Â is regular, which implies A is also regular.

Corollary A.16
Let X be a nonsingular affine scheme over k. Let A be a local artinian ring over k, and let
X ′ be a scheme flat over A such that X ′ ×A k is isomorphic to X. Then X ′ is isomorphic
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to the trivial deformation X ×k A of X over A.

Proof. Apply Proposition A.13 to idX : X → X and the infinitesimal thickening i : X → X ′,
there exists a lifting p : X ′ → X such that p ◦ i = idX . This define a map f : X ′ → X ×k A of
flats scheme over A, which induces identity map on closed fiber X. By the following claim, f
is an isomorphism.

Claim. Let A be a local artinian k-algebra. Let f : X1 → X2 be an A-morphism between two
finite type flat scheme over A, which induces an isomorphism of closed fibers f ⊗A k : X1×A k →
X2 ×A k. Then f is an isomorphism.

subproof. Since Xi ×A k → Xi is an isomorphism as the topological spaces, we remain to
show that f induces isomorphism on each stalk of structure sheaf. We may check this locally.
Let f : B2 → B1 be the ring homomorphism corresponding to the open affine neighborhood of
x and f(x) respectively. Let p ∈ SpecB1 corresponding to x and q = f−1(p). Then f induces
a morphism g : (B2)q → (B1)p, which induces an isomorphism g ⊗A A/mA by assumption. By
long exact sequence of Tor, we have coker g = 0. Since Bi are flat over A, we have

0 = TorA1 ((B1)p, A/mA) ker g ⊗A A/mA (B2)q ⊗A A/mA (B1)p ⊗A A/mA 0,

and thus ker g = 0 by Nakayama’s lemma.

Next, we investigate the relation between nonsingulairity and the T i functors.

Theorem A.17
Let X = SpecB be an affine scheme over algebraically closed field k. Then X is nonsingular
if and only if T 1(B/k,M) = 0 for all M ∈ ModB. Furthermore, if X is nonsingular, then
T 2(B/k,M) = 0 for all M .

Proof. Write B as a quotient of a polynomial ring A = k[x1, . . . , xn] over k. Then X is
nonsingular if and only if the conormal sequence

0 I/I2 ΩA/k ⊗A B ΩB/k 0 (12)

is exact and ΩB/k is locally free, i.e., a projective B-module. Since ΩA/k is a free A-module,
we conclude that X is nonsingular if and only if (12) is split exact. From the four term exact
sequence in Proposition A.9

0 T 0(B/k,M) Hom(ΩA/k,M) Hom(I/I2,M) T 1(B/k,M) 0,

T 1(B/k,M) = 0 for all M ∈MobB if and only if the map

Hom(ΩA/k,M) Hom(I/I2,M)

is surjective for all M , which is equivalent to the split exactness by considering M = I/I2.
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Again, by Proposition A.9 we have T 2(B/k,M) = T 2(B/A,M). Since X is smooth, the
localizing ideal Ix at x ∈ X is generated by regular sequence in the regular local ring Ax. By
Corollary A.8, T 2(Bx/Ax,M) = 0 for all M ∈ MobBx . By Lemma A.11, we conclude that
T 2(B/A,M) = 0 for all M ∈MobB.

Theorem A.18
A morphism of finite type f : X → Y of noetherian schemes is smooth if and only if it
is flat, and T 1(X/Y,F) = 0 for all coherent sheaves F ∈ Coh(X). Furthermore, if f is
smooth, then T 2(X/Y,F) = 0 for all F .

Proof. The problem is local, so we may assume that X = SpecB and Y = SpecA are affine
and f is given by a ring homomorphism A→ B.

First suppose B is flat over A and T 1(B/A,M) = 0 for all M ∈ MobB. Let y ∈ Y

corresponding to p ∈ SpecA and let k = k(y) be its residue field. Let A′ = A/p and B′ =

B ⊗A A′ = B/pB, then for any M ∈ MobB′ we obtain T 1(B′/A′,M) = T 1(B/A,M) = 0 by
base change A.12. Write B′ = A′[x1, . . . , xn]/I, then T 1(B′/A′, I/I2) = 0.

Now consider the flat base extension from A′ to k = Frac(A’). By base change A.12, we have

T 1(B′ ⊗A′ k/k, (I/I2)⊗ k) = 0.

Since k is flat over A′, we have B′⊗k = k[x1, . . . , xn]/I and (I/I2)⊗I = I/I
2, where I = I⊗k.

Then the proof of A.17 shows that SpecB′ ⊗ k is nonsingular over k. Hence, the geometric
fibers of f are nonsingular, and thus f is smooth.

Conversely, suppose that B is smooth over A.

Claim. T 1(B/A,B/m) = 0 for all maximal m of B.

subproof. Let m correspond to the point x ∈ SpecB, let f(x) = y, and let k = k(y). Apply
base change on B/m ∈MobB⊗Ak, we obtain

T 1(B/A,B/m)⊗k k = T 1(B ⊗A k/k,B/m)⊗k k = T 1(B ⊗A k/k, (B/m)⊗k k) = 0

since the geometric fibers are nonsingular. Since k → k is faithfully flat, we conclude that
T 1(B/A,B/m) = 0.

Lemma A.19 (Dévissage)
Let B be a noetherian ring, and let F be a semi-exact (that is, F (short exact sequence)
exact in middle) additive functor from finitely generated B-modules to itself. Assume that
F (B/m) = 0 for every maximal ideal m of B. Then F (M) = 0 for all finitely generated
B-modules.

subproof. Let 0 =Mn ⊆ · · · ⊆M1 ⊆M0 =M be a composition series such that Mi/Mi+1 '
B/pi for some pi ∈ SpecB. By semi-exactness, it suffices to prove the case for M = B/p.
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We induct on dim SuppM . If dim SuppM = 0, then M = B/m for some maximal ideal, and
thus F (M) = 0 by hypothesis. For general case, let M = B/p. For any maximal ideal m ⊇ p,
pick an element t ∈ m \ p. Then t is a non-zero divisor for M and M ′ := coker(M t−→ M) has
support of dimension < dim SuppM . By induction hypothesis, F (M)

t−→ F (M) is surjective.
By Nakayama’s lemma, F (M)m = 0. Hence, F (M) = 0.

Since T 1(B/A,−) satisfies the condition in Dévissage lemma, we have T 1(B/A,M) = 0 for
all finitely generated B-modules, and hence for all B-modules, since T i commute with direct
sum. The same argument show also that T 2(B/A,M) = 0 for all M .

Theorem A.20
Let A be a regular local k-algebra with residue field k = k, and B = A/I. Then B is a
local complete intersection in A if and only if T 2(B/k,M) = 0 for all M ∈MobB.

Proof. Since A is regular, we have T 1(A/k,M) = 0 for i = 1, 2 and all M by Theorem A.17.
From nine term exact sequence, we have T 2(B/k,M) = T 2(B/A,M) = 0 by Corollary A.8.

Conversely, suppose that T 2(B/k,M) = 0 for all M . As above, this implies T 2(B/A,M) = 0

for all M . To compute this group, we may take R = A, I = I, and let F map to a minimal set
of generators (a1, . . . , as) of I, with kernel Q. Then the hypothesis T 2(B/A,M) = 0 for all M
implies that

Hom(F/IF,M) ↠ Hom(Q/F0,M)

for all M . In particular for M = Q/F0 and the map d2 : Q/F0 → F/IF , there exists p :

F/IF → Q/F0 such that p ◦ d2 = idQ/F0 . By Nakayama’s lemma, Q ⊆ mAF . Then the
identity map p ◦ f2 sends Q/F0 into mA(Q/F0), and thus Q/F0 = 0 by Nakayama’s lemma.
But Q/F0 actually is the first homology group of the Koszul complex K•(a1, . . . , as) over A,
and the vanishing of this group is equivalent to a1, . . . , as being a regular sequence.

Remark A.21. If we define a relative local complete intersection morphism f : X → Y

be the flat morphism whose geometric fibers are local complete intersection schemes, then
f is relative local complete intersection morphism if and only if T i(X/Y,F) = 0 for all
coherent sheaves F on X.

A.3 Deformations of Rings

Proposition A.22 (local criterion of flatness)
Let A′ → A be a surjective homomorphism of noetherian rings whose kernel J is square
zero. Then an A′-module M ′ is flat over A′ if and only if

(1) M =M ′ ⊗A′ A is flat over A, and

(2) the natural map M ⊗A J →M ′ is injective.
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Proof. Since J2 = 0, we may regard it as A-module and identify M ′ ⊗A′ J with M ⊗A J .
If M ′ is flat over A′, then (1) follows by base extension, and (2) follows by tensoring M ′ with

the exact sequence
0 J A′ A 0.

Conversely, suppose thatM ′ satisfies conditions (1) and (2). It suffices to prove TorA′

1 (M ′, A′/p′) =

0 for every p′ ⊆ A′. Since J is nilpotent, it is contained in p′. Let p = p′/J ∈ SpecA, then we
have the following diagram

0 0

0 J p′ p 0

0 J A′ A 0

A′/p′ A/p

0 0

Tensoring with M ′, we obtain

0 0

TorA′

1 (M ′, A′/p′) TorA1 (M,A/p)

M ⊗A J M ′ ⊗A′ p′ M ⊗A p 0

M ⊗A J M ′ M 0

M ′ ⊗A′ A′/p′ M ⊗A A/p

0 0

By condition (2), the second (and thus also the first) horizontal sequence is exact on the left.
By snake lemma, TorA′

1 (M ′, A′/p′) ' TorA1 (M,A/p) = 0 by condition (1).

We start by considering deformations (see the definition in subsection 1.4) of affine schemes.
Let B be a k-algebra. A deformation of SpecB over the k[ε] is a flat k[ε]-algebra B′, together
with a homomorphism B′ → B inducing an isomorphism B′⊗k[ε] k → B. By Proposition A.22,
the flatness of B′ over k[ε] if and only if the exactness of

0 B B′ B 0.ε (13)
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Here we think of B′ and B on the right as rings, and B on the left as an ideal of B′ with square
zero, which is a B-module. Furthermore, B′ is a k[ε]-algebra and B is a k-algebra. On the other
hand, give an exact sequence (13) as k-algebra, we can recover the k[ε]-algebra structure of B′

via ε : B′ → B
ε−→ B′, which is the unique way compatible with the original exact sequence.

This given a 1-1 correspondence between DefX(k[ε]) and the equivalent class of extensions as
k-algebras of the k-algebra B by the B-module B.

Theorem A.23 (Grothendieck)
Let X be a nonsingular variety over k. Then the deformations of X over the dual numbers
are in natural one-to-one correspondence with the elements of the group H1(X, TX).

Proof. Let X ′ be a deformation of X, and let U = {Ui} be an open affine covering covering of
X. By Corollary A.16, the induced deformation U ′

i of Ui is trivial. Let ϕi : Ui ×k k[ε]
∼−−→ U ′

i ,
then we get an automorphism ψij = ϕ−1

j ϕi of Uij ×k k[ε], which induces identity map on closed
fiber. For any affine subscheme SpecA of Uij, ψij induces an automorphism A ⊗k k[ε] →
A⊗k k[ε], which induces an identity map after modulo the ideal A⊗k (ε). That is, we have the
diagram

0 A A⊗k k[ε] A 0

0 A A⊗k k[ε] A 0

id

ε

ψij id

ε

Since A⊗kk[ε] = A⊕Aε as an A-module, we may describe ψij by ψij(a1+a2ε) = a1+a2ε+δ(a1)ε

for some δ : A→ Aε. To let ψij be an algebra homomorphism, we need

ψij((a1 + a2ε)(a
′
1 + a′2ε)) = ψij(a1a

′
1 + (a1a

′
2 + a′1a2)ε),

that is, δ ∈ Derk(A,A) ' HomA(ΩA/k, A) ' TX(SpecA). This identification is compatible with
localization, so we may glue ψij ←→ θij ∈ H0(Uij, TX). By construction, (θij) ∈ Z1(U , TX).
If we replace the original chosen isomorphisms ϕi : Ui ×k k[ε]

∼−−→ U ′
i by some others ϕ′

i, then
ϕ−1
i ϕi will coming from a section αi ∈ H0(Ui, TX), and the new cocycle θ′ij = θij + αi − αj.

Hence, (θij) ∈ Ȟ1(U , TX) = H1(X, TX) is well-defined.
Reversing the process will get another direction.
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B Obstruction theory

B.1 Obstructions to deformations of schemes
Let X0 be a scheme over k, and let X0 ↪→ X be a deformation of X0 over C ∈ Artk. Suppose
C ′ is another artinian k-algebra, equipped with a surjective map C ′ → C. In this section, we
will assume the kernel J is annihilated by mC′ .

An extension of X over C ′ is a deformation X ′ of X0 over C ′, together with a closed
immersion X ↪→ X ′ inducing an isomorphism X

∼−−→ X ′ ×C′ C. Two such extensions X ′ and
X ′′ are equivalent if there is an isomorphism of deformations X ′ ∼−−→ X ′′ compatible with the
respective closed immersions of X into X ′ and X ′′. Let Def(X/C,C ′) be the set of equivalence
classes of such extensions of X ′ over C ′.

Remark B.1. There is a surjective map

Def(X/C,C ′) Def(C ′ → C)−1(X),

which is not injective in general, since there may exist an automorphism of X ′ that restricts
to the identity on X0 but does not extend to an automorphism of X. This map becomes
bijective if Schlessinger’s condition (H4) holds, see Lemma 1.20.

Theorem B.2
In the situation described above, with the additional structure as follows: let Y0 ⊆ X0 and
Y ⊆ X be closed subschemes such that Y0 = Y ×Ck under the identificationX0

∼−−→ X×Ck.
Fixed an extension X ′ of X over C ′. An (embedding) extension of Y over C ′ in X ′ is
a closed subscheme Y ′ ⊆ X ′, flat over C ′, such that Y ′ ×C′ C = Y . Then the set of such
extension of Y over C ′ in X ′ form a H0(Y0,NY0/X0 ⊗k J)-pseudotorsor.

Proof. First we consider the affine case X = SpecB, X ′ = SpecB′, Y = SpecA, and A = B/I.
Suppose that Y ′ = SpecA′ is given by A′ = B′/I ′. Tensoring the short exact sequence

0 I ′ B′ A′ 0

with the sequence 0→ J → C ′ → C → 0, we will get a diagram

0 0 0

0 J ⊗C I I ′ I 0

0 J ⊗C B B′ B 0

0 J ⊗C A A′ A 0

0 0 0
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By Proposition A.22, the exactness of the bottom two rows is equivalent to the flatness of B′

and A′ over C, respectively. The exactness of the first column follows from the flatness of A
over C. Now we seek to classify the possible A′ (resp. I ′) full in the diagram.

Suppose that I ′ and I ′′ are two choices of I ′ to fill in the diagram. Given x ∈ I, lift it to
x′ ∈ I ′ and x′′ ∈ I ′′. Then x′′ − x′ ∈ B′ maps to 0 in B, and thus x′′ − x′ ∈ J ⊗C B. Denote
its image in J ⊗C A by ϕ(x). Notice that the choices of x′ and x′′ may differ by elements in
J ⊗C I, which maps to 0 in J ⊗C A. So ϕ is well-defined additive map. In fact, it is an B-linear
homomorphism ϕ ∈ HomB(I, J ⊗C A).

Conversely, given I ′ and ϕ ∈ HomB(I, J ⊗C A), we can define another ideal I ′′ solving the
extension problem as follows. I ′′ is the set of x′′ ∈ B′ whose image in B is x ∈ I, and such that
for any lifting x′ ∈ I ′ of x, the image x′′ − x in J ⊗C A is equal to ϕ(x).

If I ′, I ′′, I ′′′ are three choices of solution, and if ϕ1 is defined by I ′, I ′′ as above, ϕ2 defined
by I ′′, I ′′′, and ϕ3 defined by I ′, I ′′, then ϕ3 = ϕ1 + ϕ2. So we conclude that

HomB(I, J ⊗C A)× {deformation of Y over C ′ in X ′} {deformation of Y over C ′ in X ′}

(I ′, ϕ) I ′′

is an proper transitive group action. Since we can’t guarantee the existence, it only a pesudo-
torsor. In this case,

HomB(I, J ⊗C A) = HomB(I, J ⊗k A0).

Since J is a k-vector space, this term becomes to

HomB0(I0, J ⊗k A0) = HomA0(I0 ⊗B0 A0, A0 ⊗k J) = H0(Y0,NY0/X0 ⊗k J).

In general case, the group action H0(Y0,NY0/X0 ⊗k J) on the set of Y ′ can be defined locally
and functorial. So we may glue it to the global action.

We back to the abstract deformation and consider the affine case first. Given a finite
generated k-algebra B0, and a deformation B of B0 over C. We want to describe the set
Def(B/C,C ′) := Def(SpecB/C,C ′).

Theorem B.3
In the situation as beginning.

(a) There is an element δ ∈ T 2(B0/k,B0⊗ J), called the obstruction, with the property
that δ = 0 if and only if an extension B′ of B exists.

(b) If extensions exists, then Def(B/C,C ′) form a T 1(B0/k,B0 ⊗ J)-torsor.

Proof. Take a presentation R = C[x1, . . . , xn] → B with kernel I = 〈f1, . . . , fr〉C . Define a
morphism F := Rr → I by ei 7→ fi, and denoted the kernel by Q. Lift each fi to an element
f ′
i ∈ R′ := C ′[x1, . . . , xn], and define I ′ = 〈f ′

1, . . . , f
′
r〉, B′ = R′/I ′. Now, consider

0 I ′ R′ B′ 0 0 Q′ F ′ I ′ 0.

e′i f ′
i
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Tensoring C over C ′, we have

B′ ⊗C′ C ' coker (I ′ ⊗C′ C → R′ ⊗C′ C) = B.

Tensoring with 0→ J → C ′ → C → 0 over C ′, we get a diagram

0 0

Q′ Q

0 F ⊗C J F ′ F 0

0 R0 ⊗k J R′ R 0

B0 ⊗k J B′ B 0

0 0 0

f ′ f

where we use −⊗C′ J = −⊗C′ k⊗k J and R0 = k[x1, . . . , xn]. By snake lemma, there is a map
δ0 : B0 ⊗k J depending on the lifting f ′ of f . By local criterion of flatness A.22, B′ is flat over
C ′ if and only if δ0 = 0.

Recall that in the definition of cotangent complex, any element in F0 is of the form fjei−fiej ∈
F , and lifts to f ′

je
′
i−f ′

ie
′
j ∈ Q′. So the map δ0 factors through δ1 : Q/F0 → B0⊗kJ . By definition

of T i functor and base change A.12, we get

coker (Hom(F/IF,B0 ⊗k J)→ Hom(Q/F0, B0 ⊗ J)) T 2(B/C,B0 ⊗ J) T 2(B0/k,B0 ⊗k J)

δ1 δ

We claim that δ is independent of all the choices made. If we make a different choice of lifting
f ′′
i of the fi, then f ′

i − f ′′
i define a map from F ′ to R0 ⊗k J , and hence from F/IF → B0 ⊗k J ,

and these go to zero in T 2. Suppose we choose a different polynomial ring R∗ → B. As in the
proof of Lemma A.1, we may reduce to the case R∗ = R[y1, . . . , ys], and yi 7→ 0 ∈ B. Then the
δ∗0(yi) = 0 implies δ = δ∗ in T 2(B0/k,B0 ⊗k J).

If the extension B′/C ′ exists, take a polynomial ring R′ over C ′ maps surjectively to B′.
Consider

0 I ′ R′ B′ 0 0 Q′ F ′ I ′ 0.

(14)
Since B′ and R′ are flat over C ′, we also have I ′ is flat over C ′. Let R = R′⊗C′ C, I = I ′⊗C′ C,
and Q = Q′⊗C′ C. Then (14)⊗C′ C will give a presentation to calculate cotangent complex of
B over C. Since Q′ → Q is surjective, it follows that δ0 = 0, and thus δ = 0.

Conversely, suppose that δ = 0. We claim that for a suitable choose of lifting f ′
i , the induced

map δ0 : Q → B0 ⊗ J is zero. By assumption, the map δ1 ∈ Hom(Q/F0, B0 ⊗ J) lifts to a
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map γ : F/IF → B0 ⊗ J , and defines a map F → B0 ⊗ J . Since F is free, it lifts to a map
F → R0 ⊗k J . Denote the image of ei by gi ∈ R0 ⊗k J . Now take f ′′

i = f ′
i − gi, then the new

δ0 is zero, and thus the new B′ is flat over C ′. This complete the proof of (a).
Suppose one such extension B′

1 exists. Take a presentation 0→ I0 → R0 → B0 → 0 as usual.
Lift the surjection R0 → B0 to a map R→ B, and to a map R′ → B′

1, which compatible with
B′

1 → B → B0. By Nakayama’s lemma, R→ B and R′ → B′
1 are surjective.

For any another extension B′
2 of B, the map R → B lifts to a map R′ → B′

2. Thus,
every abstract deformation is also an embedded deformation X ↪→ An

k . By Theorem B.2, the
embedded deformation is a HomB(I/I

2, B ⊗C J)-torsor. Suppose that we have two embedding
deformation B′

2 and B′
3 are equivalent as abstract extensions of B. Choose an isomorphism

B′
2 ' B′

3 as extension of B over C ′. Then we obtain two maps R′ → B′
2, which can be regard

as the lifting of R′ → R→ B. By Lemma A.14, the differ of this two map is a C ′-derivation of
R′ to B′

2 ⊗C′ J ' B ⊗C J , which can be regard as an element of

HomR′(ΩR′/C′ , B ⊗C J) = HomR(ΩR′/C′ ⊗C′ C,B ⊗C J) = HomR(ΩR/C , B ⊗C J).

Using the exact sequence A.9

HomR(ΩR/C , B ⊗C J) Hom(I/I2, B ⊗C J) T 1(B/C,B ⊗C J) 0,

we observe that the ambiguity of embedding is exactly resolved by the image of the derivations.
We conclude that Def(X/C,C ′) is a torsor under T 1(B/C,B0 ⊗k J) = T 1(B0/k,B0 ⊗k J) by
base change A.12.

Remark B.4. Given an extension B′ of B over C ′, the automorphism group of B′ as an
extension of B over C is naturally isomorphic to the group T 0(B0/k, J ⊗k B0). Indeed,
take k = C ′ and R = B′ in Lemma A.14, we have an isomorphism

DerC′(B′, J ⊗C′ B′) Aut(B′/B) = DeckC′(B′/B)

θ idB′ +θ

∼

where θ1 + θ2 7→ (idB′ +θ1)(idB′ +θ2) = idB′ +θ1 + θ2 since J ⊗C′ B′ is square zero ideal.
Moreover, we have

DerC′(B′, J ⊗C′ B′) = HomB′(ΩB′/C′ , J ⊗C′ B′) = HomB0(ΩB′/C′ ⊗B′ B0, J ⊗k B0)

= HomB0(ΩB0/k, J ⊗k B0) = T 0(B0/k,B0 ⊗k J).

For general case, we recall the notation T iX0
= T i(X0/k,OX0).

Theorem B.5
In the situation as beginning.

(a) There are three successive obstructions for the existence of an extension X ′ of X over
C ′
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• δ1 ∈ H0(X0, T 2
X0
⊗ J) for the existence of local extension.

• δ2 ∈ H1(X0, T 1
X0
⊗ J) for the compatible isomorphism type of local extensions.

• δ3 ∈ H2(X0, T 0
X0
⊗ J) for the obstruction of gluing.

(b) Fixed an extension X ′
1 of X over C ′, there is an exact sequence

0 H1(X0, T 0
X0
⊗ J) Def(X/C,C ′) H0(X0, T 1

X0
⊗ J)

H2(X0, T 0
X0
⊗ J).

(c) The automorphism group of X ′
1 as an extension of X over C ′ is naturally isomorphic

to the group H0(X0, TX0 ⊗ J).

Proof. For each open affine subscheme Ui ⊆ X, by Theorem B.3 (a), there is an obstruction
lying in H0(Ui, T 2

Ui
⊗ J) for the existence of an extension U ′

i of Ui over C ′. Since the definition
of obstruction in Theorem B.3 (a) is compatible with localization, we may glue the data to a
global obstruction δ1 ∈ H0(X0, T 2

X0
⊗ J).

If δ1 = 0, then for each Ui, there exists an extension U ′
i of Ui over C ′. For each Uij = Ui∩Uj,

we have two deformations U ′
i |Uij

and U ′
j|Uij

. By Theorem B.3 (b), their difference gives an
element in H0(Uij, T 1⊗J). The difference of three of these is zero on Uijk, so we get the second
obstruction δ2 ∈ H1(X0, T 1

X0
⊗ J).

If δ2 = 0, then there exists isomorphism ϕij : U
′
i |Uij

∼−−→ U ′
j|Uij

as the extension of Uij over C ′

for each i, j. Then ϕij◦ϕjk◦ϕki|Uijk
gives an automorphism of U ′

i |Uijk
. By Remark B.4, this gives

an element in H0(Uijk, T 0 ⊗ J), and hence glue to the third obstruction δ3 ∈ H2(X0, T ◦
X0
⊗ J).

If δ3 = 0, then we can glue the extensions U ′
i to get a global extension X ′ by gluing lemma.

For (b), fixed an extension X ′
1 of X over C ′. If X ′

2 is another extension, by Theorem B.3, their
difference on each open affine subscheme Ui gives an element of H0(Ui, T 1

X0
⊗ J). These glue to

a global element of H0(X0, T 1
X0
⊗ J). Conversely, a global element of H0(X0, T 1

X0
⊗ J) will give

extensions of Ui that are isomorphic on the intersection Uij, and will there is an obstruction in
H2(X0, T 0

X0
⊗ J) to glue these to a global extension.

Suppose that two extension X ′
2 and X ′

3 give the same element in H0(X0, T 1
X0
⊗ J). Then

there is an isomorphism ϕi : X
′
2|Ui

∼−−→ X ′
3|Ui

as extension of Ui. Then ψij := ϕ−1
j ◦ ϕi is an

automorphism of X ′
2|Uij

, which defines a element in H0(Uij, T 0
X0
⊗ J). These elements agree on

Uijk, so we get an element of H1(X0, T 0
X0
⊗ J). The vanishing of this element is equivalent to

the existence of automorphism θi : X
′
2|Ui
→ X ′

2|Ui
as the extension of Ui such that ψij = θ−1

j θi.
Then ϕi ◦ θi glue to an isomorphism between X ′

2 and X ′
3 as the extension of X. Hence, we get

the desired exact sequence for Def(X/C,C ′).
For (c), the automorphism group of X ′

1|SpecB is naturally isomorphic to

T 0(B0/k,B0 ⊗ J) = Homk(ΩB0/k, B0 ⊗ J) = TB0/k ⊗ J = (T 0
X0
⊗ J)(SpecB).

Hence, the automorphism group of X ′
1 is naturally isomorphic to H0(X0, T

0
X0
⊗J) by gluing.
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Remark B.6. The assumption mJ = 0 is too strong for the discussion in the future. In
fact, in most situations we only assume that J2 = 0. The statements of the theorems above
can be modified accordingly as follows:

(1) In the proof of Theorem B.2, we show that the embedding extension of Y over C ′ in
X ′ form a

HomB(I, J ⊗C A) = HomA(I/I
2, J ⊗C A) = H0(SpecA,NY /X ⊗ f ∗J̃)

pseudotorsor, where f : Y → SpecC is the structure map.

(2) In the proof of Theorem B.3, the obstruction live in

T 2(B/C,B0 ⊗k J) = T 2(B/C,B ⊗C J) = H0(SpecB, T 2(SpecB/ SpecC, f ∗J̃))

and we show that Def(B/C,C ′) form a

T 1(B/C,B ⊗C J) = H0(SpecB, T 1(SpecB/ SpecC, f ∗J̃))

pseudotorsor, where f : SpecB → SpecC is the structure map.

(3) Finally, Theorem B.5 may be reformulated by replacing each cohomology group of
the form Hq(X0, T pX0

⊗ J) with

Hq(X, T p(X/ SpecC, f ∗J̃)),

where f : X → SpecC is the structure map. Or more concisely, we may denote it by
Hq(X, T p(X/C, f ∗J̃)).

Corollary B.7
If X0 is nonsingular, then

(a) There is just one obstruction in H2(X0, TX0 ⊗J) for the existence of an extension X ′

of X over C ′.

(b) If such extension exist, their equivalence classes form a H1(X0, TX0 ⊗ J)-torsor.

Proof. By Theorem A.17, the sheaves T 1
X0

and T 2
X0

are zero. Then the assertion follows from
Theorem B.5.

Definition B.8. An obstruction theory for a functor F : C → Sets is a k-vector space V ,
together with, for every exact sequence 0 → J → C ′ → C → 0 such that mC′J = 0, and for
every u ∈ F (C), an element ϕ(u,C ′) ∈ V ⊗k J such that

(1) ϕ(u,C ′) = 0 if and only if u ∈ ImF (C ′ → C).
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(2) ϕ is functorial in the sense that if

0 J1 C ′
1 C1 0

0 J2 C ′
2 C2 0

is a commutative diagram such that mC′
i
Ji = 0, then we have the following commutative

diagram
F (C ′

1) F (C1) V ⊗k J1

F (C ′
2) F (C2) V ⊗k J2.

Corollary B.9
The deformation of smooth scheme X over k has obstruction theory.

Proof. It follows from Corollary B.7 and take V = H2(X, TX).
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