Kodaira vanishing and Kodaira embedding
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This report mainly follows [2], except for the proof of Lemmas 4 and 5, which
are taken from [1].

1 Kodaira vanishing theorem

An important problem in complex geometry is the computation of the cohomol-
ogy groups of a holomorphic vector bundle. The Hirzebruch—Riemann—Roch
theorem states that for a holomorphic vector bundle over a compact complex
manifold of dimension n,

n

> (-1)/ dim HY (X, E) = / ch(EB)td(X),

=0 X
where ch(FE) is the Chern character of E and td(X) is the Todd class of the
holomorphic tangent bundle of X. There are many vanishing theorems stating
that under certain conditions, the higher cohomology groups vanish. Com-
bined with the Hirzebruch-Riemann-Roch theorem, this allows us to compute
dim H°(X, E).

The Kodaira vanishing theorem is a vanishing theorem for positive line bun-
dles.

Definition 1. A line bundle L on a complex manifold X is said to be positive
if its first Chern class ¢; (L) € H?(X,R) can be represented by a closed positive
real (1,1)-form.

Note that a closed positive real (1,1)-form is the same as a Kéhler form.
Therefore a complex manifold admitting a positive line bundle is Kéahler.

On a Hermitian holomorphic vector bundle (F,h) on a complex manifold
X, there exists a unique connection V, called the Chern connection, such that
V is compatible with the metric and V%! = 9. The curvature R = V o V of
the Chern connection is of type (1,1), i.e. R € AY(X,End(E)).

For a line bundle L, End(L) is trivial, so R may be regarded as a scalar-
valued (1, 1)-form, which is also denoted by €. It can be shown that iﬂ is a
closed real (1, 1)-form representing the first Chern class of L.

Lemma 1. Let L be a line bundle on a compact Kdahler manifold X. Let a be a
closed real (1,1)-form representing c1(L). Then there exists a Hermitian metric
h on L such that 5= = a.



Proof. Fix an arbitrary Hermitian metric hg on L, and denote the curvature of
its Chern connection by €. If h = efhg is another Hermitian metric, where f
is a real-valued function, then the curvature of its Chern connection is given by

Q = d0log(e hy) = DOf + dDlog(hy) = DOf + Qo.

Now « and iQo_both represent ¢;(L), hence o — ﬁQO is a d-exact real
(1,1)-form. By the 00 lemma, there exists a function g such that

009 = a — iQO.
27

Since 00g is real, L
00(g + g) = 00g — 09g = 0.
By the Kéhler identities,

—i0"9(g +9) = [A, 909 + 9)

= A0O(g + g) since O(g + g) is of degree 1
=0.

Thus Re(g) = (g + g) is harmonic. Since X is compact, it is constant, and we
may assume it is 0. Then f = —2mig is real and

20f = —2mia — Q.

Hence h = efhg satisfies

? T =
O

Corollary 2. A line bundle L on a compact Kdhler manifold is positive if
and only if it admits a Hermitian metric whose Chern connection has positive
curvature.

Ezample 1. The standard example of a positive line bundle is Op~(1). Define a
Hermitian metric h on O(1) as follows: On U; = {z; # 0}, z; is a holomorphic
trivializing section of O(1). Define h on U; by

1
h(zi, i) = =55 -
iy~ Z;z:o %2
On U; NUj, we have
P11
zi| Yo Pl 2o ‘%P

Therefore these Hermitian metrics glue to a globally defined Hermitian metric

on O(1).



On U;, the curvature of the Chern connection is given by

) (E)

Thus 5= is the Fubini-Study Kéhler form on P", and hence O(1) is positive.
The fact that O(1) is positive will be used in the proof of the Kodaira
embedding theorem.

Q = 90 log (

Theorem 3 (Kodaira—Akizuki-Nakano vanishing theorem). Let L be a positive
line bundle on a compact Kdhler manifold X of dimension n. Then for p+q > n,

HY(X,0% @ L) = 0.

To prove the theorem, we need a commutation relation generalizing the
Kéhler identities. It is valid on any Hermitian holomorphic vector bundle.

Let (E, h) be a Hermitian holomorphic vector bundle of rank r on a compact
Kéhler manifold (X, g) of dimension n. Denote the induced Hermitian metric
on AP1X ® E by (-, ).

To simplify computations with differential operators on AP9(X, E), we first
prove the existence of a holomorphic local frame for E that is orthonormal up
to O(|z]?).

Lemma 4. Let xg € X, and let z = (21,...,2,) be holomorphic local coordi-
nates centered at xo. There exist a holomorphic local frame {ex}5_, for E and
constants by, such that

h(ex.en) =0+ > bieaziZe + O(|2]%).
g k=1

Proof. First choose an arbitrary holomorphic local frame {g,} for E. By a linear
transformation with constant coefficients, we may assume {gy} is orthonormal
at xg. Thus

h(gxs Gu) = Oxp + Z(aj/\uzj +ajy,z) +O(2]%),
j=1

/ / — A
for constants a;»,, Win such that Winp = jpr-

Set N
A=0=)> ajnzige.

j=1v=1



Then {f,} is a holomorphic frame in a neighborhood of z(, and

h(f)xa f/L) = h(gkvgu) —h | gx, Z Zajlwzjgy

J

—h Zzajkyzjgvygu +O(‘Z|2)

J v

= O+ D (auz + a5, Z) = DTGz — ) ajaz +O0(2)
i i j

= + O(|2)

= Oau+ > (BikanziZk + Vjpanzizn + Vi, Ziz) + 012,
ik

) / " " 77
for some constants bjeau, bjpy ., bixy, such that 07,y =00 .
Now set
n T
/
Ex = f)\ - E E bjk)\uzjzkfw

jk=1v=1

Then {e)} is a holomorphic frame in a neighborhood of z,, and

hlex,en) = h(fr, fu) = b | P DD i zizets
g,k

v

—h Zzbgkx\l/zjzkfwfu +O(|Z|3)
7.k

v

= Oxu+ ) (janziZh + Vjr 22 + BinuZi%)

ik
=Y Viazize = ) izizn + Oz
J,k i,k
= xu+ Y bz + O(|2).
ik

Define a Hermitian inner product on A”4(X, E) by

(0, 8) = /X (a, B)vol,

where vol is the volume form induced by g. Let V be the Chern connection on
E. Let 0* : AP4(X) — AP~14(X) denote the formal adjoint of & with respect
to the inner product induced by g and vol, and let (V19)* : AP4(X E) —
AP=L4(X | F) denote the formal adjoint of V1:* with respect to (-,-). Extend the



Lefschetz operator L and dual Lefschetz operator A to AP4X Q@ F by L = L®id
and A = A ® id. We have the following generalization of the Kéhler identity
[A, 0] = —i0*.

Lemma 5. Let E be a Hermitian holomorphic vector bundle on a compact
Kahler manifold X. Then

(A, 0p] = —i(V19)"

Proof. Fix xy € X. By Lemma 4, there exists a holomorphic local frame {ey}
in a neighborhood U of z( such that

h(ex,en) = Oau+ D birauziz + O(|2]%).
G k=1

Set hy, = h(ex,e,) and let H be the Hermitian matrix H = (hyu)} ;-
Then the Chern connection is given by

ve}\ - ZWV)\ ® €y,
v=1
where (w,) = H19(H). Thus for

a = Za,\ ®ey € APYX, E),

A=1
we have
Va = Z(doo\ ® ey + (=1)PTlay A Vey)
A=1
:Z (dax®e>\+2wy,\/\a>\®eu> .
A=1 v=1
Thus

T s
Vil = Z <3a>\ ® ey +ZwUA A oy ®eu> .

A=1 v=1

To compute the formal adjoint of V9, let 8 = >, By @ €y be a smooth



section of APT14X ® E with compact support in U. We have

(V10a, ) = / (V10 Byvol

U

= Jday®@ex+ Y waaAhaa®e, |,y [,®e, )vol
U
v "

A

:/ Zg(aa)\yﬂp)h)\p + Z Q(Wy)\ /\a)uﬂu)hz/uVOl
W

AV

= /[]Zg(ax,a*(ﬁﬁm + Z g(wux N ax, B)hyvol,
Ap

WA

since 0* is the formal adjoint of . Now write

Zg(ak7a*(mﬂu)) + Z g(wl/)\ A ak?/ﬁﬂ)h’l/;l, =

Ap AV, 1
Zg(ak7ma*ﬁu) + g(OZ)\7 [a*am]ﬂ,u) + Z g(qu A )y, /BH)]’LV“.
Ap AU, 1

Since 0* is a first-order operator, [0*, hy,] is a zeroth-order operator, i.e. a
linear operator. Thus

(e, (0% il Bu) + Y glwin A ax, Bu)huy
A v,

is sesquilinear in « and . Using the Hermitian metric (-,-), we can write it as
(o, PB) for some linear operator P. Then

(740.0) = [ | S atonTin0 ) + (0. P5) | vol

A

— /U <<Z oy ® e,\,za*ﬁu ® eﬂ> + <o¢,Pﬁ>) vol
A Iz

and hence
(vl,O)* _ 8* +P
Note that
[8*,@} :—*ogo*oﬁ—moﬁ*
:7*050}17@0*7@08*
:—*o(éﬁ/\)o*—*oﬁoéo*—moa*

= — x0(Ohy,A) 0 *.



Since hy,, = 6x, + O(|2]2), Oha, = O(|2]). Also, (wyn) = HT1O(H) = O(|z]). It
follows that P = O(|z]).
By the Kéhler identities on AP4(U),

[A,0p] = [A, 0] = —i0* = —i((VE0)* — P).

Thus P is in fact a globally defined linear operator. The above argument shows
that P vanishes at every point. Hence

(A, D] = —i(VH0)".
O

Lemma 6. Let E be a Hermitian holomorphic vector bundle on a compact
Kahler manifold X. Then for every harmonic form a € HP (X, E),
i(RAa, a) <0

and )
i

(ARa, @) > 0.
27

Proof. Recall that the curvature of the Chern connection is of type (1,1). Then
R=VoV
= (V' 4+ 9g) o (V' + 9p)
=V'"0o0dp + 0oV,

since the (2,0)-part must be zero.
We have

i(RAa, @)

i(VH0pAa, a) +i(0p VA, o)
i(OpAa, (VM)*a) +i(VHOAq, dpa)
(OpAa, —i(V?)*a) since a is harmonic
= (OgAa, [A, Or]a) by Lemma 5

= —(0pAa,dpAa) since a is harmonic
<0.

For the second inequality,
i(ARa, a) = i(AV*20pa, a) + i(Adg V! Pa, )
= i(AdrV*°a, a) since a is harmonic
i([A, 0]V Pa, a) +i(0sAV'a, a)
i(—i(V0)*'VH, o) +i(AVHa, ) by Lemma 5

V1, V1) since a is harmonic

o
=

—~

%
o



Proof of Theorem 8. Since L is positive, by Lemma 2 there exists a Hermitian
metric on L such that the real (1,1)-form

w=-"0
2w

is a Kahler form.
Now take w to be the Ké&hler form on X. For a (p,¢)-form « and a local
section s of L, we have

L(a®s):(§QAa)®s:%R(a®s),

where on the right-hand side we view R as a linear operator AP9(X E) —
APtLatl (X E). Thus

)
L= %R
as operators.
Suppose
p+qg>n.

By Lemma 6, for every harmonic form « € HP4(X, L),

;

0<(—

- (27r

where the last equality follows from the commutation relation for L and A (part

of the sl(2) representation). This implies ||a||? = 0, and hence o = 0. Since

every class in H1(X, Q% ® L) = H”9(X, L) can be represented by a harmonic
form, we conclude that

[A’R]a’a> = ([A7L]O¢,Oz) =(n— <p+ Q))Ha||27

HY(X, 0% ® L) =0.
O
Ezample 2. We know that for k > 0, H(P" O(k)) can be identified with

the space Clzo,...,2,]r of homogeneous polynomials of degree k. Using Serre
duality and the fact that Kpr 2 O(—n — 1), we have

H"(P",0(k)) = H'(P",0(-n—1—k)* = Clzo,...,2n]" 14

for k< —n—1.

Using Kodaira vanishing and Serre duality, we can show that H1(P", O(k))
vanishes for all other ¢, k. By example 1, O(1) is positive, and hence for every
k> 1, O(k) is positive. By Theorem 3, HY(P", Kp» ® O(k)) =0 for n+¢ > n,
ie.

HYP", O(k))=0for g >0and k > —n —1.
By Serre duality, for 0 < ¢ <n and k < —n — 1,
HIP", Ok) =2 H"YP",O(—n—1-k))" =0,

since —n — 1 — k > —n — 1. Finally, since a nontrivial line bundle and its dual
cannot both have nonzero global sections,

H(P",0(k)) =0 for k < 0.



A similar proof gives Serre’s vanishing theorem.

Theorem 7 (Serre’s vanishing theorem). Let L be a positive line bundle on a
compact Kdhler manifold X, and let E be a holomorphic vector bundle on X.
Then there exists a constant mq such that for all m > mg and g > 0,

HI(X,E®L™)=0.
Proof. As in the proof of theorem 3, choose a Hermitian metric on L such that
i
=—0
@ o ¢

is a Kahler form, and give X the corresponding Kahler structure. Set
E =FE® K%,

and give E’ an arbitrary Hermitian metric. The Chern connection on E' ® L™
is given by
V=Vg ®idrm +idg @ Vm,

and its curvature is given by
R=Rg ®idpm +idg ® Rpm.

Since Qrm = mfp,

i
—_— R m = Lw
o ” "

on L™-valued forms, where L,, is the Lefschetz operator. Thus on A»4(X, E' ®
rm),

7
2
7

2

[A,R] = ([A,RE/] ®idLm) +m(1dE/ (24 [A,Lw])

)
2

([A, Rpr) @idpm) + m(idp @ (n— (p+ q))idpm),

by the commutation relation for L and A.
Let « € HP4(X,E' ® L™). By Lemma 6,

0< o~
= (1A R) @dim)a,a) + m(n — (0 + )l

(A, Rla, @)

Since [A, Rg/] is a linear operator and X is compact, there exists a constant
C > 0 independent of o and m such that

(A, Rpr] @ idpm)a, @)| < Clalf?,
and hence

05 (g +mn =+ )



Choose mg > % Then for all m > mg and ¢ > 0, (1) forces every harmonic
form in H™?(X, E’ ® L™) to be equal to zero. Thus

HYX,E®L™) 2 HI(X,E'® Kx ® L") = H"(X,E' ® L") = 0.

2 Kodaira embedding theorem

The Kodaira embedding theorem provides a criterion deciding whether a com-
pact Kahler manifold is projective. It also shows that for a line bundle on a
compact Kéahler manifold, positivity is equivalent to ampleness.

Let L be a line bundle on a compact complex manifold X. Let sg,...,sn
be a basis of H°(X, L). Then we have a map ¢, : X\Bs(L) — P defined by

¢r(z) = (so(z) = -2 sn(2)).

For a different choice of basis of H°(X, L), the resulting map differs by a linear
transformation of PY. Therefore, whether ¢; is an embedding is independent
of the choice of basis.

¢, is defined on all of X if and only if Bs(L) = (). Equivalently, for every
x € X, the restriction map H°(X, L) — L(x) is surjective.

¢ is injective, or separates points, if and only if for every pair of distinct
points z1, 72 € X, there exists s € H°(X, L) such that s(z1) # 0 and s(z2) = 0.
Equivalently, for every pair of distinct points x1,2z9 € X, the restriction map
H°(X,L) — L(x1) ® L(x2) is surjective.

Next we determine a criterion for ¢y, to be an immersion, or separates tan-
gents. Let x € X\Bs(L). We can choose a basis sq,...,sy for H°(X, L) such

that so(z) # 0 and s;(x) =0 for 1 <4 < N. Then t;(y) = z;((%,l <i< N are
well-defined functions near z, and ¢y, is locally given by y — (t1(y),...,tn(y)).
Thus d¢r, x is injective if and only if dt; 4, ... ,dt N, span AL X.

Note that sg is a local trivialization section for L. Also, s1,...,sy is a
basis for the the subspace of sections in H%(X, L) vanishing at x, which may be

identified with H%(X, L ® Z(,}). Define

de  HY (X, L ®Z(4y) — L(z) @ ALX
by

S

d.(s) = so(z) @ d(—),.

S0
This is well defined, since a different choice of sy multiplies it by a nonvanishing
function A, and d(53:)s = ﬁd(i)aj for s vanishing at z. Now d¢p,x is
injective if and only if dt; 4, ... ,dtn, span ALX if and only if d, is surjective.

Definition 2. A line bundle L on a compact complex manifold X is said to
be ample if for some positive integer k, the kth tensor power L* defines an
embedding ¢« : X — P,

10



Lemma 8. A compact complexr manifold is projective if and only if it admits
an ample line bundle.

Proof. By definition, a compact complex manifold admitting an ample line bun-
dle is projective.
Conversely, suppose ¢ : X — P is an embedding. Consider the line bundle

L=¢"0(1).

Let zo,...,2zn be homogeneous coordinates on PY. These can be regarded as
sections of O(1), and pull back to s; = ¢*(z;) € H°(X,L), 0 <i < N. Then
the embedding ¢ is given by ¢(x) = (so(x) : - : sy(x)). Note that {s;} is not
necessarily a basis of H(X, L), but it is clear that ¢, is also an embedding.
Thus L is ample. O

Theorem 9 (Kodaira embedding theorem). Let L be a line bundle on a compact
Kahler manifold X. Then L is positive if and only if L is ample.

To prove the theorem, we will use blow-ups to transform points in X into
codimension-1 hypersurfaces. Thus we need to study how positive line bundles
behave under blow-ups. Let X be a compact complex manifold. Let o : XX
be the blow-up of X along a finite number of points x1,...,2;. Denote the
exceptional divisors o~ !({z;}) by E;.

Lemma 10. Let X be a compact complex manifold. Let o : X — X be the
blow-up of X as above. Let L be a positive line bundle on X, and let M be an
arbitrary line bundle on X. For any postive integers ny,...,n;, the line bundle

l
U*(Lk & M) ® O(— anEj)
j=1

on X is positive for sufficiently large k.

Proof. Consider a small coordinate neighborhood U; € X of ;. Let ogn :
O(-1) € C" x P"~! — C" be the projection. By the construction of X,
we may identify U; with an open set in C", and identify U; = o~ '(U;) with
oo (U;). Let m: U; € C" x PP~ — P"! be the second projection. The
fiber of 7*O(—1) over (z,1) € U; is I, and by definition of O(—1), z € I. Thus
(z,1) = z is a section of 7*O(—1). It vanishes along the exceptional divisor E;
with multiplicity one. It follows that on U;, O(E;) = 7*O(—1), and hence

O(—E;) = m*O(1).

By Example 1, the line bundle O(1) on P"~! admits a Hermitian metric with
positive curvature. Pulling back via 7 gives a Hermitian metric on O(—Ej)\ﬁj
whose curvature is semipositive, and strictly positive for tangent directions of
Ej, since m is an isomorphism on FE;. This induces a Hermitian metric on

O(—njEj)\Uj with the same properties.

11



Using a partition of unity, these Hermitian metrics can be glued to a Her-
mitian metric h on O(— Zé‘:1 n;E;) that agrees with h; in a neighborhood of
B

-
Let €2 be the curvature form of the Chern connection of O(—}_, n; E;) with

respect to h. Let 6 = iQ By hypothesis, ¢1(L) can be represented by a
positive form «. Let 8 be a real (1, 1)-form representing c;(M). Then

oc*(ka+p8)+0

represents the first Chern class of o*(LF @ M) ® O(— >_;niEj), and we claim

that it is a positive form on X for sufficiently large k.

By the construction of h, there exists an open set V' C X containing U; F;
such that € is semipositive on V. Since X is compact, ka + [ is a positive
form on X for sufficiently large k. Since o is an isomorphism outside U; E;, the
pullback of a positive form is semipositive on X and strictly positive outside
U;E;. Since X\V is compact, it follows that o*(ka + ) + 6 is positive on
X\ U; E; for sufficiently large k.

Ifx € U;E; and v € T;’OX is nonzero, then

—i[o* (ko + B) + 0](v,0) = —i(ka + B)(do(v), do(v)) — i6(v, D),

where both terms are nonnegative. Since ka + 3 is positive, this will be positive
if do(v) # 0. On the other hand, if do(v) = 0, then v is tangent to some E;.
Since by construction h has strictly positive curvature for tangent directions of
E;, we have

—if(v,v) > 0.

Hence o*(ka + ) + 6 is positive on all of X O

Lemma 11. With the same hypotheses as in Lemma 10, for any postive integers
ni,...,n;, we have

HY(X,0"(LF) @ O(— an

for sufficently large k.
Proof. The canonical bundle of X is given by

l
Ky 20"(Kx)®0(> (n—1)E)).
j=1
We have

l
“(LF) @ O(— an 2Ky @0 (LF@ KY)®O(= (n—1+n,)E;).
Jj=1

12



Applying Lemma 10 to M = K%, the line bundle L' = o*(LF @ K%) ®
O(=2_;(n—1+mny)E;) is positive for sufficiently large k. By Theorem 3,

l
HY(X,o*(L*) @ O(— anEj)) ~ HY (X, Ky ®L') =0.
j=1

O

Proof of Theorem 9. (<) Assume L is ample. Then for some positive integer
k, the complete linear system |L*| defines an embedding ¢ : X < PY. Thus
¢3,0(1) = L*. Since O(1) is positive, so is L¥F. Since ¢1(L*) = ke (L), it
follows that L is positive.

(=) Assume L is positive.

Step 1: For fixed x € X, there exists ko(x) such that for all k& > ko(z), the
restriction map H°(X, LF) — L*(x) is surjective.

Let o : X — X be the blowup of X along x, with exceptional divisor E. We
have a commutative diagram

HY(X,LF) —— LF(z)

| |

HY(X,0*(L*)) —— H°(E,o*(L*) ® Op),

where the vertical maps are given by pullback and the horizontal maps are
given by restriction. Since o maps E to z, H(E,0*(L*) ® Op) = LF(z) ®
H°(E,Op) = L¥(z). Thus the vertical map on the right is an isomorphism.

We claim that « is also an isomorphism. « is clearly injective. If n = 1,
then ¢ is an isomorphism, and clearly « is bijective. Suppose n > 2. Let
s € HO(X,o*(LF)). Since o restricts to an isomorphism X\E = X\{z}, slx\m
is the pullback of a section t € H°(X\{z}, L*). By Hartogs’ theorem, ¢ extends
tot € H°(X, L*). By continuity, the pullback «(#) = s. Hence « is bijective in
this case as well.

Therefore, it suffices to show that H(X,o*(LF)) — HY(E,o*(L¥) ® OF) is
surjective. This is part of the long exact sequence induced by

0— 0" (L*)® O(=E) = o*(L*) = o*(L*) ® O — 0.
By Lemma 11, for sufficiently large &k
HY(X,0*(LF) ® O(-E)) = 0,
and hence HY(X,0*(L¥)) — HO(E,o*(L*) ® Op) is surjective.
Step 2: For fixed 21,2 € X with 21 # xq, there exists ky(z1,22) such that

for all k > ky(z1,72), the restriction map H°(X,LF) — L¥(z,) ® L*(z3) is
surjective.

13



Let 0 : X — X be the blow-up of X along 1,2, with exceptional divisors
FE4, Es. Asin Step 1, we have a commutative diagram

HOX,LF) —— LF(w1) ® LF(22)

! !

HO(X,0"(L¥)) —— H°(Ey,0"(L*) ® Op,) ® H'(Ez, 0" (L) @ Op,),

where the vertical maps are isomorphisms. Thus it suffices to show that the
bottom map is surjective.
The bottom map is induced by the short exact sequence

0— 0" (L*) ® O(=E) — Ey) — o*(L*) = o*(L*) @ Op, 1 &,
By Lemma 11, for sufficiently large k
HY(X,0"(L*) ® O(~E; — E»)) =0,

which proves the surjectivity.

Step 3: For fixed x € X, there exists ko(x) such that for all k& > ko(x),
dy s HO(X, L @ Tj,y) — LF(2) ® AL X is surjective.

Consider the two short exact sequences

0= Tfy = Tgay = ALX =0 2)

and
0— O(-2E) - O(—-FE) - Og(—FE) — 0. (3)
The quotient maps Zy,3 — ALX and O(—E) — Op(—FE) are given by the

differential. Here, we use the isomorphism Op(—E) = N}, %

Since o maps F to x, ¢ pulls back functions vanishing to order k at x to
functions vanishing to order k along E. Thus pullback via o gives a commutative
diagram

O'*I{Qw} — O'*I{Z}

| l

O(—2E) —— O(-E).
This induces a commutative diagram on the quotients

O‘*I{z} E— U*A}EX

O(-E) —— Og(-E).
Tensoring with o*L* then gives a commutative diagram

c*(LF®Iy) —— o (LF(z) @ ALX)

I l

o*(L*) @ O(—E) —— o*(L*) ® Op(—E).

14



Therefore on the level of global sections, we have a commutative diagram

HYX,L*®T;,) —— LF(z)® ALX

l |

HY(X,0*(L* ®I(,))) —— HYX,o*(L*(z) ® ALX))

l l

HO(X,o*(L*) ® O(-E)) —— H%X,0*(L*) ® Op(—E)).

Ignoring the middle row, we can write it as

HYX, LF®T,) —2 LF(z) @ ALX

| | 0

H(X,0*(L*) ® O(—E)) —— H°E,L*(z) ® Op(—E)).

It follows from the definition of d, that the top map is indeed d,.

The vertical map on the left is clearly injective. We may identify s €
HO(X,0*(L*) ® O(—E)) with a section in H°(X,o*(L*)) vanishing along E.
As before, s is the pullback of some ¢ € H°(X, L¥). Since s vanishes along F, t
must vanish at x. Thus the vertical map on the left is bijective.

Recall that

Op(E) = Ny, x = Op(n,y,x)(—1) = Op1,x)(—1).

In fact, the isomorphism is obtained as follows. Let [ € E. Note that do; maps
T,E into T, {z} = 0, and therefore induces a map doi" : Npjxg = ToX. The
fiber of Op (1, x)(—1) over | € E = P(T,X) is . Using the construction of the
blow-up, one can check that dalN is an isomorphism of NE/X,I onto [. Thus

o* gives an isomorphism Op(p, x)(1) = N7, . = Op(—E), which induces an

E/X
isomorphism

ALX = T3X = HO(P(I,.X),0(1)) = H(E, Op(~E)). (5)

In the sequences (2) and (3), the quotient maps are given by the differential.
Thus in (4), the vertical map on the right is given by the pullback of differentials,
hence is obtained by tensoring (5) with the identity map on L*(x). Therefore,
it is an isomorphism.

To show that d, : HO(X, L* @ Z1,y) — L*(x) ® ALX is surjective, it suffices
to show that the bottom map in (4) is surjective. This map is induced by the
short exact sequence

0— " (L*) @ O(-2E) = ¢*(L*) @ O(-=E) = ¢*(L*) ® Og(—E) — 0.
Hence it suffices to show that

HY(X,0"(LF) ® O(-2E)) = 0.
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By Lemma 11, this holds for sufficiently large k.

Step 4: We can find a k independent of the point(s) in X.

Considering the map H°(X, LZZ) — HO(X, L2l+1) given by s — s? shows
that we have a decreasing sequence of compact sets

Bs(L) D Bs(L?) 2 --- 2 Bs(L¥*) D --- .

By Step 1, the sequence has empty intersection. Therefore for some [y, Bs(Lzl) =
0 for all I > 1.

Next, note that if x is not a base point of L?" and L? separates tangents
at z, then 2 separates tangents at x. For, let v @ w € Lgl“(ac)7 where
v,w € L (z), and let w € ALX. There exists s € H*(X, L?') such that s(z) =
v, and there exists t € HO(X, I ® T(zy) such that d,(t) = w ® w. Then
s®te HY(X, 2 ® I(yy), and

de(s®t) =s(z) @d,(t) =v@wWRw.

The set of points S(L*) where L* does not separate tangents is the set of
points where d¢rx is not injective, hence closed. Thus we have a decreasing
sequence of compact sets

lo+1

S 28 2,
which has empty intersection by Step 3. Therefore for some Iy > [y, S (L2l) =0
for all 1 > [4.

Finally, note that if L2 separates z and y, then so does L2"'. For, if
s € H'(X, Lzl) vanishes at one point but not the other, then the same holds for
s? e HO(X,L*™).

By way of contradiction, suppose there is no Iy > [; such that 2" separates
all pairs of distinct points in X. Then for every [ > [, there exist distinct points
x1,y; € X not separated by L. By compactness, a subsequence {(z,;,%,)}
converges to some (z,y) € X x X.

If x # v, then by Step 2, there exists m = m(x,y) such that L?" separates
z and y. Then ¢r2m» maps = and y to distinct points, hence there are open
neighborhoods U of x and V of y such that ¢;2m (U) and ¢2m (V) are disjoint.
For large j, we have z;, € U and y;; € V, hence they are separated by ¢2m.
But if [; > m, this implies they are also separated by qﬁLZz_j , a contradiction.

If 2 = y, then by Step 3, there exists m = m(x) such that L?" separates
tangents at x. Then the differential of ¢;2m is injective at x. Thus ¢rom is
injective in a neighborhood U of x. For large j, we have x;,,y;, € U, which
again leads to a contradiction.

Therefore there exists Iy such that 27 s base-point free, separates tangents,
and separates points. Hence L is ample.

O
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Corollary 12. A compact Kdhler manifold is projective if and only if it admits
a positive line bundle.

We can restate the projectivity criterion using the notion of Hodge metrics.

Definition 3. A Kaihler metric is said to be a Hodge metric if its Kahler class
[w] € H?(X, C) belongs to the image of

H*(X,Z) — H*(X,C).

A Kaéhler manifold is said to be a Hodge manifold if it admits a Hodge metric.
Equivalently, the image of H?(X,Z) — H?(X, C) contains a Kihler class.

Corollary 13. A compact Kdhler manifold is projective if and only if it is a
Hodge manifold.

Proof. (=) Suppose ¢ : X — P¥ is an embedding. From the definition of the
first Chern class using the exponential sequence, it is immediate that ¢; (¢*O(1))
belongs to the image of H?(X,Z) — H?(X,C). Since ¢*O(1) is positive,
c1(¢*O(1)) is a Kéahler class.
(<) Suppose the image of H?(X,Z) — H?(X, C) contains a Kihler class a.
Then
a € Im(H?*(X,Z) — H*(X,C))n H"(X).

By the Lefschetz theorem on (1, 1)-classes, there exists a line bundle L on X
such that ¢;(L) = a. Then L is positive. By Corollary 12, L is projective. [

We now give some applications of the Kodaira embedding theorem.

Definition 4. Let A C C” be a lattice. A Riemann form for A is an alternating
R-bilinear form w : C™ x C™ — R such that

1. w(+,i-) is a positive definite symmetric R-bilinear form, and

2. for all u,v € A, w(u,v) € Z.

Corollary 14. Let A C C" be a lattice. Then the complex torus X = C™/A is
projective if and only if there exists a Riemann form for A.

Proof. An alternating R-bilinear form on C™ descends to a closed real 2-form
on X. This gives a map ¢ : A2(C")* — H?(X,R). We claim that ¢ is an
isomorphism.

Let {ai,...,a2,} be a Z-basis for A. We have real 2-tori T}, = (R/Z)a; &
(R/Z)ar, C X,1<j<k<2n. A direct computation gives

w(aj,ak):/ w.

J

If ¢(w) = 0, i.e. w descends to an exact 2-form, then by Stokes’ theorem, for
all j < k, w(a;,ar) = 0. Since {ai,...,a2,} is an R-basis for C", this implies
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w = 0. Thus ¢ is injective. Since dimg A?(C")* = dimg H*(X,R) = (%), ¢ is
an isomorphism.

Now we prove the corollary.

(<) Assume that there exists a Riemann form w for A. Condition 1 in
Definition 4 implies that w descends to a Ké&hler form on X. Condition 2
implies that for all j < k,

/ w=wl(a;,ar) € Z.
Tir

J

Thus the restriction of w to T}, belongs to H? (T}, Z). By the Kiinneth formula,

H*(X,Z) = P H*(Tir. Z).
i<k

Hence w € H?(X,Z). By Corollary 13, X is projective.
(=) Assume that X is projective. By Corollary 13, there exists a Kéhler
form @ on X such that [©] € H?(X,Z). Then [©] = ¢(w) for some w € A%(C")*.
To show that w is a Riemann form, we determine the inverse of ¢ explicitly.

Define
1

= wol(X) /xeX(T;d))d:c,

where 7,.(y) = y — « is translation by —z. Since 7, is homotopic to the identity
and @ is closed, for all j < k we have

/ T;(:J:/ @.
Tk Tk

J J

/ w 1 / / o | dz / W
= —_— TI frng s
Ty vol(X) zeX | JT; Tix

J J
and hence w is cohomologous to @. It is clear that w is a translation-invariant
Kahler form on X. Hence w lifts to a Kéahler form on C™, which is in fact a
Riemann form, since [w] € H?(X, Z) implies w(a;,ax) = [, w € Z. O
J

Therefore

Corollary 15. Every compact Kdihler manifold with H*(X,0) = 0 is projective.
Proof. H*(X,0) = 0 implies H*?(X) = H?%(X) = 0. Thus
H*(X,C) = H"'(X). (6)
Let w be a Kéhler form on X. Then [w] is a linear combination

N
W] = > rjlay),

j=1



where {[a;]} is a Z-basis for the free part of H*(X,Z). Since w is real, the r;
are real numbers. Taking harmonic representatives,

N

w = E TjOéj

j=1

as forms, since w is harmonic. Since the [o;] are real classes, the «; are real,
and by (6), they are (1, 1)-forms.

The positivity of w and the compactness of X imply that, if s; are rational
numbers sufficiently close to r;, then Zj sja; is a positive real (1,1)-form.
Multiplying by a common denominator, we get a Kéhler form whose cohomology
class belongs to the image of H%(X,Z). By Corollary 13, X is projective. [

References

[1] Jean-Pierre Demailly. Complex Analytic and Differential Geometry. 2012.

[2] Daniel Huybrechts. Complex Geometry. Universitext. Springer, 2005.

19



