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1 Introduction

The following theorem is due to Kervaire and Milnor’s landmark work on exotic spheres.

Definition 1.1. Let ©,, be the group of manifolds that are homotopy n-spheres, modulo
the h-cobordant relation, with the connected sum as the operator. Denote by bP,11 C
©,, the subgroup consisting of s-parallelizable homotopy n-spheres.

Theorem 1.2 (Kervaire-Milnor). Let 3; and ¥ be homotopy spheres of dimension
4m — 1, m > 1, which bound s-parallelizable manifolds M; and My respectively. Then
Y1 is h-cobordant to s if and only if

o(My) =o(Mp) (mod o),

where

34+ (—1)mtt
Om = —{—(2)22””2(227”1 — 1) numerator(4B,,/m).

Brieskorn has constructed a series of (4m — 1)-dimensional spheres of the form:
Ya={z€C" | 2" +-- 420 =0}N S pn=2m+1.

These spheres bound parallelizable manifolds with different signatures. This provides a
representation for each class of bPy,, and shows that bPy,, is a cyclic group of order o,, /8.
The construction proceeds in two steps. First, we verify that >, is a topological sphere
under certain conditions and identify it as the boundary of a parallelizable manifold.
Second, we compute the signature of the bounding manifold.

2 Some Setup

Let n > 2 be an integer, a = (ay,...,a,) be a n-tuple of integers with a; > 1 for all i.
We introduce the following notations.

(1) f(z) = 27"+ + 20n;
(2) Yo = 2(@1, - ,an) = V(f) N SQHfl;
(3) Eu(t) = {2z € C"| f(2) = t}. In particular, set E, = Z,(1).

Proposition 2.1. The space %, is a smooth closed manifold of dimension 2n — 3.
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Proof. Tt suffices to show that 0 is a regular value of f : §?"~! — C. Consider the
hermitian vector space C" as a euclidean vector space R?"?, defining the euclidean inner
product of two vectors u, v to be the real part

(u, v)Eual = Re(u, v) = Re(u,v).
Then the tangent space of S?"~! can be identified as the orthogonal complement
T.(S* 1) = {z}tBue = {4 € C" | Re(u,z) = 0}.

Along a curve z = p(t) on S?"~ !, we have

df (p(t)) _ (dp/dt, grad f),
dt
where Tf Tf
gradf: (aZl,,aZn>

Under this identification, the differential df : T,5%" 1 — Ty(-)C is taking the hermitian
product with grad f. Notice that 7,52"~! contains a C vector subspace {z}*. Therefore,
if z € ¥, is a critical point, then grad f is a complex multiple of z, i.e.,

grad f = (a2 71, . anZ ) = ¢(21, ..., 2n)

for some ¢ € C. While,
_ a; __ — |
O—Zzl- _C,Zai‘m .
=1 =1
Since z # 0 and ¢ # 0, it leads to a contradiction. O

3 The Milnor Fibration 5?71\ &, over S?
Consider the Milnor map ¢ : S~ 1\ £, — S! defined by

_£G)
7))

The idea is that S?*~1\ ¥, forms a fiber bundle over S'. The closure of each fiber
is a smooth parallelizable manifold with boundary ¥,, and the interior of each fiber is
isomorphic to =Z,.

¢(2)

Theorem 3.1. The space S?"~1\ ¥, is a smooth fiber bundle over S! with the projection
mapping ¢.

Remark 3.2. Milnor has studied such a map for general polynomial f. The theorem
above is an adjustment to Milnor’s fibration theorem which states that for any polyno-

mial f, the map f/|f|: S\ V(f) — S! is a fiber bundle for sufficiently small e. We use
the ideal of the proof of Milnor’s fibration theorem

To prove the theorem, we will use Morse theory.

Lemma 3.3. The critical points of ¢ : $?"~1\ ¥, — S! are precisely those points
z € §2"=1\ ¥, for which the vector i gradlog f(z) is a real multiple of the vector z.
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Proof. Using the local coordinate ¢ for S', we have

i = log(f/|f|) =log f —log|f| = Re(—ilog f).

Along a curve z = p(t), we obtain

df(p(t))/dt = Re (d(—ilog f(p(t)))/dt)
= Re(dp/dt, grad(—ilog f))
= Re(dp/dt, i grad(log f))

As in Proposition 2.1, the tangent space of S?"~!\ 3, can be identified as
T.(8% 1\ 8,) = {z}1Fe = {u € C" | Re(u,z) =0} .

Under this identification, the differential d¢ : T,(S**~ 1\ %,) — T¢(Z)Sl is just taking
the euclidean inner product with ¢ gradlog f. Therefore, we conclude that z is a critical
point if and only if ¢ grad log f is a real multiple of the vector z, as desired. O

Proof of Theorem 3.1. Applying Morse theory to the pre-image of [# — ,0 + ¢], it then
suffices to show that ¢ has no critical points. Assume for the sake of correctness that
there is a critical point z € S?*»~1\ ¥,. By Lemma 3.3, we have

1 a"_l) =C<21,...,zn)

— (alz‘”_ R

f(2)

for some ¢ € R. Then
2 a; __ »
c —|z|c = ——2z% =1,
; ai| il ; f(z)

Since the left hand side is real and the right hand side is purely imaginary, it derives a
contradiction. O
For each e’ € S, denote the fiber by
Fy = ¢_1(ei6) = {z e gt \ X, | arg f(z) = 0} )
It is a (2n — 2)-dimensional manifold without boundary.
Proposition 3.4. The fiber Fy is diffeomorphic to =,.

Proof. Consider the map Fy — =, by

( ) (s -
Zly-++9Rn f(z)l/al""’f(z)l/an .
We conclude that all the fiber Fy ~ F{y are diffeomorphic to Z,. ]

Proposition 3.5. The closure of each fiber Fp in S?"~! is a smooth (2n—2)-dimensional
manifold with boundary, the interior of this manifold being Fy and the boundary being
precisely X,.
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Proof. In the proof of Proposition 2.1, we have shown that 0 is a regular value of f. Let
29 be a point of ¥,. Choose a real local coordinate system u1, ..., us,—1 for S 1 in a
neighborhood U of 2y so that

F(2) = u(2) + iua(2)
for all z € U. Note that a point of U belongs to the fiber Fy = ¢~!(1) if and only if
up >0, ug = 0.
Hence the closure F intersects U in the set
up > 0, ug = 0.

Clearly it is a smooth 2n-dimensional manifold, with Fy N U as interior and with ¥, NU
as boundary. The discussion for other fibers Fjy is similar. This completes the proof. [

Figure 1: The Milnor Fiber Fjy

4 The Singular Homology of =,

For t # 0, Z,(t) and Z, are diffeomorphic. On Z,, there is an automorphism wy, namely,
multiplying the kth coordinate by &, = €2™/%  These wy’s generate a group €2, which
is the direct product of cyclic groups:

Q0 = [ [(wr) = I Zay-
k=1

Let J, = Z[Q4] be the group ring of , and let I, be the ideal of J, generated by the
elements 1 4+ wy +--- + wg’“fl for k=1,...,n. Let e be the subset of =, defined by

o).

k=1

e= {(zl,...,zn) € R%,

It is homeomorphic to the standard simplex A, 1

n
Zyk = 1}
k=1

An—l = {(y17 7yn) € RTZLD
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zi/al,...,z%/a"). Let

n
Z;li € Rzo, ZZZ’“ = } = Qge.

k=1

under the map (z1,...,2,) — (

E = {(21,...,zn)€C”

This collection of cells forms a simplicial complex.

Lemma 4.1. The space & is a deformation retract of =, under a retraction compatible
with the group action of €.

Proof. Consider the real hypersurfaces

X = {(7717"-777”) eC"

Si={ne X |n =0},

im—l},

i=1

and construct a deformation retraction from the system of hyperplanes (X, S1,...,Sy)
to (Ap—1,01An-1,...,0,A,_1) as follows: this can be done by combining the deforma-
tion retraction from complex to its real part and the deformation and the deformation
retraction on A,_; symbolized by Figure 2. Explicitly, for any point (1,...,7n,) € R,
Yoy mi =1, deform it linearly to the point c(e1m1,€2m2, . . ., €nln), Where

E; =
1 ,n >0,

and c is the constant such that ¢} e;n; = 1.

Figure 2: Deformation retraction to the simplicial system

Back to the original problem. Divide Z, into a; - - - a, parts

27 T 27y 3
—— <argz < + —orz;=0,,
ag Qak ag 2ak

Xig.ip = {Z €=,

where 0 < i < ag —1. On each X, ;,, consider the change of variables 2z = 17,1/ “ with
the branch iR<g. We obtain a deformation retraction from Xj;, ; to Hw,i’“e. Notice

that if arg z, = —m/2a;, mod 2m/ay, or z, = 0, then z.* is purely imaginary. So z is
mapped to a point 2/ € R" with z; = 0. This shows that the deformations on Xj, ;.
glued to a deformation from =, to &, as desired. O
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Proposition 4.2 (Pham). The singular homology H;(Z,,Z) vanishes for i # 0,n — 1,
and Hy,—1(24,7Z) ~ Ju/1,.

Proof. By Lemma 4.1, it suffices to compute the simplicial homology of &. Observe that

Wiy, - - Wy, act trivially on the simplex 0;, - - - 0;, e. So the annihilator ideal of 0;, - - - 0;, e
is the ideal generated by 1 — w;,, ..., 1 —w;,. So the simplicial complex sequence is
00— Joe = @Jal, dirani0i€} = @Jah ity yean 100 €} = -
1<J
where
Jaily---aaik = a/(l — wik+1, ey 1-— win), {’il, v ,in} = [n]

To ease the notation, we translate the sequence in the language of Cech cohomology. Let
X = [n]U{0} be the topological space with the basis {{0},{0,1},...,{0,n}}. Define a
presheaf of abelian group .% on X by

F({ir, ... iy U{0}) = Jayy o,

We set the restriction map . ({i1,...,ix+1} U {0}) — J({zl, ..., i} U{0}) to be the
quotient map with the sign (—1)%*+1 1. Consider an open covering i = {U;} of X, where
Ui = [n] U {0} \ {i}. To give the desired result, it suffices to show that the sequence

X, 7) S C'WU.F) = = C"(U,.F) =0

is exact and that
kere = Jo(1 —wi) -+ (1 —wy).

We prove by induction on n. The base case n = 2 is can be done by hand. For the
inductive step, let B = U\ {U,,} be an open covering of X, and let 20 = {U; U, }, i # n,
be an open covering of U,,. We have the decomposition

CHY,.F7) = CHB, Z) @ CF 1 (W, Z|u,),
and

[(X,7) — CB, F) — CY B, F) — - — C" NV, F) —— 0
S5

\ \ . \ .
LUy, Z|u,) 5 CYW, Zy,) » - > C"2(W, Fly,) » C" W, F|y,) + 0

We show that two horizontal sequences are exact. Let ¢4 be the presheaf on the topolog-
ical space Y = [n — 1] U {0} defined in the same way.

o Obviously, 4 ~ 7|y, . So the lower sequence is exact by the inductive hypothesis.
e Consider the map f: X — Y by n— 0 and k — k for £ <n. Then
foF =~ @Dan.

The map f: X — Y is open, so let U’ denote the image of U in Y. Then we have

the isomorphisms
0(X,Z)=T(, f.7) ~T(Y,9)%™,

CH(,.F) = CHY, . F) ~ CF(,94)Pn.

Notice that the direct sum of exact sequences is exact. By the inductive hypothesis,
we have the exact sequence

(X, Z)—=C'V,.7)— - = C" YV, F) =0
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From the exactness of the two sequences, we deduces that the original sequence is exact
at CL(U,.F),...,C"(U,.F). The exactness at C°(4,.%) follows from the fact that the
kernel of ¢’ is generated by (1 —wi)--- (1 — wy—1), which maps to the zero element in
CY(0, 7). Finally, we have

kere = ((1-wi) - (I —wn1)) N (1 —wn) = (1 —wi1) -+ (1 = wn)),
We complete the proof. O
Remark 4.3. H,,_1(E,,Z) ~ J,/1I, is a free Z-module of rank [[,_; (ax — 1).
Proposition 4.4. For n > 3, Z, is simply connected, and therefore (n — 2)-connected.

Proof. By Lemma 4.1, it suffices to show that & is simply connected. The vertices
of & are pj = (0,...,&;,0,...,0), where &, is the primitive ajth root of unity and
0 < s < ag. There is exactly one edge connecting pj, pi for i # k and exactly one
2-simplex connecting p;, p3, pt. for distinct i, j, k. Notice that

« an edge path connecting pj, p;f , pz is homotopic to the edge connecting p;, PZJ

1 t1, 12, t2

« an edge path connecting p;'p,' p;*p;? is homotopic to the edge path connecting p;*,
P pZQ for any j # 1, k.

Both operations reduce the number of edges of a path by 1. Therefore, one can convert
every closed edge path in & into a null homotopic path by repeatedly using them. So
&5 and thus also =, is simply connected. ]

Proposition 4.5. The space =, is parallelizable.

Proof. By Lemma 4.1, =, has a homotopy type of a CW-complex of dimension n —1 <
dimZ,. Recall that =, ~ Fy. So it suffices to show that T'Fjy is stably trivial. Note
that ¢ is locally trivial, so the normal bundle of Fy in §%7~! \ Xg, and hence in S2n—1
is trivial. Since the normal bundle of S$2"~1 in C" is trivial, the result follows. O

Corollary 4.6. The space Y, is orientable.

Proof. Since Fy is parallelizable, it is orientable. The space X, is the boundary of Fy,
so it is orientable. O

5 The Singular Homology of >,

In this section, we will prove Theorem 5.5, which is a necessary and sufficient criterion
for ¥, being a topological sphere. Using Smale’s generalized Poincaré conjecture, it
suffices to show that >, is a simply connected homology sphere. Since ¥, is oriented
and compact, we only have to determine the homology up to the middle dimension. By
Poincaré duality and Alexander duality, we have

Hi(4,Z) = H" 37U, Z) ~ H; 1(S*" 1\ 24, Z).

Recall that we have a fibration S2"~1\ ¥, — S. Notice that the action of 7(S') = Z
on H,(S?"~1\ ¥,,7Z) is non-trivial (i.e., it is not a Serre fibration). To compute the
homology of $2"~1\ ¥, we need to adjust the Serre spectral sequence.
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Lemma 5.1 (Wang’s Sequence). Given a fiber bundle ¢ : E — S' over the circle. Using
the covering homotopy theorem, there is an one-parameter family of homeomorphisms

htZFo—)Ft

for 0 < t < 27, where hg is the identity. Denote h = ho,, called the characteristic
homeomorphism. There is associated an exact sequence of the form

o HjE — HiFy " H.Fy 5 H,E — .- .
Proof. The long exact sequence of the pair (E, Fy) gives
o= Hj 1 E — H; 1 (E,Fy) % H;Fy —» HiE — --- .
The covering homotopy {h;} induces a map
Fy x [0,27] - E
which gives rise to an isomorphism
Hj1(Fp x [0,27], Fo x {0} U Fy x {27}) = Hj1(E, Fp).

Since Fy x {27} is a deformation retract of Fy x [0,27]. From the long exact sequence
of the triple (Fy x {27}, Fo x {0} U Fy x {27}, Fy x [0, 27]), we obtain an isomorphism

Hj+1(FQ X [0, 27‘(’], Fy x {O}UFO X {27‘(}) = Hj(FO X {O}UF{) X {27T},F0 X {271'}) ~ H](Fg)
Thus we have to understand the boundary map under the identification

Hj+1(F0 X [0,271'],F0 X {0} U Fp X {271'}) —_ HjFO

| .

Hj(E, Fy) H;Fy

0

Given a cochain [¢| € H;Fy. For the first row of isomorphism, the image in the left hand
side is [Th¢ + T} ¢], where we choose the representation T ¢ + 17 ¢ to be

T é(to, - - - ,tj) = (¢ (t1 +to/g,--- b+ to/j),2mty) € Fy x [0,271’},
T{gb(to,...,tj) = ((Z)(tl —i—to/j,...,tj +t0/j),27T(1 —t(])) € Iy x [0,27T].
The left-hand side vertical isomorphism maps this to [To¢ + Th¢], where
T2¢(t07 cee 7t]) = h27rt0 (d) (tl + tO/jv o 7tj + tO/J)) € E:

T2,¢(t07 <o 7tj) = h2ﬂ'(1—t0) <¢ (tl + tO/jv <o atj + tO/])) € E.

Finally, consider the boundary map on the lower row. The ith face of Ta¢ and The
cancel up. Thus we conclude that the image of [Th¢ + T3] is represented by

0(T29) + 9(139) = 9o(129) + 0o(T3¢) = & — h«o.
We complete the proof. O

Proposition 5.2. The homology group H;(S?"~!\ ¥,,7Z) vanishes for i # 0,1,n —1,n,
and the homology group H,,_1(S?"1\ £,,Z) and H,(S*"~ 1\ ,,Z) vanish if and only
if l —w: J,/I, — Jy/1, is an isomorphism, where w = w; - - - wy,.
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Proof. As in Lemma 5.1, the family h; : Fy — F} is given by

hi(z1,...,2n) = ({le,...,gflzn).

In particular, the characteristic homeomorphism h = ho, : Fy — Fp is the map
h(z1y. .oy 2n) = (W121, .., Wn2n).

Since H;(Fy,Z) ~ H;(Z4,7) vanishes when i # 0,n — 1, the homology H;(S*" 1\ X,,Z)
vanishes when ¢ # 0,1, n—1,n. Under the identification H,,—1 ~ J,/I,, the map id, —h.
is the left multiplication by 1 — w. Therefore, the homology group H, _1(S*"~ !\ £,,7Z)
and H,(S?"1\ X, Z) vanish if and only if 1 —w : J, /I, — J,/I, is an isomorphism. [J

Lemma 5.3. The characteristic polynomial of w is
Aoty = [T t—&--am.
0<ip<ap

Proof. Consider J,/I, as a tensor product

n
Q) Vi
k=1

ap—1

where Vj, is a Z-module generated by 1,wy,...,w;* . Then the automorphism w can
be consider as wy ® -+ ® wy,. Tensor everything with C. For each axth root of unity
xp = &F, 0 < iy < ai, the element

ap—1
Z rpwy, € Ve C
r=0

is an eigenvector of wy with eigenvalue 1:,;1. Therefore,

n akfl

I > wiwreda/la®C

k=1 r=0

is an eigenvector of w with eigenvalue &;° u.. &, All of these form a basis consisting

of eigenvectors of w. We conclude the desired result. O

Proposition 5.4. For n > 4, ¥, is simply connected, hence at least (n — 3)-connected.

Proof. Using Hurewicz’s theorem, it suffices to show that 71(X,) is abelian. First note
that ¥, is a deformation retract of V(f) \ {0}. The inclusion

V(f) N {zn # 0} = V(f) \ {0}
induces the surjection
m(V(f) N{zn # 0}) — m(V(f) \ {0}).

Define ¢ : V(f) N {z, # 0} — C* by z — z,. It is a fiber bundle with fiber Z;, where
a=(ai,...,a,_1). Indeed, we have a trivialization Z5 x U — %~ 1(U) by

(215 201, 8) = ((=s™) Vg o (=@ a1y ) ).
From Proposition 4.4 we obtain an isomorphism
0=m(Za) - m(V(f)N{z, #0}) 5 7 (C*) = 0.
So m1(Xq) = m1(V(f) \ {0}) is abelian, as desired. O
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Let GG, be a simple graph with n vertices, denoted by a1, as,...,a,. Two vertices a;,
a; are adjacent if their greatest common divisor ged(a;, a;) > 1.

Theorem 5.5. For n > 4, the following are equivalent:
(i) X, is a topological sphere.
(ii) Aq(l) =1.
(iii) G, fulfills one of the following conditions

(a) G, has at least two isolated points.

(b) G4 has one isolated point and at least one connected component K with an
odd number of vertices such that (a;,a;) = 2 for a;,a; € K, i # j.

Proof. (i) < (ii): By Proposition 5.4 and Proposition 5.2, ¥, is simply connected and
the homology of 3, with degree less than n — 2 vanishes. For 2n — 3 > 5, using Smale’s
generalized Poincaré conjecture and Poincaré duality, 3, is a topological sphere if and
only if the homology groups Hy,_9(3,Z), Hy,—1(24,7Z) vanish. The equivalence follows
immediately from Proposition 5.2 and Lemma 5.3.

(ii) < (iii): It is known that the minimal polynomial of the root of unity of order d is
the cyclotomic polynomial ®4. By Lemma 5.3, the characteristic A4(t) is a product

Au(t) = [T ®att).
d

where d runs through the orders of Eil .- & possibly several times. It is well-known
that ®,m (1) = p for every prime p and ®4(1) = 1 if d is not a prime power. This implies
that A,(1) = 1 if and only if for every ¢ = (i1,...,4,) with 0 < ix < ag, the order of
? -+~ &M is not a prime power.
Let K be a component of G,. Denote the vertices of K by ay,...,a,. Let

K(K) = #{(i1,...,ir) | 0 <ip < ay, EF---€r =1}

IS8 .
:#{(il,...,ir)‘0<ik<ak, ZZGZ}.

k=1

Claim. For each component K, k(K) = 0 if and only if K is either an isolated point, or
the number of vertices of K is odd and (a;,a;) = 2 for a;,a; € K, i # j.

Proof of Claim. (<) The case that K is an isolated point is trivial. If K satisfies the
second condition, the unless a; = 2 for all 4, we will have x(K) = 0. However, if all
a; = 2, then since | K| is odd, we still have x(K) = 0.

(=) Assume that K satisfies neither two conditions, we show that x(K) > 0. First,
we show that if there is an edge {a;,a;} with (a;,a;) = d > 2, then we can merge two
vertices a;, a; into one a;a;/d and not effecting any conditions (in fact, it becomes even
better). Write a; = a;/d, a; = aj/d. We have
Ty artay

a; ch N da;a;
As x, y runs over all integers, a;-x + aly runs over all integers. The only question is that
we can only have those z, y with a; { z, a; { y. However, if ajz + ajy = n, then at least
one of the pairs

(I7y)’ (‘T - CL;, Y+ CL;), (l’ - 2a;7y + 2(1;)

10
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satisfies this restriction. Therefore, a;w +ay runs through all the residue classes modulo
daja’; when 0 < z < a;, 0 <y < aj.

Now we reduce K to the graph such that the greatest common divisor of any two
vertices is 2. If the number remaining vertices is even, we can simply choose i = ay/2.
Otherwise, let a; be the one that have been merged. Then we can choose i1 = 0 and
i = ay/2 for other k. This complete the proof of Claim.

If there are at least two components K with x(K) = 0, then there is no &' - - & of
prime power order. Conversely, if there are less than two components with x(K) = 0.

o If there are no component K with x(K) = 0. Then we can choose i = (i1,...,in)
such that &' ---&r =

n

o If there is exactly one component K with x(K) = 0.
— If K is an isolated point. WLOG, K = {a;}. Let p be a prime divisor of aj,

then we can choose i = (a1 /p,ia,...,iy) so that 5? .- & has order p.
— If K consists of vertices a,...,a, such that (a;,a;) = 2 for all a;,a; € K,
i # j, and r is odd. Then we can choose i = (a1/2,...,ar/2,4r41,...,0n) SO

that the order of fil o€l iy 2.

Thus, we conclude that (ii) is equivalent to (iii). O

6 The Signature of Fj

Let n be odd and X, be a topological sphere. To determine the differential structure of
Yo = OFy, we have to calculate the signature of F'y. Recall that Fy is diffeomorphic to
Zq. To calculate the intersection pairing, we have to fix the orientation.

o For each simplex Ay = {(to,t1,...,t;) € RF1 | S, = 1}, we fix the standard
orientation to be the one defined by the coordinate system (¢1,...,t,).

o The chart =, N {z; # 0} is connected, so we may assign the orientation of =, to
be the one defined by the coordinate system (Re z2, —Im 29, ...,Re z,, —Im z,,) on
EqoN{z1 # 0}. It is the same as the orientation defined by the coordinate system
(Rez5?, —Im 25?2, ..., Re 2%, — Im 2% ) since z — 2% is a holomorphic function.

Proposition 6.1 (Pham). Under the identification H,,_1(Fy) ~ H,—1(Z,) =~ Jo/I, and
the above orientation of Z,, the intersection pairing is given by

([2], W) = 9(gz(1 —w1)--- (L = wn)), 2,y € Ja,

where g : J, = Z is the additive homomorphism with

(CD)E-DE-2/2 i — 1
g(ofl;l cee wf_;”) = (_1)(n71)(n72)/2+1 , wil A wiln = w;
0 , otherwise.

and y — ¥ is the automorphism of Z[(),] induced by w; — w; L

Proof. Recall that the homology group H,,—1(E,,Z) is generated by (Proposition 4.2)

e=(1—-wi) (1 —wpe.

11
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The simplicial complex e can be parametrized as
yoap >0 -
Qg € R? €k = AL | = 1.
{0 o < 0 Z | | }

We construct € so that it is homotopic and transverse to e. Consider a curve in C\ {0}

v: R — C\ {0}
T = (1) =alr)+iB(7).

e= {(i?all”“%---@i”!%!”“")

such that

(i) The argument arg(+y(7)) is a monotone increasing function of 7;
(ii) a(r) <0 for 7 € (—1,1) and a(r) > 0 for 7 & (—1,1);

(iii) (1) = o0 as 7 — +oo.

p
~(T=-1
+1 (T=-1) ('t:—oo)
1 5 o
T=+
-1 \\(,C=+1) ( CD)

Figure 3: An example of ~
The curve in Figure 3 is an example of . Let € be parametrized and defined as follows:

i)

=1

{T}:{(Tl,..., e R”

Re(z,*) = o),
“\Vim (%) = B(ri) — (Z /:’(n)) o(Tk);

r=1
T T
—— <argz, < — for < —1;

2a; 2ay,

us 3m
— <argzp < — for —1<7<1;
2ap 2ay,

3w o

— <argzp < — for 1 < 7y;

2ak 2ak

We can divide € into 2" parts by the sign of 5(7;) and make it into a simplicial complex.
Notice that if we choose

12
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Then we obtain the above parametrization of the union of simplices of e. By choosing
some suitable homotheties, there is a homotopy from the curve vy to v. So we have a
homotopy from e to é.

Now we calculate the intersection number of e and €. Notice that g = +1 for a > 0.
By considering the sign of > 3(7.), the point of € satisfying z;* € R>¢ must satisfies
B(m) = —1 for all k or 5(1;) = 1 for all k. So the only intersecting simplices are e and
wj, - - - w;, €, which intersect € at

20, z,(fo) = . and 2 : z,(cl) b exp <2m) ,

nl/ak B nl/ak (7%
respectively. At the point 20 ¢ can locally be described as
Im(z,*) =1 — nRe(z*).

So let z, = Re(z.*) be the coordinate system of e, y, = Re(z.*) be the coordinate

system of €. On Z,, where k = 2,...,n. We have
g 0
Oz ORe(2%)
0 0 0

ok ORe(zl*) n@Im(zZ’“)'
By considering the ordered basis

B
dxg’ " Oxy Oy’ Oy

we see that the intersection number is
(_1)(n—2)+~~+1 _ (_1)(n—1)(n—2)/2.
Similarly, at the point z(!), & can locally be described as
Im(z;*) = —1 + nRe(z,*).

So let z = Re(z.*) be the coordinate system of e, y, = Re(z,*) be the coordinate

system of €. On Z,, where k = 2,...,n. We have
o 0
Oryp  ORe(2%)
0 o . 9
dyr  ORe(z*) oTIm(zg*)

we see that the intersection number is

(71)n . (71)(71—2)_5_...-4—1 . (71)n—1 _ (71)(11—1)(11—2)/2—&—1’

where the factor (—1)" is given by the sign of w; - - -wye in e. Therefore, the intersection
indices of wj' - --wire and € is

(_1)(n—1)(n—2)/2 , oﬂf coewin =1,
<w(i1 . w%"e7 é> = (_1)(n_1)(n_2)/2+1 , w’il . wz{l =w;
0 , otherwise.

We conclude that

(ze,ye) = (2Pl —w1) -+ (1 —wn)e, €) = g(xy(l —w1) -+ (1 — wy)),
as desired. ]
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Theorem 6.2. Let n > 5 be odd, ¥, be a topological sphere. Then the diffeomorphism
type of 3, is determined by the signature o(Fg), which is

O-(FO) = O-;_ - U(L_a

where

n .
a;:#{@,”wgezﬂo<%<amo<§:£<u mMQ}
=1

0 < jp < ag, —1< ~ Ik g mod2}
ak
k=1

a;:#{(jl,...,jn)eZ”

Proof. Using the same notation as in Lemma 5.3. Let

n ap—1 n ap—1
v = H E rpwy, and v = H Z YW
k=1 r=0 k=1 r=0

where x;, = 5,1’“ and y = éj’“, be eigenvectors in Hy,_1(Z4,2) ® C = J,/I, ® C. By
Proposition 6.1, the intersection number of v;, v; is

(vi,vj) = g (Vg (1 —w1) -+ (1 — wn))

(T3] (S0 o0)

n ak—1 Ak—1 ap—10k—1
= (H <Z Z TLYpWEW) — Z Z 90163/1&‘17“4rl ))

k=1 \r=0 s=0 r=0 s=0
n ap—1 n ap—1
— (1)t (H S - [1 Y o yk>
k=1 r=0 k=1 r=0
n ap—1 n ap—1
+( 1)(71 1)(n—2)/2+1 (H Z LUT+1 H Z xzylz)
k=1 r=0 k=1 r=0
n ap—1
= (-1 n=2/2 (H L—a;) Z xk?ﬂc)
k=1
ap—1
+ (_1)(n—1)(n—2)/2+1 (H .Tk;(l _ xlzl) Z xzy]:,)
k=1 r=0

n ap—1
— (_1)(n—1)(n—2)/2(1 —xy-- xn) H(l o [L’;l) <Z x2y£> )
k=1 r=0

Observe that (v;,vj) # 0 only if iy + ji = aj for every k. Therefore, v; + vq—; and
i(vj — vq—j;) forms an orthogonal basis of J,/I, ® R, and

(Vj + Va—jj, Vj + Va—j) = (i(Vj — Va—j, 1(Vj — Va—j)) = 2(vj, Va—j)-
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Compute directly, we have

k=1 k=1
= 2a; - an(=1)""V/2Re (H(l - a:k)>
k=1
= 2a;1 - ap(—1) " D/2Re <—2z'eﬂjk/“k sinﬂjk>
1 (-1) kHl o

(1 & ST Tk
:2a1...anRe<—eXp<m(24—;%))]}:[125111ak .

Since sin Z—J’“ is always positive, by discussing the exponential term, the result follows. [
k

7 Brieskorn Exotic Spheres

From the above discussion, we conclude the following.

Example 7.1 (Brieskorn 1966). For integer n = 2m + 1, m > 2, the (4m — 1)-spheres

2(2,...,2,3,6k—1) k=1,...,"
—— 8
2m—1

represent all 0,,/8 classes of differential structure in bPyy,,.

Proof. The graph G, has two isolated point 3 and 6k — 1. By Theorem 5.5, 3, is a
topological sphere which bounds a parallelizable manifold Fy. We use Theorem 6.2 to
compute the signature o(Fjy). Note that j; =--- = j, o =1and j, 1 =1 or 2.

e For j,_1 =1, we have

3

_ ) Jk
=(m 1)+6+6k—1'

Q‘b.
> |

Eod

=1
We see that it lie between m — 1 and m if and only if jp =1,...,k — 1.

e For j,_1 =2, we have

—j 7 J
k k
TE (- 1)+~ .

=1+ 5+ 5 -1

S
B

o
—

We see that it lie between m and m + 1 if and only if j = 1,...,5k — 1.

Therefore, we conclude that

o(Fg) =05 —og = (=1)" " ((k = 1) = 5k) + (=1)"™((5k — 1) — k) = (~1)"8k,

a

as desired. ]
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