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1 Introduction
The following theorem is due to Kervaire and Milnor’s landmark work on exotic spheres.

Definition 1.1. Let Θn be the group of manifolds that are homotopy n-spheres, modulo
the h-cobordant relation, with the connected sum as the operator. Denote by bPn+1 ⊂
Θn the subgroup consisting of s-parallelizable homotopy n-spheres.

Theorem 1.2 (Kervaire-Milnor). Let Σ1 and Σ2 be homotopy spheres of dimension
4m − 1, m > 1, which bound s-parallelizable manifolds M1 and M2 respectively. Then
Σ1 is h-cobordant to Σ2 if and only if

σ(M1) ≡ σ(M2) (mod σm),

where
σm =

3 + (−1)m+1

2
22m−2(22m−1 − 1) numerator(4Bm/m).

Brieskorn has constructed a series of (4m− 1)-dimensional spheres of the form:

Σa = {z ∈ Cn | za11 + · · ·+ zann = 0} ∩ S2n−1, n = 2m+ 1.

These spheres bound parallelizable manifolds with different signatures. This provides a
representation for each class of bP4m and shows that bP4m is a cyclic group of order σm/8.
The construction proceeds in two steps. First, we verify that Σa is a topological sphere
under certain conditions and identify it as the boundary of a parallelizable manifold.
Second, we compute the signature of the bounding manifold.

2 Some Setup
Let n ≥ 2 be an integer, a = (a1, . . . , an) be a n-tuple of integers with ai > 1 for all i.
We introduce the following notations.

(1) f(z) = za11 + · · ·+ zann ;

(2) Σa = Σ(a1, . . . , an) := V (f) ∩ S2n−1;

(3) Ξa(t) := {z ∈ Cn | f(z) = t}. In particular, set Ξa = Ξa(1).

Proposition 2.1. The space Σa is a smooth closed manifold of dimension 2n− 3.
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Proof. It suffices to show that 0 is a regular value of f : S2n−1 → C. Consider the
hermitian vector space Cn as a euclidean vector space R2n, defining the euclidean inner
product of two vectors u, v to be the real part

〈u, v〉Eucl = Re〈u, v〉 = Re〈u, v〉.

Then the tangent space of S2n−1 can be identified as the orthogonal complement

Tz(S
2n−1) = {z}⊥Eucl = {u ∈ Cn | Re〈u, z〉 = 0} .

Along a curve z = p(t) on S2n−1, we have

df(p(t))

dt
= 〈dp/dt, grad f〉,

where
grad f =

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
.

Under this identification, the differential df : TzS
2n−1 → Tf(z)C is taking the hermitian

product with grad f . Notice that TzS2n−1 contains a C vector subspace {z}⊥. Therefore,
if z ∈ Σa is a critical point, then grad f is a complex multiple of z, i.e.,

grad f = (a1z̄
a1−1
1 , . . . , anz̄

an−1) = c(z1, . . . , zn)

for some c ∈ C. While,

0 =
n∑

i=1

zaii = c
n∑

i=1

1

ai
|zi|2.

Since z 6= 0 and c 6= 0, it leads to a contradiction.

3 The Milnor Fibration S2n−1 \ Σa over S1

Consider the Milnor map φ : S2n−1 \ Σa → S1 defined by

φ(z) =
f(z)

|f(z)|
.

The idea is that S2n−1 \ Σa forms a fiber bundle over S1. The closure of each fiber
is a smooth parallelizable manifold with boundary Σa, and the interior of each fiber is
isomorphic to Ξa.

Theorem 3.1. The space S2n−1\Σa is a smooth fiber bundle over S1 with the projection
mapping φ.

Remark 3.2. Milnor has studied such a map for general polynomial f . The theorem
above is an adjustment to Milnor’s fibration theorem which states that for any polyno-
mial f , the map f/|f | : Sε \ V (f) → S1 is a fiber bundle for sufficiently small ε. We use
the ideal of the proof of Milnor’s fibration theorem

To prove the theorem, we will use Morse theory.

Lemma 3.3. The critical points of φ : S2n−1 \ Σa → S1 are precisely those points
z ∈ S2n−1 \ Σa for which the vector i grad log f(z) is a real multiple of the vector z.
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Proof. Using the local coordinate eiθ for S1, we have

iθ = log(f/|f |) = log f − log |f | = Re(−i log f).

Along a curve z = p(t), we obtain

dθ(p(t))/dt = Re (d(−i log f(p(t)))/dt)
= Re〈dp/dt, grad(−i log f)〉
= Re〈dp/dt, i grad(log f)〉

As in Proposition 2.1, the tangent space of S2n−1 \ Σa can be identified as

Tz(S
2n−1 \ Σa) = {z}⊥Eucl = {u ∈ Cn | Re〈u, z〉 = 0} .

Under this identification, the differential dφ : Tz(S
2n−1 \ Σa) → Tϕ(z)S

1 is just taking
the euclidean inner product with i grad log f . Therefore, we conclude that z is a critical
point if and only if i grad log f is a real multiple of the vector z, as desired.

Proof of Theorem 3.1. Applying Morse theory to the pre-image of [θ − ε, θ + ε], it then
suffices to show that φ has no critical points. Assume for the sake of correctness that
there is a critical point z ∈ S2n−1 \ Σa. By Lemma 3.3, we have

i

f(z)

(
a1z

a1−1, . . . , anz
an−1

)
= c(z̄1, . . . , z̄n)

for some c ∈ R. Then

c
n∑

i=1

1

ai
|zi|2 =

n∑
i=1

i

f(z)
zai = i.

Since the left hand side is real and the right hand side is purely imaginary, it derives a
contradiction.

For each eiθ ∈ S1, denote the fiber by

Fθ = φ−1(eiθ) =
{
z ∈ S2n−1 \ Σa | arg f(z) = θ

}
.

It is a (2n− 2)-dimensional manifold without boundary.

Proposition 3.4. The fiber Fθ is diffeomorphic to Ξa.

Proof. Consider the map F0 → Ξa by

(z1, . . . , zn) 7→
(

z1

f(z)1/a1
, . . . ,

zn

f(z)1/an

)
.

We conclude that all the fiber Fθ ' F0 are diffeomorphic to Ξa.

Proposition 3.5. The closure of each fiber Fθ in S2n−1 is a smooth (2n−2)-dimensional
manifold with boundary, the interior of this manifold being Fθ and the boundary being
precisely Σa.
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Proof. In the proof of Proposition 2.1, we have shown that 0 is a regular value of f . Let
z0 be a point of Σa. Choose a real local coordinate system u1, . . . , u2n−1 for S2n−1 in a
neighborhood U of z0 so that

f(z) = u1(z) + iu2(z)

for all z ∈ U . Note that a point of U belongs to the fiber F0 = φ−1(1) if and only if

u1 > 0, u2 = 0.

Hence the closure F 0 intersects U in the set

u1 ≥ 0, u2 = 0.

Clearly it is a smooth 2n-dimensional manifold, with F0 ∩U as interior and with Σa ∩U
as boundary. The discussion for other fibers Fθ is similar. This completes the proof.

Figure 1: The Milnor Fiber Fθ

4 The Singular Homology of Ξa

For t 6= 0, Ξa(t) and Ξa are diffeomorphic. On Ξa, there is an automorphism ωk, namely,
multiplying the kth coordinate by ξk = e2πi/ak . These ωk’s generate a group Ωa, which
is the direct product of cyclic groups:

Ωa =
∏

〈ωk〉 '
n∏

k=1

Zak .

Let Ja = Z[Ωa] be the group ring of Ωa and let Ia be the ideal of Ja generated by the
elements 1 + ωk + · · ·+ ωak−1

k for k = 1, . . . , n. Let e be the subset of Ξa defined by

e =

{
(z1, . . . , zn) ∈ Rn

≥0

∣∣∣∣ n∑
k=1

zakk = 1

}
.

It is homeomorphic to the standard simplex ∆n−1

∆n−1 =

{
(y1, . . . , yn) ∈ Rn

≥0

∣∣∣∣ n∑
k=1

yk = 1

}
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under the map (z1, . . . , zn) 7→ (z
1/a1
1 , . . . , z

1/an
n ). Let

E =

{
(z1, . . . , zn) ∈ Cn

∣∣∣∣ zaii ∈ R≥0,
n∑

k=1

zakk = 1

}
= Ωae.

This collection of cells forms a simplicial complex.
Lemma 4.1. The space E is a deformation retract of Ξa under a retraction compatible
with the group action of Ωa.
Proof. Consider the real hypersurfaces

X =

{
(η1, . . . , ηn) ∈ Cn

∣∣∣∣ n∑
i=1

ηi = 1

}
,

Si = {η ∈ X | ηi = 0} ,

and construct a deformation retraction from the system of hyperplanes (X,S1, . . . , Sn)
to (∆n−1, ∂1∆n−1, . . . , ∂n∆n−1) as follows: this can be done by combining the deforma-
tion retraction from complex to its real part and the deformation and the deformation
retraction on ∆n−1 symbolized by Figure 2. Explicitly, for any point (η1, . . . , ηn) ∈ Rn,∑n

i=1 ηi = 1, deform it linearly to the point c(ε1η1, ε2η2, . . . , εnηn), where

εi =

{
0 , ηi ≤ 0

1 , ηi > 0,

and c is the constant such that c
∑
εiηi = 1.

Figure 2: Deformation retraction to the simplicial system

Back to the original problem. Divide Ξa into a1 · · · an parts

Xi1...ik =

{
z ∈ Ξa

∣∣∣∣ 2πikak
− π

2ak
≤ arg zk <

2πik
ak

+
3π

2ak
or zk = 0

}
,

where 0 ≤ ik ≤ ak − 1. On each Xi1...in , consider the change of variables zk = η
1/ak
k with

the branch iR≤0. We obtain a deformation retraction from Xi1...ik to
∏
ωik
k e. Notice

that if arg zk ≡ −π/2ak mod 2π/ak or zk = 0, then zakk is purely imaginary. So z is
mapped to a point z′ ∈ Rn with z′k = 0. This shows that the deformations on Xi1...in

glued to a deformation from Ξa to E , as desired.
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Proposition 4.2 (Pham). The singular homology Hi(Ξa,Z) vanishes for i 6= 0, n − 1,
and Hn−1(Ξa,Z) ' Ja/Ia.

Proof. By Lemma 4.1, it suffices to compute the simplicial homology of E . Observe that
ωi1 , . . . , ωik act trivially on the simplex ∂i1 · · · ∂ike. So the annihilator ideal of ∂i1 · · · ∂ike
is the ideal generated by 1− ωi1 , . . ., 1− ωik . So the simplicial complex sequence is

0 → Jae →
⊕
i

Ja1,...,âi,...,an{∂ie} →
⊕
i<j

Ja1,...,âi,...,âj ,...,an{∂i∂je} → · · ·

where
Jai1 ,...,aik = Ja/(1− ωik+1

, . . . , 1− ωin), {i1, . . . , in} = [n].

To ease the notation, we translate the sequence in the language of Čech cohomology. Let
X = [n] ∪ {0} be the topological space with the basis {{0}, {0, 1}, . . . , {0, n}}. Define a
presheaf of abelian group F on X by

F ({i1, . . . , ik} ∪ {0}) = Jai1 ,...,aik .

We set the restriction map F ({i1, . . . , ik+1} ∪ {0}) → F ({i1, . . . , ik} ∪ {0}) to be the
quotient map with the sign (−1)ik+1−1. Consider an open covering U = {Ui} of X, where
Ui = [n] ∪ {0} \ {i}. To give the desired result, it suffices to show that the sequence

Γ(X,F )
ε−→ C0(U,F ) → · · · → Cn(U,F ) → 0

is exact and that
ker ε = Ja(1− ω1) · · · (1− ωn).

We prove by induction on n. The base case n = 2 is can be done by hand. For the
inductive step, let V = U\{Un} be an open covering of X, and let W = {Ui∩Un}, i 6= n,
be an open covering of Un. We have the decomposition

Ck(U,F ) = Ck(V,F )⊕ Ck−1(W,F |Un),

and

Γ(X,F ) C0(V,F ) C1(V,F ) · · · Cn−1(V,F ) 0

⊕ ⊕ ⊕ ⊕

Γ(Un,F |Un) C0(W,F |Un) · · · Cn−2(W,F |Un) Cn−1(W,F |Un) 0ε′

We show that two horizontal sequences are exact. Let G be the presheaf on the topolog-
ical space Y = [n− 1] ∪ {0} defined in the same way.

• Obviously, G ' F |Un . So the lower sequence is exact by the inductive hypothesis.

• Consider the map f : X → Y by n 7→ 0 and k 7→ k for k < n. Then

f∗F ' G⊕an .

The map f : X → Y is open, so let V′ denote the image of V in Y . Then we have
the isomorphisms

Γ(X,F ) = Γ(Y, f∗F ) ' Γ(Y,G )⊕an ,

Ck(V,F ) = Ck(V′, f∗F ) ' Ck(V′,G )⊕an .

Notice that the direct sum of exact sequences is exact. By the inductive hypothesis,
we have the exact sequence

Γ(X,F ) → C0(V,F ) → · · · → Cn−1(V,F ) → 0.
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From the exactness of the two sequences, we deduces that the original sequence is exact
at C1(U,F ), . . . , Cn(U,F ). The exactness at C0(U,F ) follows from the fact that the
kernel of ε′ is generated by (1 − ω1) · · · (1 − ωn−1), which maps to the zero element in
C0(V,F ). Finally, we have

ker ε = ((1− ω1) · · · (1− ωn−1)) ∩ (1− ωn) = ((1− ω1) · · · (1− ωn)).

We complete the proof.

Remark 4.3. Hn−1(Ξa,Z) ' Ja/Ia is a free Z-module of rank
∏n

k=1(ak − 1).

Proposition 4.4. For n ≥ 3, Ξa is simply connected, and therefore (n− 2)-connected.

Proof. By Lemma 4.1, it suffices to show that E2 is simply connected. The vertices
of E2 are psk = (0, . . . , ξsk, 0, . . . , 0), where ξk is the primitive akth root of unity and
0 ≤ s < ak. There is exactly one edge connecting pri , psk for i 6= k and exactly one
2-simplex connecting pri , psj , ptk for distinct i, j, k. Notice that

• an edge path connecting pri , psj , ptk is homotopic to the edge connecting pri , ptk;

• an edge path connecting pr1i p
t1
k p

r2
i p

t2
k is homotopic to the edge path connecting pr1i ,

psj , p
t2
k for any j 6= i, k.

Both operations reduce the number of edges of a path by 1. Therefore, one can convert
every closed edge path in E2 into a null homotopic path by repeatedly using them. So
E2 and thus also Ξa is simply connected.

Proposition 4.5. The space Ξa is parallelizable.

Proof. By Lemma 4.1, Ξa has a homotopy type of a CW-complex of dimension n− 1 <
dimΞa. Recall that Ξa ' Fθ. So it suffices to show that TFθ is stably trivial. Note
that φ is locally trivial, so the normal bundle of Fθ in S2n−1 \ Σa, and hence in S2n−1,
is trivial. Since the normal bundle of S2n−1 in Cn is trivial, the result follows.

Corollary 4.6. The space Σa is orientable.

Proof. Since Fθ is parallelizable, it is orientable. The space Σa is the boundary of F θ,
so it is orientable.

5 The Singular Homology of Σa

In this section, we will prove Theorem 5.5, which is a necessary and sufficient criterion
for Σa being a topological sphere. Using Smale’s generalized Poincaré conjecture, it
suffices to show that Σa is a simply connected homology sphere. Since Σa is oriented
and compact, we only have to determine the homology up to the middle dimension. By
Poincaré duality and Alexander duality, we have

Hi(Σa,Z) = H2n−3−i(Σa,Z) ' Hi+1(S
2n−1 \ Σa,Z).

Recall that we have a fibration S2n−1 \ Σa → S1. Notice that the action of π(S1) = Z
on H∗(S

2n−1 \ Σa,Z) is non-trivial (i.e., it is not a Serre fibration). To compute the
homology of S2n−1 \ Σa, we need to adjust the Serre spectral sequence.
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Lemma 5.1 (Wang’s Sequence). Given a fiber bundle φ : E → S1 over the circle. Using
the covering homotopy theorem, there is an one-parameter family of homeomorphisms

ht : F0 → Ft

for 0 ≤ t ≤ 2π, where h0 is the identity. Denote h = h2π, called the characteristic
homeomorphism. There is associated an exact sequence of the form

· · · → Hj+1E → HjF0
id∗ −h∗−−−−−→ HjF0 → HjE → · · · .

Proof. The long exact sequence of the pair (E,F0) gives

· · · → Hj+1E → Hj+1(E,F0)
∂−→ HjF0 → HjE → · · · .

The covering homotopy {ht} induces a map

F0 × [0, 2π] → E

which gives rise to an isomorphism

Hj+1(F0 × [0, 2π], F0 × {0} ∪ F0 × {2π}) ∼→ Hj+1(E,F0).

Since F0 × {2π} is a deformation retract of F0 × [0, 2π]. From the long exact sequence
of the triple (F0 × {2π}, F0 × {0} ∪ F0 × {2π}, F0 × [0, 2π]), we obtain an isomorphism

Hj+1(F0× [0, 2π], F0×{0}∪F0×{2π}) ∼→ Hj(F0×{0}∪F0×{2π}, F0×{2π}) ' Hj(F0).

Thus we have to understand the boundary map under the identification

Hj+1(F0 × [0, 2π], F0 × {0} ∪ F0 × {2π}) HjF0

Hj+1(E,F0) HjF0∂

Given a cochain [φ] ∈ HjF0. For the first row of isomorphism, the image in the left hand
side is [T1φ+ T ′

1φ], where we choose the representation T1φ+ T ′
1φ to be

T1φ(t0, . . . , tj) = (φ (t1 + t0/j, . . . , tj + t0/j) , 2πt0) ∈ F0 × [0, 2π],

T ′
1φ(t0, . . . , tj) = (φ (t1 + t0/j, . . . , tj + t0/j) , 2π(1− t0)) ∈ F0 × [0, 2π].

The left-hand side vertical isomorphism maps this to [T2φ+ T ′
2φ], where

T2φ(t0, . . . , tj) = h2πt0 (φ (t1 + t0/j, . . . , tj + t0/j)) ∈ E,

T ′
2φ(t0, . . . , tj) = h2π(1−t0) (φ (t1 + t0/j, . . . , tj + t0/j)) ∈ E.

Finally, consider the boundary map on the lower row. The ith face of T2φ and T ′
2φ

cancel up. Thus we conclude that the image of [T2φ+ T ′
2φ] is represented by

∂(T2φ) + ∂(T ′
2φ) = ∂0(T2φ) + ∂0(T

′
2φ) = φ− h∗φ.

We complete the proof.

Proposition 5.2. The homology group Hi(S
2n−1 \Σa,Z) vanishes for i 6= 0, 1, n− 1, n,

and the homology group Hn−1(S
2n−1 \Σa,Z) and Hn(S

2n−1 \Σa,Z) vanish if and only
if 1− ω : Ja/Ia → Ja/Ia is an isomorphism, where ω = ω1 · · ·ωn.
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Proof. As in Lemma 5.1, the family ht : F0 → Ft is given by

ht(z1, . . . , zn) = (ξt1z1, . . . , ξ
t
nzn).

In particular, the characteristic homeomorphism h = h2π : F0 → F0 is the map

h(z1, . . . , zn) = (ω1z1, . . . , ωnzn).

Since Hi(F0,Z) ' Hi(Ξa,Z) vanishes when i 6= 0, n− 1, the homology Hi(S
2n−1 \Σa,Z)

vanishes when i 6= 0, 1, n−1, n. Under the identification Hn−1 ' Ja/Ia, the map id∗−h∗
is the left multiplication by 1− ω. Therefore, the homology group Hn−1(S

2n−1 \ Σa,Z)
and Hn(S

2n−1 \Σa,Z) vanish if and only if 1−ω : Ja/Ia → Ja/Ia is an isomorphism.

Lemma 5.3. The characteristic polynomial of ω is

∆a(t) =
∏

0<ik<ak

(t− ξi11 · · · ξinn ).

Proof. Consider Ja/Ia as a tensor product
n⊗

k=1

Vk,

where Vk is a Z-module generated by 1, ωk, . . . , ω
ak−1
k . Then the automorphism ω can

be consider as ω1 ⊗ · · · ⊗ ωn. Tensor everything with C. For each akth root of unity
xk = ξikk , 0 < ik < ak, the element

ak−1∑
r=0

xrkω
r
k ∈ Vk ⊗ C

is an eigenvector of ωk with eigenvalue x−1
k . Therefore,

n∏
k=1

ak−1∑
r=0

xrkω
r
k ∈ Ja/Ia ⊗ C

is an eigenvector of ω with eigenvalue ξ−i1
1 · · · ξ−in

n . All of these form a basis consisting
of eigenvectors of ω. We conclude the desired result.

Proposition 5.4. For n ≥ 4, Σa is simply connected, hence at least (n− 3)-connected.

Proof. Using Hurewicz’s theorem, it suffices to show that π1(Σa) is abelian. First note
that Σa is a deformation retract of V (f) \ {0}. The inclusion

V (f) ∩ {zn 6= 0} ↪→ V (f) \ {0}

induces the surjection

π1(V (f) ∩ {zn 6= 0}) ↠ π1(V (f) \ {0}).

Define ψ : V (f) ∩ {zn 6= 0} → C× by z 7→ zn. It is a fiber bundle with fiber Ξâ, where
â = (a1, . . . , an−1). Indeed, we have a trivialization Ξâ × U → ψ−1(U) by

(z1, . . . , zn−1, s) 7→ ((−san)1/a1z1, . . . , (−san)1/an−1zn−1, s).

From Proposition 4.4 we obtain an isomorphism

0 = π1(Ξâ) → π1(V (f) ∩ {zn 6= 0}) ∼→ π1(C×) → 0.

So π1(Σa) = π1(V (f) \ {0}) is abelian, as desired.
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Let Ga be a simple graph with n vertices, denoted by a1, a2, . . . , an. Two vertices ai,
aj are adjacent if their greatest common divisor gcd(ai, aj) > 1.

Theorem 5.5. For n ≥ 4, the following are equivalent:

(i) Σa is a topological sphere.

(ii) ∆a(1) = 1.

(iii) Ga fulfills one of the following conditions
(a) Ga has at least two isolated points.
(b) Ga has one isolated point and at least one connected component K with an

odd number of vertices such that (ai, aj) = 2 for ai, aj ∈ K, i 6= j.

Proof. (i) ⇔ (ii): By Proposition 5.4 and Proposition 5.2, Σa is simply connected and
the homology of Σa with degree less than n− 2 vanishes. For 2n− 3 ≥ 5, using Smale’s
generalized Poincaré conjecture and Poincaré duality, Σa is a topological sphere if and
only if the homology groups Hn−2(Σa,Z), Hn−1(Σa,Z) vanish. The equivalence follows
immediately from Proposition 5.2 and Lemma 5.3.

(ii) ⇔ (iii): It is known that the minimal polynomial of the root of unity of order d is
the cyclotomic polynomial Φd. By Lemma 5.3, the characteristic ∆a(t) is a product

∆a(t) =
∏
d

Φd(t),

where d runs through the orders of ξi11 · · · ξinn , possibly several times. It is well-known
that Φpm(1) = p for every prime p and Φd(1) = 1 if d is not a prime power. This implies
that ∆a(1) = 1 if and only if for every i = (i1, . . . , in) with 0 < ik < ak, the order of
ξi11 · · · ξinn is not a prime power.

Let K be a component of Ga. Denote the vertices of K by a1, . . . , ar. Let

κ(K) = #{(i1, . . . , ir) | 0 < ik < ak, ξ
i1
1 · · · ξirr = 1}

= #

{
(i1, . . . , ir)

∣∣∣∣ 0 < ik < ak,
r∑

k=1

ik
ak

∈ Z

}
.

Claim. For each component K, κ(K) = 0 if and only if K is either an isolated point, or
the number of vertices of K is odd and (ai, aj) = 2 for ai, aj ∈ K, i 6= j.

Proof of Claim. (⇐) The case that K is an isolated point is trivial. If K satisfies the
second condition, the unless ai = 2 for all i, we will have κ(K) = 0. However, if all
ai = 2, then since |K| is odd, we still have κ(K) = 0.

(⇒) Assume that K satisfies neither two conditions, we show that κ(K) > 0. First,
we show that if there is an edge {ai, aj} with (ai, aj) = d > 2, then we can merge two
vertices ai, aj into one aiaj/d and not effecting any conditions (in fact, it becomes even
better). Write a′i = ai/d, a′j = aj/d. We have

x

ai
+

y

aj
=
a′jx+ a′iy

da′ia
′
j

.

As x, y runs over all integers, a′jx+ a′iy runs over all integers. The only question is that
we can only have those x, y with ai ∤ x, aj ∤ y. However, if a′jx+ a′iy = n, then at least
one of the pairs

(x, y), (x− a′i, y + a′j), (x− 2a′i, y + 2a′j)

10
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satisfies this restriction. Therefore, a′jx+a′iy runs through all the residue classes modulo
da′ia

′
j when 0 < x < ai, 0 < y < aj .

Now we reduce K to the graph such that the greatest common divisor of any two
vertices is 2. If the number remaining vertices is even, we can simply choose ik = ak/2.
Otherwise, let a1 be the one that have been merged. Then we can choose i1 = 0 and
ik = ak/2 for other k. This complete the proof of Claim.

If there are at least two components K with κ(K) = 0, then there is no ξi11 · · · ξinn of
prime power order. Conversely, if there are less than two components with κ(K) = 0.

• If there are no component K with κ(K) = 0. Then we can choose i = (i1, . . . , in)
such that ξi11 · · · ξinn = 1.

• If there is exactly one component K with κ(K) = 0.
– If K is an isolated point. WLOG, K = {a1}. Let p be a prime divisor of a1,

then we can choose i = (a1/p, i2, . . . , in) so that ξi11 · · · ξinn has order p.
– If K consists of vertices a1, . . . , ar such that (ai, aj) = 2 for all ai, aj ∈ K,
i 6= j, and r is odd. Then we can choose i = (a1/2, . . . , ar/2, ir+1, . . . , in) so
that the order of ξi11 · · · ξinn is 2.

Thus, we conclude that (ii) is equivalent to (iii).

6 The Signature of F θ

Let n be odd and Σa be a topological sphere. To determine the differential structure of
Σa = ∂F θ, we have to calculate the signature of F θ. Recall that Fθ is diffeomorphic to
Ξa. To calculate the intersection pairing, we have to fix the orientation.

• For each simplex ∆k = {(t0, t1, . . . , tk) ∈ Rk+1 |
∑
ti = 1}, we fix the standard

orientation to be the one defined by the coordinate system (t1, . . . , tn).

• The chart Ξa ∩ {z1 6= 0} is connected, so we may assign the orientation of Ξa to
be the one defined by the coordinate system (Re z2,− Im z2, . . . ,Re zn,− Im zn) on
Ξa ∩ {z1 6= 0}. It is the same as the orientation defined by the coordinate system
(Re za22 ,− Im za22 , . . . ,Re z

an
n ,− Im zann ) since z 7→ zai is a holomorphic function.

Proposition 6.1 (Pham). Under the identification Hn−1(F θ) ' Hn−1(Ξa) ' Ja/Ia and
the above orientation of Ξa, the intersection pairing is given by

〈[x], [y]〉 = g(ȳx(1− ω1) · · · (1− ωn)), x, y ∈ Ja,

where g : Ja → Z is the additive homomorphism with

g(ωi1
1 · · ·ωin

n ) =


(−1)(n−1)(n−2)/2 , ωi1

1 · · ·ωin
n = 1;

(−1)(n−1)(n−2)/2+1 , ωi1
1 · · ·ωin

n = ω;

0 , otherwise.

and y 7→ ȳ is the automorphism of Z[Ωa] induced by ωi 7→ ω−1
i .

Proof. Recall that the homology group Hn−1(Ξa,Z) is generated by (Proposition 4.2)

e = (1− ω1) · · · (1− ωn)e.

11
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The simplicial complex e can be parametrized as

e =

{
(ξε11 |α1|1/a1 , . . . , ξεnn |αn|1/an)

∣∣∣∣ αk ∈ R, εk =

{
1 , αk > 0

0 , αk < 0
,

n∑
k=1

|αk| = 1.

}

We construct ẽ so that it is homotopic and transverse to e. Consider a curve in C \ {0}

γ : R → C \ {0}
τ 7→ γ(τ) = α(τ) + iβ(τ).

such that

(i) The argument arg(γ(τ)) is a monotone increasing function of τ ;

(ii) α(τ) ≤ 0 for τ ∈ (−1, 1) and α(τ) ≥ 0 for τ 6∈ (−1, 1);

(iii) α(τ) → ∞ as τ → ±∞.

Figure 3: An example of γ

The curve in Figure 3 is an example of γ. Let ẽ be parametrized and defined as follows:

{τ} =

{
(τ1, . . . , τn) ∈ Rn

∣∣∣∣ n∑
i=1

α(τi) = 1

}
;

ẽ


Re(zakk ) = α(τk),

Im(zakk ) = β(τk)−

(
n∑

r=1

β(τr)

)
α(τk);

− π

2ak
≤ arg zk ≤ π

2ak
for τk ≤ −1;

π

2ak
≤ arg zk ≤ 3π

2ak
for − 1 ≤ τk ≤ 1;

3π

2ak
≤ arg zk ≤ 5π

2ak
for 1 ≤ τk;

We can divide ẽ into 2n parts by the sign of β(τi) and make it into a simplicial complex.
Notice that if we choose

γ0(τ) = α0(τ) + iβ0(τ) =


−τ − 1 , τ ≤ −1;

0 ,−1 ≤ τ ≤ 1;

τ − 1 , τ ≥ 1,

12
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Then we obtain the above parametrization of the union of simplices of e. By choosing
some suitable homotheties, there is a homotopy from the curve γ0 to γ. So we have a
homotopy from e to ẽ.

Now we calculate the intersection number of e and ẽ. Notice that β = ±1 for α > 0.
By considering the sign of

∑
β(τr), the point of ẽ satisfying zakk ∈ R≥0 must satisfies

β(τk) = −1 for all k or β(τk) = 1 for all k. So the only intersecting simplices are e and
ωi1 · · ·ωine, which intersect ẽ at

z(0) : z
(0)
k =

1

n1/ak
and z(1) : z

(1)
k =

1

n1/ak
exp

(
2πi

ak

)
,

respectively. At the point z(0), ẽ can locally be described as

Im(zakk ) = 1− nRe(zakk ).

So let xk = Re(zakk ) be the coordinate system of e, yk = Re(zakk ) be the coordinate
system of ẽ. On Ξa, where k = 2, . . . , n. We have

∂

∂xk
=

∂

∂ Re(zakk )

∂

∂yk
=

∂

∂ Re(zakk )
− n

∂

∂ Im(zakk )
.

By considering the ordered basis
∂

∂x2
, . . . ,

∂

∂xn
,
∂

∂y2
, . . . ,

∂

∂yn
,

we see that the intersection number is

(−1)(n−2)+···+1 = (−1)(n−1)(n−2)/2.

Similarly, at the point z(1), ẽ can locally be described as

Im(zakk ) = −1 + nRe(zakk ).

So let xk = Re(zakk ) be the coordinate system of e, yk = Re(zakk ) be the coordinate
system of ẽ. On Ξa, where k = 2, . . . , n. We have

∂

∂xk
=

∂

∂ Re(zakk )

∂

∂yk
=

∂

∂ Re(zakk )
+ n

∂

∂ Im(zakk )
.

we see that the intersection number is

(−1)n · (−1)(n−2)+···+1 · (−1)n−1 = (−1)(n−1)(n−2)/2+1,

where the factor (−1)n is given by the sign of ω1 · · ·ωne in e. Therefore, the intersection
indices of ωi1

1 · · ·ωin
n e and ẽ is

〈ωi1
1 · · ·ωin

n e, ẽ〉 =


(−1)(n−1)(n−2)/2 , ωi1

1 · · ·ωin
n = 1;

(−1)(n−1)(n−2)/2+1 , ωi1
1 · · ·ωin

n = ω;

0 , otherwise.

We conclude that

〈xe, ye〉 = 〈xȳ(1− ω1) · · · (1− ωn)e, ẽ〉 = g(xȳ(1− ω1) · · · (1− ωn)),

as desired.
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Theorem 6.2. Let n ≥ 5 be odd, Σa be a topological sphere. Then the diffeomorphism
type of Σa is determined by the signature σ(F 0), which is

σ(F 0) = σ+a − σ−a ,

where

σ+a = #

{
(j1, . . . , jn) ∈ Zn

∣∣∣∣ 0 < jk < ak, 0 <
n∑

k=1

jk
ak

< 1 mod 2

}
,

σ−a = #

{
(j1, . . . , jn) ∈ Zn

∣∣∣∣ 0 < jk < ak, −1 <

n∑
k=1

jk
ak

< 0 mod 2

}
.

Proof. Using the same notation as in Lemma 5.3. Let

vi =

n∏
k=1

ak−1∑
r=0

xrkω
r
k and vj =

n∏
k=1

ak−1∑
r=0

yrkω
r
k,

where xk = ξikk and yk = ξjkk , be eigenvectors in Hn−1(Ξa,Z) ⊗ C = Ja/Ia ⊗ C. By
Proposition 6.1, the intersection number of vi, vj is

〈vi, vj〉 = g (viv̄j(1− ω1) · · · (1− ωn))

= g

(
n∏

k=1

(
ak−1∑
r=0

xrkω
r
k

)(
ak−1∑
s=0

yskω̄
s
k

)
(1− ωk)

)

= g

(
n∏

k=1

(ak−1∑
r=0

ak−1∑
s=0

xrky
s
kω

r
kω̄

s
k −

ak−1∑
r=0

ak−1∑
s=0

xrky
s
kω

r+1
k ω̄s

k

))

= (−1)(n−1)(n−2)/2

(
n∏

k=1

ak−1∑
r=0

xrky
r
k −

n∏
k=1

ak−1∑
r=0

xr−1
k yrk

)

+ (−1)(n−1)(n−2)/2+1

(
n∏

k=1

ak−1∑
r=0

xr+1
k yrk −

n∏
k=1

ak−1∑
r=0

xrky
r
k

)

= (−1)(n−1)(n−2)/2

(
n∏

k=1

(1− x−1
k )

ak−1∑
r=0

xrky
r
k

)

+ (−1)(n−1)(n−2)/2+1

(
n∏

k=1

xk(1− x−1
k )

ak−1∑
r=0

xrky
r
k

)

= (−1)(n−1)(n−2)/2(1− x1 · · ·xn)
n∏

k=1

(1− x−1
k )

(
ak−1∑
r=0

xrky
r
k

)
.

Observe that 〈vi, vj〉 6= 0 only if ik + jk = ak for every k. Therefore, vj + va−j and
i(vj − va−j) forms an orthogonal basis of Ja/Ia ⊗ R, and

〈vj + va−j , vj + va−j〉 = 〈i(vj − va−j , i(vj − va−j)〉 = 2〈vj , va−j〉.
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Compute directly, we have

〈vj , va−j〉 = (−1)(n−1)/2a1 · · · an

(
n∏

k=1

(1− x−1
k ) +

n∏
k=1

(1− xk)

)

= 2a1 · · · an(−1)(n−1)/2Re

(
n∏

k=1

(1− xk)

)

= 2a1 · · · an(−1)(n−1)/2Re

(
n∏

k=1

(
−2ieπijk/ak sinπ

jk
ak

))

= 2a1 · · · anRe

(
− exp

(
πi

(
1

2
+

n∑
k=1

jk
ak

))
n∏

k=1

2 sin
πjk
ak

)
.

Since sin πjk
ak

is always positive, by discussing the exponential term, the result follows.

7 Brieskorn Exotic Spheres
From the above discussion, we conclude the following.

Example 7.1 (Brieskorn 1966). For integer n = 2m+ 1, m ≥ 2, the (4m− 1)-spheres

Σ(2, . . . , 2︸ ︷︷ ︸
2m−1

, 3, 6k − 1) k = 1, . . . ,
σm
8

represent all σm/8 classes of differential structure in bP4m.

Proof. The graph Ga has two isolated point 3 and 6k − 1. By Theorem 5.5, Σa is a
topological sphere which bounds a parallelizable manifold F θ. We use Theorem 6.2 to
compute the signature σ(F θ). Note that j1 = · · · = jn−2 = 1 and jn−1 = 1 or 2.

• For jn−1 = 1, we have
n∑

k=1

jk
ak

= (m− 1) +
5

6
+

jk
6k − 1

.

We see that it lie between m− 1 and m if and only if jk = 1, . . . , k − 1.

• For jn−1 = 2, we have
n∑

k=1

jk
ak

= (m− 1) +
7

6
+

jk
6k − 1

.

We see that it lie between m and m+ 1 if and only if jk = 1, . . . , 5k − 1.

Therefore, we conclude that

σ(F θ) = σ+a − σ−a = (−1)m−1((k − 1)− 5k) + (−1)m((5k − 1)− k) = (−1)m8k,

as desired.
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