Brieskorn–Hirzebruch Exotic Sphere

HSIN, WEI-HSUAN

June 3, 2024

1 Introduction

The following theorem is due to Kervaire and Milnor's landmark work on exotic spheres.

Definition 1.1. Let Θ_n be the group of manifolds that are homotopy *n*-spheres, modulo the *h*-cobordant relation, with the connected sum as the operator. Denote by $bP_{n+1} \subset \Theta_n$ the subgroup consisting of *s*-parallelizable homotopy *n*-spheres.

Theorem 1.2 (Kervaire-Milnor). Let Σ_1 and Σ_2 be homotopy spheres of dimension 4m - 1, m > 1, which bound *s*-parallelizable manifolds M_1 and M_2 respectively. Then Σ_1 is *h*-cobordant to Σ_2 if and only if

$$\sigma(M_1) \equiv \sigma(M_2) \pmod{\sigma_m},$$

where

$$\sigma_m = \frac{3 + (-1)^{m+1}}{2} 2^{2m-2} (2^{2m-1} - 1) \operatorname{numerator}(4B_m/m).$$

Brieskorn has constructed a series of (4m - 1)-dimensional spheres of the form:

$$\Sigma_a = \{ z \in \mathbb{C}^n \mid z_1^{a_1} + \dots + z_n^{a_n} = 0 \} \cap S^{2n-1}, \quad n = 2m+1.$$

These spheres bound parallelizable manifolds with different signatures. This provides a representation for each class of bP_{4m} and shows that bP_{4m} is a cyclic group of order $\sigma_m/8$. The construction proceeds in two steps. First, we verify that Σ_a is a topological sphere under certain conditions and identify it as the boundary of a parallelizable manifold. Second, we compute the signature of the bounding manifold.

2 Some Setup

Let $n \ge 2$ be an integer, $a = (a_1, \ldots, a_n)$ be a *n*-tuple of integers with $a_i > 1$ for all *i*. We introduce the following notations.

(1)
$$f(z) = z_1^{a_1} + \dots + z_n^{a_n};$$

- (2) $\Sigma_a = \Sigma(a_1, \ldots, a_n) \coloneqq V(f) \cap S^{2n-1};$
- (3) $\Xi_a(t) := \{z \in \mathbb{C}^n \mid f(z) = t\}$. In particular, set $\Xi_a = \Xi_a(1)$.

Proposition 2.1. The space Σ_a is a smooth closed manifold of dimension 2n - 3.

Proof. It suffices to show that 0 is a regular value of $f : S^{2n-1} \to \mathbb{C}$. Consider the hermitian vector space \mathbb{C}^n as a euclidean vector space \mathbb{R}^{2n} , defining the euclidean inner product of two vectors u, v to be the real part

$$\langle u, v \rangle_{\text{Eucl}} = \text{Re} \langle u, v \rangle = \text{Re} \langle u, v \rangle$$

Then the tangent space of S^{2n-1} can be identified as the orthogonal complement

$$T_z(S^{2n-1}) = \{z\}^{\perp_{\text{Eucl}}} = \{u \in \mathbb{C}^n \mid \text{Re}\langle u, z \rangle = 0\}$$

Along a curve z = p(t) on S^{2n-1} , we have

$$\frac{df(p(t))}{dt} = \langle dp/dt, \operatorname{grad} f \rangle,$$

where

grad
$$f = \left(\frac{\overline{\partial f}}{\partial z_1}, \dots, \overline{\frac{\partial f}{\partial z_n}}\right).$$

Under this identification, the differential $df: T_z S^{2n-1} \to T_{f(z)}\mathbb{C}$ is taking the hermitian product with grad f. Notice that $T_z S^{2n-1}$ contains a \mathbb{C} vector subspace $\{z\}^{\perp}$. Therefore, if $z \in \Sigma_a$ is a critical point, then grad f is a complex multiple of z, i.e.,

grad
$$f = (a_1 \bar{z}_1^{a_1 - 1}, \dots, a_n \bar{z}^{a_n - 1}) = c(z_1, \dots, z_n)$$

for some $c \in \mathbb{C}$. While,

$$0 = \sum_{i=1}^{n} z_i^{a_i} = c \sum_{i=1}^{n} \frac{1}{a_i} |z_i|^2$$

Since $z \neq 0$ and $c \neq 0$, it leads to a contradiction.

3 The Milnor Fibration $S^{2n-1} \setminus \Sigma_a$ over S^1

Consider the Milnor map $\phi: S^{2n-1} \setminus \Sigma_a \to S^1$ defined by

$$\phi(z) = \frac{f(z)}{|f(z)|}.$$

The idea is that $S^{2n-1} \setminus \Sigma_a$ forms a fiber bundle over S^1 . The closure of each fiber is a smooth parallelizable manifold with boundary Σ_a , and the interior of each fiber is isomorphic to Ξ_a .

Theorem 3.1. The space $S^{2n-1} \setminus \Sigma_a$ is a smooth fiber bundle over S^1 with the projection mapping ϕ .

Remark 3.2. Milnor has studied such a map for general polynomial f. The theorem above is an adjustment to Milnor's fibration theorem which states that for any polynomial f, the map $f/|f|: S_{\varepsilon} \setminus V(f) \to S^1$ is a fiber bundle for sufficiently small ε . We use the ideal of the proof of Milnor's fibration theorem

To prove the theorem, we will use Morse theory.

Lemma 3.3. The critical points of $\phi : S^{2n-1} \setminus \Sigma_a \to S^1$ are precisely those points $z \in S^{2n-1} \setminus \Sigma_a$ for which the vector *i* grad log f(z) is a real multiple of the vector *z*.

Proof. Using the local coordinate $e^{i\theta}$ for S^1 , we have

$$i\theta = \log(f/|f|) = \log f - \log |f| = \operatorname{Re}(-i\log f).$$

Along a curve z = p(t), we obtain

$$d\theta(p(t))/dt = \operatorname{Re}\left(d(-i\log f(p(t)))/dt\right)$$
$$= \operatorname{Re}\langle dp/dt, \operatorname{grad}(-i\log f)\rangle$$
$$= \operatorname{Re}\langle dp/dt, i\operatorname{grad}(\log f)\rangle$$

As in Proposition 2.1, the tangent space of $S^{2n-1} \setminus \Sigma_a$ can be identified as

$$T_z(S^{2n-1} \setminus \Sigma_a) = \{z\}^{\perp_{\text{Eucl}}} = \{u \in \mathbb{C}^n \mid \text{Re}\langle u, z \rangle = 0\}$$

Under this identification, the differential $d\phi : T_z(S^{2n-1} \setminus \Sigma_a) \to T_{\phi(z)}S^1$ is just taking the euclidean inner product with *i* grad log *f*. Therefore, we conclude that *z* is a critical point if and only if *i* grad log *f* is a real multiple of the vector *z*, as desired.

Proof of Theorem 3.1. Applying Morse theory to the pre-image of $[\theta - \varepsilon, \theta + \varepsilon]$, it then suffices to show that ϕ has no critical points. Assume for the sake of correctness that there is a critical point $z \in S^{2n-1} \setminus \Sigma_a$. By Lemma 3.3, we have

$$\frac{i}{f(z)} \left(a_1 z^{a_1 - 1}, \dots, a_n z^{a_n - 1} \right) = c(\bar{z}_1, \dots, \bar{z}_n)$$

for some $c \in \mathbb{R}$. Then

$$c\sum_{i=1}^{n} \frac{1}{a_i} |z_i|^2 = \sum_{i=1}^{n} \frac{i}{f(z)} z^{a_i} = i.$$

Since the left hand side is real and the right hand side is purely imaginary, it derives a contradiction. $\hfill \Box$

For each $e^{i\theta} \in S^1$, denote the fiber by

$$F_{\theta} = \phi^{-1}(e^{i\theta}) = \left\{ z \in S^{2n-1} \setminus \Sigma_a \mid \arg f(z) = \theta \right\}.$$

It is a (2n-2)-dimensional manifold without boundary.

Proposition 3.4. The fiber F_{θ} is diffeomorphic to Ξ_a .

Proof. Consider the map $F_0 \to \Xi_a$ by

$$(z_1,\ldots,z_n)\mapsto \left(\frac{z_1}{f(z)^{1/a_1}},\ldots,\frac{z_n}{f(z)^{1/a_n}}\right).$$

We conclude that all the fiber $F_{\theta} \simeq F_0$ are diffeomorphic to Ξ_a .

Proposition 3.5. The closure of each fiber F_{θ} in S^{2n-1} is a smooth (2n-2)-dimensional manifold with boundary, the interior of this manifold being F_{θ} and the boundary being precisely Σ_a .

Proof. In the proof of Proposition 2.1, we have shown that 0 is a regular value of f. Let z_0 be a point of Σ_a . Choose a real local coordinate system u_1, \ldots, u_{2n-1} for S^{2n-1} in a neighborhood U of z_0 so that

$$f(z) = u_1(z) + iu_2(z)$$

for all $z \in U$. Note that a point of U belongs to the fiber $F_0 = \phi^{-1}(1)$ if and only if

$$u_1 > 0, \ u_2 = 0.$$

Hence the closure \overline{F}_0 intersects U in the set

 $u_1 \ge 0, \ u_2 = 0.$

Clearly it is a smooth 2*n*-dimensional manifold, with $F_0 \cap U$ as interior and with $\Sigma_a \cap U$ as boundary. The discussion for other fibers F_θ is similar. This completes the proof. \Box

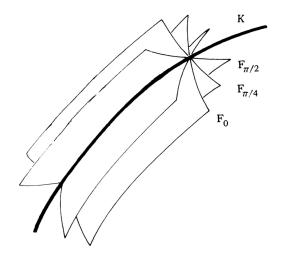


Figure 1: The Milnor Fiber F_{θ}

4 The Singular Homology of Ξ_a

For $t \neq 0$, $\Xi_a(t)$ and Ξ_a are diffeomorphic. On Ξ_a , there is an automorphism ω_k , namely, multiplying the *k*th coordinate by $\xi_k = e^{2\pi i/a_k}$. These ω_k 's generate a group Ω_a , which is the direct product of cyclic groups:

$$\Omega_a = \prod \langle \omega_k \rangle \simeq \prod_{k=1}^n \mathbb{Z}_{a_k}.$$

Let $J_a = \mathbb{Z}[\Omega_a]$ be the group ring of Ω_a and let I_a be the ideal of J_a generated by the elements $1 + \omega_k + \cdots + \omega_k^{a_k-1}$ for $k = 1, \ldots, n$. Let **e** be the subset of Ξ_a defined by

$$\mathbf{e} = \left\{ (z_1, \dots, z_n) \in \mathbb{R}^n_{\geq 0} \mid \sum_{k=1}^n z_k^{a_k} = 1 \right\}.$$

It is homeomorphic to the standard simplex Δ_{n-1}

$$\Delta_{n-1} = \left\{ (y_1, \dots, y_n) \in \mathbb{R}^n_{\geq 0} \mid \sum_{k=1}^n y_k = 1 \right\}$$

under the map $(z_1, \ldots, z_n) \mapsto (z_1^{1/a_1}, \ldots, z_n^{1/a_n})$. Let

$$\mathscr{E} = \left\{ (z_1, \dots, z_n) \in \mathbb{C}^n \mid z_i^{a_i} \in \mathbb{R}_{\geq 0}, \sum_{k=1}^n z_k^{a_k} = 1 \right\} = \Omega_a \mathbf{e}.$$

This collection of cells forms a simplicial complex.

Lemma 4.1. The space \mathscr{E} is a deformation retract of Ξ_a under a retraction compatible with the group action of Ω_a .

Proof. Consider the real hypersurfaces

$$X = \left\{ (\eta_1, \dots, \eta_n) \in \mathbb{C}^n \mid \sum_{i=1}^n \eta_i = 1 \right\},$$

$$S_i = \{ \eta \in X \mid \eta_i = 0 \},$$

and construct a deformation retraction from the system of hyperplanes (X, S_1, \ldots, S_n) to $(\Delta_{n-1}, \partial_1 \Delta_{n-1}, \ldots, \partial_n \Delta_{n-1})$ as follows: this can be done by combining the deformation retraction from complex to its real part and the deformation and the deformation retraction on Δ_{n-1} symbolized by Figure 2. Explicitly, for any point $(\eta_1, \ldots, \eta_n) \in \mathbb{R}^n$, $\sum_{i=1}^n \eta_i = 1$, deform it linearly to the point $c(\varepsilon_1 \eta_1, \varepsilon_2 \eta_2, \ldots, \varepsilon_n \eta_n)$, where

$$\varepsilon_i = \begin{cases} 0 &, \eta_i \le 0\\ 1 &, \eta_i > 0, \end{cases}$$

and c is the constant such that $c \sum \varepsilon_i \eta_i = 1$.

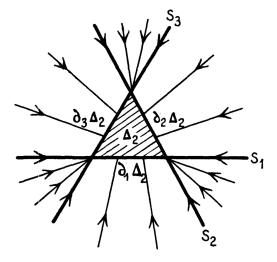


Figure 2: Deformation retraction to the simplicial system

Back to the original problem. Divide Ξ_a into $a_1 \cdots a_n$ parts

$$X_{i_1\dots i_k} = \left\{ z \in \Xi_a \ \left| \ \frac{2\pi i_k}{a_k} - \frac{\pi}{2a_k} \le \arg z_k < \frac{2\pi i_k}{a_k} + \frac{3\pi}{2a_k} \text{ or } z_k = 0 \right\},\right.$$

where $0 \leq i_k \leq a_k - 1$. On each $X_{i_1...i_n}$, consider the change of variables $z_k = \eta_k^{1/a_k}$ with the branch $i\mathbb{R}_{\leq 0}$. We obtain a deformation retraction from $X_{i_1...i_k}$ to $\prod \omega_k^{i_k} \mathbf{e}$. Notice that if $\arg z_k \equiv -\pi/2a_k \mod 2\pi/a_k$ or $z_k = 0$, then $z_k^{a_k}$ is purely imaginary. So z is mapped to a point $z' \in \mathbb{R}^n$ with $z'_k = 0$. This shows that the deformations on $X_{i_1...i_n}$ glued to a deformation from Ξ_a to \mathscr{E} , as desired. **Proposition 4.2** (Pham). The singular homology $H_i(\Xi_a, \mathbb{Z})$ vanishes for $i \neq 0, n-1$, and $H_{n-1}(\Xi_a, \mathbb{Z}) \simeq J_a/I_a$.

Proof. By Lemma 4.1, it suffices to compute the simplicial homology of \mathscr{E} . Observe that $\omega_{i_1}, \ldots, \omega_{i_k}$ act trivially on the simplex $\partial_{i_1} \cdots \partial_{i_k} \mathbf{e}$. So the annihilator ideal of $\partial_{i_1} \cdots \partial_{i_k} \mathbf{e}$ is the ideal generated by $1 - \omega_{i_1}, \ldots, 1 - \omega_{i_k}$. So the simplicial complex sequence is

$$0 \to J_a \mathbf{e} \to \bigoplus_i J_{a_1,\dots,\hat{a}_i,\dots,a_n} \{\partial_i \mathbf{e}\} \to \bigoplus_{i < j} J_{a_1,\dots,\hat{a}_i,\dots,\hat{a}_j,\dots,a_n} \{\partial_i \partial_j e\} \to \cdots$$

where

$$J_{a_{i_1},\dots,a_{i_k}} = J_a / (1 - \omega_{i_{k+1}},\dots,1 - \omega_{i_n}), \qquad \{i_1,\dots,i_n\} = [n]$$

To ease the notation, we translate the sequence in the language of Čech cohomology. Let $X = [n] \cup \{0\}$ be the topological space with the basis $\{\{0\}, \{0, 1\}, \ldots, \{0, n\}\}$. Define a presheaf of abelian group \mathscr{F} on X by

$$\mathscr{F}(\{i_1,\ldots,i_k\}\cup\{0\})=J_{a_{i_1},\ldots,a_{i_k}}$$

We set the restriction map $\mathscr{F}(\{i_1,\ldots,i_{k+1}\}\cup\{0\})\to \mathscr{F}(\{i_1,\ldots,i_k\}\cup\{0\})$ to be the quotient map with the sign $(-1)^{i_{k+1}-1}$. Consider an open covering $\mathfrak{U} = \{U_i\}$ of X, where $U_i = [n] \cup \{0\} \setminus \{i\}$. To give the desired result, it suffices to show that the sequence

$$\Gamma(X,\mathscr{F}) \xrightarrow{\varepsilon} C^0(\mathfrak{U},\mathscr{F}) \to \cdots \to C^n(\mathfrak{U},\mathscr{F}) \to 0$$

is exact and that

$$\ker \varepsilon = J_a(1-\omega_1)\cdots(1-\omega_n).$$

We prove by induction on n. The base case n = 2 is can be done by hand. For the inductive step, let $\mathfrak{V} = \mathfrak{U} \setminus \{U_n\}$ be an open covering of X, and let $\mathfrak{W} = \{U_i \cap U_n\}, i \neq n$, be an open covering of U_n . We have the decomposition

$$C^{k}(\mathfrak{U},\mathscr{F}) = C^{k}(\mathfrak{V},\mathscr{F}) \oplus C^{k-1}(\mathfrak{W},\mathscr{F}|_{U_{n}})$$

and

We show that two horizontal sequences are exact. Let \mathscr{G} be the presheaf on the topological space $Y = [n-1] \cup \{0\}$ defined in the same way.

- Obviously, $\mathscr{G} \simeq \mathscr{F}|_{U_n}$. So the lower sequence is exact by the inductive hypothesis.
- Consider the map $f: X \to Y$ by $n \mapsto 0$ and $k \mapsto k$ for k < n. Then

$$f_*\mathscr{F}\simeq\mathscr{G}^{\oplus a_n}.$$

The map $f: X \to Y$ is open, so let \mathfrak{V}' denote the image of \mathfrak{V} in Y. Then we have the isomorphisms

$$\Gamma(X,\mathscr{F}) = \Gamma(Y, f_*\mathscr{F}) \simeq \Gamma(Y, \mathscr{G})^{\oplus a_n},$$
$$C^k(\mathfrak{V}, \mathscr{F}) = C^k(\mathfrak{V}', f_*\mathscr{F}) \simeq C^k(\mathfrak{V}', \mathscr{G})^{\oplus a_n}.$$

Notice that the direct sum of exact sequences is exact. By the inductive hypothesis, we have the exact sequence

$$\Gamma(X,\mathscr{F}) \to C^0(\mathfrak{V},\mathscr{F}) \to \dots \to C^{n-1}(\mathfrak{V},\mathscr{F}) \to 0.$$

From the exactness of the two sequences, we deduces that the original sequence is exact at $C^1(\mathfrak{U}, \mathscr{F}), \ldots, C^n(\mathfrak{U}, \mathscr{F})$. The exactness at $C^0(\mathfrak{U}, \mathscr{F})$ follows from the fact that the kernel of ε' is generated by $(1 - \omega_1) \cdots (1 - \omega_{n-1})$, which maps to the zero element in $C^0(\mathfrak{V}, \mathscr{F})$. Finally, we have

$$\ker \varepsilon = ((1 - \omega_1) \cdots (1 - \omega_{n-1})) \cap (1 - \omega_n) = ((1 - \omega_1) \cdots (1 - \omega_n))$$

We complete the proof.

Remark 4.3. $H_{n-1}(\Xi_a, \mathbb{Z}) \simeq J_a/I_a$ is a free \mathbb{Z} -module of rank $\prod_{k=1}^n (a_k - 1)$.

Proposition 4.4. For $n \ge 3$, Ξ_a is simply connected, and therefore (n-2)-connected.

Proof. By Lemma 4.1, it suffices to show that \mathscr{E}_2 is simply connected. The vertices of \mathscr{E}_2 are $p_k^s = (0, \ldots, \xi_k^s, 0, \ldots, 0)$, where ξ_k is the primitive a_k th root of unity and $0 \leq s < a_k$. There is exactly one edge connecting p_i^r , p_k^s for $i \neq k$ and exactly one 2-simplex connecting p_i^r , p_j^s , p_k^t for distinct i, j, k. Notice that

- an edge path connecting p_i^r , p_i^s , p_k^t is homotopic to the edge connecting p_i^r , p_k^t ;
- an edge path connecting $p_i^{r_1} p_k^{t_1} p_i^{r_2} p_k^{t_2}$ is homotopic to the edge path connecting $p_i^{r_1}$, p_j^s , $p_k^{t_2}$ for any $j \neq i, k$.

Both operations reduce the number of edges of a path by 1. Therefore, one can convert every closed edge path in \mathscr{E}_2 into a null homotopic path by repeatedly using them. So \mathscr{E}_2 and thus also Ξ_a is simply connected.

Proposition 4.5. The space Ξ_a is parallelizable.

Proof. By Lemma 4.1, Ξ_a has a homotopy type of a CW-complex of dimension $n-1 < \dim \Xi_a$. Recall that $\Xi_a \simeq F_{\theta}$. So it suffices to show that TF_{θ} is stably trivial. Note that ϕ is locally trivial, so the normal bundle of F_{θ} in $S^{2n-1} \setminus \Sigma_a$, and hence in S^{2n-1} , is trivial. Since the normal bundle of S^{2n-1} in \mathbb{C}^n is trivial, the result follows. \Box

Corollary 4.6. The space Σ_a is orientable.

Proof. Since F_{θ} is parallelizable, it is orientable. The space Σ_a is the boundary of \overline{F}_{θ} , so it is orientable.

5 The Singular Homology of Σ_a

In this section, we will prove Theorem 5.5, which is a necessary and sufficient criterion for Σ_a being a topological sphere. Using Smale's generalized Poincaré conjecture, it suffices to show that Σ_a is a simply connected homology sphere. Since Σ_a is oriented and compact, we only have to determine the homology up to the middle dimension. By Poincaré duality and Alexander duality, we have

$$H_i(\Sigma_a, \mathbb{Z}) = H^{2n-3-i}(\Sigma_a, \mathbb{Z}) \simeq H_{i+1}(S^{2n-1} \setminus \Sigma_a, \mathbb{Z}).$$

Recall that we have a fibration $S^{2n-1} \setminus \Sigma_a \to S^1$. Notice that the action of $\pi(S^1) = \mathbb{Z}$ on $H_*(S^{2n-1} \setminus \Sigma_a, \mathbb{Z})$ is non-trivial (i.e., it is not a Serre fibration). To compute the homology of $S^{2n-1} \setminus \Sigma_a$, we need to adjust the Serre spectral sequence.

Lemma 5.1 (Wang's Sequence). Given a fiber bundle $\phi : E \to S^1$ over the circle. Using the covering homotopy theorem, there is an one-parameter family of homeomorphisms

$$h_t: F_0 \to F_t$$

for $0 \le t \le 2\pi$, where h_0 is the identity. Denote $h = h_{2\pi}$, called the *characteristic* homeomorphism. There is associated an exact sequence of the form

$$\cdots \to H_{j+1}E \to H_jF_0 \xrightarrow{\mathrm{id}_* - h_*} H_jF_0 \to H_jE \to \cdots$$

Proof. The long exact sequence of the pair (E, F_0) gives

$$\cdots \to H_{j+1}E \to H_{j+1}(E, F_0) \xrightarrow{\partial} H_jF_0 \to H_jE \to \cdots$$

The covering homotopy $\{h_t\}$ induces a map

$$F_0 \times [0, 2\pi] \to E$$

which gives rise to an isomorphism

$$H_{j+1}(F_0 \times [0, 2\pi], F_0 \times \{0\} \cup F_0 \times \{2\pi\}) \xrightarrow{\sim} H_{j+1}(E, F_0).$$

Since $F_0 \times \{2\pi\}$ is a deformation retract of $F_0 \times [0, 2\pi]$. From the long exact sequence of the triple $(F_0 \times \{2\pi\}, F_0 \times \{0\} \cup F_0 \times \{2\pi\}, F_0 \times [0, 2\pi])$, we obtain an isomorphism

$$H_{j+1}(F_0 \times [0, 2\pi], F_0 \times \{0\} \cup F_0 \times \{2\pi\}) \xrightarrow{\sim} H_j(F_0 \times \{0\} \cup F_0 \times \{2\pi\}, F_0 \times \{2\pi\}) \simeq H_j(F_0).$$

Thus we have to understand the boundary map under the identification

Given a cochain $[\phi] \in H_j F_0$. For the first row of isomorphism, the image in the left hand side is $[T_1\phi + T'_1\phi]$, where we choose the representation $T_1\phi + T'_1\phi$ to be

$$T_1\phi(t_0,\ldots,t_j) = (\phi(t_1 + t_0/j,\ldots,t_j + t_0/j), 2\pi t_0) \in F_0 \times [0,2\pi],$$

$$T'_1\phi(t_0,\ldots,t_j) = (\phi(t_1 + t_0/j,\ldots,t_j + t_0/j), 2\pi(1-t_0)) \in F_0 \times [0,2\pi].$$

The left-hand side vertical isomorphism maps this to $[T_2\phi + T'_2\phi]$, where

$$T_2\phi(t_0,\ldots,t_j) = h_{2\pi t_0} \left(\phi \left(t_1 + t_0/j,\ldots,t_j + t_0/j \right) \right) \in E,$$

$$T'_2\phi(t_0,\ldots,t_j) = h_{2\pi(1-t_0)} \left(\phi \left(t_1 + t_0/j,\ldots,t_j + t_0/j \right) \right) \in E.$$

Finally, consider the boundary map on the lower row. The *i*th face of $T_2\phi$ and $T'_2\phi$ cancel up. Thus we conclude that the image of $[T_2\phi + T'_2\phi]$ is represented by

$$\partial(T_2\phi) + \partial(T'_2\phi) = \partial_0(T_2\phi) + \partial_0(T'_2\phi) = \phi - h_*\phi.$$

We complete the proof.

Proposition 5.2. The homology group $H_i(S^{2n-1} \setminus \Sigma_a, \mathbb{Z})$ vanishes for $i \neq 0, 1, n-1, n$, and the homology group $H_{n-1}(S^{2n-1} \setminus \Sigma_a, \mathbb{Z})$ and $H_n(S^{2n-1} \setminus \Sigma_a, \mathbb{Z})$ vanish if and only if $1 - \omega : J_a/I_a \to J_a/I_a$ is an isomorphism, where $\omega = \omega_1 \cdots \omega_n$.

Proof. As in Lemma 5.1, the family $h_t: F_0 \to F_t$ is given by

$$h_t(z_1, \ldots, z_n) = (\xi_1^t z_1, \ldots, \xi_n^t z_n).$$

In particular, the characteristic homeomorphism $h = h_{2\pi} : F_0 \to F_0$ is the map

$$h(z_1,\ldots,z_n)=(\omega_1z_1,\ldots,\omega_nz_n).$$

Since $H_i(F_0, \mathbb{Z}) \simeq H_i(\Xi_a, \mathbb{Z})$ vanishes when $i \neq 0, n-1$, the homology $H_i(S^{2n-1} \setminus \Sigma_a, \mathbb{Z})$ vanishes when $i \neq 0, 1, n-1, n$. Under the identification $H_{n-1} \simeq J_a/I_a$, the map $\mathrm{id}_* - h_*$ is the left multiplication by $1 - \omega$. Therefore, the homology group $H_{n-1}(S^{2n-1} \setminus \Sigma_a, \mathbb{Z})$ and $H_n(S^{2n-1} \setminus \Sigma_a, \mathbb{Z})$ vanish if and only if $1 - \omega : J_a/I_a \to J_a/I_a$ is an isomorphism. \Box

Lemma 5.3. The characteristic polynomial of ω is

$$\Delta_a(t) = \prod_{0 < i_k < a_k} (t - \xi_1^{i_1} \cdots \xi_n^{i_n}).$$

Proof. Consider J_a/I_a as a tensor product

$$\bigotimes_{k=1}^n V_k,$$

where V_k is a \mathbb{Z} -module generated by $1, \omega_k, \ldots, \omega_k^{a_k-1}$. Then the automorphism ω can be consider as $\omega_1 \otimes \cdots \otimes \omega_n$. Tensor everything with \mathbb{C} . For each a_k th root of unity $x_k = \xi_k^{i_k}, 0 < i_k < a_k$, the element

$$\sum_{r=0}^{u_k-1} x_k^r \omega_k^r \in V_k \otimes \mathbb{C}$$

is an eigenvector of ω_k with eigenvalue x_k^{-1} . Therefore,

$$\prod_{k=1}^{n} \sum_{r=0}^{a_k-1} x_k^r \omega_k^r \in J_a/I_a \otimes \mathbb{C}$$

is an eigenvector of ω with eigenvalue $\xi_1^{-i_1} \cdots \xi_n^{-i_n}$. All of these form a basis consisting of eigenvectors of ω . We conclude the desired result.

Proposition 5.4. For $n \ge 4$, Σ_a is simply connected, hence at least (n-3)-connected.

Proof. Using Hurewicz's theorem, it suffices to show that $\pi_1(\Sigma_a)$ is abelian. First note that Σ_a is a deformation retract of $V(f) \setminus \{0\}$. The inclusion

$$V(f) \cap \{z_n \neq 0\} \hookrightarrow V(f) \setminus \{0\}$$

induces the surjection

$$\pi_1(V(f) \cap \{z_n \neq 0\}) \twoheadrightarrow \pi_1(V(f) \setminus \{0\}).$$

Define $\psi: V(f) \cap \{z_n \neq 0\} \to \mathbb{C}^{\times}$ by $z \mapsto z_n$. It is a fiber bundle with fiber $\Xi_{\hat{a}}$, where $\hat{a} = (a_1, \ldots, a_{n-1})$. Indeed, we have a trivialization $\Xi_{\hat{a}} \times U \to \psi^{-1}(U)$ by

$$(z_1,\ldots,z_{n-1},s)\mapsto ((-s^{a_n})^{1/a_1}z_1,\ldots,(-s^{a_n})^{1/a_{n-1}}z_{n-1},s).$$

From Proposition 4.4 we obtain an isomorphism

$$0 = \pi_1(\Xi_{\hat{a}}) \to \pi_1(V(f) \cap \{z_n \neq 0\}) \xrightarrow{\sim} \pi_1(\mathbb{C}^{\times}) \to 0.$$

So $\pi_1(\Sigma_a) = \pi_1(V(f) \setminus \{0\})$ is abelian, as desired.

Let G_a be a simple graph with *n* vertices, denoted by a_1, a_2, \ldots, a_n . Two vertices a_i , a_j are adjacent if their greatest common divisor $gcd(a_i, a_j) > 1$.

Theorem 5.5. For $n \ge 4$, the following are equivalent:

- (i) Σ_a is a topological sphere.
- (ii) $\Delta_a(1) = 1$.
- (iii) G_a fulfills one of the following conditions
 - (a) G_a has at least two isolated points.
 - (b) G_a has one isolated point and at least one connected component K with an odd number of vertices such that $(a_i, a_j) = 2$ for $a_i, a_j \in K, i \neq j$.

Proof. (i) \Leftrightarrow (ii): By Proposition 5.4 and Proposition 5.2, Σ_a is simply connected and the homology of Σ_a with degree less than n-2 vanishes. For $2n-3 \geq 5$, using Smale's generalized Poincaré conjecture and Poincaré duality, Σ_a is a topological sphere if and only if the homology groups $H_{n-2}(\Sigma_a, \mathbb{Z})$, $H_{n-1}(\Sigma_a, \mathbb{Z})$ vanish. The equivalence follows immediately from Proposition 5.2 and Lemma 5.3.

(ii) \Leftrightarrow (iii): It is known that the minimal polynomial of the root of unity of order d is the cyclotomic polynomial Φ_d . By Lemma 5.3, the characteristic $\Delta_a(t)$ is a product

$$\Delta_a(t) = \prod_d \Phi_d(t),$$

where d runs through the orders of $\xi_1^{i_1} \cdots \xi_n^{i_n}$, possibly several times. It is well-known that $\Phi_{p^m}(1) = p$ for every prime p and $\Phi_d(1) = 1$ if d is not a prime power. This implies that $\Delta_a(1) = 1$ if and only if for every $i = (i_1, \ldots, i_n)$ with $0 < i_k < a_k$, the order of $\xi_1^{i_1} \cdots \xi_n^{i_n}$ is not a prime power.

Let K be a component of G_a . Denote the vertices of K by a_1, \ldots, a_r . Let

$$\kappa(K) = \#\{(i_1, \dots, i_r) \mid 0 < i_k < a_k, \ \xi_1^{i_1} \cdots \xi_r^{i_r} = 1\}$$
$$= \#\left\{(i_1, \dots, i_r) \mid 0 < i_k < a_k, \ \sum_{k=1}^r \frac{i_k}{a_k} \in \mathbb{Z}\right\}.$$

Claim. For each component K, $\kappa(K) = 0$ if and only if K is either an isolated point, or the number of vertices of K is odd and $(a_i, a_j) = 2$ for $a_i, a_j \in K$, $i \neq j$.

Proof of Claim. (\Leftarrow) The case that K is an isolated point is trivial. If K satisfies the second condition, the unless $a_i = 2$ for all *i*, we will have $\kappa(K) = 0$. However, if all $a_i = 2$, then since |K| is odd, we still have $\kappa(K) = 0$.

 (\Rightarrow) Assume that K satisfies neither two conditions, we show that $\kappa(K) > 0$. First, we show that if there is an edge $\{a_i, a_j\}$ with $(a_i, a_j) = d > 2$, then we can merge two vertices a_i, a_j into one $a_i a_j/d$ and not effecting any conditions (in fact, it becomes even better). Write $a'_i = a_i/d$, $a'_j = a_j/d$. We have

$$\frac{x}{a_i} + \frac{y}{a_j} = \frac{a'_j x + a'_i y}{da'_i a'_j}.$$

As x, y runs over all integers, $a'_j x + a'_i y$ runs over all integers. The only question is that we can only have those x, y with $a_i \nmid x$, $a_j \nmid y$. However, if $a'_j x + a'_i y = n$, then at least one of the pairs

$$(x,y), (x-a'_i, y+a'_j), (x-2a'_i, y+2a'_j)$$

satisfies this restriction. Therefore, $a'_j x + a'_i y$ runs through all the residue classes modulo $da'_i a'_j$ when $0 < x < a_i$, $0 < y < a_j$.

Now we reduce K to the graph such that the greatest common divisor of any two vertices is 2. If the number remaining vertices is even, we can simply choose $i_k = a_k/2$. Otherwise, let a_1 be the one that have been merged. Then we can choose $i_1 = 0$ and $i_k = a_k/2$ for other k. This complete the proof of Claim.

If there are at least two components K with $\kappa(K) = 0$, then there is no $\xi_1^{i_1} \cdots \xi_n^{i_n}$ of prime power order. Conversely, if there are less than two components with $\kappa(K) = 0$.

- If there are no component K with $\kappa(K) = 0$. Then we can choose $i = (i_1, \ldots, i_n)$ such that $\xi_1^{i_1} \cdots \xi_n^{i_n} = 1$.
- If there is exactly one component K with $\kappa(K) = 0$.
 - If K is an isolated point. WLOG, $K = \{a_1\}$. Let p be a prime divisor of a_1 , then we can choose $i = (a_1/p, i_2, \ldots, i_n)$ so that $\xi_1^{i_1} \cdots \xi_n^{i_n}$ has order p.
 - If K consists of vertices a_1, \ldots, a_r such that $(a_i, a_j) = 2$ for all $a_i, a_j \in K$, $i \neq j$, and r is odd. Then we can choose $i = (a_1/2, \ldots, a_r/2, i_{r+1}, \ldots, i_n)$ so that the order of $\xi_1^{i_1} \cdots \xi_n^{i_n}$ is 2.

Thus, we conclude that (ii) is equivalent to (iii).

6 The Signature of \overline{F}_{θ}

Let *n* be odd and Σ_a be a topological sphere. To determine the differential structure of $\Sigma_a = \partial \overline{F}_{\theta}$, we have to calculate the signature of \overline{F}_{θ} . Recall that F_{θ} is diffeomorphic to Ξ_a . To calculate the intersection pairing, we have to fix the orientation.

- For each simplex $\Delta_k = \{(t_0, t_1, \dots, t_k) \in \mathbb{R}^{k+1} \mid \sum t_i = 1\}$, we fix the standard orientation to be the one defined by the coordinate system (t_1, \dots, t_n) .
- The chart $\Xi_a \cap \{z_1 \neq 0\}$ is connected, so we may assign the orientation of Ξ_a to be the one defined by the coordinate system (Re z_2 , $-\text{Im } z_2$, ..., Re z_n , $-\text{Im } z_n$) on $\Xi_a \cap \{z_1 \neq 0\}$. It is the same as the orientation defined by the coordinate system (Re $z_2^{a_2}$, $-\text{Im } z_2^{a_2}$, ..., Re $z_n^{a_n}$, $-\text{Im } z_n^{a_n}$) since $z \mapsto z^{a_i}$ is a holomorphic function.

Proposition 6.1 (Pham). Under the identification $H_{n-1}(\overline{F}_{\theta}) \simeq H_{n-1}(\Xi_a) \simeq J_a/I_a$ and the above orientation of Ξ_a , the intersection pairing is given by

$$\langle [x], [y] \rangle = g(\bar{y}x(1-\omega_1)\cdots(1-\omega_n)), \quad x, y \in J_a,$$

where $g: J_a \to \mathbb{Z}$ is the additive homomorphism with

$$g(\omega_1^{i_1}\cdots\omega_n^{i_n}) = \begin{cases} (-1)^{(n-1)(n-2)/2} &, \ \omega_1^{i_1}\cdots\omega_n^{i_n} = 1; \\ (-1)^{(n-1)(n-2)/2+1} &, \ \omega_1^{i_1}\cdots\omega_n^{i_n} = \omega; \\ 0 &, \ \text{otherwise.} \end{cases}$$

and $y \mapsto \overline{y}$ is the automorphism of $\mathbb{Z}[\Omega_a]$ induced by $\omega_i \mapsto \omega_i^{-1}$.

Proof. Recall that the homology group $H_{n-1}(\Xi_a, \mathbb{Z})$ is generated by (Proposition 4.2)

$$e = (1 - \omega_1) \cdots (1 - \omega_n) \mathbf{e}.$$

The simplicial complex e can be parametrized as

$$e = \left\{ \left(\xi_1^{\varepsilon_1} |\alpha_1|^{1/a_1}, \dots, \xi_n^{\varepsilon_n} |\alpha_n|^{1/a_n}\right) \mid \alpha_k \in \mathbb{R}, \ \varepsilon_k = \left\{ \begin{array}{ll} 1 & , \alpha_k > 0 \\ 0 & , \alpha_k < 0 \end{array}, \ \sum_{k=1}^n |\alpha_k| = 1. \right\} \right\}$$

We construct \tilde{e} so that it is homotopic and transverse to e. Consider a curve in $\mathbb{C} \setminus \{0\}$

$$\begin{array}{rcl} \gamma: & \mathbb{R} & \to & \mathbb{C} \setminus \{0\} \\ & \tau & \mapsto & \gamma(\tau) = \alpha(\tau) + i\beta(\tau). \end{array}$$

such that

- (i) The argument $\arg(\gamma(\tau))$ is a monotone increasing function of τ ;
- (ii) $\alpha(\tau) \leq 0$ for $\tau \in (-1, 1)$ and $\alpha(\tau) \geq 0$ for $\tau \notin (-1, 1)$;
- (iii) $\alpha(\tau) \to \infty \text{ as } \tau \to \pm \infty$.

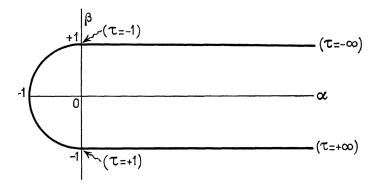


Figure 3: An example of γ

The curve in Figure 3 is an example of γ . Let \tilde{e} be parametrized and defined as follows:

$$\{\tau\} = \left\{ (\tau_1, \dots, \tau_n) \in \mathbb{R}^n \mid \sum_{i=1}^n \alpha(\tau_i) = 1 \right\};$$
$$\tilde{e} \left\{ \begin{aligned} \operatorname{Re}(z_k^{a_k}) &= \alpha(\tau_k), \\ \operatorname{Im}(z_k^{a_k}) &= \beta(\tau_k) - \left(\sum_{r=1}^n \beta(\tau_r)\right) \alpha(\tau_k); \\ -\frac{\pi}{2a_k} &\leq \arg z_k \leq \frac{\pi}{2a_k} \quad \text{for} \quad \tau_k \leq -1; \\ \frac{\pi}{2a_k} &\leq \arg z_k \leq \frac{3\pi}{2a_k} \quad \text{for} \quad -1 \leq \tau_k \leq 1; \\ \frac{3\pi}{2a_k} &\leq \arg z_k \leq \frac{5\pi}{2a_k} \quad \text{for} \quad 1 \leq \tau_k; \end{aligned} \right\}$$

We can divide \tilde{e} into 2^n parts by the sign of $\beta(\tau_i)$ and make it into a simplicial complex. Notice that if we choose

$$\gamma_0(\tau) = \alpha_0(\tau) + i\beta_0(\tau) = \begin{cases} -\tau - 1 &, \tau \le -1; \\ 0 &, -1 \le \tau \le 1; \\ \tau - 1 &, \tau \ge 1, \end{cases}$$

Then we obtain the above parametrization of the union of simplices of e. By choosing some suitable homotheties, there is a homotopy from the curve γ_0 to γ . So we have a homotopy from e to \tilde{e} .

Now we calculate the intersection number of e and \tilde{e} . Notice that $\beta = \pm 1$ for $\alpha > 0$. By considering the sign of $\sum \beta(\tau_r)$, the point of \tilde{e} satisfying $z_k^{a_k} \in \mathbb{R}_{\geq 0}$ must satisfies $\beta(\tau_k) = -1$ for all k or $\beta(\tau_k) = 1$ for all k. So the only intersecting simplices are \mathbf{e} and $\omega_{i_1} \cdots \omega_{i_n} \mathbf{e}$, which intersect \tilde{e} at

$$z^{(0)}: z_k^{(0)} = \frac{1}{n^{1/a_k}}$$
 and $z^{(1)}: z_k^{(1)} = \frac{1}{n^{1/a_k}} \exp\left(\frac{2\pi i}{a_k}\right)$,

respectively. At the point $z^{(0)}$, \tilde{e} can locally be described as

$$\operatorname{Im}(z_k^{a_k}) = 1 - n \operatorname{Re}(z_k^{a_k}).$$

So let $x_k = \operatorname{Re}(z_k^{a_k})$ be the coordinate system of \mathbf{e} , $y_k = \operatorname{Re}(z_k^{a_k})$ be the coordinate system of \tilde{e} . On Ξ_a , where $k = 2, \ldots, n$. We have

$$\begin{split} &\frac{\partial}{\partial x_k} = \frac{\partial}{\partial \operatorname{Re}(z_k^{a_k})} \\ &\frac{\partial}{\partial y_k} = \frac{\partial}{\partial \operatorname{Re}(z_k^{a_k})} - n \frac{\partial}{\partial \operatorname{Im}(z_k^{a_k})} \end{split}$$

By considering the ordered basis

$$\frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n}, \frac{\partial}{\partial y_2}, \dots, \frac{\partial}{\partial y_n},$$

we see that the intersection number is

$$(-1)^{(n-2)+\dots+1} = (-1)^{(n-1)(n-2)/2}.$$

Similarly, at the point $z^{(1)}$, \tilde{e} can locally be described as

$$\operatorname{Im}(z_k^{a_k}) = -1 + n \operatorname{Re}(z_k^{a_k}).$$

So let $x_k = \operatorname{Re}(z_k^{a_k})$ be the coordinate system of \mathbf{e} , $y_k = \operatorname{Re}(z_k^{a_k})$ be the coordinate system of \tilde{e} . On Ξ_a , where $k = 2, \ldots, n$. We have

$$\frac{\partial}{\partial x_k} = \frac{\partial}{\partial \operatorname{Re}(z_k^{a_k})}$$
$$\frac{\partial}{\partial y_k} = \frac{\partial}{\partial \operatorname{Re}(z_k^{a_k})} + n \frac{\partial}{\partial \operatorname{Im}(z_k^{a_k})}.$$

we see that the intersection number is

$$(-1)^n \cdot (-1)^{(n-2)+\dots+1} \cdot (-1)^{n-1} = (-1)^{(n-1)(n-2)/2+1},$$

where the factor $(-1)^n$ is given by the sign of $\omega_1 \cdots \omega_n \mathbf{e}$ in e. Therefore, the intersection indices of $\omega_1^{i_1} \cdots \omega_n^{i_n} \mathbf{e}$ and \tilde{e} is

$$\langle \omega_1^{i_1} \cdots \omega_n^{i_n} \mathbf{e}, \tilde{e} \rangle = \begin{cases} (-1)^{(n-1)(n-2)/2} &, \ \omega_1^{i_1} \cdots \omega_n^{i_n} = 1; \\ (-1)^{(n-1)(n-2)/2+1} &, \ \omega_1^{i_1} \cdots \omega_n^{i_n} = \omega; \\ 0 &, \ \text{otherwise.} \end{cases}$$

We conclude that

$$\langle xe, ye \rangle = \langle x\bar{y}(1-\omega_1)\cdots(1-\omega_n)\mathbf{e}, \tilde{e} \rangle = g(x\bar{y}(1-\omega_1)\cdots(1-\omega_n)),$$

as desired.

Theorem 6.2. Let $n \ge 5$ be odd, Σ_a be a topological sphere. Then the diffeomorphism type of Σ_a is determined by the signature $\sigma(\overline{F}_0)$, which is

$$\sigma(\overline{F}_0) = \sigma_a^+ - \sigma_a^-,$$

where

$$\sigma_a^+ = \# \left\{ (j_1, \dots, j_n) \in \mathbb{Z}^n \mid 0 < j_k < a_k, \ 0 < \sum_{k=1}^n \frac{j_k}{a_k} < 1 \mod 2 \right\},\$$
$$\sigma_a^- = \# \left\{ (j_1, \dots, j_n) \in \mathbb{Z}^n \mid 0 < j_k < a_k, \ -1 < \sum_{k=1}^n \frac{j_k}{a_k} < 0 \mod 2 \right\}.$$

Proof. Using the same notation as in Lemma 5.3. Let

$$v_i = \prod_{k=1}^n \sum_{r=0}^{a_k-1} x_k^r \omega_k^r$$
 and $v_j = \prod_{k=1}^n \sum_{r=0}^{a_k-1} y_k^r \omega_k^r$,

where $x_k = \xi_k^{i_k}$ and $y_k = \xi_k^{j_k}$, be eigenvectors in $H_{n-1}(\Xi_a, \mathbb{Z}) \otimes \mathbb{C} = J_a/I_a \otimes \mathbb{C}$. By Proposition 6.1, the intersection number of v_i, v_j is

$$\begin{split} \langle v_i, v_j \rangle &= g \left(v_i \bar{v}_j (1 - \omega_1) \cdots (1 - \omega_n) \right) \\ &= g \left(\prod_{k=1}^n \left(\sum_{r=0}^{a_k - 1} x_k^r \omega_k^r \right) \left(\sum_{s=0}^{a_k - 1} y_k^s \bar{\omega}_k^s \right) (1 - \omega_k) \right) \\ &= g \left(\prod_{k=1}^n \left(\sum_{r=0}^{a_{k-1}} \sum_{s=0}^{a_{k-1}} x_k^r y_k^s \omega_k^r \bar{\omega}_k^s - \sum_{r=0}^{a_{k-1}} \sum_{s=0}^{a_{k-1}} x_k^r y_k^s \omega_k^{r+1} \bar{\omega}_k^s \right) \right) \\ &= (-1)^{(n-1)(n-2)/2} \left(\prod_{k=1}^n \sum_{r=0}^{a_k - 1} x_k^r y_k^r - \prod_{k=1}^n \sum_{r=0}^{a_k - 1} x_k^r y_k^r \right) \\ &+ (-1)^{(n-1)(n-2)/2+1} \left(\prod_{k=1}^n \sum_{r=0}^{a_k - 1} x_k^r y_k^r \right) \\ &= (-1)^{(n-1)(n-2)/2} \left(\prod_{k=1}^n (1 - x_k^{-1}) \sum_{r=0}^{a_k - 1} x_k^r y_k^r \right) \\ &+ (-1)^{(n-1)(n-2)/2+1} \left(\prod_{k=1}^n x_k (1 - x_k^{-1}) \sum_{r=0}^{a_k - 1} x_k^r y_k^r \right) \\ &= (-1)^{(n-1)(n-2)/2} (1 - x_1 \cdots x_n) \prod_{k=1}^n (1 - x_k^{-1}) \left(\sum_{r=0}^{a_k - 1} x_k^r y_k^r \right). \end{split}$$

Observe that $\langle v_i, v_j \rangle \neq 0$ only if $i_k + j_k = a_k$ for every k. Therefore, $v_j + v_{a-j}$ and $i(v_j - v_{a-j})$ forms an orthogonal basis of $J_a/I_a \otimes \mathbb{R}$, and

$$\langle v_j + v_{a-j}, v_j + v_{a-j} \rangle = \langle i(v_j - v_{a-j}, i(v_j - v_{a-j})) \rangle = 2 \langle v_j, v_{a-j} \rangle.$$

Compute directly, we have

$$\langle v_j, v_{a-j} \rangle = (-1)^{(n-1)/2} a_1 \cdots a_n \left(\prod_{k=1}^n (1 - x_k^{-1}) + \prod_{k=1}^n (1 - x_k) \right)$$

= $2a_1 \cdots a_n (-1)^{(n-1)/2} \operatorname{Re} \left(\prod_{k=1}^n (1 - x_k) \right)$
= $2a_1 \cdots a_n (-1)^{(n-1)/2} \operatorname{Re} \left(\prod_{k=1}^n \left(-2ie^{\pi i j_k/a_k} \sin \pi \frac{j_k}{a_k} \right) \right)$
= $2a_1 \cdots a_n \operatorname{Re} \left(-\exp \left(\pi i \left(\frac{1}{2} + \sum_{k=1}^n \frac{j_k}{a_k} \right) \right) \prod_{k=1}^n 2 \sin \frac{\pi j_k}{a_k} \right).$

Since $\sin \frac{\pi j_k}{a_k}$ is always positive, by discussing the exponential term, the result follows. \Box

7 Brieskorn Exotic Spheres

From the above discussion, we conclude the following.

Example 7.1 (Brieskorn 1966). For integer n = 2m + 1, $m \ge 2$, the (4m - 1)-spheres

$$\Sigma(\underbrace{2,\dots,2}_{2m-1},3,6k-1)$$
 $k = 1,\dots,\frac{\sigma_m}{8}$

represent all $\sigma_m/8$ classes of differential structure in bP_{4m} .

Proof. The graph G_a has two isolated point 3 and 6k - 1. By Theorem 5.5, Σ_a is a topological sphere which bounds a parallelizable manifold \overline{F}_{θ} . We use Theorem 6.2 to compute the signature $\sigma(\overline{F}_{\theta})$. Note that $j_1 = \cdots = j_{n-2} = 1$ and $j_{n-1} = 1$ or 2.

• For $j_{n-1} = 1$, we have

$$\sum_{k=1}^{n} \frac{j_k}{a_k} = (m-1) + \frac{5}{6} + \frac{j_k}{6k-1}.$$

We see that it lie between m-1 and m if and only if $j_k = 1, \ldots, k-1$.

• For $j_{n-1} = 2$, we have

$$\sum_{k=1}^{n} \frac{j_k}{a_k} = (m-1) + \frac{7}{6} + \frac{j_k}{6k-1}.$$

We see that it lie between m and m+1 if and only if $j_k = 1, \ldots, 5k-1$.

Therefore, we conclude that

$$\sigma(\overline{F}_{\theta}) = \sigma_a^+ - \sigma_a^- = (-1)^{m-1}((k-1) - 5k) + (-1)^m((5k-1) - k) = (-1)^m 8k,$$

lesired.

as desired.

References

- M. Kervaire and J. Milnor, Groups of homotopy spheres: I, Ann. of Math. Vol. 77, no. 3, 504-537, 1963.
- [2] E. Brieskorn, Beispiele zur differentialtopologie von singularitäten, Invent. Math. 2, 1-14, 1966.
- [3] Pham, F., Formules de Picard-Lefschetz généralisées et ramificairion des intégrales, Bull. Soc. Math. de France 93, 333-367 1965.
- [4] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud., vol. 61, Princeton University Press, 1968.
- [5] Friedrich Hirzebruch, Singularities and exotic spheres, Séminaire N. Bourbaki, exp. no 314, p. 13-32, 1968.
- [6] Ben Knudsen, A Brieskorn exotic sphere. https://www.utsc.utoronto.ca/people/ kupers/wp-content/uploads/sites/50/2021/01/benlecture.pdf
- [7] Yu-Ting, Huang, Construction of 28 differential structures on S^7 .

http://www.math.ntu.edu.tw/~dragon/Exams/DG%20II%202021%20reports/ Final%20reports%20DG%20II%20-%202021.pdf