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In the following, K = R or C, and every vector space is defined over K.

Definition 1. A normed space (X, || · ||) is a Banach space if it is complete as a metric space.

Definition 2. Let X,Y be Banach spaces, x ∈ X and f : U (x) ! Y on an open neighborhood U (x) of
x.

(1) f is differentiable at x if there exists T ∈ L (X,Y ) such that

f (x+ h)− f (x) = Th+ o (∥h∥) as h! 0.

Denote T = f ′ (x).

(2) f is C1 if
f ′ : U ! L (X,Y ) , x 7! f ′ (x)

is continuous.

Proposition 3. .

(a) For f, g : U ! Y differentiable at x ∈ X, we have (cf + g)′ (x) = cf ′ (x) + g (x) for all c ∈ K.

(b) For fi : U ! Xi, i = 1, 2, differentiable at x ∈ X, and (·, ·) ∈ L (X1, X2;Y ), we have

(f1, f2)
′ (x)h = (f ′

1 (x)h, f2 (x)) + (f1 (x) , f
′
2 (x)h) .

(c) For f : U ! V differentiable at x and g : V ! Z differentiable at f (x), we have

(g ◦ f)′ (x) = g′ (f (x)) f ′ (x) .

Definition 4. If f ′ is differentiable at x, define the second derivative

f ′′ (x) := (f ′)
′
(x) ∈ L (X,L (X,Y )) = (X,X;Y ) .

f is C2 if f ′ is C1. Inductively we can define f (k) ∈ L (X,X, . . . , X;Y ), and say f is Ck if f ′ is Ck−1.

Definition 5. Let f ∈ C ([a, b] , Y ). For a division ∆ = {a = t0 < t1 < . . . < tn = b}, let

I∆ (f) :=
n∑

i=1

f (t∗i ) |ti − ti−1| for t∗i ∈ [ti−1, ti]

Define the integral
∫ b

a
f (t) dt := lim

mesh∆!0
I∆ (f), which is well-defined by the uniformly continuity of f .

1



EME Sard-Smale

Theorem 6 (Fundamental Theorem of Calculas). Let Y be a Banach space and f ∈ C ([a, b] , Y ). Let
F (t) =

∫ t

a
f (s) ds. Then F ′ (t) = f (t).

proof: F (t+ h)− F (t)− f (t)h =
∫ t+h

t
(f (s)− f (t)) ds and

1

∥h∥

∥∥∥∥∫ t+h

t

(f (s)− f (t)) ds

∥∥∥∥ ≤ sup
t′∈[t,t+h]

∥f (t′)− f (t)∥ ! 0 as h! 0

Hence F ′ (t) = f (t).

Corollary 6.1. If f ∈ C1 ([a, b] , Y ), then f (t)− f (a) =
∫ t

a
f ′ (s) ds.

Here we recall the Hahn-Banach theorem:

Theorem 7 (Hahn-Banach). Let X be a vector space over K and p : X ! R be a seminorm. Let M be a
vector subspace of X. If f :M ! K is a linear functional such that ∥f (m)∥ ≤ p (m) for all m ∈M , then
there exists a linear functional F : X ! K such that F (m) = f (m) for all m ∈ M and ∥F (x)∥ ≤ p (x)

for all x ∈ X.

Theorem 8 (Mean Value Theorem). Let X,Y be Banach spaces, U be an open subset of X, and x, y ∈ U

such that the segment xy lies in U . If f ′ (c) exists for all c ∈ xy, then ∥f (x)− f (y)∥ ≤ ∥f ′ (c)∥ ∥x− y∥
for some c ∈ xy.

proof: Let a = f (x)− f (y), and a linear functional λ1 : span (a) ! R defined by λ1 (ta) := t ∥a∥. Then
|λ1 (u)| ≤ ∥u∥. By Hahn-Banach Theorem, there exists λ ∈ Y ∗ such that λ (a) = λ1 (a) and λ (u) ≤ ∥u∥

for all u ∈ X, which gives ∥λ∥ ≤ 1. On the other hand, ∥λ∥ = sup
x ̸=0

|λ (x)|
∥x∥

≥ |λ (a)|
∥a∥

= 1. Hence ∥λ∥ = 1.

Consider g : [0, 1] ! R defined by g (t) = λf (y + t (x− y)). By mean value theorem, there is t′ ∈ (0, 1)

such that g (1)− g (0) = g′ (t′). Let c = y + t′ (x− y) ∈ xy. Then

∥f (x)− f (x)∥ = λ (f (x)− f (y))

= g (1)− g (0)

= g′ (t′)

= λ (f ′ (y + t′ (x− y)) (x− y))

≤ ∥λ∥ ∥f ′ (c)∥ ∥x− y∥
= ∥f ′ (c)∥ ∥x− y∥

as desired.

Theorem 9. Let X,Y be Banach spaces, x0 ∈ X and f : U (x0) ! Y be a Ck map (k ≥ 1) on an open
neighborhood U (x0) of x0. If f ′ (x0) : X ! Y is isomorphic, then f is a locally Ck-diffeomorphism at x0.
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proof: We may assume that x0 = 0 and f (0) = 0. By replacing f by f ′ (0)−1 f , we may assume thatX = Y

and f ′ (0) = idX . There exists r > 0 such that ||f ′ (x) − idX || <
1

2
for x ∈ Br (0). Let g (x) = x − f (x)

and gy (x) = y + g (x). Since g′y (x) = g′ (x) = idX − f ′ (x), we have ||g′y (x) || <
1

2
for x ∈ Br (0). Then for

x1, x2 ∈ Br (0),

∥gy (x1)− gy (x2)∥ =

∥∥∥∥∫ 1

0

d

dt
f (x2 + t (x1 − x2)) dt

∥∥∥∥
=

∥∥∥∥∫ 1

0

f ′ (x2 + t (x1 − x2)) (x1 − x2) dt

∥∥∥∥
≤ ∥f ′ (a)∥ ∥x1 − x2∥ for some a in the segment x1x2 ⊆ Br (0)

≤ 1

2
∥x1 − x2∥

Moreover for y ∈ B r
2
(0) and x ∈ Br (0), ∥gy (x)∥ <

r

2
+ ∥g (x)− g (0)∥ < r. By Banach fixed point

theorem, there is a unique fixed x (y) of gy (x), namely, f (x (y)) = y. Hence we have the inverse map
f−1 : B r

2
(0) ! Br (0). For y1, y2 ∈ B r

2
(0), write f (xi) = yi for xi ∈ Br (0). Then

∥x1 − x2∥ = ∥y1 + g (x1)− y2 − g (x2)∥
≤ ∥y1 − y2∥+ ∥g (x1)− g (x2)∥

≤ ∥y1 − y2∥+
1

2
∥x1 − x2∥

which gives ∥f−1 (y1)− f−1 (y2)∥ ≤ 2 ∥y1 − y2∥. This implies that f−1 is continuous.
Let V := f−1

(
B r

2
(0)

)
, which is an open subset in Br (0). Then f |V : V ! B r

2
(0) is a homeomorphism.

For a, x ∈ V , y := f (x) , b := f (a). Since f is C1, we have

f (x)− f (a)− f ′ (a) (x− a) = o (x− a) as x! a.

That is,
f ′ (a)−1 (y − b)−

(
f−1 (y)

)
− f−1 (b) = f ′ (a)−1 o (x− a) as y ! b

Since lim
y!b

o (x− a)

∥y − b∥
= lim

y!b

o (x− a)

∥x− a∥
∥x− a∥
∥y − b∥

= 0, we finally have (f−1)
′
(b) = f ′ (f−1 (b))

−1. Since f−1 is

C0, by this equation we see that f−1 is C1, and inductively, f−1 is Ck.

Finally we recall the open mapping theorem: (cf. Theorem 2.11, Function Analysis, Walter Rudin)

Theorem 10. Let X be a topological vector space whose topology is induced by a complete invariant
metric, and Y be a Hausdorff topological vector space. If T : X ! Y is a surjective continuous linear
operator, then T is an open map.
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Corollary 10.1. If moreover T is bijective, then T is isomorphic.

Definition 11. Let M be a closed linear subspace of a topological vector space X. We say that M splits
X if there exists a closed vector subspace N such that X =M ⊕N as topological vector space.

Lemma 12 (Local Normal Forms). Let X,Y be Banach spaces, x0 ∈ X and f : U (x0) ! Y be a Ck map
(k ≥ 1) on a open neighborhood U (x0) of x0 such that N = N (f ′ (x0)) splits X and R = R (f ′ (x0)) splits
Y . Then there exists a neighborhood W (x0) of x0 and a Ck-diffeomorphism φ : U (0) ! W (x0), where
U (0) is a neighborhood of 0 in N × R, such that f (φ (n, r)) = f (x0) + r + g (n, r) for (n, r) ∈ U (0) for
some g satisfying g (n, r) ∈ R⊥, g (0, 0) = 0 and g′ (0, 0) = 0.

proof: We may assume that x0 = 0 and f (0) = 0. By the assumption X = N ⊕N⊥ and Y = R⊕R⊥, for
x = x1 + x2 ∈ X with x1 ∈ N, x2 ∈ N⊥, write f (x) = f1 (x) + f2 (x) with f1 (x) ∈ R, f2 (x) ∈ R⊥. Note
that f (0) = 0 and f ′ (0)h = f ′

1 (0)h+ f ′
2 (0)h ∈ R, we have f1 (0) = f2 (0) = 0 and f ′

2 (0) = 0.
Consider the map F : U (0) ! N × R defined by F (x) = (x1, f1 (x)). Then we have F (0) = 0 and
F ′ (0)h = (h1, f

′
1 (0)h) = (h1, f

′ (0)h), which implies F ′ (0) : X ! N ×R is an isomorphism since the map
f ′ (0) : N⊥ ! R is. By the inverse function theorem, F is a locally Ck-diffeomorphism, that is, there is a
neighborhood W of x0 = 0 in X such that F |W : W ! U := F (W ) is a Ck-diffeomorphism, where U is
clearly a neighborhood of 0 in N ×R.
Let φ := F |W−1. Let x = φ (n, r). We know that n = x1 and r = f1 (x). Then

f (φ (n, r)) = f1 (x) + f2 (x) = r + f2 (φ (n, r))

We just take g (n, r) := f2 (φ (n, r)) ∈ R⊥, then g (0, 0) = 0 and g′ (0, 0) = 0, as desired.

Definition 13. Let X be a topological vector space.

(1) Let p ∈ X. A collection P of neighborhoods of p is a local base at p if every neighborhood of p
contains a members of P .

(2) X is locally convex if there exists a local base at 0 whose members are convex.

We recall another version of the Hahn-Banach theorem:

Theorem 14 (Hahn-Banach). Every continuous linear functional defined on a closed vector space of a
locally convex topological vector space X can be extended to a continuous linear functional on X.

Lemma 15. Let M be a closed vector subspace of a topological vector space X.

(a) If X is locally convex and dimM <∞, then M splits X.
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(b) If codimM <∞, then M splits X.

proof:

(a) Let {e1, . . . , en) be a basis for M . For each x ∈M , write x =
n∑

i=1

αi (x) ei for some continuous linear
functional αi on M . By Hahn-Banach theorem, each αi extends to a continuous linear functional
βi ∈ X∗. Let N =

n⋂
i=1

N (βi). Then X =M ⊕N .

(b) Let π : X ! X /M be the quotient map and let {e1, . . . , en) be a basis for X /M . Take xi ∈ X such
that π (xi) = ei and let N = span (x1, . . . , xn). Then X =M ⊕N .

Definition 16. Let X,Y be Banach spaces. A continuous linear operator T : X ! Y is a Fredholm
operator if both dimN (T ) and codimR (T ) are finite. The index of T is defined by Ind (T ) = dimN (T )−
codimR (T ).

By Lemma 15, N (T ) splits X and R (T ) splits Y if T is Fredholm.

Definition 17. Let X,Y be Banach spaces and f : X ! Y be a C1 map.

(1) A point x ∈ X is called a regular point of f if f ′ (x) is surjective and N (f ′ (x)) splits X; otherwise
x is called a singular point of f .

(2) A point y ∈ Y is called a regular value of f if f−1 (y) contains only regular values of f ; otherwise y
is called a singular value.

Definition 18. Let M be a topological space.

(1) A chart (U,φ) in M is a pair with an open subset U in M and a homeomorphism φ : U ! Uφ ⊆
open

Xφ

for some Banach space Xφ, called the chart space.

(2) A Ck-atlas for M is a collection of charts (Uα, φα)α such that
⋃
α

Uα = M and any two charts are

Ck-compatible, i.e., either Uα ∩ Uα′ = ∅ or both φα ◦ φ−1
α′ and φα′ ◦ φ−1

α are Ck.

(3) M is said to be a Ck-Banach manifold if M has a Ck-atlas.

Definition 19. Let f :M ! N be a map between Ck-Banach manifolds.

(1) f is said to be Ck if f is Ck at each point x ∈M in charts.

(2) f is a Ck-diffeomorphism if f is bijective and both f and f−1 are Ck.
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Definition 20. Let M be a Ck-manifold with k ≥ 1, and x ∈M .

(1) For a C1-curve γ (t) in M with γ (t0) = x for some t0, let γφ (t) = φ (γ (t)) and vφ = γ′φ (t0). vϕ is
called the representative of γ.

(2) Two C1 curves passing through x are equivalent at x if the represntives are the same tangent vector
at x in charts.

(3) A tangent vector to M at x consists of all C1-curves equivalent at x to a fixed C1-fixed.

(4) The tangent space TxM to M at x is the set of all tangent vector to M at x.

Proposition 21. Let f :M ! N be C1 between C1-Banach manifolds. Then there is a linear continuous
map f ′ (x) : TxM ! Tf(x)N at each point x ∈M , called the tangent map of f at x.

Definition 22. Let M,N be C1-Banach manifolds and f : X ! Y be a C1 map.

(1) A point x ∈M is called point of f if f ′ (x) is surjective and N (f ′ (x)) splits X; otherwise x is called
a singular point of f .

(2) A point y ∈ N is called a regular value of f if f−1 (y) contains only regular values of f ; otherwise y
is called a singular value.

Definition 23. Let M,N be Ck-Banach manifolds, k ≥ 1, and f :M ! N be Ck. f is called a Fredholm
operator at x if f ′ (x) : TMx ! TNf(x) is Fredholm.

Theorem 24 (Sard-Smale Theorem). Let M,N be C∞-Banach manifolds with M second countable. If
f :M ! N is Ck-Fredholm with k > max (Indf ′ (x) , 0) for all x ∈M , then the set of singular values of f
is meager, i.e., a countable union of nowhere dense subsets, and the set of regular values is residual, i.e., a
countable intersection of open dense subsets.

To prove Sard-Smale theorem, we need some lemmas:

Lemma 25. Let X,Y be Banach spaces, x0 ∈ X and f : U (x0) ! Y be a Ck-Fredholm map on an
open neighborhood U (x0) of x0 with k > max (Indf ′ (x0) , 0). Then there exists an open neighborhood
W = W (x0) of x0 such that the set of regular values of f |W is dense in Y .

proof: By definition and Lemma 15, N := N (f ′ (x0)) splits X and R := R (f ′ (x0)) splits Y . By
Lemma 12, there exist a neighborhood W = W (x0) of x0 in X and a Ck-diffeomorphism φ : U (0) ! W ,
where U (0) := UN (0) × UR (0) with UN (0) , UR (0) neighborhoods of 0 in N,R, respectively, such that
h (n, r) := f (φ (n, r)) = f (x0) + r + g (n, r) for (n, r) ∈ N × R for some g satisfying g (n, r) ∈ R⊥,
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g (0, 0) = 0 and g′ (0, 0) = 0. It suffices to prove the set of regular values of h is dense in Y . Let y ∈ Y

and write y = f (x0) + y1 + y2 with y1 ∈ R and y2 ∈ R⊥. Consider the Ck map ψ : UN (0) ! R⊥ defined
by ψ (n) = g (n, y1). Since now k > max

(
dimN − dimR⊥, 0

)
, by Sard’s theorem, the set of regular values

of ψ is dense in R⊥. Hence it suffices to show that y is a regular value of h if y2 is a regular value of ψ.
For h (n, r) = y, we have r = y1 and ψ (n) = y2. We compute that

h′ (n, r) (n′, r′) = v′ + ψ′ (n) (n′) + gr (n, r) (r
′)

From this we see that if ψ′ (n) is surjective, then so is h′ (n, r), as desired.

Lemma 26. Let X,Y be Banach spaces, x0 ∈ X and f : U (x0) ! Y be a Ck-Fredholm map on an open
neighborhood U (x0) of x0 with k ≥ 1. Then f is locally proper.

proof: It suffices to prove that h : U (0) ! Y is proper. Let K be a compact set in Y . For any sequence
{(nm, rm)}m∈N in h−1 (K) ⊆ U (0) with ym := h (nm, rm) ∈ K, We may assume ym converges to some
y ∈ K by passing to a convergent subsequence. Write y = f (x0) + y1 + y2 with y1 ∈ R, y2 ∈ R⊥. Note
that h (nm, rm) = f (x0) + rm + g (nm, rm), we see that rm ! y1 as m ! ∞. Now N is finite dimensional
since f ′ (x0) is Fredholm, then there is a subseqence ymk

converging to some n ∈ N . Since

h (n, y1) = lim
k!∞

h (nmk
, rmk

) = y ∈ K,

we get that (nmk
, rmk

) converges to (n, y1) ∈ h−1 (K), which yields that h−1 (K) is compact, namely, h is
proper.

Lemma 27. Let X,Y be Banach spaces, x0 ∈ X and f : U (x0) ! Y be a Ck-Fredholm map on an open
neighborhood U (x0) of x0 with k ≥ 1. If x0 is a regular point of f , then there exists a neighborhood of x0
containing only regular points of f .

proof: Since f ′ (x0) : X ! Y is surjective, we have R = Y and then g = 0. Now by h (n, r) = f (x0) + r,
we compute that h′ (n, r) (n′, r′) = r′ for all r′ ∈ Y , that is, h′ (n, r) is surjective for all (n, r) ∈ U (0).
Hence the open neighborhood φ (U (0)) of x0 contains only regular values of f .

Corollary 27.1. Let X,Y be Banach spaces, x0 ∈ X and f : U (x0) ! Y be a Ck-Fredholm map on an
open neighborhood U (x0) of x0 with k > max (Indf ′ (x0) , 0). Then there exists an open neighborhood
V (x0) of x0 in X such that the set of regular values of f |V (x0) is open dense in Y and the set of singular
values of f |V (x0) is closed and nowhere dense in Y .

proof: We may take a open neighborhood V = V (x0) of x0 in X satisfying

(i) the set of regular values of f |V is dense in Y .
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(ii) f |V is proper.

By Lemma 27, the set of singular points of f |V is closed in X, hence the set of singular values is closed in
Y by (ii) and nowhere dense by (i).

Now we come back to the proof of Sard-Smale theorem.

proof: By Corollary 27.1, for each point x ∈ M , we can take an open neighborhood U (x) of x such that
the set of singular values of f |U(x) is closed and nowhere dense. Now M is Lindolöf, there exists {xn}n∈N
such that M is covered by

⋃
n∈N

U (xn), and note that y is a singular value of f if and only if it is a singular

value of f |U(xn) for some n ∈ N. Therefore the set of singular values of f is the union of the sets of singular
values of f |U(xn), which is meager, and then the set of regular values of f is residual.

Corollary 27.2. Let M and N be C∞-Banach manifolds and f : M ! N be proper Ck-Fredholm with
k > max (Indf ′ (x) , 0) for all x ∈M . Then the set of regular values of f is open dense in N .

Remark 28. In the course, we apply Sard-Smale theorem to the map N k,p ! Ω2,+ (X, iR), where

N k,p :=
{
(A,Φ) ∈ X k,p|DAΦ = 0, d∗ (A− A0) = 0,Φ ̸≡ 0

}
is a smooth second countable Banach manifold by Proposition 8.16 in Salamon’s book, and Ω2,+ (X, iR) is
a Banach space.
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