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Abstract

The main theme in this thesis is to prove the invariance of Betti numbers of

smooth complex projective varieties under certain birational correspondences

and to discuss its applications to degeneration problems of smooth minimal

models.

There are two parts of it. In the first part, it is shown that if f :X ··→ X ′ is

a birational map between two smooth complex projective varieties such that the

canonical bundles are numerically effective along the exceptional loci, then X

and X ′ have the same Betti numbers. In particular, birational smooth minimal

models have the same Betti numbers.

The main idea is to use the Weil conjecture. To proceed, we first observe

that the whole problem is reduced to the p-adic case, and then use Weil’s

formula to identify the number of rational points with certain p-adic integral.

The next key point is to show that the canonical bundles become equivalent

after pulled back to a common resolution of the given birational map. Putting

this information into the p-adic integrals of both varieties shows that they have

the same Jacobian factor in the change of variable formula, hence settles the

theorem.

In the second part, it is shown that for a degeneration of three dimensional

smooth minimal models acquiring nontrivial terminal singularities, the punc-

tured family can not be completed into a smooth projective family. Since there

are examples such that the monodromy is trivial in the C∞ sense, this gives a

negative answer to the so called “filling in” problem in dimension three.

The proof makes use of various results developed in the Mori theory. The

key lemma in the first part and the main result mentioned above also play a

very important role here. This degeneration problem is motivated by the study

of the Weil-Petersson metric on the moduli spaces of Calabi-Yau manifolds. In

fact, we propose the equivalence between incomplete boundary points and de-

generations of Calabi-Yau manifolds acquiring at most canonical singularities.

This thesis was written under the supervision of Professor Shing-Tung Yau.
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Introduction

I would like to describe personal reflections of my past five years of graduate

study, to recall how those problems I was dealing with came to my mind and to

explain how they were solved. But overall, I need to first say something about

minimal models, which is the main subject that attracted me for most of the

time. And perhaps, I hope, that I finally got some feeling of it.

The concept of minimal models goes back to the Italian algebraic geome-

ters. It plays a decesive role in the classification theory of algebraic surfaces

and is also fundamental in many applications. However, its range of applica-

tions are not extended to higher dimensions until S. Mori’s fundamental work

on the structure of rational curves appeared in the late 70’s.

During the last two decades, the minimal model theory has been exten-

sively developed by S. Mori, M. Reid, Y. Kawamata, E. Viehweg, V. Shokurov,

J. Kollár and many others. It becomes clear that it forms an important reduc-

tion step in the study of higher dimensional algebraic geometry. One of their

most significant achievement is that many important conjectures in dimension

three were thus solved.

What is a minimal model? It is a birational model with numerically effec-

tive canonical divisors and with at most terminal singularities (perhaps with

some factoriality assumption). This could make sense only when one glances

at Mori’s cone theorem, and its extension by Kawamata, Shokurov and Kollár

to the singular case. Basically, it says that if the canonical bundle is not nef,

then the variety admits further contractions. There are serious problems to

continue this process due to the wild singularities that one may encounter after

contractions. This was finally resolved by Mori in 1988 by proving the existence

of flips, hence settled the existence of minimal models in dimension three.

So far, the existence problem is completely open in higher dimensions, but

even worse, the minimal model is not unique except in dimension two. It is

then important to see what kind of invariants are shared by those birational

minimal models. More generally, we would like to know how certain topological

invariants change under certain elementary birational transformations. The

first main result in this thesis provides the answer for the Betti numbers:

Theorem A. Let f :X · ·→ X ′ be a birational map between two smooth

complex projective varieties such that the canonical bundles are numerically

effective along the exceptional loci, then X and X ′ have the same Betti numbers.

In particular, birational smooth minimal models have the same Betti numbers.
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This type of problem was first studied by Kollár in the case of three-

folds about ten years ago, by refining Kawamata’s result on three dimensional

flops. His method is basically geometrical. In fact he obtained a complete

understanding of birational maps between three dimensional minimal models

— they are composed by a sequence of flops and he has a clear local picture of

flops. Namely he established, among other things, the invariance of singulari-

ties, cohomologies and intersection cohomologies under flops in dimension three

(cf. 5.1). In this way, Theorem A only generalizes the “Betti number” state-

ment to arbitrary dimensions, and is still under the very restricted smoothness

assumption.

However, there are some interesting immedeate consequences of Theorem

A. One of them is that the exceptional loci of the given birational map also

share the same Betti numbers (Corollary 4.5). This is obtained by applying the

Mayer-Vietoris argument to the birational correspondence we may construct via

H. Hironaka’s theorem on the resolution of singularities, and then make use of

Theorem A. In fact, in all the examples known to the author, the exceptional

loci are actually birational to each other componentwise! But we have no proof

of this.

The proof of Theorem A is based on some general considerations in bi-

rational geometry and Grothendieck-Deligne’s solution to the Weil conjecture

[D1, D2]. The bridge to connect these two is the theory of p-adic integrals.

Essentially, all of the algebro-geometric results we need were well developed

in the 80’s. And all the arithmetic results we need were done even earlier.

Moreover, instead of the details, we even just need the statements existed in

the literatures! It seems that all we need to do is to put them together and to

see what happens. However, this is the step that people seemed to ignore. The

real intention of this research is an attemption to combine these two theory

together. From this point of view, we seem to have a very good start.

I would like to say some words about the development on this problem. In

fact, even the idea to use the Weil conjecture via p-adic integrals to compute

cohomologies is not new. It has to be dated back to the 70’s to the works of G.

Harder and M.S. Narasimhan [HN], although it was used there in a somewhat

different way. p-adic integrals were also studied extensively in the context of

Igusa-Weil local zeta functions by J. Denef and F. Loeser since late 80’s [Ig,

DF1]. Recently this approach was taken up again by Batyrev, and he first

established Theorem A in the special case of projective Calabi-Yau manifolds.

In his case, essentially no minimal model theory needs to be involved. At that

time, an even more striking result to me appeared, that was D. Huybrechts’

stronger statement about Hyper-Kähler manifolds [Hu] (cf. 5.2).
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These results were made famous, at least to me, because it was used by

Beauville in explaining Yau-Zaslow’s formula on the number of rational curves

on K3 surfaces. Although only hearing this development oversea, from the

previous experience in the minimal model theory, notably the abundance con-

jecture, I then soon convinced myself that the same result must hold true for

general minimal models. I cooked out the first version of Theorem A in Octo-

ber 1997 under the further assumption that the canonical bundle is semi-ample

(with a help from C.-L. Chai). It is an argument based on p-adic integrals and

birational correspondences. At about the same time, Batyrev’s proof in the

Calabi-Yau case appeared on the network [Ba] where his “measure theoretic”

argument came to my mind.

By extending these developments further, I then realized that our origi-

nal argument based on birational correspondences in fact works equally well

without the semi-ampleness assumption. The key point is that the assumption

can even be localized to the exceptional loci. This leads to the concept of “K-

partial ordering”, which is introduced in §1 and is closely related to interesting

geometric situations arising from the minimal model theory. The applicability

of the Weil conjecture is largely clarified in terms of this notion (cf. Proposition

2.16 and Theorem 3.1). Moreover, this approach also provides a natural setting

in the singular case.

I have tried to develop this, together with the p-adic measure, as far as

possible so that it could fit the need of the minimal model theory. In fact,

an easy but very interesting fact observed here is that the integral points of a

p-adic variety has finite p-adic measure if and only if it has at most terminal

singularities (Proposition 2.12). This give me the belief that p-adic integrals

fit naturally into the framework of minimal model theory. But due to technical

reasons, I have restricted myself to the smooth case when I state and prove

Theorem A. (See however 2.17 and 5.3 for more about the singular case.)

I have to point out at least two aspects that Theorem A is still unsatis-

factory, the torsion elements are not considered and no natural maps between

cohomologies has been even mentioned. Although there is one obvious candi-

date for this map, the cohomology correspondence induced from the birational

correspondence, it is not clear how to show directly that it induces isomor-

phisms. In fact, there is no strong evidence why this should be true.

In the simplest cases, we can show that smooth minimal models mini-

mize H2(X,Z) compatible with the Hodge structure among birational smooth

projective varieties. And in the singular case, at least we know that minimal

models minimize the group of Weil divisors among birational projective vari-

eties with at most terminal singularities. The proof is elementary (does not use
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the Weil conjecture) and is contained in §4 together with some related results.

In fact, it is simply another application of the notion of K-partial ordering.

Nevertheless, it is worth pointing out that in stating both theorems, what we

have in mind is that there should be a “minimal cohomology theory” among

birational varieties. Moreover, it should be realized exactly by the minimal

models.

* * * * *

Turn to its applications — a basic question in the analysis of boundary

point of moduli spaces is the problem about degenerations. There are many

powerful tools developed in this area, from the traditional Picard-Lefschetz the-

ory to the modern theory entitled with the name “variations of Hodge struc-

tures”. However, there are some questions seem to be beyond the scope of

Hodge theory. One is the so called “filling in problem”.

This is concerned about a degenerating family of smooth projective vari-

eties over the disk such that the punctured family is smoothly equivalent to

a trivial product. The question is whether this punctured family can be com-

pleted into a smooth analytic family. Negative answer to this question is well

known in the curve theory, however, it is mainly due to the presence of non-

trivial fundamental groups. So it is natural to consider only simply connected

varieties. In this setup, V. Kulikov’s classification theorem on semi-stable de-

generations of K3 surfaces [Ku] (in the late 70’s) provided the first important

class of examples that the filling in problem has a positive answer.

In the 80’s, R. Friedman [F1] and J. Morgan [Mo] had also studies these

kind of questions. A negative answer has thus been obtained by them for cer-

tain degenerating families of surfaces of general type. From this, they also

constructed negative examples for dimensions at least four. But at that mo-

ment, people did not know how to answer this question for a given specific

family with finite order monodromy, even for the simplest examples – even

dimensional nodal degenerations studied in the Picard-Lefschetz theory. The

nonfilliability of this was finally proved by C. Voisin in 1990 [Vo].

In his survey paper on Calabi-Yau threefolds [F4], Friedman remarked

that for families of quintic hypersurfaces acqriring an A2 singularity, the mon-

odromy has finite order inside the mapping class group. He also expected that

the filling in problem has a negative answer for any finite base change. This

question caught my interest for three reasons. One, the fiber dimension is three,

which belongs to the unknown zone of the existing list of examples. Two, the

singularity is so simple. And more importantly, it is Calabi-Yau, a “natural

candidate” for K3 surfaces in three dimensios, and we already know a positive

answer for K3’s (sounds like a paradox)!
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The second main result of this thesis is to provide a general theorem on

terminal degenerations, which in particular answers the filling in problem in

negative.

Theorem B. Let X → ∆ be a projective smoothing of a Gorenstein 3-fold

X0 with nontrivial terminal singularities and with KX0
nef. Then X → ∆ is

not birational to a projective smooth family X ′ → ∆ with Xt ∼= X ′t for t 6= 0.

From this point of view, the above mentioned paradox is simply that there

are no terminal singularities in dimension two! Also not a surprise, the proof

uses many technical results in the three dimensional minimal model theory.

Friedman’s study on simultaneous resolution of threefold double point [F3] is

also fundamental to the proof. And notably, Theorem A is used in an es-

sential step. However, we need to make use of its strong form obtained by

Kollár mentioned above, because from our Theorem A, we don’t know whether

the smoothness is preserved between birational Q-factorial minimal models.

Nevertheless, we still expect that further investigation will lead to interesting

applications of Theorem A in higher dimensional geometry.

In fact, Theorem B was obtained in 1995, two years before the proof of

Theorem A was found. The most exciting thing to me is that in both theorems,

the most technical step (to me) is the same! This is what I called the “Key

Lemma” in §1. I spent several months in obtaining this lemma when I tried to

prove Theorem B. At the end, I found out that a weaker form of it was already

in the literature, namely Kollár’s paper [Ko]! The remaining step for me is just

to generalize it and fortunately this could be done without too much difficulity.

Theorem B is closely related to the study of the Weil-Petersson geometry

of Calabi-Yau moduli spaces. This is the original problem that Professor Yau

gave me. My original motivation to prove Theorem B is to provide “essential”

metric incomplete boundary point of the moduli space of Calabi-Yau threefolds.

§9 is devoted to this aspect. Needless to say, all of these are somehow related

to the study of “Mirror Symmetry” phenomenon.

This article is concluded with certain speculations related to E. Viehweg’s

program on the quasi-projectivity of certain moduli spaces and with a question

on finite distance degenerations of Calabi-Yau manifolds. The central object

in this circle of ideas is an understanding of canonical singularities — as has

been introduced to us by M. Reid more than twenty years ago. In fact, it is

this concept, together with Mori’s cone theorem and the Kawamata-Viehweg

vanishing theorem, that gave the way of the whole development of the minimal

model theory started in the early 80’s!
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Chapter One — Birational Invariants

§1 Birational Geometry

We begin with some standard definitions. For a complete treatment of

minimal model theory, the reader should consult [KMM].

Let X be an n dimensional complex normal Q-Gorenstein variety. That

is, the canonical divisor KX is Q-Cartier. Recall that X has (at most) terminal

(resp. canonical, resp. log-terminal) singularities if there is a resolution φ : Y →
X such that in the canonical bundle relation

(1.1) KY =Q φ∗KX +
∑

aiEi,

we have that ai > 0 (resp. ai ≥ 0, resp. ai > −1) for all i. Here, the Ei’s

vary among the prime components of all the exceptional divisors. Although

(1.1) holds only up to Q-linear equivalence, the divisor
∑
aiEi ∈ Zn−1 ⊗ Q

is uniquely determined. Moreover, the condition on ai’s is readily seen to be

independent of the chosen resolution. It is also elementary to see that smooth

points are all terminal.

Let Z be a proper subvariety of X. A Q-Cartier divisor D is called numer-

ically effective (nef) along Z if D.C := degC̃(f∗D) ≥ 0 for all effective curves

C ⊂ Z, where f : C̃ → C is the normalization of C. And D is simply called nef

if Z = X. A projective variety X is called a minimal model if X is terminal

and KX is nef.

Two normal varieties X and X ′ are birational if they have isomorphic

function fields K(X) ∼= K(X ′) (over C). Geometrically, this means that there

is a rational map f :X ··→ X ′ such that f−1 is also rational. The exceptional

loci of f are defined to be the smallest subvarieties Z ⊂ X and Z ′ ⊂ X ′ such

that f induces an isomorphism X − Z ∼= X ′ − Z ′.
Among the class of birational Q-Gorenstein varieties, We have the notion

of K-partial ordering (where the “K” is for canonical divisors):

Definition 1.2. For two Q-Gorenstein varieties X and X ′, we say that

X ≤K X ′ (resp. X <K X ′) if there is a birational correspondence (φ, φ′) : X ←
Y → X ′ with Y smooth, such that φ∗KX ≤Q φ′∗KX′ (resp. “<Q”). Moreover,

“X ≤K X ′” plus “X ≥K X ′” implies that “X =K X ′”, ie. φ∗KX =Q φ′∗KX′ .

In this case, we say that X and X ′ are K-equivalent.

The well-definedness of this notion follows from the canonical bundle re-
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lations

(1.3) KY =Q φ∗KX + E =Q φ′∗KX′ + E′,

since we know that X ≤K X ′ if and only if E ≥ E′. In the terminal case,

this means that φ has more exceptional divisors than φ′ (so heuristically, X is

“smaller” than X ′).

Here is the typical geometric situation that we can compare their K-partial

order:

Key Lemma 1.4. Let f :X · ·→ X ′ be a birational map between two

varieties with canonical singularities. Suppose that the exceptional locus Z ⊂ X
is proper and that KX is nef along Z, then X ≤K X ′. Moreover, if X ′ is

terminal, then Z has codimension at least two.

Proof. Let φ : Y → X and φ′ : Y → X ′ be a good common resolution

of singularities of f so that the union of the exceptional set of φ and φ′ is a

normal crossing divisor of Y . This can be done by considering Γ̄f ⊂ X ×X ′,
the closure of the graph of f , blowing up the exceptional set of Γ̄f → X and

Γ̄f → X ′ and then taking Y to be a Hironaka (embedded) resolution [Hi].

Consider the canonical bundle relations:

(1.5)
KY =Q φ∗KX + E ≡ φ∗KX + F +G

=Q φ′∗KX′ + E′ ≡ φ′∗KX′ + F ′ +G′.

Here F and F ′ denote the sum of divisors (with coefficients ≥ 0) which are both

φ and φ′ exceptional. G (resp. G′) denotes the part which is φ exceptional but

not φ′ exceptional (resp. φ′ but not φ exceptional). Notice that φ(G′) ⊂ Z.

To proceed, we write

(1.6) φ′∗KX′ =Q φ∗KX +G+ (F − F ′ −G′).

It is enough to prove that F −F ′−G′ ≥ 0, because this implies that F −F ′ ≥ 0

and G′ = 0, and so E ≥ E′.
By taking a generic hyperplane section H of Y n − 2 times, the problem

is reduced to a problem on surfaces. Namely

(1.7) Hn−2.φ′∗KX′ =Q Hn−2.φ∗KX + ζ + (ξ − ξ′ − ζ ′),

where ξ = Hn−2.F and ζ = Hn−2.G etc. If ξ−ξ′−ζ ′ is not effective, write it as

Hn−2.(A−B) = a− b with A and B effective. Then by taking the intersection

of (1.7) with b, we get

(1.8) B.Hn−2.φ′∗KX′ =Q B.Hn−2.φ∗KX + b.ζ + b.a− b2.

7



The left hand side is always zero since B is φ′ exceptional. Moreover, if B ⊂ F ′
then B.Hn−2.φ∗KX = 0 too. If B ⊂ G′ then the curve φ(B.Hn−2) ⊂ φ(G′) ⊂
Z is inside the exceptional locus. So the first three terms in the right hand

side are non-negative since KX is nef along Z and a, b and ζ are different

components. However, since b is a nontrivial combination of φ′ exceptional

curves in Hn−2, we have from the Hodge index theorem for surfaces that b2 < 0,

a contradiction! Hence F − F ′ −G′ ≥ 0.

For the second statement, from the construction of Y , we know that all

components of the exceptional sets, denoted by Excφ and Excφ′ respectively,

are divisors. If X ′ is assumed to be terminal, then all φ′ exceptional divisors

occur as components of E′. So G′ = 0 implies that Excφ′ ⊂ Excφ. With this

understood, from

(1.9) X − φ(Excφ) ∼= Y − Excφ ∼= X ′ − φ′(Excφ) ⊂ X ′ − φ′(Excφ′),

we conclude that Z ⊂ φ(Excφ) is of codimension at least two. Q.E.D.

Corollary 1.10. Let f :X ··→ X ′ be a birational map between two varieties

with at most canonical singularities such that KX (resp. KX′) is nef along the

exceptional locus Z ⊂ X (resp. Z ′ ⊂ X ′), then X =K X ′. Moreover, f extends

to an isomorphism in codimension one if X and X ′ are terminal. This applies,

in particular, if both X and X ′ are minimal models.

Variant 1.11. Instead of assuming that the exceptional locus in X is

proper, one can generalize Key Lemma 1.4 to the relative case, namely f is a

S-birational map and that X → S and X ′ → S are proper S-schemes. The

proof is identical to the one given above by changing notation.

Remark 1.12. This type of argument is familiar in the minimal model

theory. Notably, in analyzing the log-flip diagram (eg. [KMM; 5-1-11]) or more

specially, the flops. Key Lemma 1.4 implies that if X ′ is a flip of X, then

X ≥K X ′ (in fact, more is true: X >K X ′). Corollary 1.10 implies that flop

induces K-equivalence. Since flip/flop will not be used in any essential way

in this paper, we will refer the interested reader to [KMM] for the definitions.

The proof given above is inspired by Kollár’s treatment of flops in [K1].
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§2 The Weil Conjecture and p-adic Integrals

To prove Theorem A, we will show that X and X ′ have the same number

of rational points over certain finite fields when a suitable good reduction is

taken. That is, we prove that they have the same “zeta function”. The theorem

will then follow from the statement of the Weil conjecture.

2.1. The reduction procedure. This is standard in algebraic geometry

and in number theory: as long as we perform only a finite number of “algebraic

constructions” in the complex case, e.g. consider morphisms, since all the

objects involved can by defined by a finite number of polynomials, we can take

S ⊂ C a finitely generated subring over Z so that everything is defined over S.

S has the property that the residue field S/m of any maximal ideal m ⊂ S is

finite.

If we start with “smooth objects”, general reduction theory then says that

for an infinite number of “good primes” (in fact, Zariski dense in Spec (S)), we

may get good reductions so that everything is defined smoothly over the finite

residue field Fq with q = pr for some prime number p. We may also assume

that this reduction has a lifting such that everything is defined smoothly over

R, the maximal compact subring of a p-adic local field K, i.e. a finite extension

field of Qp, with residue field Fq.

More precisely, let F be the quotient field of S. Based on the fact (and

others) that Qp has infinite transcendence degree, the “embedding theorem”

(see for example [Ca; p.82]) says that for an infinite number of p’s, there is

an embedding of fields i : F → Qp such that i(S) ⊂ Zp. Moreover, i may

be chosen so that a prescribed finite subset of S, say the coefficients of those

defining polynomials, is mapped into the set of p-adic units. This embedding

then gives the desired lifting.

Let P be the unique maximal ideal of R (so R/P ∼= Fq). We denote by

X̄, Ū , . . . those objects constructed from X, U . . . via reductions mod P . That

is, objects lie over the point SpecR/P → SpecR — they are defined over Fq.

We also denote the reduction map by π : X(R)→ X̄(Fq) etc.

2.2. The Weil conjecture. Let X̄ be a variety defined over a finite field

Fq. After fixing an algebraic closure, the Weil zeta function of X̄ is defined by

(2.3) Z(X̄, t) := exp

(∑
k≥1
|X̄(Fqk)| t

k

k

)
.

In 1949, Weil conjectured several nice properties of this zeta function for

smooth projective varieties and expalined how some of these would follow once a

9



suitable cohomology theory exists [W1]. This lead Grothendieck to his creation

of étale cohomology theory.

More precisely, Grothendieck proved a “Lefschetz fixed point formula” in a

very general context (eg. constructible sheaves over seperated schems of finite

type . . .) [D2], which in particular implies that the zeta function is a rational

function:

(2.4) Z(X̄, t) =
P1(t) · · ·P2n−1(t)

P0(t)P2(t) · · ·P2n(t)
,

where Pj(t) is a polynomial with integer coefficients such that Pj(0) = 1 and

degPj(t) = hj , the j-th Betti number of compactly supported `-adic étale

cohomologies (for a prime ` 6= p). Moreover, when X̄ comes from a good

reduction of a smooth complex projective variety X in the sense described in

(2.1), hj coincides with the j-th Betti number of the singular cohomologies of

X(C).

Deligne [D1] completed the proof of the Weil conjecture by proving the

important “Riemann Hypothesis” that all roots of Pj(t) have absolute value

q−j/2. In particular, the complete information about the Fqk -rational points

determines the hj ’s and all the roots.

2.5. Counting points via p-adic integrals. How do we count X̄(Fq)?

If X̄ comes from the good reduction of a smooth R-scheme, we will see that

such a counting can be achieved by using p-adic integrals (cf. Theorem 2.8). We

will first recall some elementary aspects of the p-adic integral over K-analytic

manifolds and over R-schemes.

Consider the Haar measure on the locally compact field K, normalized so

that the compact open “disk” R has volume 1:

(2.6)

∫
R

|dz| = 1.

We may extend this to the multivariable case and define the p-adic integral of

any regular n form Ψ = ψ(z1, · · · , zn)dz1 ∧ · · · ∧ dzn by

(2.7)

∫
Rn

|Ψ| :=
∫
Rn

|ψ(z)||dz1 ∧ · · · ∧ dzn|.

Here |a| := q−νp(NK/Qp (a)) is the usual p-adic norm.

We may define an integral slightly more general than (2.7): suppose that

Ψ is a r-pluricanonical form such that in local analytic coordinates we have

10



Ψ = ψ(z1, · · · , zn)(dz1 ∧ · · · ∧ dzn)⊗r. We define the integration of a “r-th root

of |Ψ|” by

(2.7′)

∫
Rn

|Ψ|1/r :=

∫
Rn

|ψ(z)|1/r|dz1 ∧ · · · ∧ dzn|.

This is independent of the choice of coordinates, as can be checked easily by

the same method as in [W2; p.14]. So we can extend the definition to (not

necessarily complete) K-analytic manifolds with Ψ a (possibly meromorphic)

pluricanonical form. Certainly then the integral defined may not be finite.

The key property we need is the following (slightly more general form of

a) formula of Weil [W2; 2.2.5]. We briefly sketch its proof.

Theorem 2.8. Let U be a smooth R-scheme and Ω a nowhere zero r-

pluricanonical form on U , then∫
U(R)

|Ω|1/r =
|Ū(Fq)|
qn

.

Proof. The proof given by Weil in [W2] goes through without difficulties

— one first observes that the reduction map π:U(R) → Ū(Fq) induces an

isomorphism between π−1(t̄) and PRn for any t̄ ∈ Ū(Fq) (Hensel’s lemma)

such that there is a function ψ with |ψ(z)| = 1 and

(2.9) Ω = ψ(z) · (dz1 ∧ · · · ∧ dzn)⊗r

in the K-analytic chart PRn. This implies that
∫
π−1(t̄)

|Ω|1/r = 1/qn for any

t̄ ∈ Ū(Fq). Summing over t̄ then gives the result. Q.E.D.

The right hand side of (2.8) shows that the integral is independent of

the choice of the form Ω. One may also see this by observing that any two

such forms differ by a nowhere vanishing function on U (over R) which takes

values in the units on all R-points. This allows one to define a canonical p-adic

measure on the R-points of smooth R-schemes by “gluing” the local integrals.

We will define it in the singular case with the hope that it may be useful for

later development.

2.10. Canonical measure on Q-Gorenstein R-schemes. We will

only consider those R-schemes, eg. X, that come from complex Q-Gorenstein

varieties as in (2.1). Let r ∈ N such that rKX is Cartier (locally free). We

may assume that we have a R-resolution of singularities φ:Y → X, which is

11



a projective R-morphism, so that the reduced part of the exceptional set is a

simple normal crossing R-variety. We will define a measure on X(R) such that

the measurable sets are exactly the compact open subsets in the K-analytic

topology.

Let Ui’s be a Zariski open cover of X such that rKX |Ui
is actually free.

Then for a compact open subset S ⊂ Ui(R) ⊂ X(R), we define its measure by

(2.11) mX(S) ≡
∫
S

|Ωi|1/r :=

∫
φ−1(S)

|φ∗Ωi|1/r,

where Ωi is an arbitrary generator of rKX |Ui
. Notice that the properness of φ

implies that φ−1(S) ⊂ Y (R). This allows us to operate the integral entirely on

R-points.

For general compact open S ⊂ X(R), we may break S into disjoint pieces

Sj so that Sj is contained in some Ui(R) (in fact, Sj may be chosen to lie entirely

in a fiber of the reduction map π), and then define mX(S) =
∑
imX(Si).

Notice that mX(S) is again independent of the choice of Ui, Ωi and Y .

The following proposition explains the possible connection between the

canonical measure and the minimal model theory:

Proposition 2.12. For a Q-Gorenstein R-variety X, X(R) has finite

measure if and only if X has at most log-terminal singularities.

Proof. Consider the canonical bundle relation for φ:Y → X

(2.13) rKY = φ∗rKX +
∑

i
eiEi

with rKX being Cartier and ei ∈ Z. To determine the finiteness of mX(X(R)),

we only need to consider those R-points on the exceptional fibers. Locally,

div φ∗Ω =
∑
i eiEi for a generator Ω of rKX . So the integral is a product of

one dimensional integrals of the form

(2.14) Ii :=

∫
R

|zei dz⊗r|1/r =

∫
R

|z|ei/r |dz|.

If this is finite, then

(2.15) Ii =

∫
PR

|z|ei/r |dz|+ (q − 1)
1

q
= q−(ei/r+1)Ii +

q − 1

q
.

Since Ii > 0, this makes sense only if qei/r+1 > 1. That is, ei/r > −1, which is

exactly the definition of log-terminal singularities. Q.E.D.
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Since the measure is defined Zariski-locally via p-adic integrals, for smooth

X, we have from Weil’s formula (2.8) that:

Corollary 2.16. Let X be an n-dimensional smooth R-variety with finite

residue field Fq, then

mX(X(R)) =
|X̄(Fq)|
qn

.

Remark 2.17. If X is singular, mX((X(R)) is a weighted counting of

the rational points. By definition, if φ:Y → X is a crepant R-morphism, ie.

KY =Q φ∗KX , then mX((X(R)) = mY ((Y (R)). In particular, mX((X(R))

counts the rational points of Ȳ if Y is smooth! This applies to many inter-

esting “pure canonical” singularities and to terminal singularities having small

resolutions. However, further investigation on the precise “geometric meaning”

of this weighted counting is still needed for the general case (cf. 5.3).
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§3 The Proof of Theorem A

We will in fact prove a result which connects the notion of K-partial or-

dering and the canonical measure. This will largely clarify the role played by

the Weil conjecture.

Theorem 3.1. Let X and X ′ be two birational log-terminal R-varieties.

Then mX(X(R)) ≤ mX′(X
′(R)) if X ≤K X ′. In particular, K-equivalence

implies measure equivalence.

Proof. Consider as before, a birational correspondence (φ, φ′) : X ← Y →
X ′ over R with Y a smooth R-variety. Let r ∈ N be such that both rKX

and rKX′ are Cartier. Then X ≤K X ′ if and only if in the canonical bundle

relations rKY = φ∗rKX + E = φ′∗rKX′ + E′, we have E ≥ E′.
From the properness of φ and φ′, we have that φ−1(X(R)) = Y (R) =

φ′−1(X ′(R)). So from the definition of the measure (2.11), it suffices to show

that for any compact open subset T ⊂ Y (R) with π(T ) a single point ȳ ∈
Ȳ (Fq), we have

(3.2)

∫
T

|φ∗Ω|1/r ≤
∫
T

|φ′∗Ω′|1/r.

Here Ω is an arbitrary local generator of rKX on a Zariski open set U where

rKX is actually free and such that φ̄(ȳ) ∈ Ū (and with similar conditions for

Ω′).

Clearly, (3.2) can fail to be an equality only if ȳ ∈ Ē ∪ Ē′. However, in

this case E ≥ E′ says that the order of φ∗Ω is no less than that of φ∗Ω. (3.2)

then follows from the definition of the p-adic integral (2.7′) (see also (2.15)).

Q.E.D.

If X and X ′ are smooth, combining this with (2.16) gives

Corollary 3.3. Let X and X ′ be two birational smooth R-schemes. Then

|X̄(Fq)| ≤ |X̄ ′(Fq)| if X ≤K X ′.

With this done, by working on cyclotomic extensions of K, the same proof

shows that |X̄(Fqk)| ≤ |X̄ ′(Fqk)| for all k ∈ N. In particular, Z(X̄, t) ≤
Z(X̄ ′, t) for all t > 0. The same is true for all the derivatives, but it is not clear

how to make use of these. The simplest application is given by:

Corollary 3.4. Let X and X ′ be two birational complex smooth varieties.

They have the same Euler number for the compactly supported cohomologies if

X =K X ′.
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Proof. Apply the reduction procedure (2.1) to reduce this to the p-adic

case. The statement then follows from Grothendieck’s Lefschetz fixed point

formula (2.4) and the above comparison of zeta functions. Q.E.D.

So far we have not used Deligne’s theorem on the “Riemann Hypothesis”.

To use it, we need to impose the projective assumption.

Theorem 3.5. Let X and X ′ be two birational smooth projective R-

schemes. If X =K X ′ then mX(X(R)) = mX′(X
′(R)). This is equivalent to

Z(X̄, t) = Z(X̄ ′, t). In particular, they have the same “Betti numbers” by the

Weil conjecture.

Now we may come back to our original geometric situation:

Theorem A. Let f :X · ·→ X ′ be a birational map between two smooth

complex projective varieties such that the canonical bundles are numerically

effective along the exceptional loci, then X and X ′ have the same Betti numbers.

In particular, birational smooth minimal models have the same Betti numbers.

Proof. By Corollary 1.10, X and X ′ are K-equivalent. So Theorem A

simply follows from the reduction procedure (2.1) and Theorem 3.5. Q.E.D.

Remark 3.6. In the preliminary version of this paper (dated October

1997), Theorem A was stated with the assumption that the canonical bundle is

semi-ample, that is, rKX is generated by global sections for some r ∈ N. The

proof proceeds by cutting out the pluri-canonical divisors and applying p-adic

integrals to the birational correspondence, where the notion of K-equivalence

is essential for this step to work.

By using Weil’s formula (2.8), the proof is then concluded by induction

on dimensions. In this approach, the usage of integration of a r-th root of the

absolute value of a pluricanonical form was suggested to the author by C.-L.

Chai in order to deal with the case that r > 1. Happily enough, as the author

realized later, the semi-ample assumption can be removed once we observed

that the problem can even be localized to the exceptional loci.

Remark 3.7. The equivalence of zeta functions is a stronger statement

than the equivalence of Betti numbers. Moreover, we have in fact established

the equivalence of zeta functions for a dense set of primes. From the theory

of motives, this suggests that we may in fact have the equivalence of Hodge

structures. Further investigation in this should be interesting and important.

Question 3.8. Is Theorem A true for Kähler manifolds?
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§4 Miscellaneous Results

Now we come back to the complex number field and begin with an ele-

mentary observation:

Lemma 4.1. If the exceptional loci of a birational map f :X · ·→ X ′

between two smooth projective varieties have codimension at least two then for

i ≤ 2 we have πi(X) ∼= πi(X
′) and Hi(X,Z) ∼= Hi(X ′,Z) which is compatible

with the rational Hodge structures.

Proof. The real codimension four statement plus the transversality ar-

gument shows that πi(X) ∼= πi(X
′), Hi(X,Z) ∼= Hi(X

′,Z) and Hi(X,Z) ∼=
Hi(X ′,Z) canonically for i ≤ 2. Moreover, by Hartog’s extension we know

that the Hodge groups H0(Ωi) are all birational invariants among smooth va-

rieties. The orthogonality of Hodge filtrations then shows that Hi(X,Q) and

Hi(X ′,Q) share the same rational Hodge structures for i ≤ 2. Q.E.D.

A slightly deeper result is given by

Proposition 4.2. If the exceptional loci Z ⊂ X and Z ′ ⊂ X ′ of a bira-

tional map f between two smooth varieties have codimension at least two, then

hi(X)− hi(Z) = hi(X ′)− hi(Z ′).

Proof. Construct a birational correpondence X ← Y → X as in §1 and

denote the exceptional divisor of φ:Y → X (resp. φ′:Y → X ′) by E (resp.

E′). Since Hironaka’s resolution process only blows up smooth centers inside

the singular set of the graph of f , the isomorphism X − Z ∼= X ′ − Z ′ implies

that φ(E ∪ E′) ⊂ Z and φ′(E ∪ E′) ⊂ Z ′, hence that Ered = E′red, Z = φ(E)

and Z ′ = φ′(E′).

Consider an open cover {V,W} of X by letting V := X−Z and W ⊃ Z be

a deformation retract neighborhood. Let Ṽ := φ−1(V ) and W̃ := φ−1(W ) ⊃ E
be the corresponding open cover of Y . Then we have the following commutative

diagram of integral cohomologies

(4.3)
Hi−1(Ṽ ∩ W̃ ) → Hi(Y ) → Hi(Ṽ )⊕Hi(E) → Hi(Ṽ ∩ W̃ )

↑ ↑ ↑ ↑
Hi−1(V ∩W ) → Hi(X) → Hi(V )⊕Hi(Z) → Hi(V ∩W )

It is a general fact that φ∗:Hi(X)→ Hi(Y ) is injective (by the projection

formula, that φ is proper of degree one implies that φ! ◦ φ∗(a) = a for all

a ∈ Hi(X)). Since Ṽ ∼= V and Ṽ ∩ W̃ ∼= V ∩W , simple diagram chasing shows

that Hi(Z) → Hi(E) is also injective. We may then break (4.3) into short
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exact sequences

(4.4) 0→ φ∗Hi(X)→ Hi(Y )→ Hi(E)/φ∗Hi(Z)→ 0.

Similarly, we have for φ′:Y → X ′:

(4.4′) 0→ φ′∗Hi(X ′)→ Hi(Y )→ Hi(E′)/φ′∗Hi(Z ′)→ 0.

Since Ered = E′red, the proposition follows immedeately. Q.E.D.

Combining this with Theorem A gives

Corollary 4.5. Let f :X ··→ X ′ be a birational map between two smooth

complex projective varieties such that the canonical bundles are numerically

effective along the exceptional loci, then the exceptional loci also have the same

Betti numbers. In particular, this applies to birational smooth minimal models.

Remark 4.6. The proof of Theorem A in fact also shows that Z̄ and Z̄ ′

have the same number of Fq-rational points. This is simply because |X̄(Fq)| =
|X̄ ′(Fq)| and X̄− Z̄ ∼= X̄ ′− Z̄ ′. In particular, if Z and Z ′ are smooth then they

have the same Betti numbers. Although this argument apparently only works

for smooth Z and Z ′, which is very restricted, it is more than just a special

case of (4.5) — since it carries certain nontrivial arithmetic information.

We are now in a position to show that minimal models are really minimal

in the sense of cohomologies:

Theorem 4.7. Smooth minimal models minimize H2(X,Z) compatible

with the Hodge structure among birational smooth projective varieties. In the

singular case, the minimal models minimize the group of Weil divisors among

birational projective varieties with at most terminal singularities.

Proof. Let f :X · ·→ X ′ be a birational map between two n dimensional

smooth projective varieties where only X is assumed to be minimal. In the

notation of §1, Key Lemma 1.4 says that E ≥ E′. So we obtain canonical

morphisms Hi(E) → Hi(E′) induced from E′ ⊂ E. Since Z := φ(E) and

Z ′ := φ′(E′) are of codimension at least two, H2n−2(Z) = 0 = H2n−2(Z ′). By

comparing (4.4) and (4.4′) via the surjective map H2n−2(E)→ H2n−2(E′), we

obtain a canonical embedding:

(4.8) φ∗H2n−2(X,Z) ⊂ φ′∗H2n−2(X ′,Z).

which respects the Hodge structures. This induces an injective map

(4.9) φ′! ◦ φ∗ : H2n−2(X,Z)→ H2n−2(X ′,Z),
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which by the projection formula is easily seen to be independent of the choices

of Y , hence canonical. Poincaré duality then concludes the first statement of

4.7.

For the second statement, we may simply copy the above proof by replacing

(4.4) with the similar formula for the Weil divisors. Q.E.D.

One can also interpret this result in terms of the Picard group if the ter-

minal varieties considered are assumed to be factorial or Q-factorial.
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§5 Further Comments

We conclude this chapter with two historical remarks and three technical

remarks:

5.1. Birational geometry. A version of Key Lemma 1.4, or rather the

Corollary 1.10, was used before by Kollár in his study of three dimensional

flops. In fact, he proved that three dimensional birational Q-factorial minimal

models all share the same singularities, singular cohomologies and intersection

cohomologies with pure Hodge structures (via deep results due to Saito). See

[K1] for the details.

More recently, the author used a relative version of (1.10), namely vari-

ant 1.11, to study degenerations of minimal projective threefolds [W; §4] and

obtained a negative answer to the so called “filling-in problem” in dimension

three. This result is now included in chapter two with some refinement of the

original proof.

5.2. Previous results. After Kollár’s result on threefolds, the problem

on the equivalence of Betti numbers seemed to be ignored for a while until

recently when Batyrev treated the case of projective Calabi-Yau manifolds

[Ba].

In the special case of projective hyper-Kähler manifolds, Theorem A has

also been proved recently by Huybrechts [Hu] using quite different methods. In

fact, he proved more — these manifolds are all inseparable points in the moduli

space (hence are diffeomorphic and share the same Hodge structures)!

This problem on general minimal models, to the best of the author’s knowl-

edge, has not been studied until the present work. In our case, the homotopy

types will generally be different. In fact, it is well known that for a single

elementary transform of threefolds, although the singular cohomologies are

canonically identified, the cup product must change. However, inspired by

Kollár’s result and Remark 3.7, we still expect that the (non-polarized) Hodge

structures will turn out to be the same.

5.3. Singular case. In order to generalize Theorem A to the singular

case, our approach works equally well in the log-terminal case, with the only

problem being that we need a good interpretation like Weil’s formula (2.8) for

the precise meaning of the weighted counting, which is the key to relate p-adic

integrals to the Weil conjecture.

Since a suitable version of the Weil conjecture for singular varieties has

already been proved by Deligne in [BBD] in terms of the intersection coho-
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mologies introduced by Goresky and MacPherson [GM], this problem is thus

reduced to the calculation of local Lefschetz numbers.

More precisely, one needs to evaluate the p-adic integrals over a singu-

lar point and to reconstruct the “constructible complexes of sheaves” which it

may correspond to. If luckily enough, it is the intersection cohomology com-

plexes, then we may get our conclusion again via Deligne’s theorem. A detailed

discussion on this will be continued in a subsequent paper.

5.4. Minimal cohomology. For Theorem 4.7, it is likely that a similar

argument works for proving that terminal minimal models also minimize the

second intersection cohomology groups and that they all share the same pure

Hodge structures. The important injectivity of φ∗ : IHi(X)→ IHi(Y ) needed

to conclude (4.4) is now a consequence of the so called “decomposition theorem”

of projective morphisms. ([BBD] again!)

An interesting question arises: is the Picard number (or the second Betti

number) of a non-minimal model always strictly bigger than the one attained

by the minimal models?

Mazur raised the following question: can one extract the expected “min-

imal cohomology piece” directly from any smooth model without refering to

the minimal models?

5.5. Recent development. We first notice that the proof of Theorem

A can be formally seperated into three parts:

1. Geometric situations lead to the conclusion of K-equivalence. This is done

Theorem 1.4, or Corollary 1.10. In particular, this applies to birational

minimal models.

2. A reasonable integration/measure theory attached to a variety. Here we

deal with p-adic integrals, or equivalently, the number of rational points

in the case of smooth varieties. Theorem 3.1 shows that K-equivalence

implies measure equivalent. In the notation used there, E and E′ are

exactly the Jacobian factor occuring in the changing of variables formula

from X and X ′ to Y respectively.

3. Topological/geometrical interpretation of the integral. In our case, this

corresponds to Grothendieck-Deligne’s solution to the Weil conjecture.

We can then formulate a meta theorem via the above steps by considering more

general integrals.

Recently, based on an idea of Kontsevich, Denef and Loeser [DL2] has

constructed a motivic integration on the space of arcs of an algebraic variety,

which generalizes the p-adic integral. Using this new integration theory in step

2 and Deligne’s theorem on the existence of functorial mixed Hodge structures
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on compactly supported cohomologies of algebraic varieties in step 3, Theorem

A can be strengthened to the statement that X and X ′ also have the same

Hodge numbers. Moreover, the usage of motivic integration allows much better

understanding of the exceptional loci. However, like the case of p-adic integrals,

the topological meaning of the full measure in the singular case is still not well

understood.

After the present work was completed, their preprint [DL2] and then the

preprint version of this chapter became avaliable in the network. Afterwards,

the above implication was also observed and pointed out to the author by

Loeser. Since their construction of motivic integration is quite delicate, we will

not try to say anything about it here. The interested reader is referred to [DL2]

for the details of this wonderful theory.
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Chapter Two — Filling in Problem in Dimension Three

§6 Degenerations with Trivial Monodromy

6.1. Degenerations and monodromies. We are interested in the case

of a degeneration X → ∆ of polarized Kähler n-folds. By this we mean that

X is a Kähler (n+ 1)-fold and X → ∆ is a proper flat holomorphic map with

the general fiber Xt, t 6= 0, a smooth Kähler n-fold. Notice that the resulting

family over the punctured disk has a polarization (a locally constant Kähler

class) induced from the Kähler form on X .

In general, X → ∆ is called a degeneration of certain type if X0 has only

singularities of that type. And by “X → ∆ is a smoothing of X0”, we will

mean that X → ∆ is a proper flat family with smooth Xt for t 6= 0 but without

assuming the complex space X to be smooth. A degeneration X → ∆ is called

semi-stable if X0 is a reduced divisor with normal crossings in X . By a theorem

of Mumford, every degeneration has a semi-stable reduction by a sequence of

blow-ups and base-changes.

The diffeomorphism type of the punctured family X× → ∆× depends only

on its restriction to a circle. Fix a reference point t 6= 0 in the circle, by using

local trivializations along the circle, one obtains a diffeomorphism T : Xt → Xt
up to isotopies. That is, T is an element in the mapping class group of Xt. We

will call T “the monodromy” of the given degeneration.

In the cohomology level, a generator of π1(∆×) ∼= Z induces the so called

Picard-Lefschetz transformation – the monodromy T acting on Hm
Z , which is

known to be quasi-unipotent. Under the semi-stable asssumption, T will be

unipotent and we will consider the associated nilpotent operator N := log T

acting on Hm
Q . The quasi-unipotent statement is also known to be true for any

abstract polarized Variation of Hodge Structures [Sc]. In the following, we will

usually assume that T is unipotent by allowing a base change implicitly.

6.2. Guiding examples — a preliminary discussion. There ex-

ists smoothable Calabi-Yau 3-folds with canonical singularities such that the

smoothing comes from a birational contraction of a smooth family over the

disk, which induces isomorphisms outside the puncture. These examples are

due to Wilson [Wi] in his deep study of the jumping phenomenon of Kähler

cones. More precisely, his proposition 4.4 says that the “type III primitive

contraction” with the exceptional divisor a quasi-ruled surface over an elliptic

curve provides such an example.
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In the surface case, these correspond to smoothings of K3 surfaces with

RDP’s. By Kulikov’s classification theorem [Ku] they are birational to smooth

families possibly after a base change. We will call this knid of degenerations

“trivial” since they do not degenerate at all for certain polarizations.

If the monodromy of a degeneration X → ∆ is not of finite order, the

degeneration is clearly “nontrivial” in the above sense. We will however inter-

ested in the extremal case, namely degenerations with trivial monodromy. The

above examples are of trivial monodromy and are in fact “projectively trivial”

possibly after a base change. By this we simply mean that the punctured family

can be filled in smoothly in the projective category.

Is there any degeneration with C∞ trivial monodromy but can not be filled

in smoothly? As we have already mentioned in the introduction, examples al-

ready occurs for curves. However, they are due to the presence of the nontrivial

fundamental groups. Simply connected examples were found and studied by

Friedman and Morgan in the 80’s. They obtained examples for surfaces of gen-

eral type and used them to construct examples for dimensions bigger than or

equal to four.

6.3. Picard-Lefschetz theory. We start by recalling the cohomological

form of the classical Picard-Lefschetz theorem:

Theorem 6.4. For a nodal degeneration of smooth n-folds, the mon-

odromy operator T acting on cohomologies is trivial except possibly in the mid-

dle dimensional cohomology. In the middle dimensional case, we have that

I. (T 2 − I)2 = 0 if n is odd, and that

II. T 2 = I if n is even.

The standard proof is to write down the explicit reflection formula of T

in terms of the “vanishing cycles”. However, even to see whether T is of finite

order in the cohomology level (in the odd case), one needs to know whether

the vanishing cycles represent nontrivial homology classes. Clearly, this is not

just a local problem of the singular points. For example, nodal degenerations

of odd dimensional quadrics have trivial monodromy on cohomology, since the

middle cohomology is trivial! (This was pointed out to the author by J. de

Jong.) But this seems to be not the case for general varieties.

In the case that n is even, more is known. Morgan [Mo] proved that the

monodromy actually has finite order. That is, after a finite base change, the

punctured family is a C∞ product. A nice result proved by Voisin [Vo] says

that they are however not filliable by smooth manifolds in the cohomologically

Kähler category.
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6.5. Three dimensional case. Explicit calculations done by Candelas

et al. [COGP] shows that there are nodel degenerations of Calabi-Yau 3-folds

such that the monodromy is not of finite order. A theoretic proof of this

statement turns out to be delicate (even for Calabi-Yau 3-folds). We will give

a sketch of it by showing the existence of nontrivial vanishing cycles, following

a suggestion by Mark Gross.

Let us assume that our threefolds are all simply conected. First of all, a

nodal threefold X0 always admits (not necessarily projective) small resolutions

X → X0 with smooth rational curves X ⊃ Ci → pi ∈ X0 contracted to ODP’s.

In the case of Calabi-Yau threefolds (Gorenstein threefolds with trivial canoni-

cal bundle and with h1(Ω) = 0), the existence of global smoothing X → ∆ of X0

forces that there are nontrivial relations of [Ci] ∈ H2(X) by Friedman’s result

[F3, F4]. That is, the canonical map e :
⊕

i Z[Ci] → H2(X,Z) has nontrivial

kernel dimension s > 0. Consider the resulting surgery diagram:

(6.6)

X

↓
X0 ⊂ X ⊃ Xt

It has the following local description: let Vi 3 pi be a contrctible neighborhood

of an ODP, V ′i ⊂ Xt be the smoothing of Vi and Ui ⊂ X be the inverse image

of Vi. Then

I. Ui is a deformation retract neighborhood Ci and so has the homotopy type

of S2 ∼ D4 × S2.

II. V ′i has the homotopy type of S3×D3. Where the sections σi ∼ S3 are the

so called vanishing cycles.

III. The surgery from X to Xt is induced from ∂(D4 × S2) = S3 × S2 =

∂(S3 ×D3).

Let us assume that there are k ODP’s.

An immedeate consequence of (6.6) is the Euler number formula:

(6.7) χ(X)− kχ(P1) = χ(X0)− kχ(pt) = χ(Xt)− kχ(S3).

Let W be the “common open set” of X, Xo and Xt away from all points pi’s

such that W and Vi’s cover Xt etc. A portion of the Mayer-Vietoris sequence

of the covering {W, V ′i } of Xt gives

(6.8) 0→ H3(W )→ H3(Xt)→
⊕

i
Z[Ci]→ H2(X)→ H2(Xt)→ 0.

Hence that b2(X) = b2(Xt) + (k − s).
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Take into account of b2(X0) = b2(Xt) and b4(X0) = b4(X) (which also

follows from suitable Mayer-Vietoris sequences), simple manipulations with

(6.7) shows that b3(Xt) = b3(X0) + s. Comparing with the (Mayer-Vietoris)

sequence defining the vanishing cycles:

(6.9)
⊕

i
Z[σi]→ H3(Xt)→ H3(X0)→ 0,

we conclude that s > 0 is the dimension of the sapce of vanishing cycles. Q.E.D.

6.10. Filling in problem in dimension three. In [F4], Friedman

remarked that a degeneration of quintic hypersurfaces in P4 acquiring an iso-

lated A2 singularity (locally of the form: x2
1 + x2

2 + x2
3 + x3

4 = 0) actually has

N = 0 (due to Clemens). Moreover, by Morgan’s result [Mo], the monodromy

has finite order in the mapping class group! He asked that whether this punc-

tured family can be filled in smoothly in any finite base change. (He expected

that the answer in NO.) If not, this will be the first known simply connected

example in dimension three.

The main goal of this chapter is to prove a general theorem about the

non-filliability of degenerations of three dimansional smooth minimal models

acquiring nontrivial terminal singularities. In particular, we obtain in (8.7) a

negative answer to Friedman’s queation (as he has expected).
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§7 Two Key Lemmas

We start with the following important fact that we have established in §1.

Namely the Key Lemma 1.4, or more precisely, Corollary 1.10.

Lemma 7.1. Let X → ∆ and X ′ → ∆ be two projective families with

smooth general fiber Xt ∼= X ′t for t 6= 0. Assume that

I. X and X ′ have at most terminal singularities,

II. KX (resp. KX ′) is nef on the central fiber and

III. the map which identifies the general fibers is bimeromorphic, then this map

extends to an isomorphism in codimension one. In particular, X0 and X ′0 are

birational to each other.

The only point we need to be careful is that in general “the map” which

identifies the general fibers may not be bimeromorphic! In fact, this map is not

well defined if the general fibers have continuous automorphisms. In our case,

the nefness will implies that there is no holomorphic vector fields on the general

fiber. However, then we still need a further base change to get a bimeromorphic

map which extends the prescribed identification on general fibers. The reader

is refered to Freidman’s paper [F2] for more details. It is however clear, ss we

will see in the next section, this point does not affect our proof of Theorem B

and our solution toward the filling in problem.

The next lemma follows from a special case of the Shokurov-Kollár con-

nectedness theorem [K2; Theorem 17.4]. Which is in turn a consequence of the

Kawamata-Viehweg vanishing theorem [KMM]. We present the proof for the

sake of completeness.

Lemma 7.2. The total space of a small smoothing of Gorenstein canonical

singularities has at most Gorenstein terminal singularities.

Proof. Let X ⊃ X be a smoothing of a complex space X with canonical

singularities. Take a log resolution f : X ′ → X of the pair (X , X), that is, the

union of the proper transform X ′ of X in X ′ and the exceptional divisors Ei of

f form a normal crossing divisors. The restriction g := f |X′ : X ′ → X is then

a resolution of singularities of X. It is an elementary fact from commutative

algebra that the total space of a small smoothing of Gorenstein singularities is

also Gorenstein, so we may write

(7.3) KX ′ = f∗KX +
∑

aiEi, ai ∈ Z.

If f∗X = X ′ +
∑
`iEi then `i ∈ N since the singular set of X is contained in
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the singular set of X. So

(7.4) KX ′ +X ′ = f∗(KX +X) +
∑

(ai − `i)Ei.

By the adjunction formula, we have

(7.5) KX′ = g∗KX +A|X′ − F |X′ ,

where A (resp. F ) is the exceptional part with ai−`i ≥ 0 (resp. ≤ −1). By the

assumption on X, this shows that F |X′ = 0. The lemma then follows if we can

show that “F 6= 0 implies F ∩X ′ 6= 0”. Because for the remaining part A, we

have that ai ≥ `i ≥ 1. That is, X has only Gorenstein terminal singularities.

We first rewrite (7.4) into the form

(7.6) KX ′ +
(
− f∗(KX +X)

)
= A− (F +X ′),

and we claim that F + X ′ is connected in any neighborhood of a fiber of f .

From (7.6), as −f∗(KX + X) is f -big and f -nef trivially, we may apply the

Kawamata-Viehweg vanishing theorem [KMM; 1-2-3] to get:

(7.7) R1f∗OX ′(A− (F +X ′)) = 0.

This leads to the following exact sequence

(7.8) 0→ OX ′(A− (F +X ′))→ OX ′(A)→ OF+X′(A)→ 0.

Localize (7.8) to a fiber f−1(x) with x ∈ X shows that F + X ′|f−1(x) must

be connected — since the quotient of the cyclic module OX ′(A) can not have

two cyclic modules as direct summands. This complete the proof because the

connectedness property implies thaf F ∩X ′ 6= 0. Q.E.D.
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§8 The Proof of Theorem B

In this section, by using several results of Reid, Kawamata and Kollár in

the theory of 3-fold birational geometry along with Friedman’s result on the

simultaneous resolution of 3-fold double points, a negative answer to the “filling

problem” as stated at the end of §1 is given for any projective smoothing of

a terminal Gorenstein 3-fold with numerical effective canonical bundle even if

the monodromy is C∞ trivial! As a consequence, any smoothable terminal

Calabi-Yau 3-fold provides nontrivial examples. Here is the main theorem:

Theorem B. Let X → ∆ be a projective smoothing of a Gorenstein 3-fold

X0 with nontrivial terminal singularities and with KX0
nef. Then X → ∆ is

not birational to a projective smooth family X ′ → ∆ with Xt ∼= X ′t for t 6= 0.

Proof. Assume that such a smooth family X ′ → ∆ exists. We will check

the conditions needed in Lemma 7.1. I is satisfied by Lemma 7.2 since terminal

singularities are by definition canonical, and II is clearly satisfied since

(8.1) KX |X0
= KX0

,

which is nef.

Since all conditions in Lemma 7.1 are satisfied, we know that X0 is bira-

tional to X ′0. We will show that this is impossible.

If X0 is Q-factorial then X0 and X ′0 are birationally equivalent minimal

models. Recall that a minimal model is a normal variety which is Q-factorial,

terminal and has nef canonical class. By Kollár’s theorem on flops [K1], they

are related by a sequence of flops. But a flop does not change the singularities

in the terminal case, so we get a contradiction.

If X0 is not Q-factorial, a theorem of Reid-Kawamata (see eg. [K3, (6.7.4)])

says that we still have a projective small morphism X → X0 from a (Q-

factorial) minimal model X to X0. X is birational to X0 and so is birational

to X ′0. As before, this implies that X is smooth and it is related to X ′0 by

a sequence of flops. By Kollár’s result again [K1], X and X ′0 have the same

integral homologies and hence have the same homologies as the general fiber

Xt in X . Here we may also apply our Theorem A since in the later argument

we will only make use of the rank of the homology groups.

Consider the following “small contraction/smoothing” diagram:

(8.2)

X

↓
X0 ⊂ X ⊃ Xt
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If X0 has only ODP singularities, (8.2) is nothing but a “surgery diagram”

appeared in the Picard-Lefschetz theory (6.5). The explicit formula (6.7) (or

(6.8)) which relates the homologies of X and Xt shows in particular that they

can not be the same. We will need (6.7) (or (6.8)) in a generalized form suitable

for our purpose. The proof is identically the same.

Lemma 8.3. Given a diagram as above in the C∞ category such that near

each singular point of X0 it is a “small contraction-smoothing” diagram of a

germ of ODP. Let Ci be the rational curves contracted to those ODP’s and let

e :
⊕

i Z[Ci] → H2(X,Z) be the map which associates to each Ci its class in

X, then H2(Xt) = coker e.

So, H2(Xt) ∼= H2(X) means the image of e is zero, which is impossible

because X is projective. This is the desired contradiction in the case when X0

has only ODP’s as singular points.

In the general case, since the singularities are Gorenstein, by Reid’s clas-

sification they are exactly isolated cDV singular points, that is, one parameter

deformation of surface RDP’s. By Friedman’s result [F1], if p ∈ V is a germ

of an isolated cDV point and C ⊂ U is the corresponding germ of the excep-

tional set (which is a curve) contracted to p, then the versal deformation spaces

Def(p, V ) and Def(C,U) are both smooth and there is an inclusion map of com-

plex spaces Def(C,U) → Def(p, V ). Moreover, one can deform the complex

structure of a small neighborhood of C so that in this new complex structure,

C decomposes into several P1’s and the contraction map deforms to a nontriv-

ial contraction of these P1’s down to ODP’s, while keeping a neighborhood of

these ODP’s to remain in the versal deformations of the germ p ∈ V .

We can preform this analytic process for all C’s and p’s simultaneously

in each corresponding small neighborhoods and then patch them together

smoothly. As a result, we obtain a deformed diagram which satisfies the con-

ditions stated in lemma 3.3:

(8.4)

X̃

↓

X̃0 ⊂ X̃ ⊃ X̃t

By our construction, X̃ is diffeomorphic to X and X̃t is diffeomorphic to Xt for

t 6= 0. The later is true because Def(p, V ) is smooth and the constructiuon is

local. Now we have again,

(8.5) H2(X̃t) ∼= H2(Xt) ∼= H2(X) ∼= H2(X̃).
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This implies that the image of e is zero. Since the original exceptional curve has

nontrivial homology class, at least one deformed rational curve has nontrivial

homology class. This leads to the desired contradiction again and we are done.

Q.E.D.

A Calabi-Yau variety is by definition a normal projective variety which is

Gorenstein and has trivial canonical (Cartier) divisors. Usually we also impose

the condition that h1(O) = 0 to distinguish them from abelian varieties.

In the case of Calabi-Yau 3-folds with at most canonical singularities,

h1(O) = 0 implies h2(O) = 0 by the Grothendieck-Serre duality theorem for

Gorenstein varieties. Hence any smoothing X → ∆ must be projective by the

semi-continuity of h2(OXt), and in fact Xt must still be Calabi-Yau. So we

conclude the following:

Theorem 8.6. Let X → ∆ be a smoothing of a Calabi-Yau 3-fold with

nontrivial terminal singularities. Then X → ∆ is not birational to a smooth

family with identical general fibers.

8.7. Negative answer to the filling in problem. Why Theorem B (or

Theorem 8.6) answers the filling in problem? Notice that the assumptions we

made in these theorems are all invariant under base changes. If for some base

change the punctured family can be filled in smoothly and projectively, then a

further base change also has this property. We may arrange the base change so

that the identification map of the general fibers becomes bimeromorphic. Then

we may apply Theorem B or Theorem 8.6 to obtain the desired contradiction.

Q.E.D.
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§9 Weil-Petersson Geometry of Calabi-Yau Moduli

The classical Weil-Petersson metric on the Teichmüller space of compact

Riemann surfaces is a Kähler metric which is complete only in the case of

elliptic curves [Wo]. It has a natural generalization to the deformation spaces

of higher dimansional polarized Kähler-Einstein manifolds. It is still Kähler.

Moreover, in the case of abelian varieties and K3 surfaces, the Weil-Petersson

metric turns out to be equal to the Bergman metric of the Hermitian symmetric

period domain, hence is in fact “complete” Kähler-Einstein [Sc].

The completeness is an important property for differential geometric rea-

son. Motivated by the above examples, one may naively think that the com-

pleteness of the Weil-Petersson metric still holds true for general Calabi-Yau

manifolds. However, explicit calculation done by physicists (eg. Candelas et al.

[CGH] for some special nodal degenerations of Calabi-Yau 3-folds) indicated

that this may not always be the case.

Naturally, we need to clarify what do we actually mean that the metric is

complete or incomplete. This depends on how we define the “moduli space”,

which is already very interesting in the case of K3 surfaces. We will gradually

explain what is our understanding of this problem. And it would then become

clear that the Weil-Petersson metric is in general incomplete if one sticks on

“moduli” of smooth varieties.

9.1. The Weil-Petersson metric. For a given family of polarized

Kähler manifolds X → S with Kähler metrics g(s) on Xs, one can define a

possibly degenerate hermitian metric G on S as follows: at s ∈ S with fiber

X = Xs, we consider the Kodaira-Spencer map ρ : TS,s → H1(X,TX) ∼=
H0,1

∂̄
(TX) into harmonic forms with respect to g(s); so for v, w ∈ Ts(S), we

may define

(9.2) G(v, w) :=

∫
X

〈ρ(v), ρ(w)〉g(s).

When X → S is a polarized Kähler-Einstein family and ρ is injective, GWP :=

G is called the Weil-Petersson metric on S.

When X is a Calabi-Yau manifold, we have Yau’s solution to Calabi’s

conjecture [Ya] that X has an unique Ricci flat metric in each Kähler class

and the Bogomolov-Tian-Todorov theorem that the Kuranishi space of X is

unobstructed [Ti, To].

Let X → S be a maximal subfamily of the Kuranishi family with a fixed

polarization class [ω], then ρ is clearly injective. Let g(s) be the unique Ricci
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flat metric in the given polarization. Using the fact that the global holomorphic

n-form Ω(s) is flat with respect to g(s), it was shown in [Ti, To] that

(9.3) GWP (v, w) =
Q(C(i(v)Ω), i(w)Ω)

Q(CΩ, Ω̄)
,

where H1(X,TX) → Hom(Hn,0, Hn−1,1) ∼= Hn−1,1 via the interior product

v 7→ i(v)Ω is the well-known isomorphism. The tangent space TS is mapped to

Pn−1,1 isomorphically and hence leads to the fact that the n-th flag period map

is an local embedding. So the Weil-Petersson metric is induced from the Hodge

metric on the n-th piece of the horizontal tangent bundle. For convienence,

let’s write Q̃ =
√
−1

n
Q (= Q(·, ·̄) on Hn,0 = Pn,0). Tian observed that Q̃ is a

Kähler potential of GWP , that is,

(9.4) ωWP =

√
−1

2
Ric

Q̃
(Hn,0) = −

√
−1

2
∂∂̄ log Q̃,

where ωWP denotes the fundamental real 2-form of GWP (this formula shows in

particular that ωWP is independent of the polarization). The proof is essentially

part of Griffiths’ curvature calculation [Gr], hence is purely Hodge theoretic.

So we can extend the definition of GWP to polarized VHS over S with hn,0 = 1

by (9.4), although it is only semi-positive. Since it makes sense to talk about

geodesics and distances, we will still call it the Weil-Petersson metric.

Clearly, our aim is to characterize all finite distance degenerations and

then to describe the possible picture of the completion. We get strong evidence

that it is closely related to the minimal model program in birational geome-

try. However, the results we can rigorously proved so far are not enough to

answer the full question. We do formulate a conjecture in §10 to complete our

discussion here.

The result is this section are mostly exercises in Hodge theory. We will

recall what we need. Details can be found in [Gr, GS, Cl, Sc].

9.5. Schmid’s theory on limiting MHS. Let D be the period domain

for certain polarized Hodge structures and let Ď be its compact dual. For

a polarized VHS φ : ∆× → 〈T 〉\D; the map φ lifts to the upper half plane

Φ : H → D with the coordinates t ∈ ∆× and z ∈ H related by t = e2π
√
−1z.

Set

(9.6) A(z) = e−zNΦ(z) : H→ Ď,

(instead of D). Since A(z + 1) = A(z), A descends to a function α(t) on

∆×. The very first part of Schmid’s “nilpotent orbit theorem” says that α(t)
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extends holomorphically over t = 0. The special value F∞ := α(0) is called

the limiting filtration and is in general outside D. However, the nilpotent

operator N uniquely defines a “monodromy weight filtration” on V : 0 ⊂W0 ⊂
W1 ⊂ · · · ⊂ W2m−1 ⊂ W2m = V such that N(Wk) ⊂ Wk−2 and induces an

isomorphism

(9.7) N ` : GWm+`
∼= GWm−`,

where GWk := Wk/Wk−1 is the graded piece. These two filtrations F p∞ and

Wk together define a “polarized mixed Hodge structure” on V in the following

sense: the induced Hodge filtration

(9.8) F p∞G
W
k := F p∞ ∩Wk/F

p
∞ ∩Wk−1, p = 0, . . . ,m

defines a (pure) Hodge structure of weight k on GWk . The operator N acts

on them as a morphism of MHS’s of type (−1,−1). That is, N(F p∞G
W
k ) ⊂

F p−1
∞ GWk−2. Moreover, for ` ≥ 0, the primitive part PWm+` := kerN `+1 ⊂ GWm+`

is polarized by Q(·, N `̄·).
When φ comes from geometric situations, namely the period map of a

degeneration X → ∆, by adding together with the non-primitive part, the

total cohomology Hm(Xt,C) still admits non-polarized MHS.

We now give the basic criterion for finite Weil-Petersson distance in the

case of one parameter degenerations of polarized Hodge structures φ : ∆× →
〈T 〉\D with hn,0 = 1:

Theorem 9.9. The center of a degeneration of polarized Hodge structures

of weight n with Fn ∼= C has finite Weil-Petersson distance if and only if

NFn∞ = 0.

Proof. Let Φ : H → D be the lifting. To start the computation, all we

need is a good choice of a holomorphic section Ω of Hn,0. Let pn : D → P(V )

be the projection to the Fn part. we have Φn(z) = (ezNα(t))n = ezNαn(t).

Here ∗n := pn(∗) ∈ P(V ) means the n-th flag. Near t = 0, we can consider

a vector (local homogeneous coordinates) representation a of αn in V . Then

a(t) = a0 + a1t+ · · · is holomorphic in t. We have orrespondingly

(9.10) A(z) = a0 + a1e
2π
√
−1z + a2e

4π
√
−1z + · · · .

The crucial point here is that the function e2π
√
−1z = e2π

√
−1xe−2πy has

the property that all the partial derivatives in x and y decay to 0 exponentially
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as y → ∞, with rate of decay independent of x. For ease of notation, let h

be the function class satisfying the above property and h the corresponding

function class with values in V .

Now let Ω(z) = ezNA(z). This is the desired section because vector rep-

resentations correspond to sections of the tautological line budle of Pn which

pull back to Hn,0 by Φ. So the Kähler form ωWP of the induced Weil-Petersson

metric GWP on H is given by

(9.11) ωWP = −
√
−1

2
∂∂̄ log Q̃(ezNA(z), ez̄NA(z)).

Since we are in one complex variable, write GWP = G|dz|2, then G =

−(1/4)4 log Q̃. We have Q(Tu, Tv) = Q(u, v), it follows easily that Q(Nu, v) =

−Q(u,Nv) and Q(ezNu, v) = Q(u, e−zNv). Since A = a0 + h, we have

(9.12)
Q̃(ezNA, ez̄NĀ) = Q̃(ezNa0, e

z̄N ā0) + h

= Q̃(e2
√
−1yNa0, ā0) + h = p(y) + h,

where p(y) is a polynomial in y with

(9.13) d = deg p(y) = max{ ` | N `α0 6= 0 }.

This a consequence of the polarization condition for the mixed Hodge structure

(9.5) and the fact that a0 ∈ Gn+d. So

(9.14)

4G =
(p′ + h)2 − (p+ h)(p′′ + h)

(p+ h)2
=

(p′2 − pp′′) + h

p2 + h

∼ p′2 − pp′′

p2
+ h ∼ d2 − d(d− 1)

y2
+ h =

d

y2
+ h.

Here we have used the fact that p−2h ∈ h. Obviously, if NFn∞ = 0 then d = 0

and G = h, so
∫∞
t

√
G |dz| <∞ for some curve (e.g. x = c). When NFn∞ 6= 0

we have d ≥ 1 and for y large enough we can make h < 1/y3 uniformly in x,

then clearly
∫∞
t

√
G |dz| ∼ 2 log y |∞t =∞ for any path with y →∞. Q.E.D.

Return to the geometric situation, namely the semi-stable degeneration

of polarized Calabi-Yau manifolds. As a simple application of the Clemens-

Schmid exact sequence [Cl], we have

Theorem 9.15. The central fiber X has finite Weil-Petersson distance

if and only if some irreducible component Xi ⊂ X has Hn,0 6= 0. This is

equivalent to that there is exact one component with hn,0 = 1.
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Proof. By the results of Schmid in (9.5), F∞ and N defines a MHS on

Hn(Xt) for a reference fiber Xt with t 6= 0. It follows from (9.7) that (kerN)∩
Fn∞ ≡ GWn Fn∞. So NFn∞ = 0 if and only if Fn∞ = GWn F

n
∞.

Recall that the “geometric genus formula” [Cl] says that

(9.16) hn,0(Xt) ≥
∑

i
hn,0(Xi),

and the RHS corresponds to all the invariant cycles in Fn∞, that is, (kerN)∩Fn∞.

Since the LHS of (9.16) corresponds to Fn∞, the eqality holds if and only if

Fn∞ = (kerN) ∩ Fn∞ = GWn F
n
∞, that is, if and only if NFn∞ = 0.

In our case, Theorem 9.9 says that finite distance is equivalent to NFn∞ =

0. Since hn,0(Xt) = 1, this is equivalent to that there exist some (and so at

most one) component with hn,0 6= 0 (and so in fact it must be 1). The proof is

now complete. Q.E.D.

As a corollary, we deduce the following theorem which we believe to be

very close to the final answer of the completion problem:

Theorem 9.17. Let X be a Calabi-Yau varieties which admits a smooth-

ing to Calabi-Yau manifolds. If X has only canonical singularities then X has

finite Weil-Petersson distance along the base.

Proof. For any resolution f : X̃ → X, we have as in the above that

Hn,0(X̃,C) = Γ(X̃,K
X̃

) = Γ(X̃,
∑
eiEi) (notice that ei’s are integers). Since

Ei’s are exceptional, it follows easily that Hn,0(X̃,C) 6= 0 precisely when X

has at most canonical singularities.

Now let X → ∆ be a smoothing of X. Take a semi-stable reduction of it,

then there is a component in the central fiber of the semi-stable reduction which

corresponds to the proper transform of X. Then it has hn,0 = 1. Now apply

Theorem 9.15 and notice that finite distance in a special smoothing implies

finite distance in the whole smoothing component. Q.E.D.

Example 9.18. According to [Re], hypersurface singularities of monomial

type
∑
i x

di = 0 is canonical if and only if
∑
i 1/di > 1. In the three dimensional

case, the finiteness of the Weil-Petersson distance with singularities of this type

were known to Candelas et al. [CGH] via direct calculations. Theorem 9.17

seems to indicate that canonical singularities may also play significant role in

certain physics problems.
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§10 Speculations

Now we may put everything together. In the case of Calabi-Yau 3-folds,

Wilson’s example shows that finite distance degenerations could be “trivial” if

the singular set is a smooth elliptic curve, which is canonical but not terminal.

But our Theorem B shows that all terminal degenerations gives nontrivial

finite distance points, hence shows that in general the Weil-Petersson metric

is not complete. This phenomenon does not occur in the case of K3 surfaces

(two dimension Calabi-Yau manifolds) because there are no two dimensional

terminal singulariteis. Moreover, Theorem 9.17 shows that it is very likely that

the completion could be achieved by considering all smoothable Calabi-Yau

3-folds with at most canonical singularities.

In [Vi], Viehweg proved a general theorem on the quasi-projectivity of

moduli spaces of polarized manifolds. In fact he mentioned that his approach

works equally well for normal varieties with at most canonical singularities once

the “locally closedness” of the moduli functor can be proved. Very recently,

Kawamata announced a proof that deformations of canonical singularities are

again canonical [Ka]. This implies the required locally closedness and hence

complete Viehweg’s program. (Compare with our Lemma 7.2.)

From the point of view of the Weil-Petersson geometry, this amounts to

say that the completion of the Weil-Petersson metric is the enlarged quasi-

projective moduli corresponding to Viehweg’s program including canonical sin-

gularities. In fact, our original motivation to study the Weil-Petersson metric

(or more generally, the Hodge metric) is to hope to give a purely differential

geometric approach to the quasi-projectivity problem.

This motivates the following question:

Question 10.1. Is the converse of Theorem 9.17 true? More precisely, if

a degeneration of Calabi-Yau manifolds has finite Weil-Petersson distance, is

that true this degeneration is birational to another degeneration such that the

central fiber is an irreducible Calabi-Yau variety with only canonical singular-

ities?

This is obviously the most important step toward the completion program.

In the following, we will discribe two heuristic reasons why we think this ques-

tion may has an affirmative answer.

10.2. Via minimal model conjecture. We have used the geometric

genus inequality to obtain Theorem 9.16. But in fact N. Nakayama has proved

in [Na] that if the minimal model conjectures are all true — including the
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abundance conjecture, then one also has the plurigenus inequality:

(10.3) Pm(Xt) ≥
∑

i
Pm(Xi),

for all m ∈ N. Where Pm(X) = h0(X,Km
X ). In our case, Pm(Xt) = 1 for all m

and if Xi is the unique component of X0 with h0(K) = 1, then Pm(Xi) ≥ 1 for

all m. This implies that Pm(Xi) = 1 and Pm(Xj) = 0 for j 6= i. In dimension

three, a theorem of Miyaoka then says that these Xj ’s must be uniruled. (A

simplified proof given by Shepherd-Barron is in [K2].) In general, this is still

conjectured to be true.

One may then try to prove that the ruling is in fact an extremal rays

and then contract it via the Kawamata-Shokurov contraction theorem [KMM].

Since Xj are uniruled, the whole Xj will be contracted. The contraction theo-

rem gaurantees that the contracted space still has terminal singularities. If one

can keep on contracting all Xj with j 6= i, then the resulting family X̃ → ∆ will

has central fiber an irreducible Calabi-Yau variety with canonical singularities.

This process is basically the same as what Kulikov did in his classification

theorem of semi-stable degeneration of K3 durfaces, where the idea of log-flips

first appeared. This means that our heuristic reason is exactly the first “hard

part” of extending minimal model theory to higher dimensions.

10.4. Via Hausdorff convergence. Around the early 90’s, works done

by H. Nakajima, Z.Gao and M. Anderson had demonstrated that the Hausdorff

limit of real Einstein four manifolds with diameter upper bound and volume

lower bound is again Einstein with at worst quotient singularities (cf. [An]). In

the Kähler category, this gives a differential geometric point of view of Kulikov’s

type I degenerations of K3 surfaces.

We first notice the following fact: a generic hyperplane section of canonical

singularities is again canonical. This implies that the generic point of codimen-

sion two stratum of canonical singularities is nothing but the RDP — the SU(2)

quotient singularities.

If we are given degenerations X → ∆ of polarized Calabi-Yau manifolds,

We may imagine that Xt are fibered by families of complex surface slices. In the

case of finite distance degenerations, as t→ 0, the central fiber can be viewed

as the Hausdorff limit of Xt. The volume bound is trivial since the it is in fact

a const. The diameter bound is implied by the finiteness of the Weil-Petersson

distance. This is not hard to see from the definition of the Weil-Petersson

metric (as the variation of the Kähler-Einstein structures).

If we believe that the Ricci curvature bound can be “preserved” for generic

surface slices, then by applying the known result mentioned above, we conclude
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that the generic point of codimension two singularities of X0 is canonical —

a positive evidence to our question. However, it is also obvious that it is

extremely difficult to fully answer our question in this way even if the above

argument indeed works. This is due to the fact that one has no idea of how to

deal with the singularities of higher codimensions.

A workable example is given by Calabi-Yau 3-folds with K3 fiberation

structures. Wilson’s theorem on the invariance of Kahler cone under defor-

mations [Wi] indicates the possibility that the K3 fibration structure is stable

under deformations of complex structures. This will then give the surface slices

we want. Needless to say, a lot of analysis needs to be done to justify the above

argument.
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