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r-INoncollapsing Estimates Along The
Ricci Flow

Abstract

In this paper we report on the two methods pioneered by G. Perel-
man [1] to establish his x-noncollapsing thm of the Ricci flow. The
first method uses the Perelman entropy. The second proof uses the
monotonicity of the Perelman’s reduced volume. The second proof
is important, because the reduced volume is a more localized quan-
tity in its definition and so one can in fact establish local versions
of the non-collapsing theorem which turn out to be important when
we study ancient k-noncollapsing solutions in Perelman’s proof of
the Poincaré conjecture. Such solutions need not be compact and
so cannot be controlled by global quantities (such as the Perelman
entropy). Our treatment follows closely the cuticle by Cao-Zhu [6],
\ﬁth some more details on Perelman’s VW functional by O. Rothaus
3.
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k~-NONCOLLAPSING ESTIMATES
ALONG THE RICCI FLOW

SINHUA LAI

ABSTRACT. In this paper we report on the two methods pioneered
by G. Perelman [1] to establish his x-noncollapsing thm of the
Ricci flow. The first method uses the Perelman entropy. The sec-
ond proof uses the monotonicity of the Perelman’s reduced volume.
The second proof is important, because the reduced volume is a
more localized quantity in its definition and so one can in fact es-
tablish local versions of the non-collapsing theorem which turn out
to be important when we study ancient x-noncollapsing solutions
in Perelman’s proof of the Poincaré conjecture. Such solutions need
not be compact and so cannot be controlled by global quantities
(such as the Perelman entropy). Our treatment follows closely the
cuticle by Cao-Zhu [6], with some more details on Perelman’s W
functional by O. Rothaus [3].
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1. INTRODUCTION

1.1. Contents of this note. Consider a complete Riemannian man-
ifold M of dimension n > 3 with the Riemannian metric g;;. Let
g = g(t) be a smooth solution of the Ricci flow

% = —2Ric
on M x [0,T) for some (finite or infinite) 7" > 0 with a given initial
metric g(0) = go.

In Section 2.1-2.3, a new monotonic quantity, namely the reduced
volume V, is introduced. It is defined in terms of so-called £-geodesics.
Let (p,to) be a fixed spacetime point. Define the backward time by
T = tg — t. Given a curve y(7) in M defined on 0 < 7 < 7 (i.e. going
backward in real time) with «(0) = p, its L-length is defined to be

£() = / VA e + RO/ (). o — 7))

Let L(q,7) be the infimum of £(v) over curves v with v(0) = p and
v(7) = q. Put

Uq,7) =

The reduced volume is defined by
V(7) = / (477)"2e @)V,
M

The remarkable fact is that if ¢ is a Ricci flow solution then V' is non-
increasing in 7, i.e. nondecreasing in real time t. The proof of mono-
tonicity uses a subtle cancelation between the 7-derivative of ¢(y(7), T)
along an L-geodesic and the Jacobian of the so-called L-exponential
map.

In Section 2.3, a modified ”entropy” functional W(g, f,7) is intro-
duced. It is nondecreasing in ¢ provided that ¢ is a Ricci flow solution,
7=ty —t and (477)2e 7 satisfies the conjugate heat equation.

In Section 3.1, the entropy functional W is used to prove a no local
collapsing theorem. The statement is that if ¢ is a given Ricci flow on
a finite time interval [0,7") then for any (scale) p, there is a number
k > 0 so that if By(z,7) is a time-¢ ball with radius r less than p, then

1
|Rm| < il Vol(By(z,r)) > kr"™ on By(x,r).
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The method of proof is to show that if ="V ol(B,(x,r)) is very small
than the evaluation of W at time t is very negative, which contradicts
the monotonicity of W.

In Section 3.2 we will use a cut-off argument to extend the no local
collapsing theorem to any complete solution with bounded curvature.
In some sense, the second no local collapsing theorem gives a good
relative estimate of the volume element for the Ricci flow.

1.2. Historical remarks. Historically, in the 1980’s, it was Richard
Hamilton who initiated the program of using the Ricci flow to solve
the Poincaré conjecture as well as the hyperbolicity conjecture of three
dimensional manifolds. His idea is to do surgeries on the manifold when
the curvature tends to blow-up in some region during the Ricci flow. In
order to perform surgeries Hamilton needs to classify the neighborhood
of the blow-up region. He used a standard parabolic scaling of the Ricci
flow to perform the blow-up analysis and he also proved a convergence
theorem of the rescalled region when a “Little Loop Lemma” holds.
Unfortunately his proof of the Little Loop Lemma turns out to be
incorrect and it becomes the first main obstacle to carry out Hamilton’s
program.

In [1], G. Perelman made a breakthrough in Hamilton’s program.
Among many other things, Perelman formulated and proved the No
Local Collapsing Theorem which in particular implies the Little Loop
Lemma as a corollary. The L-geodesic, reduced length ¢ as well as the
reduced volume V are all due to Perelman. Since Perelman’s paper was
written in a rather dense manner, it is highly desirable to have more
transparent proofs, with more details filled in, of the results proved or
announced in [1]. Since then several nice articles had appeared aiming
at understanding Perelman’s argument.

Our purpose here is simply to understand Perelman’s No Local Col-
lapsing Theorems, both the compact and non-compact cases. Our
treatment follows closely the cuticle by Cao-Zhu [6], with some more
details on Perelman’s W functional by using results in O. Rothaus [3].
It is the author’s hope that this note will be helpful as a supplementary
reading for people who wants to read Perelman’s work.
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2. PERELMAN’S REDUCE VOLUME

2.1. The L-geodesics. We write the Ricci flow in the backward ver-
sion

agij
—= =2R;;
or !
on a manifold M with 7 = 7(t) satisfying ‘fi—; = —1. We always as-

sume that either M is compact or g;;(7) are complete and have uni-
formly bounded curvature. The L-length of a (smooth) space curve
v i [11, 72] — M is defined by

L) = [ VARG + R P,

where the scalar curvature R(y(7)) and the norm |§(7)| are evaluated
using the metric at time t = {5 — 7. Here 7, > 0.

To derive the L-geodesic equation, as in the standard Riemannian
geometry we consider an l-parameter family of curves v : [r, 2] —
M, parametrized by s € (—¢,¢€). Equivalently, we have a map (s, 7)
with s € (—e€,¢) and 7 € [r, 7). Putting X = % and Y = %, we
have [X,Y] = 0. This implies that VxY = VyX. Writing dy as
shorthand for £|,_o, and restricting to the curve () = 5(0,7). We
have (6yY)(7) =Y (7) and (0y X)(7) = (VxY)(7). Then

dy (L)
_ [ VT(VR,Y) 4+ 2(X, Vy X))dr

T1
T2

= [ VTVR,Y)+2(X,VxY))dr

= /TQ VTUVR,Y) + 2%(){, Y) —2(VxX,Y) —4Ric(X,Y))dr

1

= 2/7(X,Y)|” +/ VT{Y,VR — 2V x X — 4Ric(-, X) — =X )dr.
71 T1 T

Hence the £-geodesic equation is
1 1
VxX — §VR+ 2—X + 2Ric(X,-) =0
T

where the 1-form Ric(X,-) has been identified with the corresponding
dual vector field.

Give any p,q € M and 75 > 77 > 0 there exists a L-shortest geodesic
v 1 [m, 2] — M such that v(m) = p,v(m2) = ¢ and satisfies the £-
geodesic equation. Multiplying /7 to the- L-geodesic equation, we
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get
N

Vx(V7X) = TVR — 2y/TRic(X,-) on [r, ).

That is,
m L =Y

Thus, if a continuous curve defined on |71, 75| satisfying the £-geodesic

equation (1) for any subinterval 0 < 7 < 7 < 7o, thenv = lim+ VTX(7)
7—0

exists. This allows us to extend the definition of the L-length to in-
clude the case 7y = 0 for all those (continuous) curves v : [0, 2] — M
which are smooth on (0, 73] and have limits 111(1)1+ VT (7).

VR —2Ric(\/TX,:) on [r, 7).

This means that for a fixed p € M, by taking 71 = 0 and v(0) = p,
the vector v = liH(l) V7TX (1) is well-defined in TpM. The L-exponential

map Lexp, : TpM — M sends v to (7).

2.2. Perelman’s reduced volume. The function L(g,7) is the infi-
mum of the £-length among curves v with v(0) = p and v(7) = q.

When we perform standard variational calculations of the function
L, we can get the following results (see [2], 18-22):

) LODD _ ) + X0
and
®) ROM) +IX(OP) = =K + 5 L{q. 7),
where ]
K = / P H(X(r))dr
and ’
H(X) = —R, — 2 —2(VR, X) + 2Ric(X, X).

Also '
(4) L:(q,7) = 2V7R(q) — %L(q, )+ %K,
(5) ALS%—QﬁR—%/OTTgH(X)dT:%—QﬁR—%K
and

(6) Ly + AL <2n where L(q,7)=2v7L(q,7).
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Moreover,

1o .
(1) - /0 JEH(X, YV)dr.

Defining the reduced length by

d|Y|? 1
b < Z
dr lr=r = T

L(q,7)

l(g,7) = NG

and the reduced volume by
V(r) = / (4r7) " Fe 107 dg.
M

The goal is to show that V(7) is nonincreasing in 7, i.e. nondecreasing
in t. To do this one uses the L-exponential map to write V(1) as an
integral over T,,M :

Vir) = [ ) 5o g0, 75, (o),
T,M

where J (v, 7) = det d(Lexp, )o is the Jacobian factor in the change of
variables and x is a cutoff function related to the £-cut locus of p.
To show that V(7) is nonincreasing in 7, it suffices to show that

7'7% ee(‘c eXpT(U)7T)j(rU, 7—)

is nonincreasing in 7, or equivalently that
—5 log(r) — (L exp, (v),7) +log T (v, 7)

is nonincreasing in 7. Hence it is necessary to compute

dl(Lexp,(v),T) and dJ (v, 1) .
dr dr
The fact that V(7) is nonincreasing in 7 is then used to show that

the Ricci flow solution cannot collapse near p.

Theorem 2.1 (Monotonicity of Perelman’s reduced volume). Let g;;
be a family of complete metrics evolved by the Ricci flow a%gij = 2R;;
on a manifold M with bounded curvature. Fiz a point p in M and
let £(q, T) be the reduced distance from (p,0). Then Perelman’s reduced
volume

Vr) = /M (4r7)~3e=1aD gV (g)

18 MONINCTEasIng 1n T.
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Proof. Fix p € M. From the discussion above, we can write
V(7) :/ (4n7) "2 e MExP () 7 (4 1)y, (v)do,
Ty M

where J(v,7) = det d(Lexp, )» is the Jacobian factor in the change of
variable and y, is a cutoff function related to the L-cut locus of p.
We first show that for each v, the expression

—g log(7) — (L exp,(v),T) +log J (v, 7)

is nonincreasing in 7. Let v be the L£-geodesic with initial vector v &
T,M. From (2) and (3),

(8) dﬁ('yg)ﬁ) _ 1

T=T 27

() + 3 (ROE) +XOP) = 57 1K,

Next, let {Y;}!, be a basis for the Jacobi fields along 7 that vanish
at 7 = 0. We can write

log J (v, 7)* = log det((d(Lexp.),)*d(L exp,), = log det(S(7))+const.,

where S is the matrix

Then

dlog J(v,7) 1 _,dS
ERE BT (5122,
dr 9! dr
To compute the derivative at 7 = 7, we can choose a basis so that
S(t) = I,, ie. (Y;(7),Y;(T)) = 0;; then using (7) and the same
method as in ([2], 21),

dinJ (v, T) 1 <= d|Y;|?
9 P S =Z i
9) dr

T=T 2 - dT
=1

From (8) and (9), we deduce that

is nonincreasing in 7. Finally, if 7 < 7/ then Q. C Q,, so x,(v) is
nonincreasing in 7. Hence V(1) is nonincreasing in 7. U
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2.3. Perelman’s YV functional.

Definition 2.2. Perelman’s WV functional is defined by
Wigi 1) = [ R+ [VH2)+ = nl(amr)¥e o
M

where g;; is a Riemannian metric, f is a smooth function on M, and
T is a positive scalar parameter. The functional VW is invariant under
simultaneous scaling of 7 and g;; (or equivalently the parabolic scaling),
and invariant under diffeomorphism. Namely, for any positive number
a and any diffeomorphism ¢

W(a’w*gmv (p*fa CL’T) = W(gw: f’ 7_)'

Now we set
1
p(gij, 7) = mf{W(gij, f, 7)|f € C=(M), @) /e dv =1}.

Note that if we let u = e~//2, then the functional WW can be expressed
as

Wigijs [, 7) = / [r(Ru? + 4|Vu|?) — u?log u? — nu?|(4x7) "3 dV
M
and the constraint [,,(477)"2e~/dV =1 becomes [, u*(477) " 2dV =
1.

Lemma 2.3.

wlgiys ™) = it (g, £.7)|f € Co(M), —

L o
(47T7')"/2/ v =1}

is finite and nondecreasing, where g;; is a Riemannian metric, f is a
smooth function on M and T is a positive scalar parameter.

In order to prove this ,we will use the following Lemmas. Let €
be a domain (open connected) in M and C°(€2) be the space of real
valued infinitely differentiable functions, compactly supported in €.
The Sovolev space H(€2) is the closure of C§°(€2) in the norm

171= [ 7 [ 1os

where the integrations use the volume element arising from the Rie-
mannian structure and V f, |V f|?, are also determined by the Riemann-
ian structure. Let A be the Laplace-Beltrami operator. For any real
valued measurable function f on Q, we say that f € L' (Q) if |f|?
is integrable on 2 for some ¢ > p. We use || f |, to denote the
L9(Q2) norm of f. Let H be a non-negative measurable function on €,
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for which log H € L. Let p be a positive real number and define
a,(H) as the infimum of

/(p[V|2 — f*log f* + f*log H) for f € H,
subject to the proviso [ f? = 1. (The integral is well defined, since
feH= feL™rn2)

Lemma 2.4. [(p|Vf]* + f*log H) is bounded below if f € Hy and
[rP=1

Proof. We may write log H = U+ V, where U has its Lz norm as small
as we want, say
n
Ul =<e
U5 <

and V' is bounded, say |V| < D. By the Sobolev theory, there exists a
constant C' independent of f such that

[l <Clrl.
But now
[ PO P IV 5= P el £
So
J 1w s+ Prog

—o IS I+ [PV 2ol fIP=p-D=Co| FIF,

which is bounded below as long as C%¢ < p.
O

Lemma 2.5. For f € Hy, [ f? =1, the functional [(p|V f|*—f*log f?)
1s bounded below.

Proof. Pick e satisfying 0 < € < 2. Then by Jensen’s inequality for

(n—2)
the logarithm,

1
[ rrogr == [ Frogli < 2+ 2010 | £ asac
and by the Sobolev theory,
I fllar2e< C I fI-
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Hence
J VI = Frog ) = ol £IF =0 [ Fos
2+ 2¢
R
which is bounded below since || f ||> 1. O

Lemma 2.6. a,(H) is finite.

Proof. Tt follows from

/(plvf\Q—fQIngQJerlogH)
_ /(g|Vf]2+f2logH)+/(§|Vf|2—f210gf2)-

The following two results are proved in [3]:
Theorem 2.7. a,(H) is an attained minimum.
Theorem 2.8. A minimizer f for a,(H) is continuous on ).

Any f € Hj with [ f? =1 which attains the minimum of a,(H) will
be called a minimizer for a,(H).

Remark 1. We can show that z(g;;, 7) is achieved by a smooth mini-
mizer f from Theorem 2.8.

Proof of Lemma 2.3. We use Lemma 2.6 to show that pu(g;;, ™ —t) is
finite. We can get that u(g;;(t), 7 —t) is nondecreasing along the Ricci
flow follows from [6, Corollary 1.5.9.] O
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3. NO LOCAL COLLAPSING THEOREMS

Definition 3.1. Let x,v be two positive constants and let g;;(¢),0 <
t < T, be a solution to the Ricci flow on an n-dimensional manifold M.
We call the solution g;;(t) is k-noncollapsed at (zo,ty) € M x [0,7T") on
the scale v if it satisfies the following property:
Whenever
Rl () < 172

for all x € By, (z,,7) and t € [ty — 12, o], we have

Vol(By,(xo,7))) > k1",

Here By, (zo,7) is the geodesic ball centered at xy € M and of radius r
with respect to the metric g;;(t9). We now use the W — functional to
prove the no local collapsing theorem.

3.1. No local collapsing theorem 1.

Theorem 3.2 (No local collapsing theorem I). Suppose that Mis a
compact Riemannian manifold and g;;(t),0 < t < T < oo, is a
solution to the Ricci flow. Then the solution g;;(t) is k-noncollapsed

at (zo,t0) € M x [0,T) on the scale v € (0,V/T).
Proof. We want to prove

(10) Vol (Byy (29, a)) > ka"
for all 0 < a < r. Recall that

(11) 1(gij, 7) = inf{W(gsj, f, 7)| /M(47TT)_T2Le_de =1}

Note that: Since j(g;;(t), 7 — t) is nondecreasing in ¢t by Lemma 2.3,
if we assume that g;;(t) = ¢;;(0) for all ¢ € R then p(g(0),27) <
1(g(0),7) for all 0 < 7 < 27T.

Let f be the minimizer of p©(g(0),27"). By Theorem 2.8, we know
that f is smooth. Since M is compact,we get |u(g(0),27)| < a for
some a € R. Let

po = inf 1u(gi;(0),7) = 1(gi;(0), 2T) > —oo.

0<r<2T

By Lemma 2.3, we have

(12) 1(9ij (o), b) = 11(915(0), to +b) = po

for 0 < b < r?% Let 0 < ¢ <1 be a positive smooth function on R
where ((s) = 1 for |s| < 3,[¢’|?/¢ < 20 and ((s) is very close to zero
for |s| > 1. Define a function f on M by

(4mr?)~3 1@ = e=e(ary)~t (T (;? 7o)y
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where the constant c is chosen so that [, (47r?)"2e /dv,, = 1. Then
we use (12) to get
(13)

W(gy(to), f,17) = /M (VS + R) + f — ) (4mr) Fe T duy > o,

By (13), we get

00 e=m+ [ PAVAE+ R~ losC)am) e~ T, > o

Since
/(TQR)(47TT2>;6detO
M
:/ (TQR)(4WT2)_ge_fdvt0+/ r?R(4mr?) "2 e  duy,
Bto(azo,r) M\Bto(x07r)
:/ (4nr®)~2e  duy, +/ r’R(4nr?) "2 e Cduy, < 2,
Bto(:po,r) M\BtO(IO,T)
C/ 2
VAl = V(-logoP = CF . L
¢ r
and
(¢')? 2\~ —f
/( 2 —log {)(4mrs) " 2e ' duy,
M
AV
-/ ( )(%—clog<><4w2>-2e—0dvto
to (o,

< 2(20 4 e)(4nr?) "2 e Vol (B, (o, 7),
thus (13) is reduced to

Vol(By,(xo, 1))

> _9(20
¢ =220+ D)

Note that

> / (4mr?) "2 e duy,
Bto ($07%)

= (4mr)E e Vol(By (o, 5).
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Note also that

1 = /(47rr2)_ge_fdvt0
M

= /M(47W )—— —cC(dto(i’U , o)

< 2/ e~¢(4mr?) " 2 dvy,.
Bt (x0,7)

) dvto

Thus we get

M\i

Vol(Byy (o, 7)) > —e(4nr?)2.

l\DI»—t

Let us set

1
2o

where «,, is the volume of the unit ball in R™. Then we obtain

1
K= min{§ exp(—2(20+¢e)37" 4+ (n — 2) + o),

Vol(By,(xo,1)))

v

566(47T7“2)%

;(4@3 p(—2(20 4+ €)37" + (n — 2) + po)r"

> Kr"

provided that Vol(By,(zo, 5)) > 37"V ol(By,(zo,7)).
The above argument also works for any smaller radius a < r. Thus
we have proved

(15) Vol(By,(xo,a)) > Ka™

for a € (0,7] and Vol(By, (0, 5)) = 37"V ol(By, (w0, a)). Now we argue
by contradiction to prove the assertion (9) for any a € (0, r].
Suppose (10), fails for some a € (0,r]. Then by (15) we have

v

Vol(By(wo.5)) < 37"Vol(By(xo,a))
< 37"Ka"
a’n
< IC(E) .

Thus (10)a also fails. By induction we get

Vol(By,(xo, o )) < IC( )
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for all kK > 1. But this contradicts to the limit
. a/ a/ n
lim Vol(By, (o, ?))/(ﬁ) = .

K— 00

O

3.2. No Local Collapsing Theorem II.. In this section we will use
a cut-off argument to extend the no local collapsing theorem to any
complete solution with bounded curvature. In some sense, the second
no local collapsing theorem gives a good relative estimate of the volume
element for the Ricci flow.

Lemma 3.3 (Perelman). Suppose we have a solution to the Ricci flow
(9ij)e = —2R;;.

(a) Suppose that Ric(x,ty) < (n — 1)K for disty,(x,x9) < 19. Then
the distance function d(z,t) = dist,(z,x¢) satisfies at t = to outside
B(xg, 1) the differential inequality

2
dt — Ad 2 —(TL— 1)(§K’f’0 —l—T’O_l).

(The inequality is understood in the barrier sense when necessary.)
(b) Suppose Ric(x,ty) < (n — 1)K when

disty, (z, o) <19 or disty,(x,z1) < ro.

Then at t = ty,

idistt(:vo, x1) > —2(n — 1)(2K7‘0 +7r5h).
dt 3

Proof of Lemma (a). Let v : [0, d(x,ty)] — M be a shortest nor-
mal geodesic from zy to x with respect to the metric g;;(¢y). Let
{X, e1,..., en_1} be an orthonormal basis of T, M. Extend this
basis parallelly along 7 to form a parallel orthonormal basis { X, ey, -
-, en_1} along 7. We consider that x and z, are not conjugate to each
other in the metric g;;(¢o).

Let X;(s), i = 1,..., n — 1, be the Jacobi fields along = such
that X;(0) = 0, X;(d(z, ty)) = ei(d(z,t)) and [X;, X] = 0 for
i=1,..., n—1. Then we have (see for example [4])

z,lo

)
(IVxXi]* — R(X, X;, X, X;))ds

n—1 d(
Ay (w,20) = Z/
i=1 V0
Define vector fields Y;, i =1,...,n — 1, along v as follows:

Yi(s) = f(s)ei(s),
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where f(s) = 2 if s € [0,70] and f(s) = 1if s € [ro,d(z,to)] then we
can see that
Yi(0) = 0 = X,(0),

Yi(d(z, 1)) = ei(d(z, to)) = Xi(d(x, b))

Thus by using the standard index comparison theorem (see for example
[5]) we have

Vdy, (x o)

:Et()
_ Z / (IVxVXi[2 = R(X, X;, X, X,))ds

:Et()
<§:/n (IVxY > = R(X,Y;, X,Y;))ds

o 1 (X,to)
= / = —(n—1-s"Ric(X, X))ds + / (—Ric(X, X))ds
o 7o

To

:_/mmxm+/ﬂmzm u——mwxmm

Ty TQ
2
g_/Rmu;m+wn—U§Km+m)-

On the other hand,

d(m,to)
aatd (x,20) = % V9i; X X7ds = —/Rz'c(X,X)ds
Thus we get the desired result. 0

Proof of Lemma (b). The proof is divided into three cases.

Case 1: dy,(zg, 1) > 2ry.

Let v be a normalized minimal geodesic from z to z; and X (s) = 4.
If any piecewise-smooth vector field V' along ~ that vanishes at the
endpoints, the second variation formula gives

d(zo,z1)
/ (IV AV + (R(V, X)V, X))ds > 0.
0

Let ei(s)?:_f be a parallel orthonormal frame along ~ that is perpen-
dicular to X. Put Vi(s) = f(s)e;(s), where

% if 0<s<ry,
f(s) = 1( : if To <s< d(l’o,l‘l) — To,
d(xg,x1)—s

it d(xg,z1) — 19 < 5 < d(x0,77).

0o
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Then |VxV;| =|f'(s)| and

d(zo,x1)
/ (R(Vi, X)Vi, X)ds
0

0 82 d(xo,xl)fro
_/ _2<R(617X)61,X>d5+/ (R(e;, X)e;, X)ds
o "o ro
d($0,$1) d _ 2
+/ ( (xo’xé) s) (R(ei, X)ei, X)ds.
d(zo,x1)—T0 7o

Then

n

1 rd(xo,x1)
0 < X [0V + (R X0V X))

2(n—1

) d(xo,x1) o 52
= — —/ Ric(X,X)ds—i—/ (1-— —Z)Ric(X, X)ds
7o 0 0 To
d(zo,z1) EAY)
+ / (1 — (o, x;) ) Rie(X, X)ds.
d(l‘o,xl)—To TO
Thus we get
d d(zo,x1)
—disty(zg, 1) = —/ Ric(X, X)ds
2(n—1 ro 2
> -l —/ (1— 2)Rie(X, X)ds
To 0 L
d(zo,x1) (d(xo x1> _ 5)2
- / (1— ’ JRic(X, X)ds
d(zo,x1)—"r0 7‘8
2(n—1) 2
- 2(n—-1)K-=
= o (n ) 37“0

2
= —2(n-— 1)(§Kr0 +r5t)

Case 2: 2 % < dyy (20,1 ) < 2r9.
Let r = ,/% and applying Case(1) with ¢ replaced by 7, we get

L zne)) = 2~ DCER 4

2
> —2(n — 1)(§K7’0 +751)

Case 3: dy, (0, r1) < min{24/5%, 2ro}.
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In this Case,

d(wl,to)
/ Ric(X,X)ds§(n—l)K?“%:(n—l)\/GK
0

and

2 — 1)(§m0 Frih) 2 (0= 1y K

Theorem 3.4 (No local collapsing theorem II). For any A > 0 there
ezists k = k(A) > 0 with the following property: if g;;(t) is a complete
solution to the Ricci flow on 0 < t < 7’8 with bounded curvature and
satifying

|Rm|(z,t) <rg? on By(xg,ro) x [0,7]
and

Vol(By(wo,m0)) > A7,

then g;;(t) is k-noncollapsed on all scales less than ry at every point
(z,r3) with dZ (x,x0) < Arq.

Proof. From the evolution equation of the Ricci flow. we know that
the metrics g;;(+, t) are equivalent to each other on By(zg, ) x [0, r3].
Thus without loss of generality, we may assume that the curvature of
the solution is uniformly bounded for all ¢ € [0,72] and all points in
Bi(zo,70). Fix a point (z,r3) € M x r2. By scaling we may assume
ro = 1. We may also assume d;(x,z9) = A. Let p=2,7=1—1 and
consider Perelman’s reduced volume

V(r) = / (477) 3 =N av; ().
M

where
1 T
tlar) =t [ VAR BPr |50, — M
27 Jo

with v(0) = p,y(7) = ¢}

is the Li-Yau-Perelman distance.
We argue by contradiction. Suppose for some 0 < r < 1 we have

|Rm|(y,t) < r~*

whenever y € By(z,7) and 1 — 72 <t < 1, but € = rVoly(By(z,r))n
is very small. Then arguing as in the proof of the no local collapsing
theorem I (Theorem 3.3.2) [6], we see that Perelman’s reduced volume

V(er?) < 22,
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On the other hand, from the monotonicity of Perelman’s reduced
volume we have

) [ i) = V() < Ve,

Thus once we bound the function ¢(g, 1) over By(xg, 1) from above, we
will get the desired contradiction and will prove the theorem.

For any ¢ € By(zo, 1), exactly as in the proof of the no local collaps-
ing theorem I, we choose a path v : [0,1] — M with v(0) =z, (1) =
g, 13)=ye Bi(zo,a) and (1) € Bi_r(x0,1) for 7 € 3] such that

1 1 1 1

LOI10.5]) =256y 5) (= Lly.3)).

Now

1
£l 15D = [ VAROE)LL= 1)+ 30 aya-n)dr

is bounded from above by a uniform constant since all geometric quan-
tities in g;; are uniformly bounded on {(y,t)| t € [0,1/2], y € By,1)}
(where t € [0,1/2] is equivalent to 7 € [1/2,1]). Thus all we need is
to estimate the minimum of £(-, 3) or equivalently L(-, 1) = 41¢(-, 1) in
the ball By (20, a).

Recall that L satisfies the differential inequality
oL _
— + AL < 2n.
or
We will use this in a maximum principle argument.

Let ¢ = ¢(u) be a smooth function that equals 1 on (—o0, a), equals
infinity on (a,00) and is increasing on (¢,a), where (a,t € R,a > t)
with

2(¢')%/¢ — ¢" = (2A+100n)¢' — C(A)
for some constant C'(A) < oco. To satisfy this equation, it suffices to

take
1

¢u) = C(AT100m) (5 —u) _ q

1
for u near ;5. Now put

where d(y,t) = dist(y, zo). Since the scalar curvature R evolves by

2
Of _ AR+ 2|Re|*> > AR+ —R?,
ot n
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we can apply the maximum principle to deduce
R(z,t) > —% for t€ (0,1 and x€ M.

Thus for 7 =1—1t € [0, %],
L(-7) = N%/ VT(R A+ [31*)dr
0

> NF/DT Vil—gg =)

> 2\/;/ VT(=n)dr
0
> —2n.
That is

1
L(-,l—t)+2n—|—121,fort€[5,1].

Also min, h(y,1) < h(z,1) = ¢(disty(z,z9) — A)(2n+ 1) =2n+ 1.

As ¢ is infinite on (a,00) and L(.,3) + 2n + 1 > 1, the minimum of
h(-,3) is achieved at some y satisfying d(y, 5) < a. The calculations in
Lemma 3.3 (a) give

Oh > —(2n+ C(A))h
at a minimum point of h, where J = 9, — AA. Then
hmin(t) 2 = (20 -+ C(A) 1),

SO
1
hain (=) < €5 hyin (1) < (20 4 1)+ 5.

2
It follows that

- 1
min  L(y,=)+2n+1< (2n+1)e" 2.
y:d(y,5)<a 2

This implies the theorem. U
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