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沿著瑞奇流的κ-noncollapsing估計

摘要

　在這篇文章裡我們描述了兩種由Perelman提出建立沿著瑞奇
流的κ-noncollapsing定理的方法。第一種方法是使用Perelman entropy。
第二種方法是利用Perelman’s reduced volume的單調性來建立。
Reduced volume是對non-collapsing定理更局部的看法，因此我們
學習Perelman的証明中關於龐加萊猜想裡ancient κ-noncollapsing的
解時(這種解不必是緊緻因此不被總體的量所控制)，第二個方法是
重要的。我們的論述主要是依據Cao-Zhu [6]，關於Perelman’s W
functional我們參考O. Rothaus [3]給予更詳細的說明。
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κ-Noncollapsing Estimates Along The
Ricci Flow

Abstract

In this paper we report on the two methods pioneered by G. Perel-
man [1] to establish his κ-noncollapsing thm of the Ricci flow. The
first method uses the Perelman entropy. The second proof uses the
monotonicity of the Perelman’s reduced volume. The second proof
is important, because the reduced volume is a more localized quan-
tity in its definition and so one can in fact establish local versions
of the non-collapsing theorem which turn out to be important when
we study ancient κ-noncollapsing solutions in Perelman’s proof of
the Poincaré conjecture. Such solutions need not be compact and
so cannot be controlled by global quantities (such as the Perelman
entropy). Our treatment follows closely the cuticle by Cao-Zhu [6],
with some more details on Perelman’s W functional by O. Rothaus
[3].
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κ-NONCOLLAPSING ESTIMATES
ALONG THE RICCI FLOW

SINHUA LAI

Abstract. In this paper we report on the two methods pioneered
by G. Perelman [1] to establish his κ-noncollapsing thm of the
Ricci flow. The first method uses the Perelman entropy. The sec-
ond proof uses the monotonicity of the Perelman’s reduced volume.
The second proof is important, because the reduced volume is a
more localized quantity in its definition and so one can in fact es-
tablish local versions of the non-collapsing theorem which turn out
to be important when we study ancient κ-noncollapsing solutions
in Perelman’s proof of the Poincaré conjecture. Such solutions need
not be compact and so cannot be controlled by global quantities
(such as the Perelman entropy). Our treatment follows closely the
cuticle by Cao-Zhu [6], with some more details on Perelman’s W
functional by O. Rothaus [3].
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2 SINHUA LAI

1. Introduction

1.1. Contents of this note. Consider a complete Riemannian man-
ifold M of dimension n ≥ 3 with the Riemannian metric gij. Let
g = g(t) be a smooth solution of the Ricci flow

∂g

∂t
= −2Ric

on M × [0, T ) for some (finite or infinite) T > 0 with a given initial
metric g(0) = g0.

In Section 2.1-2.3, a new monotonic quantity, namely the reduced
volume Ṽ , is introduced. It is defined in terms of so-called L-geodesics.
Let (p, t0) be a fixed spacetime point. Define the backward time by
τ = t0 − t. Given a curve γ(τ) in M defined on 0 ≤ τ ≤ τ̄ (i.e. going
backward in real time) with γ(0) = p, its L-length is defined to be

L(γ) =

∫ τ̄

0

√
τ(|γ̇(τ)|2g(τ) + R(γ(τ), t0 − τ))dτ.

Let L(q, τ̄) be the infimum of L(γ) over curves γ with γ(0) = p and
γ(τ̄) = q. Put

`(q, τ̄) =
L(q, τ̄)

2
√

τ̄
.

The reduced volume is defined by

Ṽ (τ̄) =

∫
M

(4πτ̄)−
n
2 e−`(q,τ̄)dV.

The remarkable fact is that if g is a Ricci flow solution then Ṽ is non-
increasing in τ̄ , i.e. nondecreasing in real time t. The proof of mono-
tonicity uses a subtle cancelation between the τ̄ -derivative of `(γ(τ̄), τ̄)
along an L-geodesic and the Jacobian of the so-called L-exponential
map.

In Section 2.3, a modified ”entropy” functional W(g, f, τ) is intro-
duced. It is nondecreasing in t provided that g is a Ricci flow solution,
τ = t0 − t and (4πτ)

n
2 e−f satisfies the conjugate heat equation.

In Section 3.1, the entropy functional W is used to prove a no local
collapsing theorem. The statement is that if g is a given Ricci flow on
a finite time interval [0, T ) then for any (scale) ρ, there is a number
κ > 0 so that if Bt(x, r) is a time-t ball with radius r less than ρ, then

|Rm| ≤ 1

r2
⇒ V ol(Bt(x, r)) ≥ κrn on Bt(x, r).
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The method of proof is to show that if r−nV ol(Bt(x, r)) is very small
than the evaluation of W at time t is very negative, which contradicts
the monotonicity of W .

In Section 3.2 we will use a cut-off argument to extend the no local
collapsing theorem to any complete solution with bounded curvature.
In some sense, the second no local collapsing theorem gives a good
relative estimate of the volume element for the Ricci flow.

1.2. Historical remarks. Historically, in the 1980’s, it was Richard
Hamilton who initiated the program of using the Ricci flow to solve
the Poincaré conjecture as well as the hyperbolicity conjecture of three
dimensional manifolds. His idea is to do surgeries on the manifold when
the curvature tends to blow-up in some region during the Ricci flow. In
order to perform surgeries Hamilton needs to classify the neighborhood
of the blow-up region. He used a standard parabolic scaling of the Ricci
flow to perform the blow-up analysis and he also proved a convergence
theorem of the rescalled region when a “Little Loop Lemma” holds.
Unfortunately his proof of the Little Loop Lemma turns out to be
incorrect and it becomes the first main obstacle to carry out Hamilton’s
program.

In [1], G. Perelman made a breakthrough in Hamilton’s program.
Among many other things, Perelman formulated and proved the No
Local Collapsing Theorem which in particular implies the Little Loop
Lemma as a corollary. The L-geodesic, reduced length ` as well as the
reduced volume Ṽ are all due to Perelman. Since Perelman’s paper was
written in a rather dense manner, it is highly desirable to have more
transparent proofs, with more details filled in, of the results proved or
announced in [1]. Since then several nice articles had appeared aiming
at understanding Perelman’s argument.

Our purpose here is simply to understand Perelman’s No Local Col-
lapsing Theorems, both the compact and non-compact cases. Our
treatment follows closely the cuticle by Cao-Zhu [6], with some more
details on Perelman’s W functional by using results in O. Rothaus [3].
It is the author’s hope that this note will be helpful as a supplementary
reading for people who wants to read Perelman’s work.
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2. Perelman’s Reduce Volume

2.1. The L-geodesics. We write the Ricci flow in the backward ver-
sion

∂gij

∂τ
= 2Rij

on a manifold M with τ = τ(t) satisfying dτ
dt

= −1. We always as-
sume that either M is compact or gij(τ) are complete and have uni-
formly bounded curvature. The L-length of a (smooth) space curve
γ : [τ1, τ2] → M is defined by

L(γ) =

∫ τ2

τ1

√
τ(R(γ(τ)) + |γ̇(τ)|2)dτ,

where the scalar curvature R(γ(τ)) and the norm |γ̇(τ)| are evaluated
using the metric at time t = t0 − τ. Here τ1 > 0.

To derive the L-geodesic equation, as in the standard Riemannian
geometry we consider an 1-parameter family of curves γs : [τ1, τ2] →
M , parametrized by s ∈ (−ε, ε). Equivalently, we have a map γ̃(s, τ)

with s ∈ (−ε, ε) and τ ∈ [τ1, τ2]. Putting X = ∂γ̃
∂τ

and Y = ∂γ̃
∂s

, we
have [X, Y ] = 0. This implies that ∇XY = ∇Y X. Writing δY as
shorthand for d

ds
|s=0, and restricting to the curve γ(τ) = γ̃(0, τ). We

have (δY Y )(τ) = Y (τ) and (δY X)(τ) = (∇XY )(τ). Then

δY (L)

=

∫ τ2

τ1

√
τ(〈∇R, Y 〉+ 2〈X,∇Y X〉)dτ

=

∫ τ2

τ1

√
τ(〈∇R, Y 〉+ 2〈X,∇XY 〉)dτ

=

∫ τ2

τ1

√
τ(〈∇R, Y 〉+ 2

d

dτ
〈X, Y 〉 − 2〈∇XX, Y 〉 − 4Ric(X, Y ))dτ

= 2
√

τ〈X, Y 〉
∣∣∣τ2
τ1

+

∫ τ2

τ1

√
τ〈Y,∇R− 2∇XX − 4Ric(·, X)− 1

τ
X〉dτ.

Hence the L-geodesic equation is

∇XX − 1

2
∇R +

1

2τ
X + 2Ric(X, ·) = 0

where the 1-form Ric(X, ·) has been identified with the corresponding
dual vector field.

Give any p, q ∈ M and τ2 > τ1 > 0 there exists a L-shortest geodesic
γ : [τ1, τ2] → M such that γ(τ1) = p, γ(τ2) = q and satisfies the L-
geodesic equation. Multiplying

√
τ to the- L-geodesic equation, we
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get

∇X(
√

τX) =

√
τ

2
∇R− 2

√
τRic(X, ·) on [τ1, τ2].

That is,

(1)
d

dτ
(
√

τX) =

√
τ

2
∇R− 2Ric(

√
τX, ·) on [τ1, τ2].

Thus, if a continuous curve defined on [τ1, τ2] satisfying the L-geodesic
equation (1) for any subinterval 0 < τ1 < τ < τ2, then v = lim

τ→0+

√
τX(τ)

exists. This allows us to extend the definition of the L-length to in-
clude the case τ1 = 0 for all those (continuous) curves γ : [0, τ2] → M
which are smooth on (0, τ2] and have limits lim

τ→0+

√
τ γ̇(τ).

This means that for a fixed p ∈ M, by taking τ1 = 0 and γ(0) = p,
the vector v = lim

τ→0

√
τX(τ) is well-defined in TP M. The L-exponential

map L expτ : TP M → M sends v to γ(τ).

2.2. Perelman’s reduced volume. The function L(q, τ̄) is the infi-
mum of the L-length among curves γ with γ(0) = p and γ(τ̄) = q.

When we perform standard variational calculations of the function
L, we can get the following results (see [2], 18-22):

(2)
dL(γ(τ̄), τ̄)

dτ̄
=
√

τ̄(R(γ(τ))) + |X(τ̄)|2)

and

(3) τ̄
3
2 (R(γ(τ̄) + |X(τ̄)|2) = −K +

1

2
L(q, τ̄),

where

K =

∫ τ̄

0

τ
3
2 H(X(τ))dτ

and

H(X) = −Rτ −
1

τ
− 2〈∇R,X〉+ 2Ric(X, X).

Also

(4) Lτ̄ (q, τ̄) = 2
√

τ̄R(q)− 1

2τ̄
L(q, τ̄) +

1

τ̄
K,

(5) ∆L ≤ n√
τ̄
− 2

√
τ̄R− 1

τ̄

∫ τ̄

0

τ
3
2 H(X)dτ =

n√
τ̄
− 2

√
τ̄R− 1

τ̄
K

and

(6) L̄τ̄ + ∆L̄ ≤ 2n where L̄(q, τ) = 2
√

τL(q, τ).
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Moreover,

(7)
d|Y |2

dτ

∣∣∣
τ=τ̄

≤ 1

τ̄
− 1√

τ̄

∫ τ̄

0

√
τH(X, Ỹ )dτ.

Defining the reduced length by

`(q, τ) =
L(q, τ)

2
√

τ

and the reduced volume by

Ṽ (τ) =

∫
M

(4πτ)−
n
2 e−`(q,τ)dq.

The goal is to show that Ṽ (τ) is nonincreasing in τ , i.e. nondecreasing
in t. To do this one uses the L-exponential map to write Ṽ (τ) as an
integral over TpM :

Ṽ (τ) =

∫
TpM

(4πτ)−
n
2 e−`(L expτ (v),τ)J (v, τ)χτ (v)dv,

where J (v, τ) = det d(Lexpτ
)v is the Jacobian factor in the change of

variables and χτ is a cutoff function related to the L-cut locus of p.
To show that Ṽ (τ) is nonincreasing in τ , it suffices to show that

τ−
n
2 e`(L expτ (v),τ)J (v, τ)

is nonincreasing in τ , or equivalently that

−n

2
log(τ)− `(L expτ (v), τ) + logJ (v, τ)

is nonincreasing in τ. Hence it is necessary to compute

d`(L expτ (v), τ)

dτ
and

dJ (v, τ)

dτ
.

The fact that Ṽ (τ) is nonincreasing in τ is then used to show that
the Ricci flow solution cannot collapse near p.

Theorem 2.1 (Monotonicity of Perelman’s reduced volume). Let gij

be a family of complete metrics evolved by the Ricci flow ∂
∂τ

gij = 2Rij

on a manifold M with bounded curvature. Fix a point p in M and
let `(q, τ) be the reduced distance from (p, 0). Then Perelman’s reduced
volume

Ṽ (τ) =

∫
M

(4πτ)−
n
2 e−`(q,τ)dVτ (q)

is nonincreasing in τ .
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Proof. Fix p ∈ M. From the discussion above, we can write

Ṽ (τ) =

∫
TpM

(4πτ)−
n
2 e−`(L expτ (v),τ)J (v, τ)χτ (v)dv,

where J (v, τ) = det d(Lexpτ
)v is the Jacobian factor in the change of

variable and χτ is a cutoff function related to the L-cut locus of p.
We first show that for each v, the expression

−n

2
log(τ)− `(L expτ (v), τ) + logJ (v, τ)

is nonincreasing in τ. Let γ be the L-geodesic with initial vector v ∈
TpM. From (2) and (3),

(8)
d`(γ(τ), τ)

dτ

∣∣∣
τ=τ̄

= − 1

2τ̄
`(γ(τ̄) +

1

2
(R(γ(τ̄) + |X(τ̄)|2) = −1

2
τ̄−

3
2 K.

Next, let {Yi}n
i=1 be a basis for the Jacobi fields along γ that vanish

at τ = 0. We can write

logJ (v, τ)2 = log det((d(L expτ )v)
∗d(L expτ )v = log det(S(τ))+const.,

where S is the matrix

Sij(τ) = 〈Yi(τ), Yj(τ)〉.

Then

d logJ (v, τ)

dτ
=

1

2
Tr

(
S−1dS

dτ

)
.

To compute the derivative at τ = τ̄ , we can choose a basis so that
S(τ̄) = In, i.e. 〈Yi(τ̄), Yj(τ̄)〉 = δij then using (7) and the same
method as in ([2], 21),

(9)
dlnJ (v, τ)

dτ

∣∣∣
τ=τ̄

=
1

2

n∑
i=1

d|Yi|2

dτ

∣∣∣
τ=τ̄

≤ n

2τ̄
− 1

2
τ̄−

3
2 K.

From (8) and (9), we deduce that

τ−n

2
e−`(L expτ (v),τ)J (v, τ)

is nonincreasing in τ. Finally, if τ ≤ τ ′ then Ωτ ′ ⊂ Ωτ , so χτ (v) is
nonincreasing in τ. Hence Ṽ (τ) is nonincreasing in τ. �
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2.3. Perelman’s W functional.

Definition 2.2. Perelman’s W functional is defined by

W(gij, f, τ) =

∫
M

[τ(R + |∇f |2) + f − n](4πτ)−
n
2 e−fdv

where gij is a Riemannian metric, f is a smooth function on M, and
τ is a positive scalar parameter. The functional W is invariant under
simultaneous scaling of τ and gij (or equivalently the parabolic scaling),
and invariant under diffeomorphism. Namely, for any positive number
a and any diffeomorphism ϕ

W(aϕ∗gij, ϕ
∗f, aτ) = W(gij, f, τ).

Now we set

µ(gij, τ) = inf{W(gij, f, τ)|f ∈ C∞(M),
1

(4πτ)n/2

∫
e−fdV = 1}.

Note that if we let u = e−f/2, then the functional W can be expressed
as

W(gij, f, τ) =

∫
M

[τ(Ru2 + 4|∇u|2)− u2 log u2 − nu2](4πτ)−
n
2 dV

and the constraint
∫

M
(4πτ)−

n
2 e−fdV = 1 becomes

∫
M

u2(4πτ)−
n
2 dV =

1.

Lemma 2.3.

µ(gij, τ) = inf{W(g, f, τ)|f ∈ C∞(M),
1

(4πτ)n/2

∫
e−fdV = 1}

is finite and nondecreasing, where gij is a Riemannian metric, f is a
smooth function on M and τ is a positive scalar parameter.

In order to prove this ,we will use the following Lemmas. Let Ω
be a domain (open connected) in M and C∞

0 (Ω) be the space of real
valued infinitely differentiable functions, compactly supported in Ω.
The Sovolev space H1

0 (Ω) is the closure of C∞
0 (Ω) in the norm

‖ f ‖2=

∫
Ω

f 2 +

∫
Ω

|∇f |2,

where the integrations use the volume element arising from the Rie-
mannian structure and∇f, |∇f |2, are also determined by the Riemann-
ian structure. Let 4 be the Laplace-Beltrami operator. For any real
valued measurable function f on Ω, we say that f ∈ Lp+

(Ω) if |f |q
is integrable on Ω for some q > p. We use ‖ f ‖q to denote the
Lq(Ω) norm of f . Let H be a non-negative measurable function on Ω,
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for which log H ∈ L
n
2

+

. Let ρ be a positive real number and define
aρ(H) as the infimum of∫

(ρ|∇|2 − f 2 log f 2 + f 2 log H) for f ∈ H1
0,

subject to the proviso
∫

f 2 = 1. (The integral is well defined, since

f ∈ H1
0 ⇒ f ∈ L2n/(n−2).)

Lemma 2.4.
∫

(ρ|∇f |2 + f 2 log H) is bounded below if f ∈ H1
0 and∫

f 2 = 1.

Proof. We may write log H = U +V, where U has its L
n
2 norm as small

as we want, say

‖ U ‖ n

2
≤ ε

and V is bounded, say |V | ≤ D. By the Sobolev theory, there exists a
constant C independent of f such that

‖ f ‖ 2n
(n−2)

≤ C ‖ f ‖ .

But now ∫
f 2U ≤‖ f ‖2

2n
(n−2)

‖ V ‖n
2
≤ C2 ∈‖ f ‖2 .

So ∫
(ρ|∇f |2 + f 2 log H)

= ρ ‖ f ‖2 −ρ +

∫
f 2V ≥ ρ ‖ f ‖2 −ρ−D − C2ε ‖ f ‖2,

which is bounded below as long as C2ε < ρ.
�

Lemma 2.5. For f ∈ H1
0 ,

∫
f 2 = 1, the functional

∫
(ρ|∇f |2−f 2 log f 2)

is bounded below.

Proof. Pick ε satisfying 0 < ε < 2
(n−2)

. Then by Jensen’s inequality for

the logarithm,∫
f 2 log f 2 =

1

ε

∫
f 2 log |f |2ε ≤ (2 + 2ε) log ‖ f ‖2+2ε,

and by the Sobolev theory,

‖ f ‖2+2ε≤ C ‖ f ‖ .
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Hence∫
(ρ|∇f |2 − f 2 log f 2) = ρ ‖ f ‖2 −ρ−

∫
f 2 log f 2

≥ ρ ‖ f ‖2 −ρ− (2 + 2ε)

ε
log C ‖ f ‖,

which is bounded below since ‖ f ‖≥ 1. �

Lemma 2.6. aρ(H) is finite.

Proof. It follows from∫
(ρ|∇f |2 − f 2 log f 2 + f 2 log H)

=

∫
(
ρ

2
|∇f |2 + f 2 log H) +

∫
(
ρ

2
|∇f |2 − f 2 log f 2).

�

The following two results are proved in [3]:

Theorem 2.7. aρ(H) is an attained minimum.

Theorem 2.8. A minimizer f for aρ(H) is continuous on Ω̄.

Any f ∈ H1
0 with

∫
f 2 = 1 which attains the minimum of aρ(H) will

be called a minimizer for aρ(H).

Remark 1. We can show that µ(gij, τ) is achieved by a smooth mini-
mizer f from Theorem 2.8.

Proof of Lemma 2.3. We use Lemma 2.6 to show that µ(gij, τ − t) is
finite. We can get that µ(gij(t), τ − t) is nondecreasing along the Ricci
flow follows from [6, Corollary 1.5.9.] �
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3. No local collapsing theorems

Definition 3.1. Let κ, γ be two positive constants and let gij(t), 0 ≤
t < T , be a solution to the Ricci flow on an n-dimensional manifold M .
We call the solution gij(t) is κ-noncollapsed at (x0, t0) ∈ M × [0, T ) on
the scale γ if it satisfies the following property:
Whenever

|Rm|(x, t) ≤ r−2

for all x ∈ Bt0(xo, r) and t ∈ [t0 − r2, t0], we have

V ol(Bt0(x0, r))) ≥ κrn.

Here Bt0(x0, r) is the geodesic ball centered at x0 ∈ M and of radius r
with respect to the metric gij(t0). We now use the W − functional to
prove the no local collapsing theorem.

3.1. No local collapsing theorem I.

Theorem 3.2 (No local collapsing theorem I). Suppose that M is a
compact Riemannian manifold and gij(t), 0 ≤ t < T < ∞, is a
solution to the Ricci flow. Then the solution gij(t) is κ-noncollapsed

at (x0, t0) ∈ M × [0, T ) on the scale γ ∈ (0,
√

T ].

Proof. We want to prove

(10) V olt0(Bt0(x0, a)) ≥ κan

for all 0 < a ≤ r. Recall that

(11) µ(gij, τ) = inf{W (gij, f, τ)|
∫

M

(4πτ)−
n
2 e−fdv = 1}.

Note that: Since µ(gij(t), τ − t) is nondecreasing in t by Lemma 2.3,
if we assume that gij(t) = gij(0) for all t ∈ R then µ(g(0), 2T ) ≤
µ(g(0), τ) for all 0 ≤ τ ≤ 2T .

Let f be the minimizer of µ(g(0), 2T ). By Theorem 2.8, we know
that f is smooth. Since M is compact,we get |µ(g(0), 2T )| ≤ a for
some a ∈ R. Let

µ0 = inf
0≤τ≤2T

µ(gij(0), τ) ≥ µ(gij(0), 2T ) > −∞.

By Lemma 2.3, we have

(12) µ(gij(t0), b) ≥ µ(gij(0), t0 + b) ≥ µ0

for 0 < b ≤ r2. Let 0 < ζ ≤ 1 be a positive smooth function on R
where ζ(s) = 1 for |s| ≤ 1

2
, |ζ ′|2/ζ ≤ 20 and ζ(s) is very close to zero

for |s| ≥ 1. Define a function f on M by

(4πr2)−
n
2 e−f(x) = e−c(4πr2)−

n
2 ζ(

dt0(x, x0)

r
),
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where the constant c is chosen so that
∫

M
(4πr2)−

n
2 e−fdvt0 = 1. Then

we use (12) to get
(13)

W(gij(t0), f, r2) =

∫
M

[r2(|∇f |2 + R) + f − n](4πr2)−
n
2 e−fdvt0 ≥ µ0.

By (13), we get

(14) (c− n) +

∫
M

[r2(|∇f0|2 + R)− log ζ](4πr2)−
n
2 e−fdvt0 ≥ µ0.

Since∫
M

(r2R)(4πr2)−
n
2 e−fdvt0

=

∫
Bt0 (x0,r)

(r2R)(4πr2)−
n
2 e−fdvt0 +

∫
M\Bt0 (x0,r)

r2R(4πr2)−
n
2 e−fdvt0

=

∫
Bt0 (x0,r)

(4πr2)−
n
2 e−fdvt0 +

∫
M\Bt0 (x0,r)

r2R(4πr2)−
n
2 e−cζdvt0 ≤ 2,

|∇f0|2 = |∇(− log ζ)|2 =
(ζ ′)2

ζ2
· 1

r2

and ∫
M

(
(ζ ′)2

ζ2
− log ζ)(4πr2)−

n
2 e−fdvt0

=

∫
Bt0 (x0,r)

(
(ζ ′)2

ζ
− ζ log ζ)(4πr2)−

n
2 e−cdvt0

≤ 2(20 + e)(4πr2)−
n
2 e−cV ol(Bt0(x0, r),

thus (13) is reduced to

c ≥ −2(20 + e)
V ol(Bt0(x0, r))

V ol(Bt0(x0,
r
2
))

+ (n− 2) + µ0.

Note that

1 =

∫
M

(4πr2)−
n
2 e−cζ(

dt0(x, x0)

r
)dvt0

≥
∫

Bt0 (x0, r
2
)

(4πr2)−
n
2 e−cdvt0

= (4πr2)−
n
2 e−cV ol(Bt0(x0,

r

2
)).
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Note also that

1 =

∫
M

(4πr2)−
n
2 e−fdvt0

=

∫
M

(4πr2)−
n
2 e−cζ(

dt0(x, x0)

r
)dvt0

≤ 2

∫
Bt0 (x0,r)

e−c(4πr2)−
n
2 dvt0 .

Thus we get

V ol(Bt0(x0, r)) ≥
1

2
ec(4πr2)

n
2 .

Let us set

K = min{1

2
exp(−2(20 + e)3−n + (n− 2) + µ0),

1

2
αn}

where αn is the volume of the unit ball in Rn. Then we obtain

V ol(Bt0(x0, r))) ≥ 1

2
ec(4πr2)

n
2

≥ 1

2
(4π)

n
2 exp(−2(20 + e)3−n + (n− 2) + µ0)r

n

≥ Krn

provided that V ol(Bt0(x0,
r
2
)) ≥ 3−nV ol(Bt0(x0, r)).

The above argument also works for any smaller radius a ≤ r. Thus
we have proved

(15) V ol(Bt0(x0, a)) ≥ Kan

for a ∈ (0, r] and V ol(Bt0(x0,
a
2
)) ≥ 3−nV ol(Bt0(x0, a)). Now we argue

by contradiction to prove the assertion (9) for any a ∈ (0, r].
Suppose (10)a fails for some a ∈ (0, r]. Then by (15) we have

V ol(Bt0(x0,
a

2
)) < 3−nV ol(Bt0(x0, a))

< 3−nKan

< K(
a

2
)n.

Thus (10)a
2

also fails. By induction we get

V ol(Bt0(x0,
a

2k
)) < K(

a

2k
)n
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for all k ≥ 1. But this contradicts to the limit

lim
κ→∞

V ol(Bt0(x0,
a

2k
))/(

a

2k
)n = αn.

�

3.2. No Local Collapsing Theorem II.. In this section we will use
a cut-off argument to extend the no local collapsing theorem to any
complete solution with bounded curvature. In some sense, the second
no local collapsing theorem gives a good relative estimate of the volume
element for the Ricci flow.

Lemma 3.3 (Perelman). Suppose we have a solution to the Ricci flow
(gij)t = −2Rij.
(a) Suppose that Ric(x, t0) ≤ (n − 1)K for distt0(x, x0) < r0. Then
the distance function d(x, t) = distt(x, x0) satisfies at t = t0 outside
B(x0, r0) the differential inequality

dt −∆d ≥ −(n− 1)(
2

3
Kr0 + r−1

0 ).

(The inequality is understood in the barrier sense when necessary.)
(b) Suppose Ric(x, t0) ≤ (n− 1)K when

distt0(x, x0) < r0 or distt0(x, x1) < r0.

Then at t = t0,

d

dt
distt(x0, x1) ≥ −2(n− 1)(

2

3
Kr0 + r−1

0 ).

Proof of Lemma (a). Let r : [0, d(x, t0)] → M be a shortest nor-
mal geodesic from x0 to x with respect to the metric gij(t0). Let
{X, e1, . . . , en−1} be an orthonormal basis of Tx0M . Extend this
basis parallelly along γ to form a parallel orthonormal basis { X, e1, · ·
·, en−1} along γ. We consider that x and x0 are not conjugate to each
other in the metric gij(t0).

Let Xi(s), i = 1, . . . , n − 1, be the Jacobi fields along γ such
that Xi(0) = 0, Xi(d(x, t0)) = ei(d(x, t0)) and [Xi, X] = 0 for
i = 1, . . . , n− 1. Then we have (see for example [4])

∆t0(x, x0) =
n−1∑
i=1

∫ d(x,t0)

0

(|∇XXi|2 −R(X,Xi, X,Xi))ds

Define vector fields Yi, i = 1, . . . , n− 1, along γ as follows:

Yi(s) = f(s)ei(s),
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where f(s) = s
r0

if s ∈ [0, r0] and f(s) = 1 if s ∈ [r0, d(x, t0)] then we
can see that

Yi(0) = 0 = Xi(0),

Yi(d(x, t0)) = ei(d(x, t0)) = Xi(d(x, t0)).

Thus by using the standard index comparison theorem (see for example
[5]) we have

∇dt0(x, x0)

=
n−1∑
i=1

∫ d(x,t0)

0

(|∇X∇Xi|2 −R(X,Xi, X,Xi))ds

≤
n−1∑
i1

∫ d(x,t0)

0

(|∇XY |2 −R(X,Yi, X, Yi))ds

=

∫ r0

0

1

r2
0

(n− 1− s2Ric(X, X))ds +

∫ d(X,t0)

r0

(−Ric(X, X))ds

= −
∫

r

Ric(X, X) +

∫ r0

0

(
(n− 1)

r2
0

+ (1− s2

r2
0

Ric(X, X))ds

≤ −
∫

r

Ric(X, X) + (n− 1)(
2

3
Kr0 + r−1

0 ).

On the other hand,

∂

∂t
dt(x, x0) =

∂

∂t

∫ d(x,t0)

0

√
gijX iXjds = −

∫
r

Ric(X, X)ds.

Thus we get the desired result. �

Proof of Lemma (b). The proof is divided into three cases.
Case 1: dt0(x0, x1) ≥ 2r0.
Let γ be a normalized minimal geodesic from x0 to x1 and X(s) = dr

ds
.

If any piecewise-smooth vector field V along γ that vanishes at the
endpoints, the second variation formula gives∫ d(x0,x1)

0

(|∇XV |2 + 〈R(V, X)V, X〉)ds ≥ 0.

Let ei(s)
n−1
i=1 be a parallel orthonormal frame along γ that is perpen-

dicular to X. Put Vi(s) = f(s)ei(s), where

f(s) =


s
r0

if 0 ≤ s ≤ r0,

1 if r0 ≤ s ≤ d(x0, x1)− r0,
d(x0,x1)−s

r0
if d(x0, x1)− r0 ≤ s ≤ d(x0, x1).
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Then |∇XVi| = |f ′(s)| and∫ d(x0,x1)

0

〈R(Vi, X)Vi, X〉ds

=

∫ r0

0

s2

r2
0

〈R(ei, X)ei, X〉ds +

∫ d(x0,x1)−r0

r0

〈R(ei, X)ei, X〉ds

+

∫ d(x0,x1)

d(x0,x1)−r0

(d(x0, x1)− s)2

r2
0

〈R(ei, X)ei, X〉ds.

Then

0 ≤
n−1∑
i=1

∫ d(x0,x1)

0

(|∇XVi|2 + 〈R(Vi, X)Vi, X〉)ds

=
2(n− 1)

r0

−
∫ d(x0,x1)

0

Ric(X, X)ds +

∫ r0

0

(1− s2

r2
0

)Ric(X,X)ds

+

∫ d(x0,x1)

d(x0,x1)−r0

(1− (d(x0, x1)− s)2

r2
0

)Ric(X, X)ds.

Thus we get

d

dt
distt(x0, x1) = −

∫ d(x0,x1)

0

Ric(X, X)ds

≥ −2(n− 1)

r0

−
∫ r0

0

(1− s2

r2
0

)Ric(X, X)ds

−
∫ d(x0,x1)

d(x0,x1)−r0

(1− (d(x0, x1)− s)2

r2
0

)Ric(X, X)ds

≥ −2(n− 1)

r0

− 2(n− 1)K
2

3
r0

= −2(n− 1)(
2

3
Kr0 + r−1

0 )

Case 2: 2
√

3
2K
≤ dt0(x0,1 ) ≤ 2r0.

Let r1 =
√

3
2K

and applying Case(1) with r0 replaced by r1, we get

d

dt
(dt(x0, x1)) ≥ −2(n− 1)(

2

3
Kr1 + r−1

1 )

≥ −2(n− 1)(
2

3
Kr0 + r−1

0 )

Case 3: dt0(x0, x1) ≤ min{2
√

3
2K

, 2r0}.
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In this Case,∫ d(x1,t0)

0

Ric(X, X)ds ≤ (n− 1)K2

√
3

2K
= (n− 1)

√
6K

and

2(n− 1)(
2

3
Kr0 + r−1

0 ) ≥ (n− 1)

√
32

3
K.

�

Theorem 3.4 (No local collapsing theorem II). For any A > 0 there
exists κ = κ(A) > 0 with the following property: if gij(t) is a complete
solution to the Ricci flow on 0 ≤ t ≤ r2

0 with bounded curvature and
satifying

|Rm|(x, t) ≤ r−2
0 on B0(x0, r0)× [0, r2

0]

and

V ol(B0(x0, r0)) ≥ A−1rn
0 ,

then gij(t) is κ-noncollapsed on all scales less than r0 at every point
(x, r2

0) with d2
r0

(x, x0) ≤ Ar0.

Proof. From the evolution equation of the Ricci flow. we know that
the metrics gij(·, t) are equivalent to each other on B0(x0, r0)× [0, r2

0].
Thus without loss of generality, we may assume that the curvature of
the solution is uniformly bounded for all t ∈ [0, r2

0] and all points in
Bt(x0, r0). Fix a point (x, r2

0) ∈ M × r2
0. By scaling we may assume

r0 = 1. We may also assume d1(x, x0) = A. Let p = x, τ̄ = 1 − t and
consider Perelman’s reduced volume

Ṽ (τ̄) =

∫
M

(4πτ̄)−
n
2 e−`(q,τ̄)dV1−τ̄ (q),

where

`(q, τ̄) = inf{ 1

2
√

τ̄

∫ τ̄

0

√
τ(R + |γ̇|2)dτ

∣∣∣ γ : [0, τ̄ ] −→ M

with γ(0) = p, γ(τ̄) = q}
is the Li-Yau-Perelman distance.

We argue by contradiction. Suppose for some 0 < r < 1 we have

|Rm|(y, t) ≤ r−2

whenever y ∈ B1(x, r) and 1− r2 ≤ t ≤ 1, but ε = r−1V ol1(B1(x, r))
1
n

is very small. Then arguing as in the proof of the no local collapsing
theorem I (Theorem 3.3.2) [6], we see that Perelman’s reduced volume

Ṽ (εr2) ≤ 2ε
n
2 .
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On the other hand, from the monotonicity of Perelman’s reduced
volume we have

(4π)−
n
2

∫
M

e−`(q,1)dV0(q) = Ṽ (1) ≤ Ṽ (εr2).

Thus once we bound the function `(q, 1) over B0(x0, 1) from above, we
will get the desired contradiction and will prove the theorem.

For any q ∈ B0(x0, 1), exactly as in the proof of the no local collaps-
ing theorem I, we choose a path γ : [0, 1] −→ M with γ(0) = x, γ(1) =
q, γ(1

2
) = y ∈ B 1

2
(x0, a) and γ(τ) ∈ B1−τ (x0, 1) for τ ∈ [1

2
] such that

L(γ| [0, 1

2
] ) = 2

√
1

2
`(y,

1

2
) (= L(y,

1

2
)).

Now

L(γ| [1
2
, 1]) =

∫ 1

1
2

√
τ(R(γ(τ), 1− τ) + |γ̇(τ)|gij(1−τ))dτ

is bounded from above by a uniform constant since all geometric quan-
tities in gij are uniformly bounded on {(y, t)| t ∈ [0, 1/2], y ∈ Bt(x0,1)}
(where t ∈ [0, 1/2] is equivalent to τ ∈ [1/2, 1]). Thus all we need is
to estimate the minimum of `(·, 1

2
) or equivalently L̄(·, 1

2
) = 41

2
`(·, 1

2
) in

the ball B 1
2
(x0, a).

Recall that L̄ satisfies the differential inequality

∂L̄

∂τ
+ ∆L̄ ≤ 2n.

We will use this in a maximum principle argument.
Let φ = φ(u) be a smooth function that equals 1 on (−∞, a), equals

infinity on (a,∞) and is increasing on (t, a), where (a, t ∈ R, a > t)
with

2(φ′)2/φ− φ′′ ≥ (2A + 100n)φ′ − C(A)φ

for some constant C(A) < ∞. To satisfy this equation, it suffices to
take

φ(u) =
1

e(2A+100n)( 1
10
−u) − 1

for u near 1
10

. Now put

h(y, t) = φ(d(y, t)− A(2t− 1))(L̄(y, 1− t) + 2n + 1),

where d(y, t) = distt(y, x0). Since the scalar curvature R evolves by

∂R

∂t
= 4R + 2|Rc|2 ≥ ∆R +

2

n
R2,
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we can apply the maximum principle to deduce

R(x, t) ≥ − n

2t
for t ∈ (0, 1] and x ∈ M.

Thus for τ̄ = 1− t ∈ [0, 1
2
],

L̄(·, τ̄) = 2
√

τ̄

∫ τ̄

0

√
τ(R + |γ̇|2)dτ

≥ 2
√

τ̄

∫ τ̄

0

√
τ(− n

2(1− τ)
)dτ

≥ 2
√

τ̄

∫ τ̄

0

√
τ(−n)dτ

> −2n.

That is

L̄(·, 1− t) + 2n + 1 ≥ 1, for t ∈ [
1

2
, 1].

Also miny h(y, 1) ≤ h(x, 1) = φ(dist1(x, x0)− A)(2n + 1) = 2n + 1.
As φ is infinite on (a,∞) and L̄(., 1

2
) + 2n + 1 ≥ 1, the minimum of

h(·, 1
2
) is achieved at some y satisfying d(y, 1

2
) ≤ a. The calculations in

Lemma 3.3 (a) give
�h ≥ −(2n + C(A))h

at a minimum point of h, where � = ∂t −4. Then

d

dt
hmin(t) ≥ −(2n + C(A))hmin(t),

so

hmin(
1

2
) ≤ en+

C(A)
2 hmin(1) ≤ (2n + 1)en+

C(A)
2 .

It follows that

min
y:d(y, 1

2
)≤a

L̄(y,
1

2
) + 2n + 1 ≤ (2n + 1)en+

C(A)
2 .

This implies the theorem. �
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