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中文摘要

在 Seidel的博士論文 [Sei97]中，他與他的指導教授 Donaldson證明，若一緊緻

凱勒流形 (compact Kähler manifold)擁有一個尋常退化 (ordinary degeneration)，則

此凱勒流形內存在拉格朗日球面 (Lagrangian sphere)。這個結果引發以下的延伸問

題：如果此凱勒流形為一卡拉比 -丘流形 (Calabi-Yau manifold)，我們是否能夠在

其中找出一個特殊拉格朗日球面 (special Lagrangian sphere)？透過文獻回顧，我們

將探討特殊拉格朗日子流形 (special Lagrangian submanifolds)的基本知識，以及球

面的切叢 (the cotangent bundle of sphere)上的瑞奇平坦度量 (Ricci-flat metrics)。在

論文的最後，我們透過均曲率流 (mean curvature flow)來探討一維的情形。
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Abstract
In his PhD thesis[Sei97], Paul Seidel and his advisor Simon K. Donaldson gave two

proofs showing that a vanishing cycle in a Kähler manifold admitting an ordinary degener-

ation can be chosen to be Lagrangian. This gives rise to the questionwhether the vanishing

cycle is special Lagrangian if the manifold is Calabi-Yau. We investigate this problem by

reviewing the geometric aspect of special Lagrangian manifolds and the Ricci-flat met-

rics on the noncompact local model, namely the cotangent bundle of sphere. Finally, we

approach this problem in dimension one through mean curvature flow.
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Chapter 1

Introduction
In his thesis[Sei97], Paul Seidel and his advisor Simon K. Donaldson showed that if a

compact Kähler manifold admits an ordinary degeneration, then it contains a Lagrangian

sphere. This motivates us to ask further that if the manifold is in fact Calabi-Yau, is it

possible to find a special Lagrangian sphere in it? If this is the case, then by a theorem of

McLean [McL96], this special Lagrangian sphere is rigid, provided that n ≥ 2. This is a

significant property in algebraic geometry.

We investigate this problem in the following way. In Chapter 2 we review the special

Lagrangian geometry and McLean’s theorem on special Lagrangian deformations. The

geometric structures on the local moduli space, due to [Hit97], is then reviewed. In Chap-

ter 3 we follow Stenzel’s approach to contruct a Ricci-flat metric on the cotangent bundle

of a sphere. In Chapter 4, we review the two methods to contruct a Lagrangian sphere in

a compact Kähler manifold admitting an ordinary degeneration. Finally, in Chapter 5 we

discuss possible approaches to the main problem we are concerned about, and describe

some elemenetary results in the one dimensional case.
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Chapter 2

Special Lagrangian Geometry

2.1 Definitions and Basic Results

Themain reference of the following contents on special Lagrangian geometry is [Joy03].

Let (M, g) be a Riemannian manifold. To each oriented k-plane V ⊂ TxM , we can

assign a volume form volV , which is a k-form on V .

Definition 2.1.1. Let (M, g) be a Riemannian manifold and let ϕ be a closed k-form on

M . We say that ϕ is a calibration onM if for every oriented k-plane V onM , we have

ϕ|V ≤ volV . Here ϕ|V = α · volV for some α ∈ R and by ϕ|V ≤ volV we mean α ≤ 1.

A k dimensional submanifold N ofM is said to be calibrated by ϕ if for each x ∈ N we

have volTxN = ϕ|TxN .

Proposition 2.1.2. Let (M, g) be a Riemannian manifold, ϕ a calibration and N a sub-

manifold calibrated by ϕ. Then N is volume-minimizing among its homology class.

Definition 2.1.3. The tuple (Xn, J, ω,Ω) is a Calabi-Yau manifold if (Xn, J, ω) is a Käh-

ler manifold of complex dimension n and Ω is a covariantly constant (n, 0)-form such

that

ωn

n!
= (−1)

n(n−1)
2 (

i

2
)nΩ ∧ Ω̄.

By standard linear algebra, it can be shown that if (X, J, ω,Ω) is a Calabi-Yau mani-

fold, then the real part of Ω, Re Ω, is a calibration. From the calibrated geometry point of

view, special Lagrangian submanifolds are the ones that is calibrated by Re Ω.

Definition 2.1.4. Let (X, J, ω,Ω) be a Calabi-Yau manifold. A submanifold calibrated by

Re Ω is called a special Lagrangian submanifold, or SL n-fold for short.

2



CHAPTER 2. SPECIAL LAGRANGIAN GEOMETRY 3

A special Lagrangian submanifold is indeed a Lagrangian submanifold with respect to

the Kähler form, with an additional feature:

Proposition 2.1.5. Let (Xn, J, ω,Ω) be Calabi-Yau, and let L be a real n-dimensional

submanifold of X . Then L is a special Lagrangian submanifold of X if and only if

Im Ω|L = 0, ω|L = 0.

The proof of this propostion can be found in section III.1 in the foundational paper

[HL82].

Proposition 2.1.6. Let (X, J, ω) be a Kähler manifold and let L be a Lagrangian sub-

manifold of L. Then

NL ≃ T ∗L,

where NL denote the normal bundle of L in X .

Proof. SinceL is Lagrangian, J is an isomorphism betweenNL and TL. Now composing

J with the musical isomorphism ♭ yields the desired isomorphism.

2.2 McLean’s Theorem

Theorem 2.2.1 ([McL96]). Let (X, J, ω,Ω) be a Calabi-Yau manifold, let L be a compact

special Lagrangian submanifold of L, and let V ∈ C∞(NL). Then V is a deformation

vector field to a normal deformation through special Lagrangian submanifolds if and only

if the 1-form (JV )♭ is harmonic.

We give a detailed proof here, following [Mar02]. In the following, we always write

down the immersion f : L → X explicitly for clarity. In fact, we only require f to be an

immersion. The proof begins with a local observation.

Lemma 2.2.2. On Cn, we have g0 =
∑n

j=1 dxj⊗dxj + dyj⊗dyj , ω0 =
∑n

j=1 dxj ∧dxj ,

J0 = i·, and Ω0 = dz1 ∧ . . .∧ dzn, making (Cn, J0, ω0, ω0,Ω0) a noncompact Calabi-Yau
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manifold. Let V ⊂ Cn be a special Lagrangian n-plane. Then for all ξ ∈ V ⊥, we have

(ι(ξ)ω0)|V = (J0(ξ))
♭,

(ι(ξ)Im Ω0)|V = ⋆(J0(ξ))
♭,

where ⋆ is the Hodge star operator on V .

Proof. Since the equations are SU(n)-invariant, and since SU(n) acts transitively on the

set of all SL n-planes in Cn, we may assume that V = Rn, the real slice of Cn generated

by ∂
∂x1

, . . . , ∂
∂xn

. Then for k = 1, . . . , n,

(ι( ∂
∂yk

)ω0)|
V
= (−dxk)|V

= (J0
∂
∂yk

)♭0 ,

and

(ι( ∂
∂yk

)Im Ω0)|
V
= (−1)kdx1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxn

= − ⋆0 dxk

= ⋆0(J0
∂
∂yk

)♭0 .

Corollary 2.2.2.1. Let (X, J, g,Ω) be a Calabi-Yau manifold and let f : L → X be a

spcial Lagrangian submanifold. If ξ ∈ C∞(NL), then

f ∗(ι(ξ)ω) = (J(ξ))♭,

f ∗(ι(ξ)Im Ω0) = ⋆(J(ξ))♭,

where ⋆ is the Hodge star operator on L.

Next we review the tubular neighborhood theorem, for the deformation occurs in a

star-shaped tubular neighborhood of the initial submanifold.
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Proposition 2.2.3 (Tubular neighborhood theorem). Let (M, g) be a Riemannian mani-

fold, and letX be a submanifold ofM , Then there exists an open neighborhood Ũ ⊂ NX

containing the zero section such that

exp|Ũ : Ũ →M

is a diffeomorphism.

Shrinking Ũ if necessary, we may assume that Ũ ∩Nx ⊂ Nx is star-shaped.

For the rest of this section, we always assume that (X, J, ω,Ω) is a Calabi-Yau mani-

fold and that f : L → X is a compact special Lagrangian submanifold of X . Following

the notations of the last proposition, we define

U = (JŨ)♭ ⊂ T ∗L,

Ũ∞ = {ξ ∈ C∞(NL) | ξx ∈ Ũ ∀x ∈ L},

U∞ = {η ∈ C∞(T ∗L) | ηx ∈ U ∀x ∈ L}.

Let ξ ∈ C∞(NL). Then there exists ϵ > 0 small enough such that tξ ∈ Ũ∞ for all

|t| < ϵ. This normal vector field ξ defines a deformation of X given by

ftξ : L→ X, t ∈ (−ϵ, ϵ),

ftξ(x) = expf(x) tξx.

Note that ftξ : L → X is a special Lagrangian submanifold if and only if f ∗
tξω = 0

and f ∗
tξIm Ω = 0.

Lemma 2.2.4. Let η = (Jξ)♭. Then

∂
∂t
(f ∗
tξω)|t=0

= dη
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and

∂
∂t
(f ∗
tξIm Ω)|

t=0
= d(⋆η).

Proof. Let ξ̃ be an extension of ξ on X .

∂
∂t
(f ∗
tξω)|t=0

= f ∗(Lξ̃ω)

= f ∗(ι(ξ̃)dω + dι(ξ̃)ω)

= d(f ∗ι(ξ̃)ω)

= dη,

where the last equality follows from the previous corollary. The other equation follows

similarly.

From the above lemma it follows that, if ξ ∈ C∞(NL) is a special Lagrangian defor-

mation vector field, then (Jξ)♭ is necessarily a harmonic 1-form. Our goal is to show that

this condition is unobstructed.

Fix k ≥ 2. Define

Ũk+1,a = {ξ ∈ Ck+1,a(NL) | ξx ∈ Ũ ∀x ∈ L},

Uk+1,a = {η ∈ Ck+1,a(T ∗L) | ηx ∈ U ∀x ∈ L},

and

F̃ : Ũk+1,a → Ck,a(
∧

T ∗L)

ξ 7→ − ⋆ f ∗
ξ Im Ω + f ∗

ξ ω.

Then we have F̃ (0) = 0, since f0 = f : L→ X is a Special Lagrangian submanifold.

More generally, if ξ ∈ F̃−1(0), then fξ : L→ X is a special Lagrangian submanifold. By

composing with the isomorphism NL ≃ T ∗L, we define F : Uk+1,a → Ck,a(
∧
T ∗L) by

F ((Jξ)♭) = − ⋆ f ∗
ξ Im Ω + f ∗

ξ ω.
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The idea is to apply the implicit function theorem for Banach spaces to show that

F−1(0) is a manifold, parametrized by an open set of the finite dimensional vector space

H1 of the harmonic 1-forms.

Theorem 2.2.5 (Implicit function theorem for Banach spaces). Let X1, X2 and Y be Ba-

nach spaces and U1 ⊂ X1, U2 ⊂ X2 be open subsets both containing 0. Let

F : U1 × U2 → Y

(0, 0) 7→ 0

be a map of class Ck such that the partial derivative F ′
2(0, 0) : X2 → Y is a topological

linear isomorphism. Then there exists open setsW1 ⊂ X1 andW2 ⊂ X2, both containing

0, and a unique Ck map X : W1 → W2 such that

F−1(0) ∩ (W1 ×W2) = {(x1,X (x1)) |x1 ∈ W1}.

By Hodge decomposition,

Ck+1,a(T ∗L) = H1 ⊕ d∗(Ck+2,a(
∧2

T ∗L))⊕ d(Ck+2,a(L)). (2.1)

Define X1 = H1 and X2 be the rest of the direct sum. Let U1 ⊂ X1 and U2 ⊂ X2 be open

sets such that (0, 0) ∈ U1 × U2 ⊂ Uk+1,a. We restrict F to U1 × U2.

Lemma 2.2.6. F : U1 × U2 → Ck,a(
∧
T ∗L) has partial derivative F ′

2(0, 0) : X2 →

Ck,a(
∧
T ∗L) at (0, 0) in the X2-direction which acts as d∗ + d.

Proof. Let η = (Jξ)♭ ∈ X2. Then

F ′
2(0, 0)η = ∂

∂t
(F (tη))|

t=0

= ∂
∂t
(− ⋆ f ∗

tξIm Ω + f ∗
tξω)|t=0

= − ⋆ (d ⋆ η) + dη

= (d∗ + d)η.
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Theorem 2.2.7 (Open mapping theorem). Let T : X → Y be a bounded linear map

between Banach spaces. If T is surjective, then T is an open mapping. If T is bijective,

then T is a toplinear isomorphism.

Theorem 2.2.8. F ′
2(0, 0) : X2 → Ck,a(

∧
T ∗L) is a topological linear isomorphism onto

the closed subspace

Y = d∗(Ck+1,a(T ∗L))⊕ d(Ck+1,a(T ∗L)). (2.2)

Proof. We know that F ′
2(0, 0) = d∗+d. It’s clear that F ′

2(0, 0)mapsX2 into Y injectively.

To see the reverse inclusion, let θ1, θ2 ∈ Ck+1,a(T ∗L). Then

d∗θ1 ∈ ∆Ck+3,a(L)

and

dθ2 ∈ ∆Ck+3,a(
∧2

T ∗L)

by Hodge decomposition. Therefore there exists f ∈ Ck+3,a such that d∗(df) = d∗θ1.

simiarly, there exists ω ∈ Ck+3,a(
∧2 T ∗L) such that dd∗ω + d∗dω = dθ2. Since d∗dω is

orthogonal to dθ2, d∗dω = 0. We conclude that

(d∗ + d)(df + ω) = d∗θ1 + dθ2,

where df+ω ∈ Ck+2,a(T ∗L). Finally, by open mapping theorem, F ′
2(0, 0) is a topological

linear isomorphism between Banach spaces X2 and Y .

To apply implicit function theorem, we show that image(F ) ⊂ Y .

Lemma 2.2.9. image(F ) ⊂ Y .

Proof. Note that there is a homotopy ftξ between f and fξ. It follows that [f ∗
ξ Im Ω] =
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[f ∗Im Ω] = 0 and [f ∗
ξ ω] = [f ∗ω] = 0. Consequently, ⋆f ∗

ξ Im Ω ∈ d∗(Ck+1,α(T ∗L)) and

f ∗
ξ ω ∈ d(Ck+1,α(T ∗L)).

It turns out that F : U1 × U2 → Y . By implicit function theorem, there exists open

subests 0 ∈ W1 ⊂ U1 and 0 ∈ W2 ⊂ U2 and a unique map X : W1 → W2 such that

F−1(0) ∩W1 ×W2 = {(η1,X (η1)) | η1 ∈ W1}. (2.3)

This gives a smooth chart from the set of harmonic forms on L to the moduli space of

special Lagrangian submanifolds near L. The dimension of this moduli space M =

F−1(0)∩(W1×W2), dimM , is equal to the first Betti number b1(L) of L. This completes

the proof of McLean’s theorem.

2.3 Geometric Structures on the Local Moduli Spaces

Let M be the local moduli space obtained in the last subsection. On M there is a

natural Riemannian metric given by the L2 inner product of harmonic 1-forms.

In [Hit97], Hitchin asked what is the natural geometrical structure on the moduli space

of special Lagrangian submanifolds in a Calabi-Yau manifold.

By McLean’s theorem, we have an embeddingM → H1(L). But the construction of

this embedding uses implicit funcition theorem, thereby not canoncial. Following [Hit97],

we first show that there is a canoncial one.

Redefine f : M → X as the full local family of special Lagrangian deformations of

L, where M ≃ L × M . Let p : M → M be the projection map. For each t ∈ M ,

Lt = p−1(t).

Let t1, . . . , tm be alocal coordinate system ofM . Of course,m = b1(L) = dimH1(L,R).

The tangent vectors ∂
∂tj

on Lt define harmonic forms

θj = (ι( ∂
∂tj

)f ∗ω)|
Lt

.
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These 1-forms can also be obtained as follows. Since f ∗ω = 0 on the fibre Lt (Lt is

Lagrangian), there are 1-forms θ̃j on M such that f ∗ω =
∑
dtj ∧ θ̃j . Then θj = θ̃j|Lt

,

which coincides the previous definition.

Choose a basis A1, . . . Am ∈ H1(L,Z)modulo torsion. Let α1, . . . αm ∈ H1(L,R) be

the dual basis of A1, . . . Am. Then we obtain a period matrix

λij =

ˆ
Ai

θj.

The matrix (λij) is invertible, since θj are linearly independent.

Proposition 2.3.1. The 1-forms ξi =
∑
λijdtj onM are closed.

Proof. Choose smoothly in each fibreLt a circle representingAi. Thenwe have a fibration

S1 // Mi

p

��

M

Define a 1-form ξ onM by

ξ = p∗f
∗ω.

The push-down map p∗ is the integration over the fibre. Since p∗ sends closed forms to

closed forms, ξ is closed. Now,

p∗f
∗ω = p∗(

∑
dtj ∧ θ̃j)

=
∑

dtj

ˆ
Ai

θj

= ξi.

Since the 1-forms ξi are closed, locally we can find functions ui : M → R, well-
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defined up to a constant, such that dui = ξi =
∑
λijdtj . Since (λij) is invertible,

u1, . . . , um define a coordinate chart. More invariantly,

Proposition 2.3.2. We have a coordinate chart u :M → H1(L,R) defined by

u(t) =
∑

ui(t)αi.

Moreover, this embedding is independent of the choice of basis, and is unique up to a

translation.

Proof. Let the prime version denote another choice of basis. There exists an invertible

matrix (Tij) such that Ai = TijA
′
j and αi = Tjiα

′
j . The period matrix transforms as

λij = Tikλ
′
kj . Now,

∑
uiαi =

∑ˆ t

dui ∧ αi

=
∑ˆ t

λijdtj ∧ αi

=
∑ˆ t

Tikλ
′
kjdtj ∧ αi

=
∑ˆ t

du′k ∧ α′
k

=
∑

u′kα
′
k.

Paralleling the procedure above, we have a similar result for Im Ω. Since Lt is special

Lagrangian, f ∗Im Ω = 0 on the fibre Lt. Therefore there exist (n − 1)-forms ϕ̃j on M

such that f ∗Im Ω =
∑
dtj ∧ ϕ̃j . The restriction ϕj = ϕj|Lt

is independent of the choice

of ϕ̃j . In fact, ϕj = (ι( ∂
∂tj

)f ∗Im Ω)|
Lt

and ϕj = ⋆θj by Corollary 2.2.2.1.

LetB1, . . . , Bm ∈ Hn−1(L,Z) be the Poincaré duals of α1, . . . , αm. We form a period

matrix

µij =

ˆ
Bi

ϕj.
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Then there exist coordinates functions v1, . . . , vm such that dvi = µijdtj and an em-

bedding

v :M → Hn−1(L,R)

given by

v(t) =
∑

viβi,

where β1, . . . , βm ∈ Hn−1(L,R) are the dual basis ofB1, . . . , Bm. The matrices (λij) and

(µij) are related as follows:

Lemma 2.3.3.

∑
i

λijµik =
∑
i

λikµij.

Proof.

ˆ
L

θj ∧ ϕk =
ˆ
L

θj ∧ ⋆θk

=

ˆ
L

θk ∧ ⋆θj

=

ˆ
L

θk ∧ ϕj.

Using θj =
∑
λijαi, ϕk =

∑
µlkβl and the fact that αi and βk are Poincaré duals, we get

the identity.

u and v together give an embedding

F :M → H1(L,R)×Hn−1(L,R)

by

F (t) = (u(t), v(t)).
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Themain result of [Hit97] is to show that the geometry ofM is inherited fromH1(L,R)×

Hn−1(L,R). We first recall the linear geometry on V ⊕V ∗ where V is a finite dimensional

vector space. There is naturally a symplectic structure on V ⊕ V ∗ given by

W ((v, α), (v′, α′)) = α′(v)− α(v′).

There is also a symmetric bilinear form G on V ⊕ V ∗ given by

G((v, α), (v′, α′)) =
1

2
(α′(v) + α(v′)).

It follows that manifold H1(L,R) ×Hn−1(L,R) has these two structures on the tangent

space H1(L,R) ⊕Hn−1(L,R); in other words, H1(L,R) ×Hn−1(L,R) is a symplectic

manifold together with a symplectic formW and an indefinite metric G. This indefinite

metric restrictedM is the L2 metric:

Proposition 2.3.4. The L2 metric g onM is F ∗G.

Proof. We have dF ( ∂
∂tj

) = (
∑
λijαi,

∑
µlkβl). Thus for two tangent vectors,

F ∗G(aj
∂
∂tj
, bk

∂
∂tk

) =
1

2
(ajbkλijµik + akbjλikµij) = ajbkλijµik,

where we sum over repeated indices. On the other hand,

g(aj
∂
∂tj
, bk

∂
∂tk

) = ajbk

ˆ
L

θj ∧ ⋆θk = ajbk

ˆ
L

θj ∧ ϕk.

(Again we are summing over repeated indices.) Plugging θj =
∑
λijαi and ϕk =

∑
λikβi

into the above equation gives the equality.

Theorem 2.3.5. The map F embedsM in H1(L)×Hn−1(L) as a Lagrangian submani-

fold.

Proof. In local coordinates (u, v), the symplectic formW reads

W =
∑

dui ∧ dvi.
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Pulling back toM , we get

F ∗W = F ∗
∑

dui ∧ dvi

=
∑

∂ui
∂tj

∂vi
∂tk
dtj ∧ dtk

=
∑

λijµikdtj ∧ dtk.

But
∑

i λijµik =
∑

i λikµij . SoW pulls back to 0.

Any Lagrangian submanifold of V × V ∗ ≃ T ∗V can be written locally as the image

of the exact differential dϕ : V → T ∗V , where ϕ is a (locally defined) function. In our

case, H1(L)×Hn−1(L) ≃ T ∗H1(L), and the fibre coordinates vj can be written as

vj = dϕ(uj) =
∂ϕ
∂uj
.

Exchanging the roles ofH1(L) andHn−1(L), we can also write uj = ∂ψ
∂vj

for some locally

defined function ψ on Hn−1(L). In these coordinates, the metric G can be written as

G =
∑

duidvi =
∑ ∂2ϕ

∂ui∂uj
duiduj =

∑ ∂2ψ

∂vi∂vj
dvidvj.

As in the case of deformations of complex manifolds, one can ask when isM itself a

special Lagrangian submanifold. The manifold V ×V ∗ has two constantm-forms, which

are the generators of ∧mV ∗ and ∧mV . Following the previous notion, we can define a

submanifold of V ×V ∗ as a special Lagrangian if it is Lagrangian and a linear combination

of these constantm-forms vanishes. For further discussion we refer to [Hit97].



Chapter 3

Ricci-flat metrics on T ∗Sn

In this section, we introduce a local model of special Lagrangian spheres, namely

the cotangent bundle of the standard n-sphere, T ∗Sn. We equip T ∗Sn with a Ricci-flat

metric, called the Stenzel metric, and show that the zero section Sn is a special Lagrangian

submanifold.

3.1 Existence of the Metric

First we fix coordinates by T ∗Sn = {(x, ξ) ∈ Rn+1 × Rn+1 | |x| = 1, x · ξ = 0}. The

group SO(n+ 1,R) acts transitively on T ∗Sn by g · (x, ξ) = (gx, gξ), g ∈ SO(n+ 1,R).

The general orbit of this action is the sphere bundle SO(n+1)/SO(n− 1) ≃ Sn× Sn−1,

while the exceptional orbit being the zero section Sn. It is well-known that there exists a

diffeomorphism from T ∗Sn to the affine quadric

Qn = {z = (z1 + . . .+ zn+1) ∈ Cn+1 |
n+1∑
j=1

z2j = 1},

given by

(x, ξ) 7→ z = x cosh(|ξ|) + i
sinh(|ξ|)

|ξ|
ξ.

This diffeomorphism is equivariant with respect to the action of SO(n+1,R) on T ∗Sn

and the action of SO(n+1,C) onQn. Thus we can view T ∗Sn as the complexification of

the homogeneous space Sn. We make T ∗Sn into a complex manifold simply by pulling

back the complex structure of Qn. Our next goal is to describe a method to construct a

15



CHAPTER 3. RICCI-FLAT METRICS ON T ∗SN 16

family of Ricci-flat metrics on Qn.

Let τ be the restriction of the function∥z∥2 =
∑n+1

j=1

∣∣zj∣∣2 to Qn. By a simple calcu-

lation we see that τ : Qn → [1,∞) is a strictly plurisubharmonic exhaustion on Qn. We

seek [Ste93] Ricci-flat Kähler potentials of the form ρ = f ◦ τ , where f : [1,∞) → R is

a smooth function. For later calculations, we fix a local frame on Qn as follows:



v1 = −zn+1
∂
∂z1

+ z1
∂

∂zn+1
,

v2 = −zn+1
∂
∂z2

+ z2
∂

∂zn+1
,

...

vn = −zn+1
∂
∂zn

+ zn
∂

∂zn+1
.

Let u1, . . . , un be the dual frame. The Kähler form of ρ is given by

ω = i∂∂̄ρ

= i(f ′′∂τ ∧ ∂̄τ + f ′∂∂̄τ)

= i(f ′′τjτk̄ + f ′τjk̄)u
j ∧ uk̄,

where τj, τk̄ denote the differentiations in the directions of vj and v̄k, respectively:

τj = −zn+1z̄j + zj z̄n+1,

τk̄ = −z̄n+1zk + z̄kzn+1,

τjk̄ = |zn+1|2 δjk + zj z̄k.

The Ricci-form of ρ is given by

Ric(ρ) = −i∂∂̄ log det ρjk̄

= −i∂∂̄ log det(f ′′τjτk̄ + f ′τjk̄).

We can investigate further:
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det(f ′′τjτk̄ + f ′τjk̄) = (f ′)n det(
f ′′

f ′ τjτk̄ + τjk̄)

= (f ′)n(1 +
f ′′

f ′ τ
jk̄τjτk̄) det τjk̄

= ((f ′)n + (f ′)n−1f ′′τ jk̄τjτk̄) det τjk̄,

where the second equality follows from thematrix determinant lemma and τ jk̄ is thematrix

inverse of τjk̄, i.e. τ jīτjk̄ = δik.

Lemma 3.1.1.

τ jk̄τjτk̄ =
τ 2 − 1

τ
.

Proof. By a simple calculation, we have

τ jk̄ =
1

|zn+1|2
(δjk −

1

τ
zkz̄j).

After a lenghty but straight-forward computation, we get the equality.

Lemma 3.1.2. If the function f solves satisfies the ODE

x(f ′(x))n + (f ′(x))n−1f ′′(x)(x2 − 1) = c > 0, (3.1)

where c ∈ R is a constant, then (f ◦ τ)ij̄ solves the Ricci-flat equation

∂∂̄ log det(f ◦ τ)ij̄ = 0.

Proof. The eigenvalues of the matrix (τjk̄) = (δjk|zn+1|2 + zj z̄k) are |zn+1|2 and τ , with

multiplicity n− 1 and 1, respectively. Therefore, det τjk̄ = τ |zn+1|2n−2.
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If f solves the ODE, then

log det(f ◦ τ)jk̄ = log(
c

τ
det τjk̄)

= log(c|zn+1|2n−2).

It is then straight-forward to check that

∂2

∂zj∂z̄k
log|zn+1| = 0

to conclude the result.

The ODE (3.1) can be solved directly. In fact, multiplying both sides of (3.1) with the

integral factor n(x2 − 1)
n−2
2 , we have

((f ′)n(x2 − 1)
n
2 )′ = nc(x2 − 1)

n−2
2 .

Hence

f ′(x) = (
nc
´ x
1
(t2 − 1)

n−2
2 dt

(x2 − 1)
n
2

)
1
n .

We still need to check that the potential ρ = f ◦ τ defines a metric; in other words, ρ

is a strictly plurisubharmonic function. But this can be seen easily as follows.

Lemma 3.1.3. The function ρ = f ◦ τ defined as above is a strictly plurisubharmonic

exhaustion.

Proof. That ρ is strictly plurisubharmonic translates to that the hermitianmatrix ρjk̄f ′′τjτk̄+

f ′τjk̄ is positive definite. On the (n−1)-dimensional subspace ker ∂τ , the matrix restricts

to f ′τjk̄. Since f ′ > 0, this restricted hermitian form is positive definite. It follows that ρjk̄

has at least n− 1 positive eigenvalues. Since det ρjk̄ = τ |zn+1|2n−2 > 0, the eigenvalues

are all positive. This completes the proof.

We record the results so far as the following theorem.
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Theorem 3.1.4 (Stenzel[Ste93]). There exists a Ricc-flat Kähler metric on T ∗Sn.

In [Ste93], Stenzel proved in general that any cotangent bundle of a rank one symmetric

space admits such a Ricci-flat Kähler metric.

3.2 Completeness of the Stenzel Metric

In [PW91], Patrizio and Wong give a thorough study of the geometry in Qn. They

first constructed a pluriharmonic exhaustion of the form g ◦ τ on Qn, which satisfies the

homogeous Monge-Ampère equation. In fact, the method that Stenzel constructed the

Ricci-flat Kähler metric in the previous section parallels the construction of Patrizio and

Wong:

Theorem 3.2.1 ([PW91]). The function u = cosh−1 ◦τ on Qn is a plurisubharmonic

exhaustion function of Qn which satisfies the homogeneous Monge-Ampère equation

(∂∂̄u)n = 0.

Proof. The function u can be derived in the following way. Suppose there is a smooth

function h : [1,∞) → R such that u = h◦τ . The homogeneous Monge-Ampère equation

translates to

detujk̄ = deth′′τjτk̄ + f ′τjk̄

= ((h′)n + (h′)n−1h′′τ jk̄τjτk̄) det τjk̄

= 0.

By Lemma 3.1.1, it suffices to find a function h satisfying the following ODE:

h′′(x)

h′(x)
= − x

x2 − 1
.
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Integrating twice gives the general solution

h(x) = c1 cosh−1 x+ c2.

The condition h(1) = 0 forces c2 to be 0. Plurisubharmnoicity implies that c1 > 0.

That the resulting function u = cosh−1 ◦τ is plurisubharmonic can be seen by the same

argument as in Lemma 3.1.3.

The following theorem is the key to the completeness of the metric.

Theorem 3.2.2 ([PW91]). Let ρ = r−1 ◦ u be a strictly plurisubharmonic function on a

complex manifoldM , where u satisfies the homogeneous Monge-Ampère equation. Then

ρ defines a Kähler metric. The distance minimizing geodesics between level sets of ρ are

given by the integral curves of∇ρ. Consequently the geodesic distance between level sets

{ρ = a} and {ρ = b} is given by

dist({ρ = a}, {ρ = b}) =

∣∣∣∣∣ 1√
2

ˆ b

a

√
−r′′
r′

dt

∣∣∣∣∣ .
Theorem 3.2.3. The Ricci-flat Kähler pontential ρ = f ◦ τ constructed in the last sub-

section gives a complete metric.

Proof. Let u = cosh−1 ◦τ . Then we write ρ = g ◦ u, where g = f ◦ cosh. g satisfies the

ODE

[g′(w)n]′ = nc(sinh(w))n−1.

By theorem 3.2.2, the distance between a point z ∈ Qn and the zero section {ρ = 0} is

given by

dist(z, {ρ = 0}) = 1√
2

ˆ ρ(z)

0

√
−r′′
r′

dt

=
1√
2

ˆ u(z)

0

√
g′′(w)dw.
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We estimate g′(u)n from above.

g′(u)n =

ˆ u

0

nc(sinh(w))n−1dw

≤ ncu sinh(u)n

for u large enough, say u > u0, since sinh(w) is strictly increasing. It follows that

ˆ u

0

√
g′′(w)dw ≥ c0

ˆ u

u0

(
1

u
)
n−1
2n du,

where c0 is a constant. Note that the right hand side is clearly unbounded as u → ∞.

Since the function u is a exhaustion, this completes the proof.

3.3 Special Lagrangian Structures

This Ricci-flat metric, together with a holomorphic nonvanishing (n, 0)-form on Qn,

makesQn a noncompact Calabi-Yau manifold. The sphere {x21+ . . . x2n+1 = 1} inQn can

be shown to be special Lagrangian.

Let f ◦ τ denote our Ricci-flat potential. Let ω = i∂∂̄f(τ) be the Kähler form. Then

ω = dα is exact, where α = −Im ∂̄f(τ). α = f ′(τ)α0, where (α0)z(v) = ⟨Jz, v⟩ is

the standard Liouville form on Cn+1. The holomorphic volume form Ω on Qn is given

by the Poincaré residue map. Let h = z20 + . . . + z2n+1 − 1 be the defining equation of

Qn and Ω0 = dz1 ∧ . . . ∧ dzn+1 be the standard holomorphic volume form on Cn+1. The

adjunction formula

KQn ≃ KCn+1|Qn ⊗NQn

yields

Ω = ι(
∑
i

∂h
∂zi

∂
∂zi

)Ω0,
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or more explicitly

Ω(v1, . . . , vn) = 2Ω0(z, v1, . . . , vn)

for all z ∈ Qn and v1, . . . , vn ∈ TzQ
n.

Since SO(n+ 1,C) preserves J , ω and Ω, there exists λ ∈ R such that

ωn

n!
= (−1)

n(n−1)
2 (

i

2
)nλ2Ω ∧ Ω̄. (3.2)

Therefore (T ∗Sn = Qn, J, ω, λΩ) is a Calabi-Yau manifold.

Since α|Sn = 0, ω|Sn = 0. Also, since Im Ω contains dyi terms and the tangent

space of Sn is spanned by ∂
∂xi

, we have Im Ω|Sn = 0. We conclude that Sn is a special

Lagrangian submanifold of T ∗Sn.



Chapter 4

Existence of Lagrangian Spheres
Definition 4.0.1. Let f : X → C be a holomorphic map of a complex manifold X . We

say that a critical point x ∈ X of f is nondegenerate if the hessian of p is a nondegenerate

bilinear form.

Let D denote the unit open disk in C centered at 0.

Definition 4.0.2. Let X be a compact Kähler manifold. An ordinary degeneration of X

is a Kähler manifold E with a proper holomorphic map π : E → D with the following

properties:

1. π has a critical point.

2. Any critical point p of π is nondegenerate, and is contained in the central fibre

E0 = π−1(0).

3. There exists z ∈ D such that X is isomorphic to Ez = π−1(z).

The regular fibres of a degeneration, thanks to Ehresmann’s fibration theorem and

Moser’s theorem on deformation of symplectic forms, are in fact symplectomorphic:

Proposition 4.0.3. Let p : E → C be a proper holomorphic map from a Kähler manifold

(E,Ω). Then all regular fibres Et = p−1(t) are symplectomorphic.

Proof. May assume thatE0 is a regular fibre. By Ehresmann’s fibration theorem, p : E →

D is a fibration. May also assume thatE1 is another regular fibre in the local trivialization

near 0. Then we have diffeomorphisms ϕt : X0 → Xt, t ∈ [0, 1]. Let ιt : Et → E,

t ∈ [0, 1] be the inclusion maps. The symplectic form Ω restricts to ωt = ι∗tΩ on Et. We

23



CHAPTER 4. EXISTENCE OF LAGRANGIAN SPHERES 24

have

[ϕ∗
tωt] = (ιt ◦ ϕt)∗[Ω] = [ω0].

Thus there is a family of symplectic forms ϕ∗
tωt onEt lying in the same cohomology class.

By Moser’s theorem, ω0 is symplectomorphic to ϕ∗
1ω1, and the proposition follows.

Morse lemma helps us choose a coordinate system shaping the projection π into a

quadratic form.

Proposition 4.0.4 (HolomorphicMorse Lemma). Let f : Xn → C be a holomorphic map.

Suppose that x ∈ X is a nondegenerate critical point of f . Then there exists a coordinate

system (z1, . . . , zn) centered at x such that under this coordinate system, f(z1, . . . , zn) =

f(0) + z21 + . . .+ z2n.

The following is the main statement of this section.

Proposition 4.0.5. Any compact Kähler manifold which admits an ordinary degeneration

contains a Lagrangian sphere.

In [Sei97], two constructions are given. We devote the subsequent subsections to

record these results.

4.1 Seidel’s Proof

We begin with a linear version.

Lemma 4.1.1. Let β be a (complex) bilinear form on Cn which is symmetric and nonde-

generate. Then there exists an n-dimensional real subspace L ⊂ Cn which is Lagrangian

for the standard symplectic form ω0, and such that β restricted to L is real and positive

definite.

Proof. Since β is nondegenerate, the real part b = Re β is a real nondegenerate bilinear

form on R2n = Cn, with complex structure J being the scalar multiplication with i. Let
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B be the R-linear map given by b(v, w) = ⟨Bv,w⟩R. Then B is invertible and self-

adjoint. Note that B is conjugate-linear: B(Jv) = −J(Bv) for all v ∈ R2n. We can

decompose R2n into L+ ⊕ L−, where L± are the ±-eigenspaces of B, respectively. Note

that JL± = L∓.

Let L = L+. Then L is Lagrangian with respect to ω0, since the eigenspaces are

orthogonal to each other. The fact β restricted to L is real and positive definite follows

from direct computation.

Corollary 4.1.1.1. (Notations as the above lemma.) Let q be the quadratic form associated

to β. Then for t > 0, Vt = q−1(t) ∩ L is a Lagrangian (n − 1)-sphere in the symplectic

manifold (q−1(t), ω0|q−1(t)).

Proof. Since β is nondegenerate, by the complex version of Regular Value Theorem,

q−1(t) is a complex submanifold of Cn, thus also a symplectic submanifold. Since β

restricts to a real, positive definite form on L, by Regular Value Theorem, q−1(t) ∩ L is

a (n − 1)-dimensional real submanifold. Since the tangent space lies entirely in the La-

grangian subspace L, this is a Lagrangian submanifold. Finally, the quadratic form q is

nondegenerate. It follows that q−1(t) ∩ L is a (n− 1)-sphere.

Lemma 4.1.2. Let ω be a Kähler form in some open ball Bϵ(0) ⊂ Cn centered at 0 with

radius ϵ > 0, which agrees with the standard form ω0 at 0. Thene there is a Kähler form

ω′ on Bϵ(0) such that ω′ = ω on Bϵ(0) \ B ϵ
2
(0) and ω′ = ω0 in some neighborhood of

0. Moreover, ω′ and ω are connected by a 1-parameter family of symplectic forms, all of

them lying in the same cohomology class.

Proof. By Poincaré lemma, there exists 0 < δ < ϵ and f ∈ C∞(Bδ(0),R) such that

(ω0 − ω)|Bδ(0)
= i∂∂̄f . Since ω0 = ω at 0, we may assume that f vanishes up to second

order, i.e. f(0) = Df(0) = D2 f(0) = 0. Therefore there exists C > 0 such that

∣∣f(x)∣∣ ≤ C|x|3 , |dfx| ≤ C|x|2 and
∣∣D2 fx

∣∣ ≤ C|x| (4.1)

for all x ∈ Bδ(0).
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Let ψ ∈ C∞ be a bump function such that ψ ≡ 1 onB1(0) and supp(ψ) ⊂ B2(0). For

each r > 0, let ψr(x) = ψ(x
r
). For each 0 < r < δ

2
, let ηr = i∂∂̄(ψrf), which is a real

(1, 1)-form on Cn. We compute:

ηr = i((∂∂̄ψr)f − ∂̄ψr ∧ ∂f + ∂ψr ∧ ∂̄f + ψr∂∂̄f)

= i(r−2(∂∂̄ψ)f + r−1∂̄ψ ∧ ∂f − r−1∂ψ ∧ ∂̄f + ψr∂∂̄f)

It follows from the estimates (4.1) that for x ∈ B2r, r < δ
2
, we have

∣∣(ηr)x∣∣ ≤ C ′r, (4.2)

where C ′ is a constant independent of r. On the other hand, (ηr)x = 0 for x /∈ B2r(0).

This together shows that ηr → 0 uniformly as r → 0. If we choose r > 0 small, then

ω′ = ω + ηr is also a Kähler form. If |x| < r
2
, then ψr(x) = 1 and ω′ = ω0 at x. Finally,

the 1-parameter family is easily got by interpolating between ω and ω′.

Proof of the proposition. Let π : E → D be an ordinary degeneration of a compact Kähler

manifoldX , with Kähler formΩ. Let x0 ∈ π−1(0) be a critical point of π. By holomorphic

Morse lemma, there exists a holomorphic chart c : Bϵ(0) ⊂ Cn → E around x0 such that

q(z) = π(c(z)) is a nondegenerate quadratic form. By a linear change of coordinates,

we may assume that c∗Ω = ω0 at 0. By the previous lemma, there is a Kähler form

Ω′ on E such that c∗Ω′ = ω0 near 0 and Ω′ = Ω outside a neighborhood of 0. By the

previous corollary, there exists a Lagrangian sphere in the symplectic manifold (Et,Ω′|Et
)

whenever t > 0 is small enough. By Moser’s theorem, (Et,Ω′|Et
) and (Et,Ω|Et

) are

symplectomorphic. Finally, since every regular fibre is symplectomorphic to each other,

we conclude that X contains a Lagrangian sphere.
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4.2 Donaldson’s Proof

Let π : (E,Ω) → D be an ordinary degeneration of a compact Kähler manifold X ,

and let x0 ∈ π−1(0) be a critical point of π. By holomorphic Morse lemma, there exists

a coordinate system z1, . . . , zn centered at x0 such that in this coordinate system, we have

π(z) = z21 + . . . + z2n. Let f = Re π, h = Im π. Then f(z) = x21 − y21 + . . . + x2n − y2n,

where xk = Re zk, yk = Im zk, k = 1, . . . , n.

Let ϕr be the negative gradient flow of f , i.e.

∂ϕr
∂r

(p) = −∇f ◦ ϕr(p). (4.3)

LetW s denote the stable submanifold of x0, i.e.

W s = {p ∈ E | lim
r→∞

(p) = x0}. (4.4)

By Morse theory, for small t > 0, Vt = W s ∩ f−1(t) is an embedded (n− 1)-sphere.

Lemma 4.2.1. ∇f = Xh, the Hamiltonian vector field of h.

Proof. Let (g, J) denote the metric and the complex structure of E, respectively. For any

tangent vector X of E, we compute

g(Xh, X) = g(JXh, JX)

= Ω(Xh, JX)

= (JX)(h)

= X(f),

where the third equality follows from the definition of Xh and the last equality follows

from the Cauchy-Riemann equation.

By the lemma, we see that ϕr is the integral flow of the Hamiltonian vector fieldXh. It

follows that ϕr is a 1-parameter subgroup of symplectomorphisms preserving h. Therefore

W s ⊂ h−1(0), and hence Vt ⊂ (h−1(0) ∩ f−1(t)) = Et.
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For p ∈ W s, since ϕr(p) → x0 as r → ∞, the differential (dϕr)p : TpW s → Tϕr(p)W
s

tends to 0 as r → ∞. But ϕ∗
rΩ = Ω. It turns out thatW s is a Lagrangian submanifold of

E.

Since Vt ⊂ W s, Vt is a Lagrangian sphere. Since all the regular fibres are symplecto-

morphic to each other, we conclude that X contains a Lagrangian sphere.

Some observations can be given when comparing these two proofs. The approach that

Seidel follows is to study the local case first, and then deform the Kähler form given to

meet the local case. The lagrangian sphere is obtained as the symplectomorphic image of

the local one. The information about the sphere lies in Moser’s trick. On the other hand,

Donaldson’s proof uses the gradient flow. The resulting Lagrangian sphere thus seems to

have some kinde of uniqueness. But in both approaches, the sphere still depends on the

coordinate choice, which lies in the complex Morse lemma.



Chapter 5

Discussion on the Main Problem

5.1 Formulation of the Main Problem

In this section, we investigate the existence of special Lagrangian spheres in a compact

Calabi-Yau manifoldM which admits an ordinary degeneration. The case of dimension

n = 3 is of particular interest.

We formulate the problem as follows. Let M be a compact Calabi-Yau manifold.

Suppose thatM admits an ordinary degeneration π : E → D such that each nonsingular

fibre is also a Calabi-Yau manifold. Let p be a singular point of π. By holomorphic Morse

lemma, π(z1, . . . , zn+1) = z21 + . . .+ z
2
n+1 in a suitable coordinate system zi. We consider

the fibres Et, where t > 0. Inside a neighborhood |z| < R, the fibre looks locally the

same as our local model. As t → 0, the tubular neighborhood Ut = Et ∩ {|z| < R} of

the sphere {x21 + . . . x2n+1 = t} can be arbitrarily large compared to the size of the sphere.

The naive approach is to use partition of unity to combine the metric on Et and that of

our local model, so that near the sphere, the metric is exactly the Stenzel metric. But the

resulting metric can hardly be Kähler.

The Ricci-flat metric on T ∗Sn has a kind of uniqueness. Therefore, we conjecture

that as t → 0, the metric on Et will be more similar to the local one. The first step is to

construct a Kähler metric onEt such that near the sphere, this metric is exactly the Stenzel

metric. Then we can apply the Calabi-Yau theorem to find a Ricci-flat metric in the same

Kähler class. We may then compare this metric to the original one on Et. This is still in

progress.

The other approach is to use the mean curvature flow. According to [Smo96], the

Lagrangian condition is preserved under the mean curvature flow, if the ambient manifold

29
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is Kähler-Einstein. If the long time existence is guaranteed, the flow would converge to

a minimal Lagrangian submanifold. A possibly simpler question can be asked: does the

Lagrangian mean curvature flow in T ∗Sn have long existence? More precisely,

Question 1. Does a Lagrangian section σ : Sn → (T ∗Sn, ωStz) converges to a special

Lagrangian section under the mean curvature flow?

For n ≥ 2, the difficulties come from the fact that the codimension is greater than 1.

For n = 1, the long time existence is guaranteed.

5.2 Results in n = 1

LetM be a compact 1-dimensional Calabi-Yau manifold. By Cartan-Hadamard the-

orem, the universal cover ofM is R2. It follows thatM is just a flat torus. The Stenzel

metric on T ∗S1 ≃ S1 × R is also flat for the same reason.

We first study the case of the local model T ∗S1 = S1×R. Let σ :M = S1 → S1×R

be a section. Recall the mean curvature flow F (p, t) of σ is defined as the following

equations:

∂

∂t
F (p, t) = ∆F (p, t) = H(p, t) (5.1)

F (p, 0) = σ(p) (5.2)

where p ∈ S1 and H(p, t) denotes the mean curvature vector of the hypersurface Mt =

F (M, t).

Since any 1-dimensional submanifold is Lagrangian in a 2-dimensional symplectic

manifold, the Lagrangian condition is empty. We are concerned about the long time exis-

tence and the behavior of this flow. Intuitively, the flow should minimize the length of a

cross section of the cylinder S1×R, “flattening out” the initial one into a flat one S1×{c}

for some c ∈ R. If we lift the flow to the cover R2, then σ : R → R2 is just a graph of

a periodic function. The mean curvature flow of entire graphs is well-studied in [EH89],

and our situation is just a special case.
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For completeness, we reproduce a proof here. The flow (5.1) is now considered in R2.

Let ν be the unit outer normal of σ. The graph condition of the initial data can be captured

by the existence of a vector ω ∈ R2 such that |ω| = 1 and ⟨ν, ω⟩ > 0. From now on, we

always assume implicitly that x = F (p, t).

The fundamental indgredient is a monotonicity formula due to Huisken.

Definition 5.2.1. Fix t0 ∈ R and x0 ∈ Rn+1. We define the backward heat kernel ρx0,t0

to be

ρx0,t0(x, t) = (4π(t0 − t))−
n
2 exp(−|x0 − x|2

4(t0 − t)
)

for t < t0.

We will suppress the notions of x0 and t0 when they can be read out from the context.

Differentiating ρx0,t0(x, t) with respect to t yields

d
dtρ(F (p, t), t) =

(
n

2(t0 − t)
− |x0 − x|2

4(t0 − t)2
+

⟨H, x0 − x⟩
2(t0 − t)

)
ρ(F (p, t), t).

On the other hand,

∆tρ(F (p, t), t) =
∑
i

 −n
2(t0 − t)

+
⟨H, x0 − x⟩
2(t0 − t)

+

∣∣(x0 − x)T
∣∣2

4(t0 − t)2

 ρ(F (p, t), t),

where T denotes the tangent component. Hence the evolution equation of ρ is

( d
dt +∆t)ρ =

⟨x0 − x,H⟩
t0 − t

−
∣∣(x0 − x)⊥

∣∣2
4(t0 − t)2

 ρ,

where ⊥ denotes the normal component. Let dµt denote the volume form of the flowMt.

The first variation of dµt yields

d
dtdµt = −H2dµt.

The above calculations together give the monotonicity formula:
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Lemma 5.2.2.

d
dt

ˆ
Mt

ρdµt = −
ˆ
Mt

ρ

∣∣∣∣H +
1

2(t0 − t)
(x− x0)

⊥
∣∣∣∣2 dµt.

More generally, suppose f(x, t) = f(F (p, t), t) satisfies some polynomial growth condi-

tion. Then we have

d
dt

ˆ
Mt

fρdµt =

ˆ
Mt

( d
dtf −∆f)ρdµt −

ˆ
Mt

fρ

∣∣∣∣H +
1

2(t0 − t)
(x− x0)

⊥
∣∣∣∣2 dµt. (5.3)

This monotonicity formula gives the following maximum principle.

Proposition 5.2.3. Suppose the function f = f(x, t) satisfies the inequality

(
d

dt
−∆)f ≤ a · ∇f

for some vector a, where∇ denotes the gradient onM . If a0 = supM×[0,t1]
|a| <∞, then

sup
Mt

f ≤ sup
M0

f.

Proof. Put k = supM0
f and set fk = max(f − k, 0). Then

( d
dt −∆)f 2

k ≤ 2fka · ∇fk − 2|∇fk|2

= −2

∣∣∣∣∇fk − fk
2
a

∣∣∣∣2 + f 2
k |a|

2

2

≤ 1

2
a20f

2
k .

We then apply the monotonicity formula (5.3) to f 2
k . Pick t0 > t and x0 ∈ Rn+1 arbitrary.

Then

d
dt

ˆ
Mt

f 2
kρdµt ≤

1

2
a20

ˆ
Mt

f 2
kρdµt.

It turns out that fk ≡ 0 and the result follows.
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Let u = ⟨x, ω⟩ denote the height of theMt with respect to the hyperplane defined by

ω. It follows from (5.1) that

(
d

dt
−∆)u = 0.

Since our graph is periodic, u is uniformly bounded at t = 0. It follows from proposi-

tion 5.2.3 that

inf
M0

u ≤ inf
Mt

u ≤ sup
Mt

u ≤ sup
M0

u

wheneverMt exists.

Next we show that the flow stays as a graph. It amounts to show that the quantity

⟨ν, ω⟩ is bounded from below for all time, or equivalently

v = ⟨ν, ω⟩−1

is bounded from above. For each local frame {ei}, letA = (hij) be the second fundamen-

tal form, i.e.

⟨Fij, ν⟩ = −hij,

where Fij = eiejF .

Lemma 5.2.4.

∂
∂t
ν = ∇H.

Proof. In local coordinates,

∂
∂t
ν = gij⟨ ∂

∂t
ν, ∂

∂xi
⟩ ∂
∂xj
.



CHAPTER 5. DISCUSSION ON THE MAIN PROBLEM 34

Also,

⟨ ∂
∂t
ν, ∂

∂xi
⟩ = −⟨ν, ∂2F

∂t∂xi
⟩ = − ∂

∂xi
⟨ν,H⟩ = ∂H

∂xi
.

This completes the proof.

Lemma 5.2.5. v satisfies the evolution equation

(
d

dt
−∆)v = −|A|2 v − 2v−1|∇v|2 .

Proof. From the previous lemma we know that

∂
∂t
v = −v2⟨∇H,ω⟩.

We may assume that {xi} is a normal coordinate system centered at a point we want, and

set ei = ∂
∂xi

. Then,

⟨∇eiν, ej⟩ = −⟨ν, Fij⟩ = hij.

Therefore∇eiν = hijej . The mean curvature H is given by

H = ⟨∇ejej,−ν⟩,

and hence

ei(H) = ⟨Fijj,−ν⟩ = ej⟨Fij,−ν⟩ = ej(hij).

Therefore

∇H = ei(hij)ej.
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Now,

∆v = ei(−v2ei⟨ν, ω⟩) = 2v−1ei⟨ν, ω⟩ei⟨ν, ω⟩+ v2∆⟨ν, ω⟩

= 2v−1|∇v|2 − v2⟨ei(hij)ej, ω⟩ − v2⟨hij∇eiej, ω⟩

= 2v−1|∇v|2 − v2⟨∇H,ω⟩+ v2⟨
∑
ij

h2ijν, ω⟩

= 2v−1|∇v|2 − v2⟨∇H,ω⟩+ v|A|2 .

From the above lemma and proposition 5.2.3, we deduce that v is uniformly bounded

for all t, for v is certainly uniformly bounded for t = 0. It follows that our flow remains

a Lagrangian section for all time.

The following estimates interior in time for the curvature and all its derivatives will

establish the long time existence.

Proposition 5.2.6. Assume that there is c1 > 1 such that v < c1 at t = 0. Let Mt be a

smooth solution of (5.1). Then for eachm ≥ 0, there is a constant C(m) depending only

on c1 andm such that

tm+1|∇mA|2 ≤ C(m)

holds uniformly onMt.

From the above proposition we see that the flow keeps “flattening out” the section.

Since in our case, the flow does not diverge to∞, the flow actually converges to a hyper-

plane, that is a section S1 × {c} of the cylinder S1 × R.

In the torus case, we have the exactly same result, since the neighborhood of a cross

section in the torus is a neighborhood in cylinder.
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