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Abstract

In his PhD thesis[Sei97], Paul Seidel and his advisor Simon K. Donaldson gave two
proofs showing that a vanishing cycle in a K&hler manifold admitting an ordinary degener-
ation can be chosen to be Lagrangian. This gives rise to the question whether the vanishing
cycle is special Lagrangian if the manifold is Calabi-Yau. We investigate this problem by
reviewing the geometric aspect of special Lagrangian manifolds and the Ricci-flat met-
rics on the noncompact local model, namely the cotangent bundle of sphere. Finally, we

approach this problem in dimension one through mean curvature flow.
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Chapter 1

Introduction

In his thesis[Sei97], Paul Seidel and his advisor Simon K. Donaldson showed that if a
compact Kéhler manifold admits an ordinary degeneration, then it contains a Lagrangian
sphere. This motivates us to ask further that if the manifold is in fact Calabi-Yau, is it
possible to find a special Lagrangian sphere in it? If this is the case, then by a theorem of
McLean [McL96], this special Lagrangian sphere is rigid, provided that n > 2. This is a
significant property in algebraic geometry.

We investigate this problem in the following way. In Chapter 2 we review the special
Lagrangian geometry and McLean’s theorem on special Lagrangian deformations. The
geometric structures on the local moduli space, due to [Hit97], is then reviewed. In Chap-
ter 3 we follow Stenzel’s approach to contruct a Ricci-flat metric on the cotangent bundle
of a sphere. In Chapter 4, we review the two methods to contruct a Lagrangian sphere in
a compact Kédhler manifold admitting an ordinary degeneration. Finally, in Chapter 5 we
discuss possible approaches to the main problem we are concerned about, and describe

some elemenetary results in the one dimensional case.



Chapter 2

Special Lagrangian Geometry

2.1 Definitions and Basic Results

The main reference of the following contents on special Lagrangian geometry is [Joy03].
Let (M, g) be a Riemannian manifold. To each oriented k-plane V' C T, M, we can

assign a volume form voly,, which is a k-form on V.

Definition 2.1.1. Let (M, g) be a Riemannian manifold and let ¢ be a closed k-form on
M. We say that ¢ is a calibration on M if for every oriented k-plane V on M, we have
¢|,, < voly. Here ¢|,, = o - voly for some oo € R and by ¢|,, < voly we mean o < 1.
A k dimensional submanifold N of M is said to be calibrated by ¢ if for each x € N we
have volp, y = ¢|Tx N

Proposition 2.1.2. Let (M, g) be a Riemannian manifold, ¢ a calibration and N a sub-
manifold calibrated by ¢. Then N is volume-minimizing among its homology class.
Definition 2.1.3. The tuple (X", J,w, Q) is a Calabi-Yau manifold if (X", J, w) is a Kih-
ler manifold of complex dimension n and ) is a covariantly constant (n,0)-form such

that

n n(n—1) )

= ()TN

By standard linear algebra, it can be shown that if (X, J,w, ) is a Calabi-Yau mani-
fold, then the real part of €2, Re (2, is a calibration. From the calibrated geometry point of

view, special Lagrangian submanifolds are the ones that is calibrated by Re €.

Definition 2.1.4. Let (X, J, w, Q) be a Calabi-Yau manifold. A submanifold calibrated by

Re Q is called a special Lagrangian submanifold, or SL n-fold for short.

2



CHAPTER 2. SPECIAL LAGRANGIAN GEOMETRY 3

A special Lagrangian submanifold is indeed a Lagrangian submanifold with respect to

the Kédhler form, with an additional feature:

Proposition 2.1.5. Let (X", J,w, Q) be Calabi-Yau, and let L be a real n-dimensional
submanifold of X. Then L is a special Lagrangian submanifold of X if and only if

ImQ|, =0, w|, =0.

The proof of this propostion can be found in section III.1 in the foundational paper

[HL82].

Proposition 2.1.6. Let (X, J,w) be a Kihler manifold and let L be a Lagrangian sub-
manifold of L. Then
NL~T"L,

where N L denote the normal bundle of L in X.

Proof. Since L is Lagrangian, J is an isomorphism between N L and 7'L.. Now composing

J with the musical isomorphism b yields the desired isomorphism. [

2.2 McLean’s Theorem

Theorem 2.2.1 ([McL96]). Let (X, J,w, Q) be a Calabi-Yau manifold, let L be a compact
special Lagrangian submanifold of L, and let V- € C*°(NL). ThenV is a deformation
vector field to a normal deformation through special Lagrangian submanifolds if and only

if the 1-form (JV') is harmonic.

We give a detailed proof here, following [Mar02]. In the following, we always write
down the immersion f : L — X explicitly for clarity. In fact, we only require f to be an

immersion. The proof begins with a local observation.

Lemma 2.2.2. On C", we have go = »__, dz; ®@ dx; + dy; @ dy;, wo = > ;_, dvj Aday,

Jo =i, and Qy = dzy N\ ... Ndz,, making (C", Jy, wg, wo, o) a noncompact Calabi-Yau
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manifold. Let V C C" be a special Lagrangian n-plane. Then for all ¢ € V+, we have

(b(f)wo)’v = (Jo(f))b,
(L(EIm Qo) |, = *(JO(S))ba

where * is the Hodge star operator on V.

Proof. Since the equations are SU(n)-invariant, and since SU(n) acts transitively on the
set of all SL n-planes in C", we may assume that I = R", the real slice of C" generated

by%,...,%. Thenfork =1,...,n,

and

() Q)| = (—1)Fday A Adag A Aday,
= — %o dx},

]

Corollary 2.2.2.1. Let (X, J, g,Q) be a Calabi-Yau manifold and let f : L — X be a
spcial Lagrangian submanifold. If§ € C*°(N L), then

F*(1(&)Im Qo) = %(J(€))’,

where * is the Hodge star operator on L.

Next we review the tubular neighborhood theorem, for the deformation occurs in a

star-shaped tubular neighborhood of the initial submanifold.
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Proposition 2.2.3 (Tubular neighborhood theorem). Let (M, g) be a Riemannian mani-
fold, and let X be a submanifold of M, Then there exists an open neighborhood U C N X

containing the zero section such that
explg : U — M
is a diffeomorphism.

Shrinking U if necessary, we may assume that UNN, C N, is star-shaped.

For the rest of this section, we always assume that (X, J, w, 2) is a Calabi-Yau mani-
fold and that f : L — X is a compact special Lagrangian submanifold of X. Following

the notations of the last proposition, we define

U=(JUP cCTL,
U* ={¢eC®NL)|& €UV e LY,

U*={neC®(T"L)|n, € UVx € L}.

Let £ € C*°(NL). Then there exists ¢ > 0 small enough such that t§ € U for all

|t| < e. This normal vector field ¢ defines a deformation of X given by

fie : L — X, t € (—¢¢),

fie(x) = expy,) t&e-

Note that f;c : L — X is a special Lagrangian submanifold if and only if fj:w = 0
and fj:Im Q = 0.

Lemma 2.2.4. Letn = (JE)". Then

o (frew)l,_y = dn
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and

o (frem Q)] _ = d(x).

Proof. Let € be an extension of £ on X.

g (fiew)l,_y = F*(Lgw)

where the last equality follows from the previous corollary. The other equation follows

similarly. ]

From the above lemma it follows that, if ¢ € C°°(/N L) is a special Lagrangian defor-
mation vector field, then (.J¢)® is necessarily a harmonic 1-form. Our goal is to show that
this condition is unobstructed.

Fix £ > 2. Define

0k+1,a _ {5 c C’““v“(NL) |§$ € UVx S L},
Uttt = {n € CMTL) [, € UVx € L},

and

F . UkJrl,a N Ck,a(/\ T*L)

£ —x f2Im Q + flw.

Then we have F(O) = 0, since fy = f : L — X is a Special Lagrangian submanifold.
More generally, if ¢ € F ~1(0), then f¢ : L — X is a special Lagrangian submanifold. By
composing with the isomorphism N L ~ T*L, we define F' : U*1¢ — C*a(\ T*L) by

F((JE)") = —* fiiIm Q + f{w.
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The idea is to apply the implicit function theorem for Banach spaces to show that
F~1(0) is a manifold, parametrized by an open set of the finite dimensional vector space

H! of the harmonic 1-forms.

Theorem 2.2.5 (Implicit function theorem for Banach spaces). Let X}, X5 and ) be Ba-

nach spaces and Uy C Xy, Uy C X5 be open subsets both containing 0. Let

FSU1><Z/{2—)y

(0,0) 5 0

be a map of class C* such that the partial derivative F5(0,0) : Xy — Y is a topological
linear isomorphism. Then there exists open sets W, C Xy and Wy C Xs, both containing

0, and a unique C* map X : W, — W, such that
F7H0) N Wy x Wa) = {(21, X(21)) | 21 € Wi}
By Hodge decomposition,
CHL(TH L) = H' @ d*(CH2( \ T L)) @ d(CH2%(L)). @.1)
Define X, = H! and X, be the rest of the direct sum. Let; C X; and U, C X, be open

sets such that (0,0) € Uy x Us C Uktle We restrict F to Uy x Us.

Lemma 2.2.6. I : Uy x Uy — CP(N\T*L) has partial derivative F3(0,0) : Xy —
Crka(NT*L) at (0,0) in the Xs-direction which acts as d* + d.

Proof. Letn = (J¢)’ € X,. Then

F5(0,0)n = 2(F(tn))l,_,
= (= frIm Q + fiew)l,_,

= —*(dxn)+dn

= (d" + d)n.
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]

Theorem 2.2.7 (Open mapping theorem). Let T' : X — Y be a bounded linear map
between Banach spaces. If 'T' is surjective, then I" is an open mapping. If T' is bijective,

then T' is a toplinear isomorphism.

Theorem 2.2.8. F5(0,0) : Xy — C**(A\T*L) is a topological linear isomorphism onto

the closed subspace
Y =d"(C*™(T*L)) @ d(C**(T*L)). (2.2)

Proof. We know that F(0,0) = d*+d. It’s clear that F7}(0, 0) maps X5 into ) injectively.

To see the reverse inclusion, let 6, 0, € C*T1¢(T*L). Then
d 0, € AC*34(L)
and
do, € ACH3e (N T*L)

by Hodge decomposition. Therefore there exists f € C**32 such that d*(df) = d*0;.
simiarly, there exists w € C**3¢(A\* T*L) such that dd*w + d*dw = df,. Since d*dw is

orthogonal to dfs, d*dw = 0. We conclude that
(d* +d)(df +w) = d"0, + dbs,

where df +w € C*29(T*L). Finally, by open mapping theorem, (0, 0) is a topological
linear isomorphism between Banach spaces X and ). [
To apply implicit function theorem, we show that image(F") C ).

Lemma 2.2.9. image(F') C ).

Proof. Note that there is a homotopy fc between f and f¢. It follows that [f{Im Q] =
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[f*Im Q] = 0 and [f{w] = [f*w] = 0. Consequently, xf;Im Q € d*(C**"*(T*L)) and
fiw € d(CFHe(T L)), O

It turns out that F' : U; X U, — Y. By implicit function theorem, there exists open

subests 0 € W) C U, and 0 € W, C U, and a unique map X : W; — W, such that
F7H0) NWr x Wy = {(n1, X(m)) |m € Wi}, (2.3)

This gives a smooth chart from the set of harmonic forms on L to the moduli space of
special Lagrangian submanifolds near L. The dimension of this moduli space M =
F=H0)N (W1 x W), dimM, is equal to the first Betti number b' (L) of L. This completes

the proof of McLean’s theorem.

2.3 Geometric Structures on the Local Moduli Spaces

Let M be the local moduli space obtained in the last subsection. On M there is a
natural Riemannian metric given by the L? inner product of harmonic 1-forms.

In [Hit97], Hitchin asked what is the natural geometrical structure on the moduli space
of special Lagrangian submanifolds in a Calabi-Yau manifold.

By McLean’s theorem, we have an embedding M — H'(L). But the construction of
this embedding uses implicit funcition theorem, thereby not canoncial. Following [Hit97],
we first show that there is a canoncial one.

Redefine f : M — X as the full local family of special Lagrangian deformations of
L, where M ~ L x M. Letp : M — M be the projection map. For eacht € M,
Ly = p~(t).

Letty, ..., t, bealocal coordinate system of M. Of course, m = b'(L) = dimH' (L, R).

d

The tangent vectors 5~ on L; define harmonic forms
J
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These 1-forms can also be obtained as follows. Since f*w = 0 on the fibre L; (L, is
Lagrangian), there are 1-forms #; on M such that f*w = S dt; A §;. Then 6; = 6| Ly
which coincides the previous definition.

Choose a basis Ay, ... A,, € Hy(L,Z) modulo torsion. Let ay, ... a,, € H'(L,R) be

the dual basis of Ay, ... A,,. Then we obtain a period matrix

>\ij _/ Qj.
A

7

The matrix ();;) is invertible, since #; are linearly independent.
Proposition 2.3.1. The I-forms §; =Y \;;dt; on M are closed.

Proof. Choose smoothly in each fibre L, a circle representing A;. Then we have a fibration

Sl HMZ
lp
M
Define a 1-form £ on M by
§=pifw.

The push-down map p, is the integration over the fibre. Since p, sends closed forms to

closed forms, & is closed. Now,

pefrw=p.>_dt; N6y
:Zdt]/ 9]'
A;

=&

]

Since the 1-forms &; are closed, locally we can find functions uv; : M — R, well-
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defined up to a constant, such that du; = & = > \;dt;. Since ()\;) is invertible,

uq, ..., U, define a coordinate chart. More invariantly,

Proposition 2.3.2. We have a coordinate chart v : M — H'(L,R) defined by

u(t) = ui(t)a;.

Moreover, this embedding is independent of the choice of basis, and is unique up to a

translation.

Proof. Let the prime version denote another choice of basis. There exists an invertible
matrix (7j;) such that A; = Tj;AL and o; = Tj;a. The period matrix transforms as

/
)\ij = zk)‘k;] NOW,

Suei=Y [ dura
:Z/tAijdtj/\ai
:Z/tﬂkA;jdtjAai
:Z/tduma;
= 3" .

]

Paralleling the procedure above, we have a similar result for Im €2. Since L; is special
Lagrangian, f*Im = 0 on the fibre L,. Therefore there exist (n — 1)-forms ¢; on M
such that f*Im Q = > dt; A gz~5j. The restriction ¢; = ¢,| 1, 1s independent of the choice
of ¢;. In fact, ; = (L(%)f*lm Q)]Lt and ¢; = x0; by Corollary 2.2.2.1.

Let By,..., By, € H,_1(L,Z) be the Poincaré¢ duals of oy, . . . , a,,. We form a period

matrix

,uij:/ ;-
B;
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Then there exist coordinates functions vy, . . ., v,, such that dv;, = p;;dt; and an em-

bedding
v: M — H"YL,R)

given by

v(t) = uib;,

where 31, .., B, € H"'(L,R) are the dual basis of By, . .., B,,. The matrices ();;) and

(pi;) are related as follows:

Lemma 2.3.3.

Z Aijlhik = Z Aik i -

Proof.

/@/\(bk:/ej/\*@c
L L
:/Qk/\*gj
L
L

Using 6, = > Nijau, ¢ = Y, i) and the fact that «; and fj, are Poincaré duals, we get
the identity. [

u and v together give an embedding

F:M— HY(L,R) x H" (L, R)
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The main result of [Hit97] is to show that the geometry of M is inherited from H'(L, R)x
H" (L, R). We first recall the linear geometry on V &V * where V is a finite dimensional

vector space. There is naturally a symplectic structure on V' & V* given by
W((v,a), (¥, ) =d () —al).
There is also a symmetric bilinear form G on V' & V* given by
G((v,0), (v,0) = 5(@/(0) + a(v)).

It follows that manifold H'(L,R) x H" (L, R) has these two structures on the tangent
space H'(L,R) & H"*(L,R); in other words, H'(L,R) x H" '(L,R) is a symplectic
manifold together with a symplectic form 1/ and an indefinite metric G. This indefinite

metric restricted M is the L? metric:
Proposition 2.3.4. The L* metric g on M is F*G.

Proof. We have dF(;2) = (3 Aijou, > puwf31). Thus for two tangent vectors,
J
* o) 2] 1
F G(aja_tja bkﬂ) = é(ajbk:)\ijﬂik + apbj Nirfti;) = a;bpAij i,
where we sum over repeated indices. On the other hand,

g(aja%,bka%) = ajbk/LQj N KOy, = @jbk/Lej Axrs

(Again we are summing over repeated indices.) Plugging §; = > A\;;a; and ¢, = D> A 5;

into the above equation gives the equality. 0

Theorem 2.3.5. The map F embeds M in H' (L) x H" '(L) as a Lagrangian submani-
fold.

Proof. In local coordinates (u, v), the symplectic form 1 reads

W= du; Adv,.
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Pulling back to M, we get

F*W = F* Z du; A dv;

Ou; Ov;
G Susdt; A iy

== Z )\ij,uikdtj VAN dtk.

But Y. A\jjptie = D ; Aikpti;. So W pulls back to 0. o

Any Lagrangian submanifold of V' x V* ~ T*V can be written locally as the image
of the exact differential d¢ : V' — T™V, where ¢ is a (locally defined) function. In our

case, H'(L) x H" (L) ~ T*H"'(L), and the fibre coordinates v; can be written as

v; = do(u;) = 5%;-

Exchanging the roles of '(L) and H"*(L), we can also write u; = 2% for some locally

defined function ¢ on H"'(L). In these coordinates, the metric G can be written as

¢ 0>
G=> dudv; =) Furd, dugdu; =Y mdvidvj.

As in the case of deformations of complex manifolds, one can ask when is M itself a
special Lagrangian submanifold. The manifold V' x V* has two constant m-forms, which
are the generators of A"V* and A"™V. Following the previous notion, we can define a
submanifold of V' x V* as a special Lagrangian if it is Lagrangian and a linear combination

of these constant m-forms vanishes. For further discussion we refer to [Hit97].



Chapter 3

Ricci-flat metrics on 77*S"

In this section, we introduce a local model of special Lagrangian spheres, namely
the cotangent bundle of the standard n-sphere, 7*S5™. We equip 75" with a Ricci-flat
metric, called the Stenzel metric, and show that the zero section S™ is a special Lagrangian

submanifold.

3.1 Ecxistence of the Metric

First we fix coordinates by 7*S™ = {(z,£) € R*™ x R"™' | |z| = 1,z - £ = 0}. The
group SO(n + 1, R) acts transitively on 7*S" by g - (x, &) = (g9z, ¢€), g € SO(n + 1, R).
The general orbit of this action is the sphere bundle SO(n + 1)/SO(n — 1) ~ 5™ x S™*~1,
while the exceptional orbit being the zero section S™. It is well-known that there exists a

diffeomorphism from 7*S™ to the affine quadric

n+1

Q"={2=(z1+...+2001) €C"| ) 27 =1},

j=1

given by

(2,€) — z = xcosh(&]) + z’Sin’};(‘lﬂ)

.

This diffeomorphism is equivariant with respect to the action of SO(n+1,R) on 7*S™
and the action of SO(n + 1, C) on Q". Thus we can view 7*S™ as the complexification of
the homogeneous space S™. We make 75" into a complex manifold simply by pulling

back the complex structure of ()". Our next goal is to describe a method to construct a

15
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family of Ricci-flat metrics on Q™.

Let 7 be the restriction of the function||z||* = Z?;l |2 ’2 to Q". By a simple calcu-
lation we see that 7 : Q™ — [1, 00) is a strictly plurisubharmonic exhaustion on Q™. We
seek [Ste93] Ricci-flat Kéhler potentials of the form p = f o 7, where f : [1,00) — Riis

a smooth function. For later calculations, we fix a local frame on ()" as follows:

_ 0 0

Vi = TZntip; T A I
_ 0 0

V2 = ~Zntigp T 22g; o
- _ 0 1é)

Un = “ntl 0z, T Zn 9z 41’

\

Let u!, ..., u"™ be the dual frame. The Kihler form of p is given by

w = i00p
= i(f"0r A OT + f007)

= i(f"my + f’Tj,;)uj A uE,

where 7;, 7; denote the differentiations in the directions of v; and vy, respectively:

T, = _Zn—‘rlgj + ngn—‘rl;
Th = —Zn+1%k T ZkZn+1,

7']‘]‘g = |Zn+1’2 5jk + ngk.
The Ricci-form of p is given by

Ric(p) = —i00 log det pjz

= —i00 logdet( "y + ['77).

We can investigate further:
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"

det(f" 7y, + f'r;5) = (f')" det(—Z 77 + 75%)
= ("1 + —TJETjT,;) det T,
=((f "+ (f/)n_lf”TjETjT,;) det 7z,
where the second equality follows from the matrix determinant lemma and 77 ¥ is the matrix

inverse of 7,7, i.e. 77'7;; = O

Lemma 3.1.1.

T = .
T

Proof. By a simple calculation, we have

7 1 1
7k —(6] —;zkzj)

T = 3
|Zn+1‘

After a lenghty but straight-forward computation, we get the equality. O]

Lemma 3.1.2. [fthe function f solves satisfies the ODE
o(f'(2)" + (f'(2)" " (@) (a* = 1) = ¢ > 0, (3.1)
where c € R is a constant, then (f o T);; solves the Ricci-flat equation
d0logdet(f o 1);; = 0.

Proof. The eigenvalues of the matrix (7;;) = (Oik]2ns1]* + 2;21) are|z,,1|* and 7, with

multiplicity n — 1 and 1, respectively. Therefore, det 7, = 72,11 2,
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If f solves the ODE, then

logdet(f o7);; = log(g det 7;z)

= log(clzn[""77).

It is then straight-forward to check that

82

92795F 10g|2n+1| =0

to conclude the result. OJ

The ODE (3.1) can be solved directly. In fact, multiplying both sides of (3.1) with the

integral factor n(z% — 1)"2", we have

n 2

(f)"(2* = 1)2) = ne(a® — 1)z .

Hence

n—2

ne [[(t2—1)"z dt .
@oni "

f'(w) = (

We still need to check that the potential p = f o 7 defines a metric; in other words, p

is a strictly plurisubharmonic function. But this can be seen easily as follows.

Lemma 3.1.3. The function p = f o 7 defined as above is a strictly plurisubharmonic

exhaustion.

Proof. That pis strictly plurisubharmonic translates to that the hermitian matrix p;, f"'7; 7+
f'7;i is positive definite. On the (n — 1)-dimensional subspace ker 07, the matrix restricts
to f'7;z. Since f* > 0, this restricted hermitian form is positive definite. It follows that p
has at least n — 1 positive eigenvalues. Since det p;; = 7|21 |2"72 > (0, the eigenvalues

are all positive. This completes the proof. [

We record the results so far as the following theorem.
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Theorem 3.1.4 (Stenzel[Ste93]). There exists a Ricc-flat Kdhler metric on T*S".

In [Ste93], Stenzel proved in general that any cotangent bundle of a rank one symmetric

space admits such a Ricci-flat Kdhler metric.

3.2 Completeness of the Stenzel Metric

In [PWO91], Patrizio and Wong give a thorough study of the geometry in )". They
first constructed a pluriharmonic exhaustion of the form g o 7 on )", which satisfies the
homogeous Monge-Ampére equation. In fact, the method that Stenzel constructed the
Ricci-flat Kdhler metric in the previous section parallels the construction of Patrizio and

Wong:

Theorem 3.2.1 ([PW91]). The function u = cosh™'or on Q" is a plurisubharmonic

exhaustion function of Q" which satisfies the homogeneous Monge-Ampere equation
(00u)™ = 0.

Proof. The function u can be derived in the following way. Suppose there is a smooth
function i : [1, 00) — R such that uw = ho7. The homogeneous Monge-Ampére equation

translates to

detu;z = deth" ;1 + f'7;3
= ()" + (W) W'y det

=0.

By Lemma 3.1.1, it suffices to find a function & satisfying the following ODE:

R (z) T

b (z) 2 -1
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Integrating twice gives the general solution

h(z) = ¢, cosh™' o + co.

The condition h(1) = 0 forces ¢y to be 0. Plurisubharmnoicity implies that ¢; > 0.
That the resulting function v = cosh™! o7 is plurisubharmonic can be seen by the same

argument as in Lemma 3.1.3. [
The following theorem is the key to the completeness of the metric.

Theorem 3.2.2 ([PWO1)). Let p = r~! o u be a strictly plurisubharmonic function on a
complex manifold M, where u satisfies the homogeneous Monge-Ampere equation. Then
p defines a Kdihler metric. The distance minimizing geodesics between level sets of p are

given by the integral curves of V p. Consequently the geodesic distance between level sets

{p =a} and {p = b} is given by

dist({p = a}, {p = b}) =|—=

Theorem 3.2.3. The Ricci-flat Kihler pontential p = f o T constructed in the last sub-

section gives a complete metric.

Proof. Let u = cosh™! or. Then we write p = g o u, where g = f o cosh. g satisfies the

ODE

By theorem 3.2.2, the distance between a point z € Q™ and the zero section {p = 0} is

W

) i

given by

dist(z, {p = 0}) =

%I

%I
S~
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We estimate ¢'(u)™ from above.

g ()" = /Ou ne(sinh(w))™* ™ dw

< ncu sinh(u)"

for u large enough, say u > wy, since sinh(w) is strictly increasing. It follows that
u uq o1
/ V" (w)dw > co/ (=) 2 du,
0 uQ U

where ¢ is a constant. Note that the right hand side is clearly unbounded as © — oo.

Since the function u is a exhaustion, this completes the proof. [

3.3 Special Lagrangian Structures

This Ricci-flat metric, together with a holomorphic nonvanishing (7, 0)-form on Q",
makes Q" a noncompact Calabi-Yau manifold. The sphere {z7+...22,, = 1} in Q" can
be shown to be special Lagrangian.

Let f o 7 denote our Ricci-flat potential. Let w = 00 f(7) be the Kihler form. Then
w = da is exact, where @ = —Im 9f(7). a = f'(7)ag, where (o). (v) = (Jz,v) is
the standard Liouville form on C"!. The holomorphic volume form € on Q" is given
by the Poincaré residue map. Let b = z§ + ... + 22, — 1 be the defining equation of
Q" and Qg = dz; A ... A dz,, be the standard holomorphic volume form on C"**!. The

adjunction formula
KQn >~ K(Cn+1 |Q" X NQn

yields
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or more explicitly
Qvg, ..., 0n) =2Q0(2,01,. .., 0)
forallz € Q" and vy,...,v, € T.Q".
Since SO(n + 1, C) preserves J, w and (2, there exists A € R such that
wn n(n—1) Z —
—1)" 7 (2)"NQAQ 2
2= (1)) 62)

Therefore (7*S™ =

Q", J,w, A\Q) is a Calabi-Yau manifold.

Since a|g. = 0, w|g. = 0. Also, since Im {2 contains dy’ terms and the tangent

space of S™ is spanned by %, we have Im Q| = 0. We conclude that S™ is a special

Lagrangian submanifold of 7 5™.
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Existence of Lagrangian Spheres

Definition 4.0.1. Let f : X — C be a holomorphic map of a complex manifold X. We
say that a critical point x € X of f is nondegenerate if the hessian of p is a nondegenerate

bilinear form.
Let D denote the unit open disk in C centered at 0.

Definition 4.0.2. Let X be a compact Kdihler manifold. An ordinary degeneration of X
is a Kdhler manifold E with a proper holomorphic map w : E — D with the following

properties:

1. 7 has a critical point.

2. Any critical point p of 7 is nondegenerate, and is contained in the central fibre

E() = 7T_1(O).
3. There exists = € D such that X is isomorphic to E, = 17'(z).

The regular fibres of a degeneration, thanks to Ehresmann’s fibration theorem and

Moser’s theorem on deformation of symplectic forms, are in fact symplectomorphic:

Proposition 4.0.3. Let p : E — C be a proper holomorphic map from a Kdihler manifold

(E, Q). Then all regular fibres E; = p~L(t) are symplectomorphic.

Proof. May assume that F, is a regular fibre. By Ehresmann’s fibration theorem, p : £ —
D is a fibration. May also assume that £ is another regular fibre in the local trivialization
near 0. Then we have diffeomorphisms ¢, : Xo — X;, t € [0,1]. Let, : E;, — E,

t € [0, 1] be the inclusion maps. The symplectic form €2 restricts to w; = ¢;<2 on E;. We

23
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have

[rwi] = (v 0 60) [ = [wol.

Thus there is a family of symplectic forms ¢;w, on £} lying in the same cohomology class.

By Moser’s theorem, wy is symplectomorphic to ¢jws, and the proposition follows. [

Morse lemma helps us choose a coordinate system shaping the projection 7 into a

quadratic form.

Proposition 4.0.4 (Holomorphic Morse Lemma). Let f : X™ — C be a holomorphic map.
Suppose that v € X is a nondegenerate critical point of f. Then there exists a coordinate
system (21, . .., z,) centered at x such that under this coordinate system, f(z1,...,2,) =

FO)+ 27 +... 422
The following is the main statement of this section.

Proposition 4.0.5. Any compact Kdhler manifold which admits an ordinary degeneration

contains a Lagrangian sphere.

In [Sei97], two constructions are given. We devote the subsequent subsections to

record these results.

4.1 Seidel’s Proof

We begin with a linear version.

Lemma 4.1.1. Let 8 be a (complex) bilinear form on C" which is symmetric and nonde-
generate. Then there exists an n-dimensional real subspace L C C™ which is Lagrangian

for the standard symplectic form wy, and such that ( restricted to L is real and positive

definite.

Proof. Since [ is nondegenerate, the real part b = Re [ is a real nondegenerate bilinear

form on R?** = C", with complex structure .J being the scalar multiplication with i. Let
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B be the R-linear map given by b(v,w) = (Bv,w)g. Then B is invertible and self-
adjoint. Note that B is conjugate-linear: B(Jv) = —J(Bwv) for all v € R*". We can
decompose R?" into L™ @& L~, where L™ are the £-eigenspaces of B, respectively. Note
that JL* = L7,

Let L = L*. Then L is Lagrangian with respect to wy, since the eigenspaces are
orthogonal to each other. The fact 3 restricted to L is real and positive definite follows

from direct computation. O

Corollary 4.1.1.1. (Notations as the above lemma.) Let q be the quadratic form associated
to B. Thenfort > 0, V; = ¢~ '(t) N L is a Lagrangian (n — 1)-sphere in the symplectic

manifold (g~ (t), wol,-1)-

Proof. Since (8 is nondegenerate, by the complex version of Regular Value Theorem,
g *(t) is a complex submanifold of C", thus also a symplectic submanifold. Since 3
restricts to a real, positive definite form on L, by Regular Value Theorem, ¢~ '(¢) N L is
a (n — 1)-dimensional real submanifold. Since the tangent space lies entirely in the La-
grangian subspace L, this is a Lagrangian submanifold. Finally, the quadratic form ¢ is

nondegenerate. It follows that g='(¢) N L is a (n — 1)-sphere. O

Lemma 4.1.2. Let w be a Kdhler form in some open ball B.(0) C C" centered at 0 with
radius € > 0, which agrees with the standard form wg at 0. Thene there is a Kdhler form
w' on Bc(0) such that w' = w on B.(0) \ B:(0) and w' = wy in some neighborhood of
0. Moreover, w' and w are connected by a 1-parameter family of symplectic forms, all of

them lying in the same cohomology class.

Proof. By Poincaré lemma, there exists 0 < 6 < e and f € C*(B;(0),R) such that
(wo — w)|Ba(0) = i00f. Since wy = w at 0, we may assume that f vanishes up to second

order, i.e. f(0) = Df(0) = I’ f(0) = 0. Therefore there exists C' > 0 such that
‘f(:c)| < C]:L’|3, ldf.| < C’|a:]2 and ‘szx‘ < C|z| 4.1)

for all x € Bs(0).
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Let ¢ € C* be a bump function such that ¢» = 1 on B;(0) and supp(¢)) C B(0). For
each r > 0, let ¢, (z) = (). Foreach 0 < r < 2, letn, = i99(¢), f), which is a real

(1,1)-form on C". We compute:

e = i((00¢,) f — 0y NOf + O NOf + 1,00 )

=i(r2(00) f + 1O NOf —r 'Y A Of + ,.00f)
It follows from the estimates (4.1) that for z € By, r < g, we have
()] < C'r, 4.2)

where C” is a constant independent of 7. On the other hand, (7,), = 0 for z ¢ Bs,(0).
This together shows that 7. — 0 uniformly as » — 0. If we choose » > 0 small, then
W' = w + 7, is also a Kéhler form. If|z| < 7, then 1, (x) = 1 and w’ = wy at z. Finally,
the 1-parameter family is easily got by interpolating between w and w'.

]

Proof of the proposition. Letw : E — D be an ordinary degeneration of a compact Kahler
manifold X, with Kéhler form Q. Let zy € 771(0) be a critical point of 7. By holomorphic
Morse lemma, there exists a holomorphic chart ¢ : B.(0) C C* — E around z, such that
q(z) = m(c(z)) is a nondegenerate quadratic form. By a linear change of coordinates,
we may assume that ¢*() = wy at 0. By the previous lemma, there is a Kéahler form
2" on E such that ¢*2 = wy near 0 and )’ =  outside a neighborhood of 0. By the
previous corollary, there exists a Lagrangian sphere in the symplectic manifold (E;, 2’|, )
whenever ¢ > 0 is small enough. By Moser’s theorem, (£, Y| ) and (E;, €| ) are
symplectomorphic. Finally, since every regular fibre is symplectomorphic to each other,

we conclude that X contains a Lagrangian sphere.
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4.2 Donaldson’s Proof

Let 7 : (E,Q) — D be an ordinary degeneration of a compact Kéhler manifold X,
and let o € 7 1(0) be a critical point of 7. By holomorphic Morse lemma, there exists
a coordinate system 21, . . ., z, centered at =y such that in this coordinate system, we have
w(z) =z} + ...+ 22 Let f =Rem,h =Im 7. Then f(2) = 2? —yi + ... + 22 — 92,
where x, = Re zp,yp, = Im 2,k =1,... ,n.

Let ¢, be the negative gradient flow of f, i.e.

0o,
or

(p) ==V fod(p) (4.3)
Let W# denote the stable submanifold of x, i.e.
W*={pe E[ lim (p) = wo}. (4.4)

By Morse theory, for small ¢ > 0, V; = W* N f~1(t) is an embedded (n — 1)-sphere.
Lemma 4.2.1. V[ = X}, the Hamiltonian vector field of h.

Proof. Let (g, J) denote the metric and the complex structure of E, respectively. For any

tangent vector X of £, we compute

9(Xn, X) = g(JXn,JX)
= Q(Xp, JX)
= (JX)(n)
= X(f),

where the third equality follows from the definition of X} and the last equality follows

from the Cauchy-Riemann equation. U

By the lemma, we see that ¢, is the integral flow of the Hamiltonian vector field X,. It
follows that ¢, is a 1-parameter subgroup of symplectomorphisms preserving h. Therefore

W# C h=1(0), and hence V; C (h=1(0) N f~1(¢)) = E..
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Forp € W*, since ¢, (p) — xo as r — oo, the differential (d¢, ), : T,W° — T, () W*
tends to 0 as » — oco. But ¢ = (). It turns out that 11/ is a Lagrangian submanifold of
E.

Since V; C W?*, V; is a Lagrangian sphere. Since all the regular fibres are symplecto-
morphic to each other, we conclude that X contains a Lagrangian sphere.

Some observations can be given when comparing these two proofs. The approach that
Seidel follows is to study the local case first, and then deform the Kéhler form given to
meet the local case. The lagrangian sphere is obtained as the symplectomorphic image of
the local one. The information about the sphere lies in Moser’s trick. On the other hand,
Donaldson’s proof uses the gradient flow. The resulting Lagrangian sphere thus seems to
have some kinde of uniqueness. But in both approaches, the sphere still depends on the

coordinate choice, which lies in the complex Morse lemma.
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Discussion on the Main Problem

5.1 Formulation of the Main Problem

In this section, we investigate the existence of special Lagrangian spheres in a compact
Calabi-Yau manifold M which admits an ordinary degeneration. The case of dimension
n = 3 is of particular interest.

We formulate the problem as follows. Let M be a compact Calabi-Yau manifold.
Suppose that M admits an ordinary degeneration 7 : £ — D such that each nonsingular
fibre is also a Calabi-Yau manifold. Let p be a singular point of 7. By holomorphic Morse
lemma, (21, ..., 2y41) = 27 +...+2z2,, in a suitable coordinate system z;. We consider
the fibres E;, where ¢t > 0. Inside a neighborhood |z| < R, the fibre looks locally the
same as our local model. As ¢ — 0, the tubular neighborhood U; = E; N {z| < R} of
the sphere {7 + ... 2%, = t} can be arbitrarily large compared to the size of the sphere.
The naive approach is to use partition of unity to combine the metric on F; and that of
our local model, so that near the sphere, the metric is exactly the Stenzel metric. But the
resulting metric can hardly be Kéhler.

The Ricci-flat metric on 7*.S™ has a kind of uniqueness. Therefore, we conjecture
that as ¢ — 0, the metric on E; will be more similar to the local one. The first step is to
construct a Kdhler metric on £} such that near the sphere, this metric is exactly the Stenzel
metric. Then we can apply the Calabi-Yau theorem to find a Ricci-flat metric in the same
Kaéhler class. We may then compare this metric to the original one on Fj;. This is still in
progress.

The other approach is to use the mean curvature flow. According to [Smo96], the

Lagrangian condition is preserved under the mean curvature flow, if the ambient manifold

29
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is Kéhler-Einstein. If the long time existence is guaranteed, the flow would converge to
a minimal Lagrangian submanifold. A possibly simpler question can be asked: does the

Lagrangian mean curvature flow in 7*S5™ have long existence? More precisely,

Question 1. Does a Lagrangian section o : S™ — (T*S", ws,) converges to a special

Lagrangian section under the mean curvature flow?

For n > 2, the difficulties come from the fact that the codimension is greater than 1.

For n = 1, the long time existence is guaranteed.

5.2 Resultsinn =1

Let M be a compact 1-dimensional Calabi-Yau manifold. By Cartan-Hadamard the-
orem, the universal cover of M is R?. It follows that M is just a flat torus. The Stenzel
metric on 7*S* ~ S x R is also flat for the same reason.

We first study the case of the local model 7*S! = S' xR. Leto : M = St — St xR
be a section. Recall the mean curvature flow F(p,t) of o is defined as the following

equations:

%F(p, t) = AF(p,t) = H(p,1) (5.1)

F(p,0) =0o(p) (5.2)

where p € S! and H(p,t) denotes the mean curvature vector of the hypersurface M; =
F(M,t).

Since any 1-dimensional submanifold is Lagrangian in a 2-dimensional symplectic
manifold, the Lagrangian condition is empty. We are concerned about the long time exis-
tence and the behavior of this flow. Intuitively, the flow should minimize the length of a
cross section of the cylinder S x R, “flattening out” the initial one into a flat one S* x {c}
for some ¢ € R. If we lift the flow to the cover R?, then o : R — R? is just a graph of
a periodic function. The mean curvature flow of entire graphs is well-studied in [EH89],

and our situation is just a special case.
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For completeness, we reproduce a proof here. The flow (5.1) is now considered in R
Let v be the unit outer normal of . The graph condition of the initial data can be captured
by the existence of a vector w € R? such that|w| = 1 and (v,w) > 0. From now on, we
always assume implicitly that x = F'(p, t).

The fundamental indgredient is a monotonicity formula due to Huisken.

Definition 5.2.1. Fix ty € R and xy € R""!. We define the backward heat kernel Pxo.to

to be

|zo —93|2

= 1)

Pzoto (l’, t) = (47T(t0 - t))_% exp(—

fort < t.

We will suppress the notions of x( and ¢, when they can be read out from the context.

Differentiating p,, +, (z, t) with respect to ¢ yields

n_ lzo — x> (H,xo — )

Gp(F(pt),t) = (2<t0_t) P E Ty )p(F(p,t),t)-

On the other hand,

—n (H,zo — ) ‘(xo_x)Tf

Wio—0) ~ 2to—1)  A(ty—1)2

Awp(F(p,t),t) = Z p(E(p,1),1),

where 7" denotes the tangent component. Hence the evolution equation of p is

_ H> ‘(IQ —ZE)J'|2
4 AN = {wo —a, H) _
(G + Aup to—t Aty — 12 |7

where | denotes the normal component. Let dy; denote the volume form of the flow M.

The first variation of dy,; yields

%dﬂt = —H2dﬂt~

The above calculations together give the monotonicity formula:
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Lemma 5.2.2.

1 2
H4+ ———(x—x9)* .
+ 2o —1) (x —x0) | dpu

g‘—t/ pdutz—/ p
M, M;

More generally, suppose f(x,t) = f(F(p,t),t) satisfies some polynomial growth condi-

tion. Then we have

2
Ay, (5.3)

d — dr_ _ 1 — 20t
ai fpdm—/Mt(dtf Af)pdpy /Mtfp‘H+2(to—t)(x Z0)

My

This monotonicity formula gives the following maximum principle.
Proposition 5.2.3. Suppose the function f = f(x,t) satisfies the inequality

(%—A)féa-vf

for some vector a, where NV denotes the gradient on M. If ag = sup s, (o,,lal < oo, then
sup f < sup f.
M, Mo

Proof. Put k = sup,, f and set f; = max(f — k,0). Then

(&= A)fi<2fpa-Vfi— 2|V fi?

f

2 21 12
ka—?ka X filal

2

We then apply the monotonicity formula (5.3) to f2. Pick ¢y > t and o € R"™! arbitrary.

Then

1
[ Fedu < Sag [ fpdpy.
Mt Mt

It turns out that f; = 0 and the result follows. O
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Let u = (x,w) denote the height of the M, with respect to the hyperplane defined by

w. It follows from (5.1) that

(— —A)u=0.

Since our graph is periodic, u is uniformly bounded at ¢ = 0. It follows from proposi-

tion 5.2.3 that

infu < infu < supu < supu
My M, M, Mo

whenever M, exists.
Next we show that the flow stays as a graph. It amounts to show that the quantity

(v, w) is bounded from below for all time, or equivalently

v={r,w)!

is bounded from above. For each local frame {e;}, let A = (h;;) be the second fundamen-

tal form, i.e.

<Fija1/> = _hij7

where Ej = eiejF.

Lemma 5.2.4.

Proof. In local coordinates,
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Also,
2
{5V 6(3:) =~ 76265) = —ar (v H) = g_fi'
This completes the proof. ]

Lemma 5.2.5. v satisfies the evolution equation

(% — A =—|AP v — 207 Vo,

Proof. From the previous lemma we know that
9y =X (VH,w).

ot

We may assume that {x;} is a normal coordinate system centered at a point we want, and

sete; = %. Then,
(Ve e;) = (v, Fij) = hij.
Therefore V., v = h;;je;. The mean curvature H is given by
H = (Vej, —v),
and hence
ei(H) = (Fijj, —v) = ¢;(Fij, —v) = e;(hi;).
Therefore

VH = ei(hij)ej‘
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Now,

Av = e;(—ve;{v,w)) = 20 e (v, w)e; (v, w) + V2 AV, w)
= 207 Vol — v*(ei(hij)ej, w) — v3(hi;Ve,e;,w)

= 207 Vu|* — v*(VH,w) + '02(2 hi v, w)
ij

= 207 Vu)® — v}(VH,w) + v|A]*.

O

From the above lemma and proposition 5.2.3, we deduce that v is uniformly bounded
for all ¢, for v is certainly uniformly bounded for ¢ = 0. It follows that our flow remains
a Lagrangian section for all time.

The following estimates interior in time for the curvature and all its derivatives will

establish the long time existence.

Proposition 5.2.6. Assume that there is ¢y > 1 such thatv < ¢y att = 0. Let M; be a
smooth solution of (5.1). Then for each m > 0, there is a constant C(m) depending only

on ¢y and m such that
15m+1|VmA|2 < C(m)

holds uniformly on M;.

From the above proposition we see that the flow keeps “flattening out” the section.
Since in our case, the flow does not diverge to oo, the flow actually converges to a hyper-
plane, that is a section S* x {c} of the cylinder S* x R.

In the torus case, we have the exactly same result, since the neighborhood of a cross

section in the torus is a neighborhood in cylinder.
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